ysr@777: /* drchase@6680: * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. ysr@777: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ysr@777: * ysr@777: * This code is free software; you can redistribute it and/or modify it ysr@777: * under the terms of the GNU General Public License version 2 only, as ysr@777: * published by the Free Software Foundation. ysr@777: * ysr@777: * This code is distributed in the hope that it will be useful, but WITHOUT ysr@777: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ysr@777: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ysr@777: * version 2 for more details (a copy is included in the LICENSE file that ysr@777: * accompanied this code). ysr@777: * ysr@777: * You should have received a copy of the GNU General Public License version ysr@777: * 2 along with this work; if not, write to the Free Software Foundation, ysr@777: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ysr@777: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. ysr@777: * ysr@777: */ ysr@777: stefank@2314: #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP stefank@2314: #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP stefank@2314: mgerdin@6987: #include "gc_implementation/g1/g1BlockOffsetTable.hpp" stefank@2314: #include "gc_implementation/g1/g1_specialized_oop_closures.hpp" stefank@2314: #include "gc_implementation/g1/survRateGroup.hpp" stefank@2314: #include "gc_implementation/shared/ageTable.hpp" stefank@2314: #include "gc_implementation/shared/spaceDecorator.hpp" stefank@2314: #include "memory/space.inline.hpp" stefank@2314: #include "memory/watermark.hpp" jprovino@4542: #include "utilities/macros.hpp" stefank@2314: jprovino@4542: #if INCLUDE_ALL_GCS ysr@777: ysr@777: // A HeapRegion is the smallest piece of a G1CollectedHeap that ysr@777: // can be collected independently. ysr@777: ysr@777: // NOTE: Although a HeapRegion is a Space, its ysr@777: // Space::initDirtyCardClosure method must not be called. ysr@777: // The problem is that the existence of this method breaks ysr@777: // the independence of barrier sets from remembered sets. ysr@777: // The solution is to remove this method from the definition ysr@777: // of a Space. ysr@777: ysr@777: class HeapRegionRemSet; ysr@777: class HeapRegionRemSetIterator; ysr@777: class HeapRegion; tonyp@2472: class HeapRegionSetBase; johnc@5548: class nmethod; tonyp@2472: tonyp@3713: #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]" tonyp@2963: #define HR_FORMAT_PARAMS(_hr_) \ tonyp@2963: (_hr_)->hrs_index(), \ tonyp@3957: (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \ tonyp@3957: (_hr_)->startsHumongous() ? "HS" : \ tonyp@3957: (_hr_)->continuesHumongous() ? "HC" : \ tonyp@3957: !(_hr_)->is_empty() ? "O" : "F", \ drchase@6680: p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end()) ysr@777: tonyp@3713: // sentinel value for hrs_index tonyp@3713: #define G1_NULL_HRS_INDEX ((uint) -1) tonyp@3713: ysr@777: // A dirty card to oop closure for heap regions. It ysr@777: // knows how to get the G1 heap and how to use the bitmap ysr@777: // in the concurrent marker used by G1 to filter remembered ysr@777: // sets. ysr@777: mgerdin@6986: class HeapRegionDCTOC : public DirtyCardToOopClosure { ysr@777: public: ysr@777: // Specification of possible DirtyCardToOopClosure filtering. ysr@777: enum FilterKind { ysr@777: NoFilterKind, ysr@777: IntoCSFilterKind, ysr@777: OutOfRegionFilterKind ysr@777: }; ysr@777: ysr@777: protected: ysr@777: HeapRegion* _hr; ysr@777: FilterKind _fk; ysr@777: G1CollectedHeap* _g1; ysr@777: ysr@777: // Walk the given memory region from bottom to (actual) top ysr@777: // looking for objects and applying the oop closure (_cl) to ysr@777: // them. The base implementation of this treats the area as ysr@777: // blocks, where a block may or may not be an object. Sub- ysr@777: // classes should override this to provide more accurate ysr@777: // or possibly more efficient walking. mgerdin@6986: void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top); ysr@777: ysr@777: public: ysr@777: HeapRegionDCTOC(G1CollectedHeap* g1, coleenp@4037: HeapRegion* hr, ExtendedOopClosure* cl, ysr@777: CardTableModRefBS::PrecisionStyle precision, ysr@777: FilterKind fk); ysr@777: }; ysr@777: ysr@777: // The complicating factor is that BlockOffsetTable diverged ysr@777: // significantly, and we need functionality that is only in the G1 version. ysr@777: // So I copied that code, which led to an alternate G1 version of ysr@777: // OffsetTableContigSpace. If the two versions of BlockOffsetTable could ysr@777: // be reconciled, then G1OffsetTableContigSpace could go away. ysr@777: ysr@777: // The idea behind time stamps is the following. Doing a save_marks