duke@435: /* drchase@4585: * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "opto/compile.hpp" stefank@2314: #include "opto/regmask.hpp" stefank@2314: #ifdef TARGET_ARCH_MODEL_x86_32 stefank@2314: # include "adfiles/ad_x86_32.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_MODEL_x86_64 stefank@2314: # include "adfiles/ad_x86_64.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_MODEL_sparc stefank@2314: # include "adfiles/ad_sparc.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_MODEL_zero stefank@2314: # include "adfiles/ad_zero.hpp" stefank@2314: #endif bobv@2508: #ifdef TARGET_ARCH_MODEL_arm bobv@2508: # include "adfiles/ad_arm.hpp" bobv@2508: #endif bobv@2508: #ifdef TARGET_ARCH_MODEL_ppc bobv@2508: # include "adfiles/ad_ppc.hpp" bobv@2508: #endif duke@435: duke@435: #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */ duke@435: duke@435: //-------------Non-zero bit search methods used by RegMask--------------------- duke@435: // Find lowest 1, or return 32 if empty duke@435: int find_lowest_bit( uint32 mask ) { duke@435: int n = 0; duke@435: if( (mask & 0xffff) == 0 ) { duke@435: mask >>= 16; duke@435: n += 16; duke@435: } duke@435: if( (mask & 0xff) == 0 ) { duke@435: mask >>= 8; duke@435: n += 8; duke@435: } duke@435: if( (mask & 0xf) == 0 ) { duke@435: mask >>= 4; duke@435: n += 4; duke@435: } duke@435: if( (mask & 0x3) == 0 ) { duke@435: mask >>= 2; duke@435: n += 2; duke@435: } duke@435: if( (mask & 0x1) == 0 ) { duke@435: mask >>= 1; duke@435: n += 1; duke@435: } duke@435: if( mask == 0 ) { duke@435: n = 32; duke@435: } duke@435: return n; duke@435: } duke@435: duke@435: // Find highest 1, or return 32 if empty duke@435: int find_hihghest_bit( uint32 mask ) { duke@435: int n = 0; duke@435: if( mask > 0xffff ) { duke@435: mask >>= 16; duke@435: n += 16; duke@435: } duke@435: if( mask > 0xff ) { duke@435: mask >>= 8; duke@435: n += 8; duke@435: } duke@435: if( mask > 0xf ) { duke@435: mask >>= 4; duke@435: n += 4; duke@435: } duke@435: if( mask > 0x3 ) { duke@435: mask >>= 2; duke@435: n += 2; duke@435: } duke@435: if( mask > 0x1 ) { duke@435: mask >>= 1; duke@435: n += 1; duke@435: } duke@435: if( mask == 0 ) { duke@435: n = 32; duke@435: } duke@435: return n; duke@435: } duke@435: duke@435: //------------------------------dump------------------------------------------- duke@435: duke@435: #ifndef PRODUCT kvn@4478: void OptoReg::dump(int r, outputStream *st) { kvn@4478: switch (r) { kvn@4478: case Special: st->print("r---"); break; kvn@4478: case Bad: st->print("rBAD"); break; duke@435: default: kvn@4478: if (r < _last_Mach_Reg) st->print(Matcher::regName[r]); kvn@4478: else st->print("rS%d",r); duke@435: break; duke@435: } duke@435: } duke@435: #endif duke@435: duke@435: duke@435: //============================================================================= duke@435: const RegMask RegMask::Empty( duke@435: # define BODY(I) 0, duke@435: FORALL_BODY duke@435: # undef BODY duke@435: 0 duke@435: ); duke@435: kvn@3882: //============================================================================= kvn@3882: bool RegMask::is_vector(uint ireg) { kvn@3882: return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY); kvn@3882: } kvn@3882: kvn@3882: int RegMask::num_registers(uint ireg) { kvn@3882: switch(ireg) { kvn@3882: case Op_VecY: kvn@3882: return 8; kvn@3882: case Op_VecX: kvn@3882: return 4; kvn@3882: case Op_VecD: kvn@3882: case Op_RegD: kvn@3882: case Op_RegL: kvn@3882: #ifdef _LP64 kvn@3882: case Op_RegP: kvn@3882: #endif kvn@3882: return 2; kvn@3882: } kvn@3882: // Op_VecS and the rest ideal registers. kvn@3882: return 1; kvn@3882: } kvn@3882: duke@435: //------------------------------find_first_pair-------------------------------- duke@435: // Find the lowest-numbered register pair in the mask. Return the duke@435: // HIGHEST register number in the pair, or BAD if no pairs. duke@435: OptoReg::Name RegMask::find_first_pair() const { kvn@3882: verify_pairs(); duke@435: for( int i = 0; i < RM_SIZE; i++ ) { duke@435: if( _A[i] ) { // Found some bits duke@435: int bit = _A[i] & -_A[i]; // Extract low bit duke@435: // Convert to bit number, return hi bit in pair duke@435: return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1); duke@435: } duke@435: } duke@435: return OptoReg::Bad; duke@435: } duke@435: duke@435: //------------------------------ClearToPairs----------------------------------- duke@435: // Clear out partial bits; leave only bit pairs kvn@3882: void RegMask::clear_to_pairs() { duke@435: for( int i = 0; i < RM_SIZE; i++ ) { duke@435: int bits = _A[i]; duke@435: bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair duke@435: bits |= (bits>>1); // Smear 1 hi-bit into a pair duke@435: _A[i] = bits; duke@435: } kvn@3882: verify_pairs(); duke@435: } duke@435: duke@435: //------------------------------SmearToPairs----------------------------------- duke@435: // Smear out partial bits; leave only bit pairs kvn@3882: void RegMask::smear_to_pairs() { duke@435: for( int i = 0; i < RM_SIZE; i++ ) { duke@435: int bits = _A[i]; duke@435: bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair duke@435: bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair duke@435: _A[i] = bits; duke@435: } kvn@3882: verify_pairs(); duke@435: } duke@435: duke@435: //------------------------------is_aligned_pairs------------------------------- kvn@3882: bool RegMask::is_aligned_pairs() const { duke@435: // Assert that the register mask contains only bit pairs. duke@435: for( int i = 0; i < RM_SIZE; i++ ) { duke@435: int bits = _A[i]; duke@435: while( bits ) { // Check bits for pairing duke@435: int bit = bits & -bits; // Extract low bit duke@435: // Low bit is not odd means its mis-aligned. duke@435: if( (bit & 0x55555555) == 0 ) return false; duke@435: bits -= bit; // Remove bit from mask duke@435: // Check for aligned adjacent bit duke@435: if( (bits & (bit<<1)) == 0 ) return false; duke@435: bits -= (bit<<1); // Remove other halve of pair duke@435: } duke@435: } duke@435: return true; duke@435: } duke@435: duke@435: //------------------------------is_bound1-------------------------------------- duke@435: // Return TRUE if the mask contains a single bit duke@435: int RegMask::is_bound1() const { duke@435: if( is_AllStack() ) return false; duke@435: int bit = -1; // Set to hold the one bit allowed duke@435: for( int i = 0; i < RM_SIZE; i++ ) { duke@435: if( _A[i] ) { // Found some bits duke@435: if( bit != -1 ) return false; // Already had bits, so fail duke@435: bit = _A[i] & -_A[i]; // Extract 1 bit from mask duke@435: if( bit != _A[i] ) return false; // Found many bits, so fail duke@435: } duke@435: } duke@435: // True for both the empty mask and for a single bit duke@435: return true; duke@435: } duke@435: duke@435: //------------------------------is_bound2-------------------------------------- duke@435: // Return TRUE if the mask contains an adjacent pair of bits and no other bits. kvn@3882: int RegMask::is_bound_pair() const { duke@435: if( is_AllStack() ) return false; duke@435: duke@435: int bit = -1; // Set to hold the one bit allowed duke@435: for( int i = 0; i < RM_SIZE; i++ ) { duke@435: if( _A[i] ) { // Found some bits duke@435: if( bit != -1 ) return false; // Already had bits, so fail duke@435: bit = _A[i] & -(_A[i]); // Extract 1 bit from mask duke@435: if( (bit << 1) != 0 ) { // Bit pair stays in same word? duke@435: if( (bit | (bit<<1)) != _A[i] ) duke@435: return false; // Require adjacent bit pair and no more bits duke@435: } else { // Else its a split-pair case duke@435: if( bit != _A[i] ) return false; // Found many bits, so fail duke@435: i++; // Skip iteration forward drchase@4585: if( i >= RM_SIZE || _A[i] != 1 ) drchase@4585: return false; // Require 1 lo bit in next word duke@435: } duke@435: } duke@435: } duke@435: // True for both the empty mask and for a bit pair duke@435: return true; duke@435: } duke@435: kvn@3882: static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 }; kvn@3882: //------------------------------find_first_set--------------------------------- kvn@3882: // Find the lowest-numbered register set in the mask. Return the kvn@3882: // HIGHEST register number in the set, or BAD if no sets. kvn@3882: // Works also for size 1. drchase@4585: OptoReg::Name RegMask::find_first_set(const int size) const { kvn@3882: verify_sets(size); kvn@3882: for (int i = 0; i < RM_SIZE; i++) { kvn@3882: if (_A[i]) { // Found some bits kvn@3882: int bit = _A[i] & -_A[i]; // Extract low bit kvn@3882: // Convert to bit number, return hi bit in pair kvn@3882: return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1)); kvn@3882: } kvn@3882: } kvn@3882: return OptoReg::Bad; kvn@3882: } kvn@3882: kvn@3882: //------------------------------clear_to_sets---------------------------------- kvn@3882: // Clear out partial bits; leave only aligned adjacent bit pairs drchase@4585: void RegMask::clear_to_sets(const int size) { kvn@3882: if (size == 1) return; kvn@3882: assert(2 <= size && size <= 8, "update low bits table"); kvn@3882: assert(is_power_of_2(size), "sanity"); kvn@3882: int low_bits_mask = low_bits[size>>2]; kvn@3882: for (int i = 0; i < RM_SIZE; i++) { kvn@3882: int bits = _A[i]; kvn@3882: int sets = (bits & low_bits_mask); kvn@3882: for (int j = 1; j < size; j++) { kvn@3882: sets = (bits & (sets<<1)); // filter bits which produce whole sets kvn@3882: } kvn@3882: sets |= (sets>>1); // Smear 1 hi-bit into a set kvn@3882: if (size > 2) { kvn@3882: sets |= (sets>>2); // Smear 2 hi-bits into a set kvn@3882: if (size > 4) { kvn@3882: sets |= (sets>>4); // Smear 4 hi-bits into a set kvn@3882: } kvn@3882: } kvn@3882: _A[i] = sets; kvn@3882: } kvn@3882: verify_sets(size); kvn@3882: } kvn@3882: kvn@3882: //------------------------------smear_to_sets---------------------------------- kvn@3882: // Smear out partial bits to aligned adjacent bit sets drchase@4585: void RegMask::smear_to_sets(const int size) { kvn@3882: if (size == 1) return; kvn@3882: assert(2 <= size && size <= 8, "update low bits table"); kvn@3882: assert(is_power_of_2(size), "sanity"); kvn@3882: int low_bits_mask = low_bits[size>>2]; kvn@3882: for (int i = 0; i < RM_SIZE; i++) { kvn@3882: int bits = _A[i]; kvn@3882: int sets = 0; kvn@3882: for (int j = 0; j < size; j++) { kvn@3882: sets |= (bits & low_bits_mask); // collect partial bits kvn@3882: bits = bits>>1; kvn@3882: } kvn@3882: sets |= (sets<<1); // Smear 1 lo-bit into a set kvn@3882: if (size > 2) { kvn@3882: sets |= (sets<<2); // Smear 2 lo-bits into a set kvn@3882: if (size > 4) { kvn@3882: sets |= (sets<<4); // Smear 4 lo-bits into a set kvn@3882: } kvn@3882: } kvn@3882: _A[i] = sets; kvn@3882: } kvn@3882: verify_sets(size); kvn@3882: } kvn@3882: kvn@3882: //------------------------------is_aligned_set-------------------------------- drchase@4585: bool RegMask::is_aligned_sets(const int size) const { kvn@3882: if (size == 1) return true; kvn@3882: assert(2 <= size && size <= 8, "update low bits table"); kvn@3882: assert(is_power_of_2(size), "sanity"); kvn@3882: int low_bits_mask = low_bits[size>>2]; kvn@3882: // Assert that the register mask contains only bit sets. kvn@3882: for (int i = 0; i < RM_SIZE; i++) { kvn@3882: int bits = _A[i]; kvn@3882: while (bits) { // Check bits for pairing kvn@3882: int bit = bits & -bits; // Extract low bit kvn@3882: // Low bit is not odd means its mis-aligned. kvn@3882: if ((bit & low_bits_mask) == 0) return false; kvn@3882: // Do extra work since (bit << size) may overflow. kvn@3882: int hi_bit = bit << (size-1); // high bit kvn@3882: int set = hi_bit + ((hi_bit-1) & ~(bit-1)); kvn@3882: // Check for aligned adjacent bits in this set kvn@3882: if ((bits & set) != set) return false; kvn@3882: bits -= set; // Remove this set kvn@3882: } kvn@3882: } kvn@3882: return true; kvn@3882: } kvn@3882: kvn@3882: //------------------------------is_bound_set----------------------------------- kvn@3882: // Return TRUE if the mask contains one adjacent set of bits and no other bits. kvn@3882: // Works also for size 1. drchase@4585: int RegMask::is_bound_set(const int size) const { kvn@3882: if( is_AllStack() ) return false; kvn@3882: assert(1 <= size && size <= 8, "update low bits table"); kvn@3882: int bit = -1; // Set to hold the one bit allowed kvn@3882: for (int i = 0; i < RM_SIZE; i++) { kvn@3882: if (_A[i] ) { // Found some bits kvn@3882: if (bit != -1) kvn@3882: return false; // Already had bits, so fail drchase@4585: bit = _A[i] & -_A[i]; // Extract low bit from mask kvn@3882: int hi_bit = bit << (size-1); // high