on ysr@777: // all regions at every GC pause is time consuming (if I remember ysr@777: // well, 10ms or so). So, we would like to do that only for regions ysr@777: // that are GC alloc regions. To achieve this, we use time ysr@777: // stamps. For every evacuation pause, G1CollectedHeap generates a ysr@777: // unique time stamp (essentially a counter that gets ysr@777: // incremented). Every time we want to call save_marks on a region, ysr@777: // we set the saved_mark_word to top and also copy the current GC ysr@777: // time stamp to the time stamp field of the space. Reading the ysr@777: // saved_mark_word involves checking the time stamp of the ysr@777: // region. If it is the same as the current GC time stamp, then we ysr@777: // can safely read the saved_mark_word field, as it is valid. If the ysr@777: // time stamp of the region is not the same as the current GC time ysr@777: // stamp, then we instead read top, as the saved_mark_word field is ysr@777: // invalid. Time stamps (on the regions and also on the ysr@777: // G1CollectedHeap) are reset at every cleanup (we iterate over ysr@777: // the regions anyway) and at the end of a Full GC. The current scheme ysr@777: // that uses sequential unsigned ints will fail only if we have 4b ysr@777: // evacuation pauses between two cleanups, which is _highly_ unlikely. mgerdin@6990: class G1OffsetTableContigSpace: public CompactibleSpace { ysr@777: friend class VMStructs; mgerdin@6990: HeapWord* _top; ysr@777: protected: ysr@777: G1BlockOffsetArrayContigSpace _offsets; ysr@777: Mutex _par_alloc_lock; ysr@777: volatile unsigned _gc_time_stamp; tonyp@2715: // When we need to retire an allocation region, while other threads tonyp@2715: // are also concurrently trying to allocate into it, we typically tonyp@2715: // allocate a dummy object at the end of the region to ensure that tonyp@2715: // no more allocations can take place in it. However, sometimes we tonyp@2715: // want to know where the end of the last "real" object we allocated tonyp@2715: // into the region was and this is what this keeps track. tonyp@2715: HeapWord* _pre_dummy_top; ysr@777: ysr@777: public: ysr@777: G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray, johnc@4065: MemRegion mr); ysr@777: mgerdin@6990: void set_top(HeapWord* value) { _top = value; } mgerdin@6990: HeapWord* top() const { return _top; } mgerdin@6990: mgerdin@6990: protected: mgerdin@6990: HeapWord** top_addr() { return &_top; } mgerdin@6990: // Allocation helpers (return NULL if full). mgerdin@6990: inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value); mgerdin@6990: inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value); mgerdin@6990: mgerdin@6990: public: mgerdin@6990: void reset_after_compaction() { set_top(compaction_top()); } mgerdin@6990: mgerdin@6990: size_t used() const { return byte_size(bottom(), top()); } mgerdin@6990: size_t free() const { return byte_size(top(), end()); } mgerdin@6990: bool is_free_block(const HeapWord* p) const { return p >= top(); } mgerdin@6990: mgerdin@6990: MemRegion used_region() const { return MemRegion(bottom(), top()); } mgerdin@6990: mgerdin@6990: void object_iterate(ObjectClosure* blk); mgerdin@6990: void safe_object_iterate(ObjectClosure* blk); mgerdin@6990: ysr@777: void set_bottom(HeapWord* value); ysr@777: void set_end(HeapWord* value); ysr@777: ysr@777: virtual HeapWord* saved_mark_word() const; mgerdin@6988: void record_top_and_timestamp(); ysr@777: void reset_gc_time_stamp() { _gc_time_stamp = 0; } tonyp@3957: unsigned get_gc_time_stamp() { return _gc_time_stamp; } ysr@777: tonyp@2715: // See the comment above in the declaration of _pre_dummy_top for an tonyp@2715: // explanation of what it is. tonyp@2715: void set_pre_dummy_top(HeapWord* pre_dummy_top) { tonyp@2715: assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition"); tonyp@2715: _pre_dummy_top = pre_dummy_top; tonyp@2715: } tonyp@2715: HeapWord* pre_dummy_top() { tonyp@2715: return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; tonyp@2715: } tonyp@2715: void reset_pre_dummy_top() { _pre_dummy_top = NULL; } tonyp@2715: tonyp@791: virtual void clear(bool mangle_space); ysr@777: ysr@777: HeapWord* block_start(const void* p); ysr@777: HeapWord* block_start_const(const void* p) const; ysr@777: mgerdin@6990: void prepare_for_compaction(CompactPoint* cp); mgerdin@6990: ysr@777: // Add offset table update. ysr@777: virtual HeapWord* allocate(size_t word_size); ysr@777: HeapWord* par_allocate(size_t word_size); ysr@777: ysr@777: // MarkSweep support phase3 ysr@777: virtual HeapWord* initialize_threshold(); ysr@777: virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end); ysr@777: ysr@777: virtual void print() const; tonyp@2453: tonyp@2453: void reset_bot() { tonyp@2453: _offsets.zero_bottom_entry(); tonyp@2453: _offsets.initialize_threshold(); tonyp@2453: } tonyp@2453: tonyp@2453: void update_bot_for_object(HeapWord* start, size_t word_size) { tonyp@2453: _offsets.alloc_block(start, word_size); tonyp@2453: } tonyp@2453: tonyp@2453: void print_bot_on(outputStream* out) { tonyp@2453: _offsets.print_on(out); tonyp@2453: } ysr@777: }; ysr@777: ysr@777: class HeapRegion: public G1OffsetTableContigSpace { ysr@777: friend class VMStructs; ysr@777: private: ysr@777: tonyp@790: enum HumongousType { tonyp@790: NotHumongous = 0, tonyp@790: StartsHumongous, tonyp@790: ContinuesHumongous tonyp@790: }; tonyp@790: ysr@777: // The remembered set for this region. ysr@777: // (Might want to make this "inline" later, to avoid some alloc failure ysr@777: // issues.) ysr@777: HeapRegionRemSet* _rem_set; ysr@777: ysr@777: G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; } ysr@777: ysr@777: protected: tonyp@2963: // The index of this region in the heap region sequence. tonyp@3713: uint _hrs_index; ysr@777: tonyp@790: HumongousType _humongous_type; ysr@777: // For a humongous region, region in which it starts. ysr@777: HeapRegion* _humongous_start_region; ysr@777: // For the start region of a humongous sequence, it's original end(). ysr@777: HeapWord* _orig_end; ysr@777: ysr@777: // True iff the region is in current collection_set. ysr@777: bool _in_collection_set; ysr@777: ysr@777: // True iff an attempt to evacuate an object in the region failed. ysr@777: bool _evacuation_failed; ysr@777: ysr@777: // A heap region may be a member one of a number of special subsets, each stefank@6992: // represented as linked lists through the field below. Currently, there stefank@6992: // is only one set: ysr@777: // The collection set. ysr@777: HeapRegion* _next_in_special_set; ysr@777: ysr@777: // next region in the young "generation" region set ysr@777: HeapRegion* _next_young_region; ysr@777: apetrusenko@1231: // Next region whose cards need cleaning apetrusenko@1231: HeapRegion* _next_dirty_cards_region; apetrusenko@1231: tonyp@2472: // Fields used by the HeapRegionSetBase class and subclasses. tonyp@2472: HeapRegion* _next; jwilhelm@6422: HeapRegion* _prev; tonyp@2472: #ifdef ASSERT tonyp@2472: HeapRegionSetBase* _containing_set; tonyp@2472: #endif // ASSERT tonyp@2472: bool _pending_removal; tonyp@2472: ysr@777: // For parallel heapRegion traversal. ysr@777: jint _claimed; ysr@777: ysr@777: // We use concurrent marking to determine the amount of live data ysr@777: // in each heap region. ysr@777: size_t _prev_marked_bytes; // Bytes known to be live via last completed marking. ysr@777: size_t _next_marked_bytes; // Bytes known to be live via in-progress marking. ysr@777: tonyp@3714: // The calculated GC efficiency of the region. ysr@777: double _gc_efficiency; ysr@777: ysr@777: enum YoungType { ysr@777: NotYoung, // a region is not young ysr@777: Young, // a region is young tonyp@2963: Survivor // a region is young and it contains survivors ysr@777: }; ysr@777: johnc@2021: volatile YoungType _young_type; ysr@777: int _young_index_in_cset; ysr@777: SurvRateGroup* _surv_rate_group; ysr@777: int _age_index; ysr@777: ysr@777: // The start of the unmarked area. The unmarked area extends from this ysr@777: // word until the top and/or end of the region, and is the part ysr@777: // of the region for which no marking was done, i.e. objects may ysr@777: // have been allocated in this part since the last mark phase. ysr@777: // "prev" is the top at the start of the last completed marking. ysr@777: // "next" is the top at the start of the in-progress marking (if any.) ysr@777: HeapWord* _prev_top_at_mark_start; ysr@777: HeapWord* _next_top_at_mark_start; ysr@777: // If a collection pause is in progress, this is the top at the start ysr@777: // of that pause. ysr@777: ysr@777: void init_top_at_mark_start() { ysr@777: assert(_prev_marked_bytes == 0 && ysr@777: _next_marked_bytes == 0, ysr@777: "Must be called after zero_marked_bytes."); ysr@777: HeapWord* bot = bottom(); ysr@777: _prev_top_at_mark_start = bot; ysr@777: _next_top_at_mark_start = bot; ysr@777: } ysr@777: ysr@777: void set_young_type(YoungType new_type) { ysr@777: //assert(_young_type != new_type, "setting the same type" ); ysr@777: // TODO: add more assertions here ysr@777: _young_type = new_type; ysr@777: } ysr@777: johnc@1829: // Cached attributes used in the collection set policy information johnc@1829: johnc@1829: // The RSet length that was added to the total value johnc@1829: // for the collection set. johnc@1829: size_t _recorded_rs_length; johnc@1829: johnc@1829: // The predicted elapsed time that was added to total value johnc@1829: // for the collection set. johnc@1829: double _predicted_elapsed_time_ms; johnc@1829: johnc@1829: // The predicted number of bytes to copy that was added to johnc@1829: // the total value for the collection set. johnc@1829: size_t _predicted_bytes_to_copy; johnc@1829: ysr@777: public: tonyp@3713: HeapRegion(uint hrs_index, tonyp@2963: G1BlockOffsetSharedArray* sharedOffsetArray, johnc@4065: MemRegion mr); ysr@777: johnc@3182: static int LogOfHRGrainBytes; johnc@3182: static int LogOfHRGrainWords; johnc@3182: johnc@3182: static size_t GrainBytes; johnc@3182: static size_t GrainWords; johnc@3182: static size_t CardsPerRegion; tonyp@1377: tonyp@3176: static size_t align_up_to_region_byte_size(size_t sz) { tonyp@3176: return (sz + (size_t) GrainBytes - 1) & tonyp@3176: ~((1 << (size_t) LogOfHRGrainBytes) - 1); tonyp@3176: } tonyp@3176: tschatzl@5701: static size_t max_region_size(); tschatzl@5701: tonyp@1377: // It sets up the heap region size (GrainBytes / GrainWords), as tonyp@1377: // well as other related fields that are based on the heap region tonyp@1377: // size (LogOfHRGrainBytes / LogOfHRGrainWords / tonyp@1377: // CardsPerRegion). All those fields are considered constant tonyp@1377: // throughout the JVM's execution, therefore they should only be set tonyp@1377: // up once during initialization time. brutisso@5646: static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size); ysr@777: tonyp@790: enum ClaimValues { johnc@3296: InitialClaimValue = 0, johnc@3296: FinalCountClaimValue = 1, johnc@3296: NoteEndClaimValue = 2, johnc@3296: ScrubRemSetClaimValue = 3, johnc@3296: ParVerifyClaimValue = 4, johnc@3296: RebuildRSClaimValue = 5, tonyp@3691: ParEvacFailureClaimValue = 6, tonyp@3691: AggregateCountClaimValue = 7, johnc@5548: VerifyCountClaimValue = 8, johnc@5548: ParMarkRootClaimValue = 9 tonyp@790: }; tonyp@790: mgerdin@6990: // All allocated blocks are occupied by objects in a HeapRegion mgerdin@6990: bool block_is_obj(const HeapWord* p) const; mgerdin@6990: mgerdin@6990: // Returns the object size for all valid block starts mgerdin@6990: // and the amount of unallocated words if called on top() mgerdin@6990: size_t block_size(const HeapWord* p) const; mgerdin@6990: mgerdin@6990: inline HeapWord* par_allocate_no_bot_updates(size_t word_size); mgerdin@6990: inline HeapWord* allocate_no_bot_updates(size_t word_size); tonyp@2454: ysr@777: // If this region is a member of a HeapRegionSeq, the index in that ysr@777: // sequence, otherwise -1. tonyp@3713: uint hrs_index() const { return _hrs_index; } ysr@777: ysr@777: // The number of bytes marked live in the region in the last marking phase. ysr@777: size_t marked_bytes() { return _prev_marked_bytes; } tonyp@2717: size_t live_bytes() { tonyp@2717: return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes(); tonyp@2717: } tonyp@2717: ysr@777: // The number of bytes counted in the next marking. ysr@777: size_t next_marked_bytes() { return _next_marked_bytes; } ysr@777: // The number of bytes live wrt the next marking. ysr@777: size_t next_live_bytes() { tonyp@2717: return tonyp@2717: (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes(); ysr@777: } ysr@777: ysr@777: // A lower bound on the amount of garbage bytes in the region. ysr@777: size_t garbage_bytes() { ysr@777: size_t used_at_mark_start_bytes = ysr@777: (prev_top_at_mark_start() - bottom()) * HeapWordSize; ysr@777: assert(used_at_mark_start_bytes >= marked_bytes(), ysr@777: "Can't mark more than we have."); ysr@777: return used_at_mark_start_bytes - marked_bytes(); ysr@777: } ysr@777: tonyp@3539: // Return the amount of bytes we'll reclaim if we collect this tonyp@3539: // region. This includes not only the known garbage bytes in the tonyp@3539: // region but also any unallocated space in it, i.e., [top, end), tonyp@3539: // since it will also be reclaimed if we collect the region. tonyp@3539: size_t reclaimable_bytes() { tonyp@3539: size_t known_live_bytes = live_bytes(); tonyp@3539: assert(known_live_bytes <= capacity(), "sanity"); tonyp@3539: return capacity() - known_live_bytes; tonyp@3539: } tonyp@3539: ysr@777: // An upper bound on the number of live bytes in the region. ysr@777: size_t max_live_bytes() { return used() - garbage_bytes(); } ysr@777: ysr@777: void add_to_marked_bytes(size_t incr_bytes) { ysr@777: _next_marked_bytes = _next_marked_bytes + incr_bytes; johnc@3292: assert(_next_marked_bytes <= used(), "invariant" ); ysr@777: } ysr@777: ysr@777: void zero_marked_bytes() { ysr@777: _prev_marked_bytes = _next_marked_bytes = 0; ysr@777: } ysr@777: tonyp@790: bool isHumongous() const { return _humongous_type != NotHumongous; } tonyp@790: bool startsHumongous() const { return _humongous_type == StartsHumongous; } tonyp@790: bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; } ysr@777: // For a humongous region, region in which it starts. ysr@777: HeapRegion* humongous_start_region() const { ysr@777: return _humongous_start_region; ysr@777: } ysr@777: tonyp@3957: // Return the number of distinct regions that are covered by this region: tonyp@3957: // 1 if the region is not humongous, >= 1 if the region is humongous. tonyp@3957: uint region_num() const { tonyp@3957: if (!isHumongous()) { tonyp@3957: return 1U; tonyp@3957: } else { tonyp@3957: assert(startsHumongous(), "doesn't make sense on HC regions"); tonyp@3957: assert(capacity() % HeapRegion::GrainBytes == 0, "sanity"); tonyp@3957: return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes); tonyp@3957: } tonyp@3957: } tonyp@3957: tonyp@3957: // Return the index + 1 of the last HC regions that's associated tonyp@3957: // with this HS region. tonyp@3957: uint last_hc_index() const { tonyp@3957: assert(startsHumongous(), "don't call this otherwise"); tonyp@3957: return hrs_index() + region_num(); tonyp@3957: } tonyp@3957: brutisso@3216: // Same as Space::is_in_reserved, but will use the original size of the region. brutisso@3216: // The original size is different only for start humongous regions. They get brutisso@3216: // their _end set up to be the end of the last continues region of the brutisso@3216: // corresponding humongous object. brutisso@3216: bool is_in_reserved_raw(const void* p) const { brutisso@3216: return _bottom <= p && p < _orig_end; brutisso@3216: } brutisso@3216: tonyp@2453: // Makes the current region be a "starts humongous" region, i.e., tonyp@2453: // the first region in a series of one or more contiguous regions tonyp@2453: // that will contain a single "humongous" object. The two parameters tonyp@2453: // are as follows: tonyp@2453: // tonyp@2453: // new_top : The new value of the top field of this region which tonyp@2453: // points to the end of the humongous object that's being tonyp@2453: // allocated. If there is more than one region in the series, top tonyp@2453: // will lie beyond this region's original end field and on the last tonyp@2453: // region in the series. tonyp@2453: // tonyp@2453: // new_end : The new value of the end field of this region which tonyp@2453: // points to the end of the last region in the series. If there is tonyp@2453: // one region in the series (namely: this one) end will be the same tonyp@2453: // as the original end of this region. tonyp@2453: // tonyp@2453: // Updating top and end as described above makes this region look as tonyp@2453: // if it spans the entire space taken up by all the regions in the tonyp@2453: // series and an single allocation moved its top to new_top. This tonyp@2453: // ensures that the space (capacity / allocated) taken up by all tonyp@2453: // humongous regions can be calculated by just looking at the tonyp@2453: // "starts humongous" regions and by ignoring the "continues tonyp@2453: // humongous" regions. tonyp@2453: void set_startsHumongous(HeapWord* new_top, HeapWord* new_end); ysr@777: tonyp@2453: // Makes the current region be a "continues humongous' tonyp@2453: // region. first_hr is the "start humongous" region of the series tonyp@2453: // which this region will be part of. tonyp@2453: void set_continuesHumongous(HeapRegion* first_hr); ysr@777: tonyp@2472: // Unsets the humongous-related fields on the region. tonyp@2472: void set_notHumongous(); tonyp@2472: ysr@777: // If the region has a remembered set, return a pointer to it. ysr@777: HeapRegionRemSet* rem_set() const { ysr@777: return _rem_set; ysr@777: } ysr@777: ysr@777: // True iff the region is in current collection_set. ysr@777: bool in_collection_set() const { ysr@777: return _in_collection_set; ysr@777: } ysr@777: void set_in_collection_set(bool b) { ysr@777: _in_collection_set = b; ysr@777: } ysr@777: HeapRegion* next_in_collection_set() { ysr@777: assert(in_collection_set(), "should only invoke on member of CS."); ysr@777: assert(_next_in_special_set == NULL || ysr@777: _next_in_special_set->in_collection_set(), ysr@777: "Malformed CS."); ysr@777: return _next_in_special_set; ysr@777: } ysr@777: void set_next_in_collection_set(HeapRegion* r) { ysr@777: assert(in_collection_set(), "should only invoke on member of CS."); ysr@777: assert(r == NULL || r->in_collection_set(), "Malformed CS."); ysr@777: _next_in_special_set = r; ysr@777: } ysr@777: tonyp@2472: // Methods used by the HeapRegionSetBase class and subclasses. tonyp@2472: jwilhelm@6422: // Getter and setter for the next and prev fields used to link regions into tonyp@2472: // linked lists. tonyp@2472: HeapRegion* next() { return _next; } jwilhelm@6422: HeapRegion* prev() { return _prev; } tonyp@2472: tonyp@2472: void set_next(HeapRegion* next) { _next = next; } jwilhelm@6422: void set_prev(HeapRegion* prev) { _prev = prev; } tonyp@2472: tonyp@2472: // Every region added to a set is tagged with a reference to that tonyp@2472: // set. This is used for doing consistency checking to make sure that tonyp@2472: // the contents of a set are as they should be and it's only tonyp@2472: // available in non-product builds. tonyp@2472: #ifdef ASSERT tonyp@2472: void set_containing_set(HeapRegionSetBase* containing_set) { tonyp@2472: assert((containing_set == NULL && _containing_set != NULL) || tonyp@2472: (containing_set != NULL && _containing_set == NULL), tonyp@2472: err_msg("containing_set: "PTR_FORMAT" " tonyp@2472: "_containing_set: "PTR_FORMAT, drchase@6680: p2i(containing_set), p2i(_containing_set))); tonyp@2472: tonyp@2472: _containing_set = containing_set; tonyp@2643: } tonyp@2472: tonyp@2472: HeapRegionSetBase* containing_set() { return _containing_set; } tonyp@2472: #else // ASSERT tonyp@2472: void set_containing_set(HeapRegionSetBase* containing_set) { } tonyp@2472: tonyp@2643: // containing_set() is only used in asserts so there's no reason tonyp@2472: // to provide a dummy version of it. tonyp@2472: #endif // ASSERT tonyp@2472: tonyp@2472: // If we want to remove regions from a list in bulk we can simply tag tonyp@2472: // them with the pending_removal tag and call the tonyp@2472: // remove_all_pending() method on the list. tonyp@2472: tonyp@2472: bool pending_removal() { return _pending_removal; } tonyp@2472: tonyp@2472: void set_pending_removal(bool pending_removal) { tonyp@2643: if (pending_removal) { tonyp@2643: assert(!_pending_removal && containing_set() != NULL, tonyp@2643: "can only set pending removal to true if it's false and " tonyp@2643: "the region belongs to a region set"); tonyp@2643: } else { tonyp@2643: assert( _pending_removal && containing_set() == NULL, tonyp@2643: "can only set pending removal to false if it's true and " tonyp@2643: "the region does not belong to a region set"); tonyp@2643: } tonyp@2472: tonyp@2472: _pending_removal = pending_removal; ysr@777: } ysr@777: ysr@777: HeapRegion* get_next_young_region() { return _next_young_region; } ysr@777: void set_next_young_region(HeapRegion* hr) { ysr@777: _next_young_region = hr; ysr@777: } ysr@777: apetrusenko@1231: HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; } apetrusenko@1231: HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; } apetrusenko@1231: void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; } apetrusenko@1231: bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; } apetrusenko@1231: tonyp@2963: HeapWord* orig_end() { return _orig_end; } tonyp@2963: ysr@777: // Reset HR stuff to default values. tschatzl@6404: void hr_clear(bool par, bool clear_space, bool locked = false); tonyp@2849: void par_clear(); ysr@777: ysr@777: // Get the start of the unmarked area in this region. ysr@777: HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; } ysr@777: HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; } ysr@777: ysr@777: // Note the start or end of marking. This tells the heap region ysr@777: // that the collector is about to start or has finished (concurrently) ysr@777: // marking the heap. ysr@777: tonyp@3416: // Notify the region that concurrent marking is starting. Initialize tonyp@3416: // all fields related to the next marking info. tonyp@3416: inline void note_start_of_marking(); ysr@777: tonyp@3416: // Notify the region that concurrent marking has finished. Copy the tonyp@3416: // (now finalized) next marking info fields into the prev marking tonyp@3416: // info fields. tonyp@3416: inline void note_end_of_marking(); ysr@777: tonyp@3416: // Notify the region that it will be used as to-space during a GC tonyp@3416: // and we are about to start copying objects into it. tonyp@3416: inline void note_start_of_copying(bool during_initial_mark); ysr@777: tonyp@3416: // Notify the region that it ceases being to-space during a GC and tonyp@3416: // we will not copy objects into it any more. tonyp@3416: inline void note_end_of_copying(bool during_initial_mark); tonyp@3416: tonyp@3416: // Notify the region that we are about to start processing tonyp@3416: // self-forwarded objects during evac failure handling. tonyp@3416: void note_self_forwarding_removal_start(bool during_initial_mark, tonyp@3416: bool during_conc_mark); tonyp@3416: tonyp@3416: // Notify the region that we have finished processing self-forwarded tonyp@3416: // objects during evac failure handling. tonyp@3416: void note_self_forwarding_removal_end(bool during_initial_mark, tonyp@3416: bool during_conc_mark, tonyp@3416: size_t marked_bytes); ysr@777: ysr@777: // Returns "false" iff no object in the region was allocated when the ysr@777: // last mark phase ended. ysr@777: bool is_marked() { return _prev_top_at_mark_start != bottom(); } ysr@777: ysr@777: void reset_during_compaction() { tonyp@3957: assert(isHumongous() && startsHumongous(), tonyp@3957: "should only be called for starts humongous regions"); ysr@777: ysr@777: zero_marked_bytes(); ysr@777: init_top_at_mark_start(); ysr@777: } ysr@777: ysr@777: void calc_gc_efficiency(void); ysr@777: double gc_efficiency() { return _gc_efficiency;} ysr@777: ysr@777: bool is_young() const { return _young_type != NotYoung; } ysr@777: bool is_survivor() const { return _young_type == Survivor; } ysr@777: ysr@777: int young_index_in_cset() const { return _young_index_in_cset; } ysr@777: void set_young_index_in_cset(int index) { ysr@777: assert( (index == -1) || is_young(), "pre-condition" ); ysr@777: _young_index_in_cset = index; ysr@777: } ysr@777: ysr@777: int age_in_surv_rate_group() { ysr@777: assert( _surv_rate_group != NULL, "pre-condition" ); ysr@777: assert( _age_index > -1, "pre-condition" ); ysr@777: return _surv_rate_group->age_in_group(_age_index); ysr@777: } ysr@777: ysr@777: void record_surv_words_in_group(size_t words_survived) { ysr@777: assert( _surv_rate_group != NULL, "pre-condition" ); ysr@777: assert( _age_index > -1, "pre-condition" ); ysr@777: int age_in_group = age_in_surv_rate_group(); ysr@777: _surv_rate_group->record_surviving_words(age_in_group, words_survived); ysr@777: } ysr@777: ysr@777: int age_in_surv_rate_group_cond() { ysr@777: if (_surv_rate_group != NULL) ysr@777: return age_in_surv_rate_group(); ysr@777: else ysr@777: return -1; ysr@777: } ysr@777: ysr@777: SurvRateGroup* surv_rate_group() { ysr@777: return _surv_rate_group; ysr@777: } ysr@777: ysr@777: void install_surv_rate_group(SurvRateGroup* surv_rate_group) { ysr@777: assert( surv_rate_group != NULL, "pre-condition" ); ysr@777: assert( _surv_rate_group == NULL, "pre-condition" ); ysr@777: assert( is_young(), "pre-condition" ); ysr@777: ysr@777: _surv_rate_group = surv_rate_group; ysr@777: _age_index = surv_rate_group->next_age_index(); ysr@777: } ysr@777: ysr@777: void uninstall_surv_rate_group() { ysr@777: if (_surv_rate_group != NULL) { ysr@777: assert( _age_index > -1, "pre-condition" ); ysr@777: assert( is_young(), "pre-condition" ); ysr@777: ysr@777: _surv_rate_group = NULL; ysr@777: _age_index = -1; ysr@777: } else { ysr@777: assert( _age_index == -1, "pre-condition" ); ysr@777: } ysr@777: } ysr@777: ysr@777: void set_young() { set_young_type(Young); } ysr@777: ysr@777: void set_survivor() { set_young_type(Survivor); } ysr@777: ysr@777: void set_not_young() { set_young_type(NotYoung); } ysr@777: ysr@777: // Determine if an object has been allocated since the last ysr@777: // mark performed by the collector. This returns true iff the object ysr@777: // is within the unmarked area of the region. ysr@777: bool obj_allocated_since_prev_marking(oop obj) const { ysr@777: return (HeapWord *) obj >= prev_top_at_mark_start(); ysr@777: } ysr@777: bool obj_allocated_since_next_marking(oop obj) const { ysr@777: return (HeapWord *) obj >= next_top_at_mark_start(); ysr@777: } ysr@777: ysr@777: // For parallel heapRegion traversal. ysr@777: bool claimHeapRegion(int claimValue); ysr@777: jint claim_value() { return _claimed; } ysr@777: // Use this carefully: only when you're sure no one is claiming... ysr@777: void set_claim_value(int claimValue) { _claimed = claimValue; } ysr@777: ysr@777: // Returns the "evacuation_failed" property of the region. ysr@777: bool evacuation_failed() { return _evacuation_failed; } ysr@777: ysr@777: // Sets the "evacuation_failed" property of the region. ysr@777: void set_evacuation_failed(bool b) { ysr@777: _evacuation_failed = b; ysr@777: ysr@777: if (b) { ysr@777: _next_marked_bytes = 0; ysr@777: } ysr@777: } ysr@777: ysr@777: // Requires that "mr" be entirely within the region. ysr@777: // Apply "cl->do_object" to all objects that intersect with "mr". ysr@777: // If the iteration encounters an unparseable portion of the region, ysr@777: // or if "cl->abort()" is true after a closure application, ysr@777: // terminate the iteration and return the address of the start of the ysr@777: // subregion that isn't done. (The two can be distinguished by querying ysr@777: // "cl->abort()".) Return of "NULL" indicates that the iteration ysr@777: // completed. ysr@777: HeapWord* ysr@777: object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl); ysr@777: tonyp@2849: // filter_young: if true and the region is a young region then we tonyp@2849: // skip the iteration. tonyp@2849: // card_ptr: if not NULL, and we decide that the card is not young