bit kvn@3882: if (hi_bit != 0) { // Bit set stays in same word? kvn@3882: int set = hi_bit + ((hi_bit-1) & ~(bit-1)); kvn@3882: if (set != _A[i]) kvn@3882: return false; // Require adjacent bit set and no more bits kvn@3882: } else { // Else its a split-set case kvn@3882: if (((-1) & ~(bit-1)) != _A[i]) kvn@3882: return false; // Found many bits, so fail kvn@3882: i++; // Skip iteration forward and check high part kvn@3882: // The lower 24 bits should be 0 since it is split case and size <= 8. kvn@3882: int set = bit>>24; kvn@3882: set = set & -set; // Remove sign extension. kvn@3882: set = (((set << size) - 1) >> 8); drchase@4585: if (i >= RM_SIZE || _A[i] != set) drchase@4585: return false; // Require expected low bits in next word kvn@3882: } kvn@3882: } kvn@3882: } kvn@3882: // True for both the empty mask and for a bit set kvn@3882: return true; kvn@3882: } kvn@3882: duke@435: //------------------------------is_UP------------------------------------------ duke@435: // UP means register only, Register plus stack, or stack only is DOWN duke@435: bool RegMask::is_UP() const { duke@435: // Quick common case check for DOWN (any stack slot is legal) duke@435: if( is_AllStack() ) duke@435: return false; duke@435: // Slower check for any stack bits set (also DOWN) duke@435: if( overlap(Matcher::STACK_ONLY_mask) ) duke@435: return false; duke@435: // Not DOWN, so must be UP duke@435: return true; duke@435: } duke@435: duke@435: //------------------------------Size------------------------------------------- duke@435: // Compute size of register mask in bits duke@435: uint RegMask::Size() const { duke@435: extern uint8 bitsInByte[256]; duke@435: uint sum = 0; duke@435: for( int i = 0; i < RM_SIZE; i++ ) duke@435: sum += duke@435: bitsInByte[(_A[i]>>24) & 0xff] + duke@435: bitsInByte[(_A[i]>>16) & 0xff] + duke@435: bitsInByte[(_A[i]>> 8) & 0xff] + duke@435: bitsInByte[ _A[i] & 0xff]; duke@435: return sum; duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: //------------------------------print------------------------------------------ kvn@4478: void RegMask::dump(outputStream *st) const { kvn@4478: st->print("["); duke@435: RegMask rm = *this; // Structure copy into local temp duke@435: duke@435: OptoReg::Name start = rm.find_first_elem(); // Get a register kvn@4478: if (OptoReg::is_valid(start)) { // Check for empty mask duke@435: rm.Remove(start); // Yank from mask kvn@4478: OptoReg::dump(start, st); // Print register duke@435: OptoReg::Name last = start; duke@435: duke@435: // Now I have printed an initial register. duke@435: // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ". duke@435: // Begin looping over the remaining registers. kvn@4478: while (1) { // duke@435: OptoReg::Name reg = rm.find_first_elem(); // Get a register kvn@4478: if (!OptoReg::is_valid(reg)) duke@435: break; // Empty mask, end loop duke@435: rm.Remove(reg); // Yank from mask duke@435: kvn@4478: if (last+1 == reg) { // See if they are adjacent duke@435: // Adjacent registers just collect into long runs, no printing. duke@435: last = reg; duke@435: } else { // Ending some kind of run kvn@4478: if (start == last) { // 1-register run; no special printing kvn@4478: } else if (start+1 == last) { kvn@4478: st->print(","); // 2-register run; print as "rX,rY" kvn@4478: OptoReg::dump(last, st); duke@435: } else { // Multi-register run; print as "rX-rZ" kvn@4478: st->print("-"); kvn@4478: OptoReg::dump(last, st); duke@435: } kvn@4478: st->print(","); // Seperate start of new run duke@435: start = last = reg; // Start a new register run kvn@4478: OptoReg::dump(start, st); // Print register duke@435: } // End of if ending a register run or not duke@435: } // End of while regmask not empty duke@435: kvn@4478: if (start == last) { // 1-register run; no special printing kvn@4478: } else if (start+1 == last) { kvn@4478: st->print(","); // 2-register run; print as "rX,rY" kvn@4478: OptoReg::dump(last, st); duke@435: } else { // Multi-register run; print as "rX-rZ" kvn@4478: st->print("-"); kvn@4478: OptoReg::dump(last, st); duke@435: } kvn@4478: if (rm.is_AllStack()) st->print("..."); duke@435: } kvn@4478: st->print("]"); duke@435: } duke@435: #endif