tonyp@2849: // and we iterate over it, we'll clean the card before we start the tonyp@2849: // iteration. ysr@777: HeapWord* ysr@777: oops_on_card_seq_iterate_careful(MemRegion mr, johnc@2021: FilterOutOfRegionClosure* cl, tonyp@2849: bool filter_young, tonyp@2849: jbyte* card_ptr); ysr@777: ysr@777: // A version of block start that is guaranteed to find *some* block ysr@777: // boundary at or before "p", but does not object iteration, and may ysr@777: // therefore be used safely when the heap is unparseable. ysr@777: HeapWord* block_start_careful(const void* p) const { ysr@777: return _offsets.block_start_careful(p); ysr@777: } ysr@777: ysr@777: // Requires that "addr" is within the region. Returns the start of the ysr@777: // first ("careful") block that starts at or after "addr", or else the ysr@777: // "end" of the region if there is no such block. ysr@777: HeapWord* next_block_start_careful(HeapWord* addr); ysr@777: johnc@1829: size_t recorded_rs_length() const { return _recorded_rs_length; } johnc@1829: double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; } johnc@1829: size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; } johnc@1829: johnc@1829: void set_recorded_rs_length(size_t rs_length) { johnc@1829: _recorded_rs_length = rs_length; johnc@1829: } johnc@1829: johnc@1829: void set_predicted_elapsed_time_ms(double ms) { johnc@1829: _predicted_elapsed_time_ms = ms; johnc@1829: } johnc@1829: johnc@1829: void set_predicted_bytes_to_copy(size_t bytes) { johnc@1829: _predicted_bytes_to_copy = bytes; johnc@1829: } johnc@1829: tonyp@3957: virtual CompactibleSpace* next_compaction_space() const; ysr@777: ysr@777: virtual void reset_after_compaction(); ysr@777: johnc@5548: // Routines for managing a list of code roots (attached to the johnc@5548: // this region's RSet) that point into this heap region. johnc@5548: void add_strong_code_root(nmethod* nm); johnc@5548: void remove_strong_code_root(nmethod* nm); johnc@5548: johnc@5548: // During a collection, migrate the successfully evacuated johnc@5548: // strong code roots that referenced into this region to the johnc@5548: // new regions that they now point into. Unsuccessfully johnc@5548: // evacuated code roots are not migrated. johnc@5548: void migrate_strong_code_roots(); johnc@5548: johnc@5548: // Applies blk->do_code_blob() to each of the entries in johnc@5548: // the strong code roots list for this region johnc@5548: void strong_code_roots_do(CodeBlobClosure* blk) const; johnc@5548: johnc@5548: // Verify that the entries on the strong code root list for this johnc@5548: // region are live and include at least one pointer into this region. johnc@5548: void verify_strong_code_roots(VerifyOption vo, bool* failures) const; johnc@5548: ysr@777: void print() const; ysr@777: void print_on(outputStream* st) const; ysr@777: johnc@2969: // vo == UsePrevMarking -> use "prev" marking information, johnc@2969: // vo == UseNextMarking -> use "next" marking information johnc@2969: // vo == UseMarkWord -> use the mark word in the object header johnc@2969: // tonyp@1246: // NOTE: Only the "prev" marking information is guaranteed to be tonyp@1246: // consistent most of the time, so most calls to this should use johnc@2969: // vo == UsePrevMarking. johnc@2969: // Currently, there is only one case where this is called with johnc@2969: // vo == UseNextMarking, which is to verify the "next" marking johnc@2969: // information at the end of remark. johnc@2969: // Currently there is only one place where this is called with johnc@2969: // vo == UseMarkWord, which is to verify the marking during a johnc@2969: // full GC. brutisso@3711: void verify(VerifyOption vo, bool *failures) const; tonyp@1246: tonyp@1246: // Override; it uses the "prev" marking information brutisso@3711: virtual void verify() const; ysr@777: }; ysr@777: ysr@777: // HeapRegionClosure is used for iterating over regions. ysr@777: // Terminates the iteration when the "doHeapRegion" method returns "true". ysr@777: class HeapRegionClosure : public StackObj { ysr@777: friend class HeapRegionSeq; ysr@777: friend class G1CollectedHeap; ysr@777: ysr@777: bool _complete; ysr@777: void incomplete() { _complete = false; } ysr@777: ysr@777: public: ysr@777: HeapRegionClosure(): _complete(true) {} ysr@777: ysr@777: // Typically called on each region until it returns true. ysr@777: virtual bool doHeapRegion(HeapRegion* r) = 0; ysr@777: ysr@777: // True after iteration if the closure was applied to all heap regions ysr@777: // and returned "false" in all cases. ysr@777: bool complete() { return _complete; } ysr@777: }; ysr@777: jprovino@4542: #endif // INCLUDE_ALL_GCS stefank@2314: stefank@2314: #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP