duke@435: /* hseigel@5784: * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "classfile/systemDictionary.hpp" stefank@2314: #include "classfile/vmSymbols.hpp" stefank@2314: #include "code/compiledIC.hpp" stefank@2314: #include "code/scopeDesc.hpp" stefank@2314: #include "code/vtableStubs.hpp" stefank@2314: #include "compiler/abstractCompiler.hpp" stefank@2314: #include "compiler/compileBroker.hpp" stefank@2314: #include "compiler/compilerOracle.hpp" twisti@4318: #include "compiler/disassembler.hpp" stefank@2314: #include "interpreter/interpreter.hpp" stefank@2314: #include "interpreter/interpreterRuntime.hpp" stefank@2314: #include "memory/gcLocker.inline.hpp" stefank@2314: #include "memory/universe.inline.hpp" stefank@2314: #include "oops/oop.inline.hpp" stefank@2314: #include "prims/forte.hpp" stefank@2314: #include "prims/jvmtiExport.hpp" stefank@2314: #include "prims/jvmtiRedefineClassesTrace.hpp" stefank@2314: #include "prims/methodHandles.hpp" stefank@2314: #include "prims/nativeLookup.hpp" stefank@2314: #include "runtime/arguments.hpp" stefank@2314: #include "runtime/biasedLocking.hpp" stefank@2314: #include "runtime/handles.inline.hpp" stefank@2314: #include "runtime/init.hpp" stefank@2314: #include "runtime/interfaceSupport.hpp" stefank@2314: #include "runtime/javaCalls.hpp" stefank@2314: #include "runtime/sharedRuntime.hpp" stefank@2314: #include "runtime/stubRoutines.hpp" stefank@2314: #include "runtime/vframe.hpp" stefank@2314: #include "runtime/vframeArray.hpp" stefank@2314: #include "utilities/copy.hpp" stefank@2314: #include "utilities/dtrace.hpp" stefank@2314: #include "utilities/events.hpp" stefank@2314: #include "utilities/hashtable.inline.hpp" jprovino@4542: #include "utilities/macros.hpp" stefank@2314: #include "utilities/xmlstream.hpp" stefank@2314: #ifdef TARGET_ARCH_x86 stefank@2314: # include "nativeInst_x86.hpp" stefank@2314: # include "vmreg_x86.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_sparc stefank@2314: # include "nativeInst_sparc.hpp" stefank@2314: # include "vmreg_sparc.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_ARCH_zero stefank@2314: # include "nativeInst_zero.hpp" stefank@2314: # include "vmreg_zero.inline.hpp" stefank@2314: #endif bobv@2508: #ifdef TARGET_ARCH_arm bobv@2508: # include "nativeInst_arm.hpp" bobv@2508: # include "vmreg_arm.inline.hpp" bobv@2508: #endif bobv@2508: #ifdef TARGET_ARCH_ppc bobv@2508: # include "nativeInst_ppc.hpp" bobv@2508: # include "vmreg_ppc.inline.hpp" bobv@2508: #endif stefank@2314: #ifdef COMPILER1 stefank@2314: #include "c1/c1_Runtime1.hpp" stefank@2314: #endif stefank@2314: never@2950: // Shared stub locations never@2950: RuntimeStub* SharedRuntime::_wrong_method_blob; never@2950: RuntimeStub* SharedRuntime::_ic_miss_blob; never@2950: RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; never@2950: RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; never@2950: RuntimeStub* SharedRuntime::_resolve_static_call_blob; never@2950: never@2950: DeoptimizationBlob* SharedRuntime::_deopt_blob; kvn@4103: SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; never@2950: SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; never@2950: SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; never@2950: never@2950: #ifdef COMPILER2 never@2950: UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; never@2950: #endif // COMPILER2 never@2950: never@2950: never@2950: //----------------------------generate_stubs----------------------------------- never@2950: void SharedRuntime::generate_stubs() { never@2950: _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); never@2950: _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); never@2950: _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); never@2950: _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); never@2950: _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); never@2950: kvn@4103: #ifdef COMPILER2 kvn@4103: // Vectors are generated only by C2. kvn@4103: if (is_wide_vector(MaxVectorSize)) { kvn@4103: _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); kvn@4103: } kvn@4103: #endif // COMPILER2 kvn@4103: _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); kvn@4103: _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); never@2950: never@2950: generate_deopt_blob(); never@2950: never@2950: #ifdef COMPILER2 never@2950: generate_uncommon_trap_blob(); never@2950: #endif // COMPILER2 never@2950: } never@2950: duke@435: #include duke@435: dcubed@3202: #ifndef USDT2 duke@435: HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t); duke@435: HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int, duke@435: char*, int, char*, int, char*, int); duke@435: HS_DTRACE_PROBE_DECL7(hotspot, method__return, int, duke@435: char*, int, char*, int, char*, int); dcubed@3202: #endif /* !USDT2 */ duke@435: duke@435: // Implementation of SharedRuntime duke@435: duke@435: #ifndef PRODUCT duke@435: // For statistics duke@435: int SharedRuntime::_ic_miss_ctr = 0; duke@435: int SharedRuntime::_wrong_method_ctr = 0; duke@435: int SharedRuntime::_resolve_static_ctr = 0; duke@435: int SharedRuntime::_resolve_virtual_ctr = 0; duke@435: int SharedRuntime::_resolve_opt_virtual_ctr = 0; duke@435: int SharedRuntime::_implicit_null_throws = 0; duke@435: int SharedRuntime::_implicit_div0_throws = 0; duke@435: int SharedRuntime::_throw_null_ctr = 0; duke@435: duke@435: int SharedRuntime::_nof_normal_calls = 0; duke@435: int SharedRuntime::_nof_optimized_calls = 0; duke@435: int SharedRuntime::_nof_inlined_calls = 0; duke@435: int SharedRuntime::_nof_megamorphic_calls = 0; duke@435: int SharedRuntime::_nof_static_calls = 0; duke@435: int SharedRuntime::_nof_inlined_static_calls = 0; duke@435: int SharedRuntime::_nof_interface_calls = 0; duke@435: int SharedRuntime::_nof_optimized_interface_calls = 0; duke@435: int SharedRuntime::_nof_inlined_interface_calls = 0; duke@435: int SharedRuntime::_nof_megamorphic_interface_calls = 0; duke@435: int SharedRuntime::_nof_removable_exceptions = 0; duke@435: duke@435: int SharedRuntime::_new_instance_ctr=0; duke@435: int SharedRuntime::_new_array_ctr=0; duke@435: int SharedRuntime::_multi1_ctr=0; duke@435: int SharedRuntime::_multi2_ctr=0; duke@435: int SharedRuntime::_multi3_ctr=0; duke@435: int SharedRuntime::_multi4_ctr=0; duke@435: int SharedRuntime::_multi5_ctr=0; duke@435: int SharedRuntime::_mon_enter_stub_ctr=0; duke@435: int SharedRuntime::_mon_exit_stub_ctr=0; duke@435: int SharedRuntime::_mon_enter_ctr=0; duke@435: int SharedRuntime::_mon_exit_ctr=0; duke@435: int SharedRuntime::_partial_subtype_ctr=0; duke@435: int SharedRuntime::_jbyte_array_copy_ctr=0; duke@435: int SharedRuntime::_jshort_array_copy_ctr=0; duke@435: int SharedRuntime::_jint_array_copy_ctr=0; duke@435: int SharedRuntime::_jlong_array_copy_ctr=0; duke@435: int SharedRuntime::_oop_array_copy_ctr=0; duke@435: int SharedRuntime::_checkcast_array_copy_ctr=0; duke@435: int SharedRuntime::_unsafe_array_copy_ctr=0; duke@435: int SharedRuntime::_generic_array_copy_ctr=0; duke@435: int SharedRuntime::_slow_array_copy_ctr=0; duke@435: int SharedRuntime::_find_handler_ctr=0; duke@435: int SharedRuntime::_rethrow_ctr=0; duke@435: duke@435: int SharedRuntime::_ICmiss_index = 0; duke@435: int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; duke@435: address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; duke@435: never@2950: duke@435: void SharedRuntime::trace_ic_miss(address at) { duke@435: for (int i = 0; i < _ICmiss_index; i++) { duke@435: if (_ICmiss_at[i] == at) { duke@435: _ICmiss_count[i]++; duke@435: return; duke@435: } duke@435: } duke@435: int index = _ICmiss_index++; duke@435: if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; duke@435: _ICmiss_at[index] = at; duke@435: _ICmiss_count[index] = 1; duke@435: } duke@435: duke@435: void SharedRuntime::print_ic_miss_histogram() { duke@435: if (ICMissHistogram) { duke@435: tty->print_cr ("IC Miss Histogram:"); duke@435: int tot_misses = 0; duke@435: for (int i = 0; i < _ICmiss_index; i++) { duke@435: tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); duke@435: tot_misses += _ICmiss_count[i]; duke@435: } duke@435: tty->print_cr ("Total IC misses: %7d", tot_misses); duke@435: } duke@435: } duke@435: #endif // PRODUCT duke@435: jprovino@4542: #if INCLUDE_ALL_GCS ysr@777: ysr@777: // G1 write-barrier pre: executed before a pointer store. ysr@777: JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) ysr@777: if (orig == NULL) { ysr@777: assert(false, "should be optimized out"); ysr@777: return; ysr@777: } ysr@1280: assert(orig->is_oop(true /* ignore mark word */), "Error"); ysr@777: // store the original value that was in the field reference ysr@777: thread->satb_mark_queue().enqueue(orig); ysr@777: JRT_END ysr@777: ysr@777: // G1 write-barrier post: executed after a pointer store. ysr@777: JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) ysr@777: thread->dirty_card_queue().enqueue(card_addr); ysr@777: JRT_END ysr@777: jprovino@4542: #endif // INCLUDE_ALL_GCS ysr@777: duke@435: duke@435: JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) duke@435: return x * y; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) duke@435: if (x == min_jlong && y == CONST64(-1)) { duke@435: return x; duke@435: } else { duke@435: return x / y; duke@435: } duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) duke@435: if (x == min_jlong && y == CONST64(-1)) { duke@435: return 0; duke@435: } else { duke@435: return x % y; duke@435: } duke@435: JRT_END duke@435: duke@435: duke@435: const juint float_sign_mask = 0x7FFFFFFF; duke@435: const juint float_infinity = 0x7F800000; duke@435: const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); duke@435: const julong double_infinity = CONST64(0x7FF0000000000000); duke@435: duke@435: JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) duke@435: #ifdef _WIN64 duke@435: // 64-bit Windows on amd64 returns the wrong values for duke@435: // infinity operands. duke@435: union { jfloat f; juint i; } xbits, ybits; duke@435: xbits.f = x; duke@435: ybits.f = y; duke@435: // x Mod Infinity == x unless x is infinity duke@435: if ( ((xbits.i & float_sign_mask) != float_infinity) && duke@435: ((ybits.i & float_sign_mask) == float_infinity) ) { duke@435: return x; duke@435: } duke@435: #endif duke@435: return ((jfloat)fmod((double)x,(double)y)); duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) duke@435: #ifdef _WIN64 duke@435: union { jdouble d; julong l; } xbits, ybits; duke@435: xbits.d = x; duke@435: ybits.d = y; duke@435: // x Mod Infinity == x unless x is infinity duke@435: if ( ((xbits.l & double_sign_mask) != double_infinity) && duke@435: ((ybits.l & double_sign_mask) == double_infinity) ) { duke@435: return x; duke@435: } duke@435: #endif duke@435: return ((jdouble)fmod((double)x,(double)y)); duke@435: JRT_END duke@435: bobv@2036: #ifdef __SOFTFP__ bobv@2036: JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) bobv@2036: return x + y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) bobv@2036: return x - y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) bobv@2036: return x * y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) bobv@2036: return x / y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) bobv@2036: return x + y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) bobv@2036: return x - y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) bobv@2036: return x * y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) bobv@2036: return x / y; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) bobv@2036: return (jfloat)x; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) bobv@2036: return (jdouble)x; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) bobv@2036: return (jdouble)x; bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) bobv@2036: return x>y ? 1 : (x==y ? 0 : -1); /* xy or is_nan */ bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) bobv@2036: return x>y ? 1 : (x==y ? 0 : -1); /* xy or is_nan */ bobv@2036: JRT_END bobv@2036: bobv@2036: // Functions to return the opposite of the aeabi functions for nan. bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) bobv@2036: return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) bobv@2036: return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) bobv@2036: return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) bobv@2036: return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) bobv@2036: return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) bobv@2036: return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) bobv@2036: return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) bobv@2036: return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); bobv@2036: JRT_END bobv@2036: bobv@2036: // Intrinsics make gcc generate code for these. bobv@2036: float SharedRuntime::fneg(float f) { bobv@2036: return -f; bobv@2036: } bobv@2036: bobv@2036: double SharedRuntime::dneg(double f) { bobv@2036: return -f; bobv@2036: } bobv@2036: bobv@2036: #endif // __SOFTFP__ bobv@2036: bobv@2036: #if defined(__SOFTFP__) || defined(E500V2) bobv@2036: // Intrinsics make gcc generate code for these. bobv@2036: double SharedRuntime::dabs(double f) { bobv@2036: return (f <= (double)0.0) ? (double)0.0 - f : f; bobv@2036: } bobv@2036: bobv@2223: #endif bobv@2223: bobv@2223: #if defined(__SOFTFP__) || defined(PPC) bobv@2036: double SharedRuntime::dsqrt(double f) { bobv@2036: return sqrt(f); bobv@2036: } bobv@2036: #endif duke@435: duke@435: JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) kvn@943: if (g_isnan(x)) kvn@943: return 0; kvn@943: if (x >= (jfloat) max_jint) kvn@943: return max_jint; kvn@943: if (x <= (jfloat) min_jint) kvn@943: return min_jint; kvn@943: return (jint) x; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) kvn@943: if (g_isnan(x)) kvn@943: return 0; kvn@943: if (x >= (jfloat) max_jlong) kvn@943: return max_jlong; kvn@943: if (x <= (jfloat) min_jlong) kvn@943: return min_jlong; kvn@943: return (jlong) x; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) kvn@943: if (g_isnan(x)) kvn@943: return 0; kvn@943: if (x >= (jdouble) max_jint) kvn@943: return max_jint; kvn@943: if (x <= (jdouble) min_jint) kvn@943: return min_jint; kvn@943: return (jint) x; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) kvn@943: if (g_isnan(x)) kvn@943: return 0; kvn@943: if (x >= (jdouble) max_jlong) kvn@943: return max_jlong; kvn@943: if (x <= (jdouble) min_jlong) kvn@943: return min_jlong; kvn@943: return (jlong) x; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) duke@435: return (jfloat)x; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) duke@435: return (jfloat)x; duke@435: JRT_END duke@435: duke@435: duke@435: JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) duke@435: return (jdouble)x; duke@435: JRT_END duke@435: duke@435: // Exception handling accross interpreter/compiler boundaries duke@435: // duke@435: // exception_handler_for_return_address(...) returns the continuation address. duke@435: // The continuation address is the entry point of the exception handler of the duke@435: // previous frame depending on the return address. duke@435: twisti@1730: address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { twisti@2603: assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); twisti@2603: twisti@2603: // Reset method handle flag. twisti@1803: thread->set_is_method_handle_return(false); twisti@1803: twisti@2603: // The fastest case first duke@435: CodeBlob* blob = CodeCache::find_blob(return_address); twisti@2603: nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; twisti@2603: if (nm != NULL) { twisti@2603: // Set flag if return address is a method handle call site. twisti@2603: thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); duke@435: // native nmethods don't have exception handlers twisti@2603: assert(!nm->is_native_method(), "no exception handler"); twisti@2603: assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); twisti@2603: if (nm->is_deopt_pc(return_address)) { duke@435: return SharedRuntime::deopt_blob()->unpack_with_exception(); duke@435: } else { twisti@2603: return nm->exception_begin(); duke@435: } duke@435: } duke@435: duke@435: // Entry code duke@435: if (StubRoutines::returns_to_call_stub(return_address)) { duke@435: return StubRoutines::catch_exception_entry(); duke@435: } duke@435: // Interpreted code duke@435: if (Interpreter::contains(return_address)) { duke@435: return Interpreter::rethrow_exception_entry(); duke@435: } duke@435: twisti@2603: guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); duke@435: guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); twisti@2603: duke@435: #ifndef PRODUCT duke@435: { ResourceMark rm; duke@435: tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); duke@435: tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); duke@435: tty->print_cr("b) other problem"); duke@435: } duke@435: #endif // PRODUCT twisti@2603: duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: twisti@1730: JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) twisti@1730: return raw_exception_handler_for_return_address(thread, return_address); duke@435: JRT_END duke@435: twisti@1730: duke@435: address SharedRuntime::get_poll_stub(address pc) { duke@435: address stub; duke@435: // Look up the code blob duke@435: CodeBlob *cb = CodeCache::find_blob(pc); duke@435: duke@435: // Should be an nmethod duke@435: assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" ); duke@435: duke@435: // Look up the relocation information duke@435: assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc), duke@435: "safepoint polling: type must be poll" ); duke@435: duke@435: assert( ((NativeInstruction*)pc)->is_safepoint_poll(), duke@435: "Only polling locations are used for safepoint"); duke@435: duke@435: bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); kvn@4103: bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors(); duke@435: if (at_poll_return) { duke@435: assert(SharedRuntime::polling_page_return_handler_blob() != NULL, duke@435: "polling page return stub not created yet"); twisti@2103: stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); kvn@4103: } else if (has_wide_vectors) { kvn@4103: assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, kvn@4103: "polling page vectors safepoint stub not created yet"); kvn@4103: stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); duke@435: } else { duke@435: assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, duke@435: "polling page safepoint stub not created yet"); twisti@2103: stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); duke@435: } duke@435: #ifndef PRODUCT duke@435: if( TraceSafepoint ) { duke@435: char buf[256]; duke@435: jio_snprintf(buf, sizeof(buf), duke@435: "... found polling page %s exception at pc = " duke@435: INTPTR_FORMAT ", stub =" INTPTR_FORMAT, duke@435: at_poll_return ? "return" : "loop", duke@435: (intptr_t)pc, (intptr_t)stub); duke@435: tty->print_raw_cr(buf); duke@435: } duke@435: #endif // PRODUCT duke@435: return stub; duke@435: } duke@435: duke@435: coleenp@2497: oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { duke@435: assert(caller.is_interpreted_frame(), ""); duke@435: int args_size = ArgumentSizeComputer(sig).size() + 1; duke@435: assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); hseigel@5784: oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); duke@435: assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); duke@435: return result; duke@435: } duke@435: duke@435: duke@435: void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { dcubed@1648: if (JvmtiExport::can_post_on_exceptions()) { duke@435: vframeStream vfst(thread, true); duke@435: methodHandle method = methodHandle(thread, vfst.method()); duke@435: address bcp = method()->bcp_from(vfst.bci()); duke@435: JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); duke@435: } duke@435: Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); duke@435: } duke@435: coleenp@2497: void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { duke@435: Handle h_exception = Exceptions::new_exception(thread, name, message); duke@435: throw_and_post_jvmti_exception(thread, h_exception); duke@435: } duke@435: dcubed@1045: // The interpreter code to call this tracing function is only dcubed@1045: // called/generated when TraceRedefineClasses has the right bits dcubed@1045: // set. Since obsolete methods are never compiled, we don't have dcubed@1045: // to modify the compilers to generate calls to this function. dcubed@1045: // dcubed@1045: JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( coleenp@4037: JavaThread* thread, Method* method)) dcubed@1045: assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); dcubed@1045: dcubed@1045: if (method->is_obsolete()) { dcubed@1045: // We are calling an obsolete method, but this is not necessarily dcubed@1045: // an error. Our method could have been redefined just after we coleenp@4037: // fetched the Method* from the constant pool. dcubed@1045: dcubed@1045: // RC_TRACE macro has an embedded ResourceMark dcubed@1045: RC_TRACE_WITH_THREAD(0x00001000, thread, dcubed@1045: ("calling obsolete method '%s'", dcubed@1045: method->name_and_sig_as_C_string())); dcubed@1045: if (RC_TRACE_ENABLED(0x00002000)) { dcubed@1045: // this option is provided to debug calls to obsolete methods dcubed@1045: guarantee(false, "faulting at call to an obsolete method."); dcubed@1045: } dcubed@1045: } dcubed@1045: return 0; dcubed@1045: JRT_END dcubed@1045: duke@435: // ret_pc points into caller; we are returning caller's exception handler duke@435: // for given exception duke@435: address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, duke@435: bool force_unwind, bool top_frame_only) { duke@435: assert(nm != NULL, "must exist"); duke@435: ResourceMark rm; duke@435: duke@435: ScopeDesc* sd = nm->scope_desc_at(ret_pc); duke@435: // determine handler bci, if any duke@435: EXCEPTION_MARK; duke@435: duke@435: int handler_bci = -1; duke@435: int scope_depth = 0; duke@435: if (!force_unwind) { duke@435: int bci = sd->bci(); kvn@3194: bool recursive_exception = false; duke@435: do { duke@435: bool skip_scope_increment = false; duke@435: // exception handler lookup duke@435: KlassHandle ek (THREAD, exception->klass()); jiangli@4405: methodHandle mh(THREAD, sd->method()); jiangli@4405: handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); duke@435: if (HAS_PENDING_EXCEPTION) { kvn@3194: recursive_exception = true; duke@435: // We threw an exception while trying to find the exception handler. duke@435: // Transfer the new exception to the exception handle which will duke@435: // be set into thread local storage, and do another lookup for an duke@435: // exception handler for this exception, this time starting at the duke@435: // BCI of the exception handler which caused the exception to be duke@435: // thrown (bugs 4307310 and 4546590). Set "exception" reference duke@435: // argument to ensure that the correct exception is thrown (4870175). duke@435: exception = Handle(THREAD, PENDING_EXCEPTION); duke@435: CLEAR_PENDING_EXCEPTION; duke@435: if (handler_bci >= 0) { duke@435: bci = handler_bci; duke@435: handler_bci = -1; duke@435: skip_scope_increment = true; duke@435: } duke@435: } kvn@3194: else { kvn@3194: recursive_exception = false; kvn@3194: } duke@435: if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { duke@435: sd = sd->sender(); duke@435: if (sd != NULL) { duke@435: bci = sd->bci(); duke@435: } duke@435: ++scope_depth; duke@435: } kvn@3194: } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); duke@435: } duke@435: duke@435: // found handling method => lookup exception handler twisti@2103: int catch_pco = ret_pc - nm->code_begin(); duke@435: duke@435: ExceptionHandlerTable table(nm); duke@435: HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); duke@435: if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { duke@435: // Allow abbreviated catch tables. The idea is to allow a method duke@435: // to materialize its exceptions without committing to the exact duke@435: // routing of exceptions. In particular this is needed for adding duke@435: // a synthethic handler to unlock monitors when inlining duke@435: // synchonized methods since the unlock path isn't represented in duke@435: // the bytecodes. duke@435: t = table.entry_for(catch_pco, -1, 0); duke@435: } duke@435: never@1813: #ifdef COMPILER1 never@1813: if (t == NULL && nm->is_compiled_by_c1()) { never@1813: assert(nm->unwind_handler_begin() != NULL, ""); never@1813: return nm->unwind_handler_begin(); never@1813: } never@1813: #endif never@1813: duke@435: if (t == NULL) { duke@435: tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); duke@435: tty->print_cr(" Exception:"); duke@435: exception->print(); duke@435: tty->cr(); duke@435: tty->print_cr(" Compiled exception table :"); duke@435: table.print(); duke@435: nm->print_code(); duke@435: guarantee(false, "missing exception handler"); duke@435: return NULL; duke@435: } duke@435: twisti@2103: return nm->code_begin() + t->pco(); duke@435: } duke@435: duke@435: JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) duke@435: // These errors occur only at call sites duke@435: throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); duke@435: JRT_END duke@435: dcubed@451: JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) dcubed@451: // These errors occur only at call sites dcubed@451: throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); dcubed@451: JRT_END dcubed@451: duke@435: JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) duke@435: throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); duke@435: JRT_END duke@435: duke@435: JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) duke@435: throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); duke@435: JRT_END duke@435: duke@435: JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) duke@435: // This entry point is effectively only used for NullPointerExceptions which occur at inline duke@435: // cache sites (when the callee activation is not yet set up) so we are at a call site duke@435: throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); duke@435: JRT_END duke@435: duke@435: JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) duke@435: // We avoid using the normal exception construction in this case because duke@435: // it performs an upcall to Java, and we're already out of stack space. coleenp@4037: Klass* k = SystemDictionary::StackOverflowError_klass(); coleenp@4037: oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); duke@435: Handle exception (thread, exception_oop); duke@435: if (StackTraceInThrowable) { duke@435: java_lang_Throwable::fill_in_stack_trace(exception); duke@435: } duke@435: throw_and_post_jvmti_exception(thread, exception); duke@435: JRT_END duke@435: duke@435: address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, duke@435: address pc, duke@435: SharedRuntime::ImplicitExceptionKind exception_kind) duke@435: { duke@435: address target_pc = NULL; duke@435: duke@435: if (Interpreter::contains(pc)) { duke@435: #ifdef CC_INTERP duke@435: // C++ interpreter doesn't throw implicit exceptions duke@435: ShouldNotReachHere(); duke@435: #else duke@435: switch (exception_kind) { duke@435: case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); duke@435: case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); duke@435: case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: #endif // !CC_INTERP duke@435: } else { duke@435: switch (exception_kind) { duke@435: case STACK_OVERFLOW: { duke@435: // Stack overflow only occurs upon frame setup; the callee is duke@435: // going to be unwound. Dispatch to a shared runtime stub duke@435: // which will cause the StackOverflowError to be fabricated duke@435: // and processed. duke@435: // For stack overflow in deoptimization blob, cleanup thread. duke@435: if (thread->deopt_mark() != NULL) { duke@435: Deoptimization::cleanup_deopt_info(thread, NULL); duke@435: } never@3571: Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc); duke@435: return StubRoutines::throw_StackOverflowError_entry(); duke@435: } duke@435: duke@435: case IMPLICIT_NULL: { duke@435: if (VtableStubs::contains(pc)) { duke@435: // We haven't yet entered the callee frame. Fabricate an duke@435: // exception and begin dispatching it in the caller. Since duke@435: // the caller was at a call site, it's safe to destroy all duke@435: // caller-saved registers, as these entry points do. duke@435: VtableStub* vt_stub = VtableStubs::stub_containing(pc); poonam@900: poonam@900: // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. poonam@900: if (vt_stub == NULL) return NULL; poonam@900: duke@435: if (vt_stub->is_abstract_method_error(pc)) { duke@435: assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); never@3571: Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc); duke@435: return StubRoutines::throw_AbstractMethodError_entry(); duke@435: } else { never@3571: Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc); duke@435: return StubRoutines::throw_NullPointerException_at_call_entry(); duke@435: } duke@435: } else { duke@435: CodeBlob* cb = CodeCache::find_blob(pc); poonam@900: poonam@900: // If code blob is NULL, then return NULL to signal handler to report the SEGV error. poonam@900: if (cb == NULL) return NULL; duke@435: duke@435: // Exception happened in CodeCache. Must be either: duke@435: // 1. Inline-cache check in C2I handler blob, duke@435: // 2. Inline-cache check in nmethod, or duke@435: // 3. Implict null exception in nmethod duke@435: duke@435: if (!cb->is_nmethod()) { coleenp@5302: bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); coleenp@5302: if (!is_in_blob) { coleenp@5302: cb->print(); coleenp@5302: fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc)); coleenp@5302: } never@3571: Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc); duke@435: // There is no handler here, so we will simply unwind. duke@435: return StubRoutines::throw_NullPointerException_at_call_entry(); duke@435: } duke@435: duke@435: // Otherwise, it's an nmethod. Consult its exception handlers. duke@435: nmethod* nm = (nmethod*)cb; duke@435: if (nm->inlinecache_check_contains(pc)) { duke@435: // exception happened inside inline-cache check code duke@435: // => the nmethod is not yet active (i.e., the frame duke@435: // is not set up yet) => use return address pushed by duke@435: // caller => don't push another return address never@3571: Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc); duke@435: return StubRoutines::throw_NullPointerException_at_call_entry(); duke@435: } duke@435: twisti@3969: if (nm->method()->is_method_handle_intrinsic()) { twisti@3969: // exception happened inside MH dispatch code, similar to a vtable stub twisti@3969: Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc); twisti@3969: return StubRoutines::throw_NullPointerException_at_call_entry(); twisti@3969: } twisti@3969: duke@435: #ifndef PRODUCT duke@435: _implicit_null_throws++; duke@435: #endif duke@435: target_pc = nm->continuation_for_implicit_exception(pc); never@1685: // If there's an unexpected fault, target_pc might be NULL, never@1685: // in which case we want to fall through into the normal never@1685: // error handling code. duke@435: } duke@435: duke@435: break; // fall through duke@435: } duke@435: duke@435: duke@435: case IMPLICIT_DIVIDE_BY_ZERO: { duke@435: nmethod* nm = CodeCache::find_nmethod(pc); duke@435: guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); duke@435: #ifndef PRODUCT duke@435: _implicit_div0_throws++; duke@435: #endif duke@435: target_pc = nm->continuation_for_implicit_exception(pc); never@1685: // If there's an unexpected fault, target_pc might be NULL, never@1685: // in which case we want to fall through into the normal never@1685: // error handling code. duke@435: break; // fall through duke@435: } duke@435: duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: duke@435: assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); duke@435: duke@435: // for AbortVMOnException flag duke@435: NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); duke@435: if (exception_kind == IMPLICIT_NULL) { never@3499: Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); duke@435: } else { never@3499: Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); duke@435: } duke@435: return target_pc; duke@435: } duke@435: duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: twisti@5108: /** twisti@5108: * Throws an java/lang/UnsatisfiedLinkError. The address of this method is twisti@5108: * installed in the native function entry of all native Java methods before twisti@5108: * they get linked to their actual native methods. twisti@5108: * twisti@5108: * \note twisti@5108: * This method actually never gets called! The reason is because twisti@5108: * the interpreter's native entries call NativeLookup::lookup() which twisti@5108: * throws the exception when the lookup fails. The exception is then twisti@5108: * caught and forwarded on the return from NativeLookup::lookup() call twisti@5108: * before the call to the native function. This might change in the future. twisti@5108: */ twisti@5108: JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) duke@435: { twisti@5108: // We return a bad value here to make sure that the exception is twisti@5108: // forwarded before we look at the return value. twisti@5108: THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle); duke@435: } duke@435: JNI_END duke@435: duke@435: address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { duke@435: return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); duke@435: } duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) duke@435: const frame f = thread->last_frame(); duke@435: assert(f.is_interpreted_frame(), "must be an interpreted frame"); duke@435: #ifndef PRODUCT duke@435: methodHandle mh(THREAD, f.interpreter_frame_method()); duke@435: BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); duke@435: #endif // !PRODUCT duke@435: return preserve_this_value; duke@435: JRT_END duke@435: #endif // !PRODUCT duke@435: duke@435: duke@435: JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts)) duke@435: os::yield_all(attempts); duke@435: JRT_END duke@435: duke@435: duke@435: JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) duke@435: assert(obj->is_oop(), "must be a valid oop"); coleenp@4037: assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); coleenp@4037: InstanceKlass::register_finalizer(instanceOop(obj), CHECK); duke@435: JRT_END duke@435: duke@435: duke@435: jlong SharedRuntime::get_java_tid(Thread* thread) { duke@435: if (thread != NULL) { duke@435: if (thread->is_Java_thread()) { duke@435: oop obj = ((JavaThread*)thread)->threadObj(); duke@435: return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); duke@435: } duke@435: } duke@435: return 0; duke@435: } duke@435: duke@435: /** duke@435: * This function ought to be a void function, but cannot be because duke@435: * it gets turned into a tail-call on sparc, which runs into dtrace bug duke@435: * 6254741. Once that is fixed we can remove the dummy return value. duke@435: */ duke@435: int SharedRuntime::dtrace_object_alloc(oopDesc* o) { duke@435: return dtrace_object_alloc_base(Thread::current(), o); duke@435: } duke@435: duke@435: int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) { duke@435: assert(DTraceAllocProbes, "wrong call"); coleenp@4037: Klass* klass = o->klass(); duke@435: int size = o->size(); coleenp@2497: Symbol* name = klass->name(); dcubed@3202: #ifndef USDT2 duke@435: HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread), duke@435: name->bytes(), name->utf8_length(), size * HeapWordSize); dcubed@3202: #else /* USDT2 */ dcubed@3202: HOTSPOT_OBJECT_ALLOC( dcubed@3202: get_java_tid(thread), dcubed@3202: (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); dcubed@3202: #endif /* USDT2 */ duke@435: return 0; duke@435: } duke@435: duke@435: JRT_LEAF(int, SharedRuntime::dtrace_method_entry( coleenp@4037: JavaThread* thread, Method* method)) duke@435: assert(DTraceMethodProbes, "wrong call"); coleenp@2497: Symbol* kname = method->klass_name(); coleenp@2497: Symbol* name = method->name(); coleenp@2497: Symbol* sig = method->signature(); dcubed@3202: #ifndef USDT2 duke@435: HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread), duke@435: kname->bytes(), kname->utf8_length(), duke@435: name->bytes(), name->utf8_length(), duke@435: sig->bytes(), sig->utf8_length()); dcubed@3202: #else /* USDT2 */ dcubed@3202: HOTSPOT_METHOD_ENTRY( dcubed@3202: get_java_tid(thread), dcubed@3202: (char *) kname->bytes(), kname->utf8_length(), dcubed@3202: (char *) name->bytes(), name->utf8_length(), dcubed@3202: (char *) sig->bytes(), sig->utf8_length()); dcubed@3202: #endif /* USDT2 */ duke@435: return 0; duke@435: JRT_END duke@435: duke@435: JRT_LEAF(int, SharedRuntime::dtrace_method_exit( coleenp@4037: JavaThread* thread, Method* method)) duke@435: assert(DTraceMethodProbes, "wrong call"); coleenp@2497: Symbol* kname = method->klass_name(); coleenp@2497: Symbol* name = method->name(); coleenp@2497: Symbol* sig = method->signature(); dcubed@3202: #ifndef USDT2 duke@435: HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread), duke@435: kname->bytes(), kname->utf8_length(), duke@435: name->bytes(), name->utf8_length(), duke@435: sig->bytes(), sig->utf8_length()); dcubed@3202: #else /* USDT2 */ dcubed@3202: HOTSPOT_METHOD_RETURN( dcubed@3202: get_java_tid(thread), dcubed@3202: (char *) kname->bytes(), kname->utf8_length(), dcubed@3202: (char *) name->bytes(), name->utf8_length(), dcubed@3202: (char *) sig->bytes(), sig->utf8_length()); dcubed@3202: #endif /* USDT2 */ duke@435: return 0; duke@435: JRT_END duke@435: duke@435: duke@435: // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) duke@435: // for a call current in progress, i.e., arguments has been pushed on stack duke@435: // put callee has not been invoked yet. Used by: resolve virtual/static, duke@435: // vtable updates, etc. Caller frame must be compiled. duke@435: Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { duke@435: ResourceMark rm(THREAD); duke@435: duke@435: // last java frame on stack (which includes native call frames) duke@435: vframeStream vfst(thread, true); // Do not skip and javaCalls duke@435: duke@435: return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle())); duke@435: } duke@435: duke@435: duke@435: // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode duke@435: // for a call current in progress, i.e., arguments has been pushed on stack duke@435: // but callee has not been invoked yet. Caller frame must be compiled. duke@435: Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, duke@435: vframeStream& vfst, duke@435: Bytecodes::Code& bc, duke@435: CallInfo& callinfo, TRAPS) { duke@435: Handle receiver; duke@435: Handle nullHandle; //create a handy null handle for exception returns duke@435: duke@435: assert(!vfst.at_end(), "Java frame must exist"); duke@435: duke@435: // Find caller and bci from vframe twisti@3969: methodHandle caller(THREAD, vfst.method()); twisti@3969: int bci = vfst.bci(); duke@435: duke@435: // Find bytecode never@2462: Bytecode_invoke bytecode(caller, bci); twisti@3969: bc = bytecode.invoke_code(); never@2462: int bytecode_index = bytecode.index(); duke@435: duke@435: // Find receiver for non-static call twisti@3969: if (bc != Bytecodes::_invokestatic && roland@5628: bc != Bytecodes::_invokedynamic && roland@5628: bc != Bytecodes::_invokehandle) { duke@435: // This register map must be update since we need to find the receiver for duke@435: // compiled frames. The receiver might be in a register. duke@435: RegisterMap reg_map2(thread); duke@435: frame stubFrame = thread->last_frame(); duke@435: // Caller-frame is a compiled frame duke@435: frame callerFrame = stubFrame.sender(®_map2); duke@435: never@2462: methodHandle callee = bytecode.static_target(CHECK_(nullHandle)); duke@435: if (callee.is_null()) { duke@435: THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); duke@435: } duke@435: // Retrieve from a compiled argument list duke@435: receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); duke@435: duke@435: if (receiver.is_null()) { duke@435: THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); duke@435: } duke@435: } duke@435: duke@435: // Resolve method. This is parameterized by bytecode. twisti@3969: constantPoolHandle constants(THREAD, caller->constants()); twisti@3969: assert(receiver.is_null() || receiver->is_oop(), "wrong receiver"); duke@435: LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); duke@435: duke@435: #ifdef ASSERT duke@435: // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls roland@5628: if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) { duke@435: assert(receiver.not_null(), "should have thrown exception"); twisti@3969: KlassHandle receiver_klass(THREAD, receiver->klass()); coleenp@4037: Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); duke@435: // klass is already loaded twisti@3969: KlassHandle static_receiver_klass(THREAD, rk); twisti@3969: // Method handle invokes might have been optimized to a direct call twisti@3969: // so don't check for the receiver class. twisti@3969: // FIXME this weakens the assert too much twisti@3969: methodHandle callee = callinfo.selected_method(); twisti@3969: assert(receiver_klass->is_subtype_of(static_receiver_klass()) || twisti@3969: callee->is_method_handle_intrinsic() || twisti@3969: callee->is_compiled_lambda_form(), twisti@3969: "actual receiver must be subclass of static receiver klass"); duke@435: if (receiver_klass->oop_is_instance()) { coleenp@4037: if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) { duke@435: tty->print_cr("ERROR: Klass not yet initialized!!"); coleenp@4037: receiver_klass()->print(); duke@435: } coleenp@4037: assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); duke@435: } duke@435: } duke@435: #endif duke@435: duke@435: return receiver; duke@435: } duke@435: duke@435: methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { duke@435: ResourceMark rm(THREAD); duke@435: // We need first to check if any Java activations (compiled, interpreted) duke@435: // exist on the stack since last JavaCall. If not, we need duke@435: // to get the target method from the JavaCall wrapper. duke@435: vframeStream vfst(thread, true); // Do not skip any javaCalls duke@435: methodHandle callee_method; duke@435: if (vfst.at_end()) { duke@435: // No Java frames were found on stack since we did the JavaCall. duke@435: // Hence the stack can only contain an entry_frame. We need to duke@435: // find the target method from the stub frame. duke@435: RegisterMap reg_map(thread, false); duke@435: frame fr = thread->last_frame(); duke@435: assert(fr.is_runtime_frame(), "must be a runtimeStub"); duke@435: fr = fr.sender(®_map); duke@435: assert(fr.is_entry_frame(), "must be"); duke@435: // fr is now pointing to the entry frame. duke@435: callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); duke@435: assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); duke@435: } else { duke@435: Bytecodes::Code bc; duke@435: CallInfo callinfo; duke@435: find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); duke@435: callee_method = callinfo.selected_method(); duke@435: } duke@435: assert(callee_method()->is_method(), "must be"); duke@435: return callee_method; duke@435: } duke@435: duke@435: // Resolves a call. duke@435: methodHandle SharedRuntime::resolve_helper(JavaThread *thread, duke@435: bool is_virtual, duke@435: bool is_optimized, TRAPS) { duke@435: methodHandle callee_method; duke@435: callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); duke@435: if (JvmtiExport::can_hotswap_or_post_breakpoint()) { duke@435: int retry_count = 0; duke@435: while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && never@1577: callee_method->method_holder() != SystemDictionary::Object_klass()) { duke@435: // If has a pending exception then there is no need to re-try to duke@435: // resolve this method. duke@435: // If the method has been redefined, we need to try again. duke@435: // Hack: we have no way to update the vtables of arrays, so don't duke@435: // require that java.lang.Object has been updated. duke@435: duke@435: // It is very unlikely that method is redefined more than 100 times duke@435: // in the middle of resolve. If it is looping here more than 100 times duke@435: // means then there could be a bug here. duke@435: guarantee((retry_count++ < 100), duke@435: "Could not resolve to latest version of redefined method"); duke@435: // method is redefined in the middle of resolve so re-try. duke@435: callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); duke@435: } duke@435: } duke@435: return callee_method; duke@435: } duke@435: duke@435: // Resolves a call. The compilers generate code for calls that go here duke@435: // and are patched with the real destination of the call. duke@435: methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, duke@435: bool is_virtual, duke@435: bool is_optimized, TRAPS) { duke@435: duke@435: ResourceMark rm(thread); duke@435: RegisterMap cbl_map(thread, false); duke@435: frame caller_frame = thread->last_frame().sender(&cbl_map); duke@435: twisti@1730: CodeBlob* caller_cb = caller_frame.cb(); twisti@1730: guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); twisti@1730: nmethod* caller_nm = caller_cb->as_nmethod_or_null(); duke@435: // make sure caller is not getting deoptimized duke@435: // and removed before we are done with it. duke@435: // CLEANUP - with lazy deopt shouldn't need this lock twisti@1730: nmethodLocker caller_lock(caller_nm); duke@435: duke@435: duke@435: // determine call info & receiver duke@435: // note: a) receiver is NULL for static calls duke@435: // b) an exception is thrown if receiver is NULL for non-static calls duke@435: CallInfo call_info; duke@435: Bytecodes::Code invoke_code = Bytecodes::_illegal; duke@435: Handle receiver = find_callee_info(thread, invoke_code, duke@435: call_info, CHECK_(methodHandle())); duke@435: methodHandle callee_method = call_info.selected_method(); duke@435: twisti@3969: assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || twisti@3969: (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || twisti@3969: (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || twisti@3969: ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); duke@435: duke@435: #ifndef PRODUCT duke@435: // tracing/debugging/statistics duke@435: int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : duke@435: (is_virtual) ? (&_resolve_virtual_ctr) : duke@435: (&_resolve_static_ctr); duke@435: Atomic::inc(addr); duke@435: duke@435: if (TraceCallFixup) { duke@435: ResourceMark rm(thread); duke@435: tty->print("resolving %s%s (%s) call to", duke@435: (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", duke@435: Bytecodes::name(invoke_code)); duke@435: callee_method->print_short_name(tty); twisti@3969: tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code()); duke@435: } duke@435: #endif duke@435: twisti@3969: // JSR 292 key invariant: twisti@1730: // If the resolved method is a MethodHandle invoke target the call twisti@3969: // site must be a MethodHandle call site, because the lambda form might tail-call twisti@3969: // leaving the stack in a state unknown to either caller or callee twisti@3969: // TODO detune for now but we might need it again twisti@3969: // assert(!callee_method->is_compiled_lambda_form() || twisti@3969: // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); twisti@1730: duke@435: // Compute entry points. This might require generation of C2I converter duke@435: // frames, so we cannot be holding any locks here. Furthermore, the duke@435: // computation of the entry points is independent of patching the call. We duke@435: // always return the entry-point, but we only patch the stub if the call has duke@435: // not been deoptimized. Return values: For a virtual call this is an duke@435: // (cached_oop, destination address) pair. For a static call/optimized duke@435: // virtual this is just a destination address. duke@435: duke@435: StaticCallInfo static_call_info; duke@435: CompiledICInfo virtual_call_info; duke@435: duke@435: // Make sure the callee nmethod does not get deoptimized and removed before duke@435: // we are done patching the code. twisti@1730: nmethod* callee_nm = callee_method->code(); twisti@1730: nmethodLocker nl_callee(callee_nm); duke@435: #ifdef ASSERT twisti@1730: address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below duke@435: #endif duke@435: duke@435: if (is_virtual) { roland@5628: assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); duke@435: bool static_bound = call_info.resolved_method()->can_be_statically_bound(); roland@5628: KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass()); duke@435: CompiledIC::compute_monomorphic_entry(callee_method, h_klass, duke@435: is_optimized, static_bound, virtual_call_info, duke@435: CHECK_(methodHandle())); duke@435: } else { duke@435: // static call duke@435: CompiledStaticCall::compute_entry(callee_method, static_call_info); duke@435: } duke@435: duke@435: // grab lock, check for deoptimization and potentially patch caller duke@435: { duke@435: MutexLocker ml_patch(CompiledIC_lock); duke@435: coleenp@4037: // Now that we are ready to patch if the Method* was redefined then duke@435: // don't update call site and let the caller retry. duke@435: duke@435: if (!callee_method->is_old()) { duke@435: #ifdef ASSERT duke@435: // We must not try to patch to jump to an already unloaded method. duke@435: if (dest_entry_point != 0) { duke@435: assert(CodeCache::find_blob(dest_entry_point) != NULL, duke@435: "should not unload nmethod while locked"); duke@435: } duke@435: #endif duke@435: if (is_virtual) { coleenp@4037: nmethod* nm = callee_nm; coleenp@4037: if (nm == NULL) CodeCache::find_blob(caller_frame.pc()); coleenp@4037: CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); duke@435: if (inline_cache->is_clean()) { duke@435: inline_cache->set_to_monomorphic(virtual_call_info); duke@435: } duke@435: } else { duke@435: CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); duke@435: if (ssc->is_clean()) ssc->set(static_call_info); duke@435: } duke@435: } duke@435: duke@435: } // unlock CompiledIC_lock duke@435: duke@435: return callee_method; duke@435: } duke@435: duke@435: duke@435: // Inline caches exist only in compiled code duke@435: JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) duke@435: #ifdef ASSERT duke@435: RegisterMap reg_map(thread, false); duke@435: frame stub_frame = thread->last_frame(); duke@435: assert(stub_frame.is_runtime_frame(), "sanity check"); duke@435: frame caller_frame = stub_frame.sender(®_map); duke@435: assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); duke@435: #endif /* ASSERT */ duke@435: duke@435: methodHandle callee_method; duke@435: JRT_BLOCK duke@435: callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); coleenp@4037: // Return Method* through TLS coleenp@4037: thread->set_vm_result_2(callee_method()); duke@435: JRT_BLOCK_END duke@435: // return compiled code entry point after potential safepoints duke@435: assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); duke@435: return callee_method->verified_code_entry(); duke@435: JRT_END duke@435: duke@435: duke@435: // Handle call site that has been made non-entrant duke@435: JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) duke@435: // 6243940 We might end up in here if the callee is deoptimized duke@435: // as we race to call it. We don't want to take a safepoint if duke@435: // the caller was interpreted because the caller frame will look duke@435: // interpreted to the stack walkers and arguments are now duke@435: // "compiled" so it is much better to make this transition duke@435: // invisible to the stack walking code. The i2c path will duke@435: // place the callee method in the callee_target. It is stashed duke@435: // there because if we try and find the callee by normal means a duke@435: // safepoint is possible and have trouble gc'ing the compiled args. duke@435: RegisterMap reg_map(thread, false); duke@435: frame stub_frame = thread->last_frame(); duke@435: assert(stub_frame.is_runtime_frame(), "sanity check"); duke@435: frame caller_frame = stub_frame.sender(®_map); twisti@1570: twisti@1570: if (caller_frame.is_interpreted_frame() || twisti@3969: caller_frame.is_entry_frame()) { coleenp@4037: Method* callee = thread->callee_target(); duke@435: guarantee(callee != NULL && callee->is_method(), "bad handshake"); coleenp@4037: thread->set_vm_result_2(callee); duke@435: thread->set_callee_target(NULL); duke@435: return callee->get_c2i_entry(); duke@435: } duke@435: duke@435: // Must be compiled to compiled path which is safe to stackwalk duke@435: methodHandle callee_method; duke@435: JRT_BLOCK duke@435: // Force resolving of caller (if we called from compiled frame) duke@435: callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); coleenp@4037: thread->set_vm_result_2(callee_method()); duke@435: JRT_BLOCK_END duke@435: // return compiled code entry point after potential safepoints duke@435: assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); duke@435: return callee_method->verified_code_entry(); duke@435: JRT_END duke@435: duke@435: duke@435: // resolve a static call and patch code duke@435: JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) duke@435: methodHandle callee_method; duke@435: JRT_BLOCK duke@435: callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); coleenp@4037: thread->set_vm_result_2(callee_method()); duke@435: JRT_BLOCK_END duke@435: // return compiled code entry point after potential safepoints duke@435: assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); duke@435: return callee_method->verified_code_entry(); duke@435: JRT_END duke@435: duke@435: duke@435: // resolve virtual call and update inline cache to monomorphic duke@435: JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) duke@435: methodHandle callee_method; duke@435: JRT_BLOCK duke@435: callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); coleenp@4037: thread->set_vm_result_2(callee_method()); duke@435: JRT_BLOCK_END duke@435: // return compiled code entry point after potential safepoints duke@435: assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); duke@435: return callee_method->verified_code_entry(); duke@435: JRT_END duke@435: duke@435: duke@435: // Resolve a virtual call that can be statically bound (e.g., always duke@435: // monomorphic, so it has no inline cache). Patch code to resolved target. duke@435: JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) duke@435: methodHandle callee_method; duke@435: JRT_BLOCK duke@435: callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); coleenp@4037: thread->set_vm_result_2(callee_method()); duke@435: JRT_BLOCK_END duke@435: // return compiled code entry point after potential safepoints duke@435: assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); duke@435: return callee_method->verified_code_entry(); duke@435: JRT_END duke@435: duke@435: duke@435: duke@435: duke@435: duke@435: methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { duke@435: ResourceMark rm(thread); duke@435: CallInfo call_info; duke@435: Bytecodes::Code bc; duke@435: duke@435: // receiver is NULL for static calls. An exception is thrown for NULL duke@435: // receivers for non-static calls duke@435: Handle receiver = find_callee_info(thread, bc, call_info, duke@435: CHECK_(methodHandle())); duke@435: // Compiler1 can produce virtual call sites that can actually be statically bound duke@435: // If we fell thru to below we would think that the site was going megamorphic duke@435: // when in fact the site can never miss. Worse because we'd think it was megamorphic duke@435: // we'd try and do a vtable dispatch however methods that can be statically bound duke@435: // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a duke@435: // reresolution of the call site (as if we did a handle_wrong_method and not an duke@435: // plain ic_miss) and the site will be converted to an optimized virtual call site duke@435: // never to miss again. I don't believe C2 will produce code like this but if it duke@435: // did this would still be the correct thing to do for it too, hence no ifdef. duke@435: // duke@435: if (call_info.resolved_method()->can_be_statically_bound()) { duke@435: methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); duke@435: if (TraceCallFixup) { duke@435: RegisterMap reg_map(thread, false); duke@435: frame caller_frame = thread->last_frame().sender(®_map); duke@435: ResourceMark rm(thread); duke@435: tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); duke@435: callee_method->print_short_name(tty); duke@435: tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); duke@435: tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); duke@435: } duke@435: return callee_method; duke@435: } duke@435: duke@435: methodHandle callee_method = call_info.selected_method(); duke@435: duke@435: bool should_be_mono = false; duke@435: duke@435: #ifndef PRODUCT duke@435: Atomic::inc(&_ic_miss_ctr); duke@435: duke@435: // Statistics & Tracing duke@435: if (TraceCallFixup) { duke@435: ResourceMark rm(thread); duke@435: tty->print("IC miss (%s) call to", Bytecodes::name(bc)); duke@435: callee_method->print_short_name(tty); duke@435: tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); duke@435: } duke@435: duke@435: if (ICMissHistogram) { duke@435: MutexLocker m(VMStatistic_lock); duke@435: RegisterMap reg_map(thread, false); duke@435: frame f = thread->last_frame().real_sender(®_map);// skip runtime stub duke@435: // produce statistics under the lock duke@435: trace_ic_miss(f.pc()); duke@435: } duke@435: #endif duke@435: duke@435: // install an event collector so that when a vtable stub is created the duke@435: // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The duke@435: // event can't be posted when the stub is created as locks are held duke@435: // - instead the event will be deferred until the event collector goes duke@435: // out of scope. duke@435: JvmtiDynamicCodeEventCollector event_collector; duke@435: duke@435: // Update inline cache to megamorphic. Skip update if caller has been duke@435: // made non-entrant or we are called from interpreted. duke@435: { MutexLocker ml_patch (CompiledIC_lock); duke@435: RegisterMap reg_map(thread, false); duke@435: frame caller_frame = thread->last_frame().sender(®_map); duke@435: CodeBlob* cb = caller_frame.cb(); duke@435: if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) { duke@435: // Not a non-entrant nmethod, so find inline_cache coleenp@4037: CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc()); duke@435: bool should_be_mono = false; duke@435: if (inline_cache->is_optimized()) { duke@435: if (TraceCallFixup) { duke@435: ResourceMark rm(thread); duke@435: tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); duke@435: callee_method->print_short_name(tty); duke@435: tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); duke@435: } duke@435: should_be_mono = true; coleenp@4037: } else if (inline_cache->is_icholder_call()) { coleenp@4037: CompiledICHolder* ic_oop = inline_cache->cached_icholder(); coleenp@4037: if ( ic_oop != NULL) { duke@435: duke@435: if (receiver()->klass() == ic_oop->holder_klass()) { duke@435: // This isn't a real miss. We must have seen that compiled code duke@435: // is now available and we want the call site converted to a duke@435: // monomorphic compiled call site. duke@435: // We can't assert for callee_method->code() != NULL because it duke@435: // could have been deoptimized in the meantime duke@435: if (TraceCallFixup) { duke@435: ResourceMark rm(thread); duke@435: tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); duke@435: callee_method->print_short_name(tty); duke@435: tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); duke@435: } duke@435: should_be_mono = true; duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (should_be_mono) { duke@435: duke@435: // We have a path that was monomorphic but was going interpreted duke@435: // and now we have (or had) a compiled entry. We correct the IC duke@435: // by using a new icBuffer. duke@435: CompiledICInfo info; duke@435: KlassHandle receiver_klass(THREAD, receiver()->klass()); duke@435: inline_cache->compute_monomorphic_entry(callee_method, duke@435: receiver_klass, duke@435: inline_cache->is_optimized(), duke@435: false, duke@435: info, CHECK_(methodHandle())); duke@435: inline_cache->set_to_monomorphic(info); duke@435: } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { duke@435: // Change to megamorphic duke@435: inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); duke@435: } else { duke@435: // Either clean or megamorphic duke@435: } duke@435: } duke@435: } // Release CompiledIC_lock duke@435: duke@435: return callee_method; duke@435: } duke@435: duke@435: // duke@435: // Resets a call-site in compiled code so it will get resolved again. duke@435: // This routines handles both virtual call sites, optimized virtual call duke@435: // sites, and static call sites. Typically used to change a call sites duke@435: // destination from compiled to interpreted. duke@435: // duke@435: methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { duke@435: ResourceMark rm(thread); duke@435: RegisterMap reg_map(thread, false); duke@435: frame stub_frame = thread->last_frame(); duke@435: assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); duke@435: frame caller = stub_frame.sender(®_map); duke@435: duke@435: // Do nothing if the frame isn't a live compiled frame. duke@435: // nmethod could be deoptimized by the time we get here duke@435: // so no update to the caller is needed. duke@435: duke@435: if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { duke@435: duke@435: address pc = caller.pc(); duke@435: duke@435: // Default call_addr is the location of the "basic" call. duke@435: // Determine the address of the call we a reresolving. With duke@435: // Inline Caches we will always find a recognizable call. duke@435: // With Inline Caches disabled we may or may not find a duke@435: // recognizable call. We will always find a call for static duke@435: // calls and for optimized virtual calls. For vanilla virtual duke@435: // calls it depends on the state of the UseInlineCaches switch. duke@435: // duke@435: // With Inline Caches disabled we can get here for a virtual call duke@435: // for two reasons: duke@435: // 1 - calling an abstract method. The vtable for abstract methods duke@435: // will run us thru handle_wrong_method and we will eventually duke@435: // end up in the interpreter to throw the ame. duke@435: // 2 - a racing deoptimization. We could be doing a vanilla vtable duke@435: // call and between the time we fetch the entry address and duke@435: // we jump to it the target gets deoptimized. Similar to 1 duke@435: // we will wind up in the interprter (thru a c2i with c2). duke@435: // duke@435: address call_addr = NULL; duke@435: { duke@435: // Get call instruction under lock because another thread may be duke@435: // busy patching it. duke@435: MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); duke@435: // Location of call instruction duke@435: if (NativeCall::is_call_before(pc)) { duke@435: NativeCall *ncall = nativeCall_before(pc); duke@435: call_addr = ncall->instruction_address(); duke@435: } duke@435: } duke@435: duke@435: // Check for static or virtual call duke@435: bool is_static_call = false; duke@435: nmethod* caller_nm = CodeCache::find_nmethod(pc); duke@435: // Make sure nmethod doesn't get deoptimized and removed until duke@435: // this is done with it. duke@435: // CLEANUP - with lazy deopt shouldn't need this lock duke@435: nmethodLocker nmlock(caller_nm); duke@435: duke@435: if (call_addr != NULL) { duke@435: RelocIterator iter(caller_nm, call_addr, call_addr+1); duke@435: int ret = iter.next(); // Get item duke@435: if (ret) { duke@435: assert(iter.addr() == call_addr, "must find call"); duke@435: if (iter.type() == relocInfo::static_call_type) { duke@435: is_static_call = true; duke@435: } else { duke@435: assert(iter.type() == relocInfo::virtual_call_type || duke@435: iter.type() == relocInfo::opt_virtual_call_type duke@435: , "unexpected relocInfo. type"); duke@435: } duke@435: } else { duke@435: assert(!UseInlineCaches, "relocation info. must exist for this address"); duke@435: } duke@435: duke@435: // Cleaning the inline cache will force a new resolve. This is more robust duke@435: // than directly setting it to the new destination, since resolving of calls duke@435: // is always done through the same code path. (experience shows that it duke@435: // leads to very hard to track down bugs, if an inline cache gets updated duke@435: // to a wrong method). It should not be performance critical, since the duke@435: // resolve is only done once. duke@435: duke@435: MutexLocker ml(CompiledIC_lock); duke@435: // duke@435: // We do not patch the call site if the nmethod has been made non-entrant duke@435: // as it is a waste of time duke@435: // duke@435: if (caller_nm->is_in_use()) { duke@435: if (is_static_call) { duke@435: CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); duke@435: ssc->set_to_clean(); duke@435: } else { duke@435: // compiled, dispatched call (which used to call an interpreted method) coleenp@4037: CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); duke@435: inline_cache->set_to_clean(); duke@435: } duke@435: } duke@435: } duke@435: duke@435: } duke@435: duke@435: methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); duke@435: duke@435: duke@435: #ifndef PRODUCT duke@435: Atomic::inc(&_wrong_method_ctr); duke@435: duke@435: if (TraceCallFixup) { duke@435: ResourceMark rm(thread); duke@435: tty->print("handle_wrong_method reresolving call to"); duke@435: callee_method->print_short_name(tty); duke@435: tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); duke@435: } duke@435: #endif duke@435: duke@435: return callee_method; duke@435: } duke@435: twisti@4101: #ifdef ASSERT twisti@4101: void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method, twisti@4101: const BasicType* sig_bt, twisti@4101: const VMRegPair* regs) { twisti@4101: ResourceMark rm; twisti@4101: const int total_args_passed = method->size_of_parameters(); twisti@4101: const VMRegPair* regs_with_member_name = regs; twisti@4101: VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); twisti@4101: twisti@4101: const int member_arg_pos = total_args_passed - 1; twisti@4101: assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); twisti@4101: assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); twisti@4101: twisti@4101: const bool is_outgoing = method->is_method_handle_intrinsic(); twisti@4101: int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); twisti@4101: twisti@4101: for (int i = 0; i < member_arg_pos; i++) { twisti@4101: VMReg a = regs_with_member_name[i].first(); twisti@4101: VMReg b = regs_without_member_name[i].first(); twisti@4101: assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value())); twisti@4101: } twisti@4101: assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); twisti@4101: } twisti@4101: #endif twisti@4101: duke@435: // --------------------------------------------------------------------------- duke@435: // We are calling the interpreter via a c2i. Normally this would mean that duke@435: // we were called by a compiled method. However we could have lost a race duke@435: // where we went int -> i2c -> c2i and so the caller could in fact be twisti@1640: // interpreted. If the caller is compiled we attempt to patch the caller duke@435: // so he no longer calls into the interpreter. coleenp@4037: IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) coleenp@4037: Method* moop(method); duke@435: duke@435: address entry_point = moop->from_compiled_entry(); duke@435: duke@435: // It's possible that deoptimization can occur at a call site which hasn't duke@435: // been resolved yet, in which case this function will be called from duke@435: // an nmethod that has been patched for deopt and we can ignore the duke@435: // request for a fixup. duke@435: // Also it is possible that we lost a race in that from_compiled_entry duke@435: // is now back to the i2c in that case we don't need to patch and if duke@435: // we did we'd leap into space because the callsite needs to use coleenp@4037: // "to interpreter" stub in order to load up the Method*. Don't duke@435: // ask me how I know this... duke@435: duke@435: CodeBlob* cb = CodeCache::find_blob(caller_pc); twisti@1640: if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { twisti@1640: return; twisti@1640: } twisti@1640: twisti@1640: // The check above makes sure this is a nmethod. twisti@1640: nmethod* nm = cb->as_nmethod_or_null(); twisti@1640: assert(nm, "must be"); twisti@1640: twisti@3240: // Get the return PC for the passed caller PC. twisti@3240: address return_pc = caller_pc + frame::pc_return_offset; twisti@3240: duke@435: // There is a benign race here. We could be attempting to patch to a compiled duke@435: // entry point at the same time the callee is being deoptimized. If that is duke@435: // the case then entry_point may in fact point to a c2i and we'd patch the duke@435: // call site with the same old data. clear_code will set code() to NULL duke@435: // at the end of it. If we happen to see that NULL then we can skip trying duke@435: // to patch. If we hit the window where the callee has a c2i in the duke@435: // from_compiled_entry and the NULL isn't present yet then we lose the race duke@435: // and patch the code with the same old data. Asi es la vida. duke@435: duke@435: if (moop->code() == NULL) return; duke@435: twisti@1640: if (nm->is_in_use()) { duke@435: duke@435: // Expect to find a native call there (unless it was no-inline cache vtable dispatch) duke@435: MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); twisti@3240: if (NativeCall::is_call_before(return_pc)) { twisti@3240: NativeCall *call = nativeCall_before(return_pc); duke@435: // duke@435: // bug 6281185. We might get here after resolving a call site to a vanilla duke@435: // virtual call. Because the resolvee uses the verified entry it may then duke@435: // see compiled code and attempt to patch the site by calling us. This would duke@435: // then incorrectly convert the call site to optimized and its downhill from duke@435: // there. If you're lucky you'll get the assert in the bugid, if not you've duke@435: // just made a call site that could be megamorphic into a monomorphic site duke@435: // for the rest of its life! Just another racing bug in the life of duke@435: // fixup_callers_callsite ... duke@435: // twisti@1918: RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); duke@435: iter.next(); duke@435: assert(iter.has_current(), "must have a reloc at java call site"); duke@435: relocInfo::relocType typ = iter.reloc()->type(); duke@435: if ( typ != relocInfo::static_call_type && duke@435: typ != relocInfo::opt_virtual_call_type && duke@435: typ != relocInfo::static_stub_type) { duke@435: return; duke@435: } duke@435: address destination = call->destination(); duke@435: if (destination != entry_point) { duke@435: CodeBlob* callee = CodeCache::find_blob(destination); duke@435: // callee == cb seems weird. It means calling interpreter thru stub. duke@435: if (callee == cb || callee->is_adapter_blob()) { duke@435: // static call or optimized virtual duke@435: if (TraceCallFixup) { twisti@1639: tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); duke@435: moop->print_short_name(tty); duke@435: tty->print_cr(" to " INTPTR_FORMAT, entry_point); duke@435: } duke@435: call->set_destination_mt_safe(entry_point); duke@435: } else { duke@435: if (TraceCallFixup) { duke@435: tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); duke@435: moop->print_short_name(tty); duke@435: tty->print_cr(" to " INTPTR_FORMAT, entry_point); duke@435: } duke@435: // assert is too strong could also be resolve destinations. duke@435: // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); duke@435: } duke@435: } else { duke@435: if (TraceCallFixup) { twisti@1639: tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); duke@435: moop->print_short_name(tty); duke@435: tty->print_cr(" to " INTPTR_FORMAT, entry_point); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: IRT_END duke@435: duke@435: duke@435: // same as JVM_Arraycopy, but called directly from compiled code duke@435: JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, duke@435: oopDesc* dest, jint dest_pos, duke@435: jint length, duke@435: JavaThread* thread)) { duke@435: #ifndef PRODUCT duke@435: _slow_array_copy_ctr++; duke@435: #endif duke@435: // Check if we have null pointers duke@435: if (src == NULL || dest == NULL) { duke@435: THROW(vmSymbols::java_lang_NullPointerException()); duke@435: } duke@435: // Do the copy. The casts to arrayOop are necessary to the copy_array API, duke@435: // even though the copy_array API also performs dynamic checks to ensure duke@435: // that src and dest are truly arrays (and are conformable). duke@435: // The copy_array mechanism is awkward and could be removed, but duke@435: // the compilers don't call this function except as a last resort, duke@435: // so it probably doesn't matter. hseigel@4278: src->klass()->copy_array((arrayOopDesc*)src, src_pos, duke@435: (arrayOopDesc*)dest, dest_pos, duke@435: length, thread); duke@435: } duke@435: JRT_END duke@435: duke@435: char* SharedRuntime::generate_class_cast_message( duke@435: JavaThread* thread, const char* objName) { duke@435: duke@435: // Get target class name from the checkcast instruction duke@435: vframeStream vfst(thread, true); duke@435: assert(!vfst.at_end(), "Java frame must exist"); never@2462: Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); hseigel@4278: Klass* targetKlass = vfst.method()->constants()->klass_at( hseigel@4278: cc.index(), thread); duke@435: return generate_class_cast_message(objName, targetKlass->external_name()); duke@435: } duke@435: duke@435: char* SharedRuntime::generate_class_cast_message( jrose@1145: const char* objName, const char* targetKlassName, const char* desc) { duke@435: size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; duke@435: kamg@488: char* message = NEW_RESOURCE_ARRAY(char, msglen); duke@435: if (NULL == message) { kamg@488: // Shouldn't happen, but don't cause even more problems if it does duke@435: message = const_cast(objName); duke@435: } else { duke@435: jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); duke@435: } duke@435: return message; duke@435: } duke@435: duke@435: JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) duke@435: (void) JavaThread::current()->reguard_stack(); duke@435: JRT_END duke@435: duke@435: duke@435: // Handles the uncommon case in locking, i.e., contention or an inflated lock. duke@435: #ifndef PRODUCT duke@435: int SharedRuntime::_monitor_enter_ctr=0; duke@435: #endif duke@435: JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) duke@435: oop obj(_obj); duke@435: #ifndef PRODUCT duke@435: _monitor_enter_ctr++; // monitor enter slow duke@435: #endif duke@435: if (PrintBiasedLockingStatistics) { duke@435: Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); duke@435: } duke@435: Handle h_obj(THREAD, obj); duke@435: if (UseBiasedLocking) { duke@435: // Retry fast entry if bias is revoked to avoid unnecessary inflation duke@435: ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); duke@435: } else { duke@435: ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); duke@435: } duke@435: assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); duke@435: JRT_END duke@435: duke@435: #ifndef PRODUCT duke@435: int SharedRuntime::_monitor_exit_ctr=0; duke@435: #endif duke@435: // Handles the uncommon cases of monitor unlocking in compiled code duke@435: JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock)) duke@435: oop obj(_obj); duke@435: #ifndef PRODUCT duke@435: _monitor_exit_ctr++; // monitor exit slow duke@435: #endif duke@435: Thread* THREAD = JavaThread::current(); duke@435: // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore duke@435: // testing was unable to ever fire the assert that guarded it so I have removed it. duke@435: assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); duke@435: #undef MIGHT_HAVE_PENDING duke@435: #ifdef MIGHT_HAVE_PENDING duke@435: // Save and restore any pending_exception around the exception mark. duke@435: // While the slow_exit must not throw an exception, we could come into duke@435: // this routine with one set. duke@435: oop pending_excep = NULL; duke@435: const char* pending_file; duke@435: int pending_line; duke@435: if (HAS_PENDING_EXCEPTION) { duke@435: pending_excep = PENDING_EXCEPTION; duke@435: pending_file = THREAD->exception_file(); duke@435: pending_line = THREAD->exception_line(); duke@435: CLEAR_PENDING_EXCEPTION; duke@435: } duke@435: #endif /* MIGHT_HAVE_PENDING */ duke@435: duke@435: { duke@435: // Exit must be non-blocking, and therefore no exceptions can be thrown. duke@435: EXCEPTION_MARK; duke@435: ObjectSynchronizer::slow_exit(obj, lock, THREAD); duke@435: } duke@435: duke@435: #ifdef MIGHT_HAVE_PENDING duke@435: if (pending_excep != NULL) { duke@435: THREAD->set_pending_exception(pending_excep, pending_file, pending_line); duke@435: } duke@435: #endif /* MIGHT_HAVE_PENDING */ duke@435: JRT_END duke@435: duke@435: #ifndef PRODUCT duke@435: duke@435: void SharedRuntime::print_statistics() { duke@435: ttyLocker ttyl; duke@435: if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); duke@435: duke@435: if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr); duke@435: if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr); duke@435: if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); duke@435: duke@435: SharedRuntime::print_ic_miss_histogram(); duke@435: duke@435: if (CountRemovableExceptions) { duke@435: if (_nof_removable_exceptions > 0) { duke@435: Unimplemented(); // this counter is not yet incremented duke@435: tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); duke@435: } duke@435: } duke@435: duke@435: // Dump the JRT_ENTRY counters duke@435: if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); duke@435: if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr); duke@435: if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); duke@435: if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); duke@435: if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); duke@435: if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); duke@435: if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); duke@435: duke@435: tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr ); duke@435: tty->print_cr("%5d wrong method", _wrong_method_ctr ); duke@435: tty->print_cr("%5d unresolved static call site", _resolve_static_ctr ); duke@435: tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr ); duke@435: tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr ); duke@435: duke@435: if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr ); duke@435: if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr ); duke@435: if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr ); duke@435: if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr ); duke@435: if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr ); duke@435: if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr ); duke@435: if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr ); duke@435: if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr ); duke@435: if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr ); duke@435: if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr ); duke@435: if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr ); duke@435: if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr ); duke@435: if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr ); duke@435: if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr ); duke@435: if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr ); duke@435: if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr ); duke@435: never@1622: AdapterHandlerLibrary::print_statistics(); never@1622: duke@435: if (xtty != NULL) xtty->tail("statistics"); duke@435: } duke@435: duke@435: inline double percent(int x, int y) { duke@435: return 100.0 * x / MAX2(y, 1); duke@435: } duke@435: duke@435: class MethodArityHistogram { duke@435: public: duke@435: enum { MAX_ARITY = 256 }; duke@435: private: duke@435: static int _arity_histogram[MAX_ARITY]; // histogram of #args duke@435: static int _size_histogram[MAX_ARITY]; // histogram of arg size in words duke@435: static int _max_arity; // max. arity seen duke@435: static int _max_size; // max. arg size seen duke@435: duke@435: static void add_method_to_histogram(nmethod* nm) { coleenp@4037: Method* m = nm->method(); duke@435: ArgumentCount args(m->signature()); duke@435: int arity = args.size() + (m->is_static() ? 0 : 1); duke@435: int argsize = m->size_of_parameters(); duke@435: arity = MIN2(arity, MAX_ARITY-1); duke@435: argsize = MIN2(argsize, MAX_ARITY-1); duke@435: int count = nm->method()->compiled_invocation_count(); duke@435: _arity_histogram[arity] += count; duke@435: _size_histogram[argsize] += count; duke@435: _max_arity = MAX2(_max_arity, arity); duke@435: _max_size = MAX2(_max_size, argsize); duke@435: } duke@435: duke@435: void print_histogram_helper(int n, int* histo, const char* name) { duke@435: const int N = MIN2(5, n); duke@435: tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); duke@435: double sum = 0; duke@435: double weighted_sum = 0; duke@435: int i; duke@435: for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } duke@435: double rest = sum; duke@435: double percent = sum / 100; duke@435: for (i = 0; i <= N; i++) { duke@435: rest -= histo[i]; duke@435: tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); duke@435: } duke@435: tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); duke@435: tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); duke@435: } duke@435: duke@435: void print_histogram() { duke@435: tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); duke@435: print_histogram_helper(_max_arity, _arity_histogram, "arity"); duke@435: tty->print_cr("\nSame for parameter size (in words):"); duke@435: print_histogram_helper(_max_size, _size_histogram, "size"); duke@435: tty->cr(); duke@435: } duke@435: duke@435: public: duke@435: MethodArityHistogram() { duke@435: MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); duke@435: _max_arity = _max_size = 0; duke@435: for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0; duke@435: CodeCache::nmethods_do(add_method_to_histogram); duke@435: print_histogram(); duke@435: } duke@435: }; duke@435: duke@435: int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; duke@435: int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; duke@435: int MethodArityHistogram::_max_arity; duke@435: int MethodArityHistogram::_max_size; duke@435: duke@435: void SharedRuntime::print_call_statistics(int comp_total) { duke@435: tty->print_cr("Calls from compiled code:"); duke@435: int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; duke@435: int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; duke@435: int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; duke@435: tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); duke@435: tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); duke@435: tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); duke@435: tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); duke@435: tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); duke@435: tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); duke@435: tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); duke@435: tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); duke@435: tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); duke@435: tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); duke@435: tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); duke@435: tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); duke@435: tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); duke@435: tty->cr(); duke@435: tty->print_cr("Note 1: counter updates are not MT-safe."); duke@435: tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); duke@435: tty->print_cr(" %% in nested categories are relative to their category"); duke@435: tty->print_cr(" (and thus add up to more than 100%% with inlining)"); duke@435: tty->cr(); duke@435: duke@435: MethodArityHistogram h; duke@435: } duke@435: #endif duke@435: duke@435: never@1622: // A simple wrapper class around the calling convention information never@1622: // that allows sharing of adapters for the same calling convention. zgu@3900: class AdapterFingerPrint : public CHeapObj { never@1622: private: twisti@3969: enum { twisti@3969: _basic_type_bits = 4, twisti@3969: _basic_type_mask = right_n_bits(_basic_type_bits), twisti@3969: _basic_types_per_int = BitsPerInt / _basic_type_bits, twisti@3969: _compact_int_count = 3 twisti@3969: }; twisti@3969: // TO DO: Consider integrating this with a more global scheme for compressing signatures. twisti@3969: // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. twisti@3969: never@1622: union { twisti@3969: int _compact[_compact_int_count]; never@1642: int* _fingerprint; never@1622: } _value; never@1642: int _length; // A negative length indicates the fingerprint is in the compact form, never@1642: // Otherwise _value._fingerprint is the array. never@1622: never@1642: // Remap BasicTypes that are handled equivalently by the adapters. never@1642: // These are correct for the current system but someday it might be never@1642: // necessary to make this mapping platform dependent. twisti@3969: static int adapter_encoding(BasicType in) { never@1642: switch(in) { never@1642: case T_BOOLEAN: never@1642: case T_BYTE: never@1642: case T_SHORT: never@1642: case T_CHAR: never@1642: // There are all promoted to T_INT in the calling convention never@1642: return T_INT; never@1642: never@1642: case T_OBJECT: never@1642: case T_ARRAY: twisti@3969: // In other words, we assume that any register good enough for twisti@3969: // an int or long is good enough for a managed pointer. never@1642: #ifdef _LP64 twisti@1861: return T_LONG; never@1642: #else twisti@1861: return T_INT; never@1642: #endif never@1642: never@1642: case T_INT: never@1642: case T_LONG: never@1642: case T_FLOAT: never@1642: case T_DOUBLE: never@1642: case T_VOID: never@1642: return in; never@1642: never@1642: default: never@1642: ShouldNotReachHere(); never@1642: return T_CONFLICT; never@1622: } never@1622: } never@1622: never@1642: public: never@1642: AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { never@1642: // The fingerprint is based on the BasicType signature encoded never@3039: // into an array of ints with eight entries per int. never@1642: int* ptr; twisti@3969: int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; twisti@3969: if (len <= _compact_int_count) { twisti@3969: assert(_compact_int_count == 3, "else change next line"); never@1642: _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; never@1642: // Storing the signature encoded as signed chars hits about 98% never@1642: // of the time. never@1642: _length = -len; never@1642: ptr = _value._compact; never@1642: } else { never@1642: _length = len; zgu@3900: _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); never@1642: ptr = _value._fingerprint; never@1642: } never@1642: never@3039: // Now pack the BasicTypes with 8 per int never@1642: int sig_index = 0; never@1642: for (int index = 0; index < len; index++) { never@1642: int value = 0; twisti@3969: for (int byte = 0; byte < _basic_types_per_int; byte++) { twisti@3969: int bt = ((sig_index < total_args_passed) twisti@3969: ? adapter_encoding(sig_bt[sig_index++]) twisti@3969: : 0); twisti@3969: assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); twisti@3969: value = (value << _basic_type_bits) | bt; never@1642: } never@1642: ptr[index] = value; never@1642: } never@1622: } never@1622: never@1622: ~AdapterFingerPrint() { never@1622: if (_length > 0) { zgu@3900: FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode); never@1622: } never@1622: } never@1622: never@1642: int value(int index) { never@1622: if (_length < 0) { never@1622: return _value._compact[index]; never@1622: } never@1622: return _value._fingerprint[index]; never@1622: } never@1622: int length() { never@1622: if (_length < 0) return -_length; never@1622: return _length; never@1622: } never@1622: never@1622: bool is_compact() { never@1622: return _length <= 0; never@1622: } never@1622: never@1622: unsigned int compute_hash() { never@1642: int hash = 0; never@1622: for (int i = 0; i < length(); i++) { never@1642: int v = value(i); never@1622: hash = (hash << 8) ^ v ^ (hash >> 5); never@1622: } never@1622: return (unsigned int)hash; never@1622: } never@1622: never@1622: const char* as_string() { never@1622: stringStream st; never@3039: st.print("0x"); never@1622: for (int i = 0; i < length(); i++) { never@3039: st.print("%08x", value(i)); never@1622: } never@1622: return st.as_string(); never@1622: } never@1622: never@1622: bool equals(AdapterFingerPrint* other) { never@1622: if (other->_length != _length) { never@1622: return false; never@1622: } never@1622: if (_length < 0) { twisti@3969: assert(_compact_int_count == 3, "else change next line"); never@1642: return _value._compact[0] == other->_value._compact[0] && never@1642: _value._compact[1] == other->_value._compact[1] && never@1642: _value._compact[2] == other->_value._compact[2]; never@1622: } else { never@1622: for (int i = 0; i < _length; i++) { never@1622: if (_value._fingerprint[i] != other->_value._fingerprint[i]) { never@1622: return false; never@1622: } never@1622: } never@1622: } never@1622: return true; never@1622: } never@1622: }; never@1622: never@1622: never@1622: // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries zgu@3900: class AdapterHandlerTable : public BasicHashtable { never@1622: friend class AdapterHandlerTableIterator; never@1622: never@1622: private: never@1622: kvn@1698: #ifndef PRODUCT never@1622: static int _lookups; // number of calls to lookup never@1622: static int _buckets; // number of buckets checked never@1622: static int _equals; // number of buckets checked with matching hash never@1622: static int _hits; // number of successful lookups never@1622: static int _compact; // number of equals calls with compact signature never@1622: #endif never@1622: never@1622: AdapterHandlerEntry* bucket(int i) { zgu@3900: return (AdapterHandlerEntry*)BasicHashtable::bucket(i); never@1622: } never@1622: never@1622: public: never@1622: AdapterHandlerTable() zgu@3900: : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { } never@1622: never@1622: // Create a new entry suitable for insertion in the table never@1622: AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { zgu@3900: AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash()); never@1622: entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); never@1622: return entry; never@1622: } never@1622: never@1622: // Insert an entry into the table never@1622: void add(AdapterHandlerEntry* entry) { never@1622: int index = hash_to_index(entry->hash()); never@1622: add_entry(index, entry); never@1622: } never@1622: never@1642: void free_entry(AdapterHandlerEntry* entry) { never@1642: entry->deallocate(); zgu@3900: BasicHashtable::free_entry(entry); never@1642: } never@1642: never@1622: // Find a entry with the same fingerprint if it exists never@1642: AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { kvn@1698: NOT_PRODUCT(_lookups++); never@1642: AdapterFingerPrint fp(total_args_passed, sig_bt); never@1622: unsigned int hash = fp.compute_hash(); never@1622: int index = hash_to_index(hash); never@1622: for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { kvn@1698: NOT_PRODUCT(_buckets++); never@1622: if (e->hash() == hash) { kvn@1698: NOT_PRODUCT(_equals++); never@1622: if (fp.equals(e->fingerprint())) { kvn@1698: #ifndef PRODUCT never@1622: if (fp.is_compact()) _compact++; never@1622: _hits++; never@1622: #endif never@1622: return e; never@1622: } never@1622: } never@1622: } never@1622: return NULL; never@1622: } never@1622: kvn@1698: #ifndef PRODUCT never@1622: void print_statistics() { never@1622: ResourceMark rm; never@1622: int longest = 0; never@1622: int empty = 0; never@1622: int total = 0; never@1622: int nonempty = 0; never@1622: for (int index = 0; index < table_size(); index++) { never@1622: int count = 0; never@1622: for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { never@1622: count++; never@1622: } never@1622: if (count != 0) nonempty++; never@1622: if (count == 0) empty++; never@1622: if (count > longest) longest = count; never@1622: total += count; never@1622: } never@1622: tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", never@1622: empty, longest, total, total / (double)nonempty); never@1622: tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", never@1622: _lookups, _buckets, _equals, _hits, _compact); kvn@1698: } never@1622: #endif never@1622: }; never@1622: never@1622: kvn@1698: #ifndef PRODUCT never@1622: never@1622: int AdapterHandlerTable::_lookups; never@1622: int AdapterHandlerTable::_buckets; never@1622: int AdapterHandlerTable::_equals; never@1622: int AdapterHandlerTable::_hits; never@1622: int AdapterHandlerTable::_compact; never@1622: bobv@2036: #endif bobv@2036: never@1622: class AdapterHandlerTableIterator : public StackObj { never@1622: private: never@1622: AdapterHandlerTable* _table; never@1622: int _index; never@1622: AdapterHandlerEntry* _current; never@1622: never@1622: void scan() { never@1622: while (_index < _table->table_size()) { never@1622: AdapterHandlerEntry* a = _table->bucket(_index); twisti@1919: _index++; never@1622: if (a != NULL) { never@1622: _current = a; never@1622: return; never@1622: } never@1622: } never@1622: } never@1622: never@1622: public: never@1622: AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { never@1622: scan(); never@1622: } never@1622: bool has_next() { never@1622: return _current != NULL; never@1622: } never@1622: AdapterHandlerEntry* next() { never@1622: if (_current != NULL) { never@1622: AdapterHandlerEntry* result = _current; never@1622: _current = _current->next(); never@1622: if (_current == NULL) scan(); never@1622: return result; never@1622: } else { never@1622: return NULL; never@1622: } never@1622: } never@1622: }; never@1622: never@1622: duke@435: // --------------------------------------------------------------------------- duke@435: // Implementation of AdapterHandlerLibrary never@1622: AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; never@1622: AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; duke@435: const int AdapterHandlerLibrary_size = 16*K; kvn@1177: BufferBlob* AdapterHandlerLibrary::_buffer = NULL; kvn@1177: kvn@1177: BufferBlob* AdapterHandlerLibrary::buffer_blob() { kvn@1177: // Should be called only when AdapterHandlerLibrary_lock is active. kvn@1177: if (_buffer == NULL) // Initialize lazily kvn@1177: _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); kvn@1177: return _buffer; kvn@1177: } duke@435: duke@435: void AdapterHandlerLibrary::initialize() { never@1622: if (_adapters != NULL) return; never@1622: _adapters = new AdapterHandlerTable(); duke@435: duke@435: // Create a special handler for abstract methods. Abstract methods duke@435: // are never compiled so an i2c entry is somewhat meaningless, but duke@435: // fill it in with something appropriate just in case. Pass handle duke@435: // wrong method for the c2i transitions. duke@435: address wrong_method = SharedRuntime::get_handle_wrong_method_stub(); never@1622: _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), never@1622: StubRoutines::throw_AbstractMethodError_entry(), never@1622: wrong_method, wrong_method); duke@435: } duke@435: never@1622: AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, never@1622: address i2c_entry, never@1622: address c2i_entry, never@1622: address c2i_unverified_entry) { never@1622: return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); never@1622: } never@1622: never@1622: AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { never@1622: // Use customized signature handler. Need to lock around updates to never@1622: // the AdapterHandlerTable (it is not safe for concurrent readers never@1622: // and a single writer: this could be fixed if it becomes a never@1622: // problem). duke@435: duke@435: // Get the address of the ic_miss handlers before we grab the duke@435: // AdapterHandlerLibrary_lock. This fixes bug 6236259 which duke@435: // was caused by the initialization of the stubs happening duke@435: // while we held the lock and then notifying jvmti while duke@435: // holding it. This just forces the initialization to be a little duke@435: // earlier. duke@435: address ic_miss = SharedRuntime::get_ic_miss_stub(); duke@435: assert(ic_miss != NULL, "must have handler"); duke@435: never@1622: ResourceMark rm; never@1622: twisti@2103: NOT_PRODUCT(int insts_size); twisti@1734: AdapterBlob* B = NULL; kvn@1177: AdapterHandlerEntry* entry = NULL; never@1622: AdapterFingerPrint* fingerprint = NULL; duke@435: { duke@435: MutexLocker mu(AdapterHandlerLibrary_lock); duke@435: // make sure data structure is initialized duke@435: initialize(); duke@435: duke@435: if (method->is_abstract()) { never@1622: return _abstract_method_handler; duke@435: } duke@435: never@1622: // Fill in the signature array, for the calling-convention call. never@1622: int total_args_passed = method->size_of_parameters(); // All args on stack never@1622: never@1622: BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); never@1622: VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); never@1622: int i = 0; never@1622: if (!method->is_static()) // Pass in receiver first never@1622: sig_bt[i++] = T_OBJECT; never@1622: for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { never@1622: sig_bt[i++] = ss.type(); // Collect remaining bits of signature never@1622: if (ss.type() == T_LONG || ss.type() == T_DOUBLE) never@1622: sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots never@1622: } never@1622: assert(i == total_args_passed, ""); never@1622: never@1642: // Lookup method signature's fingerprint never@1642: entry = _adapters->lookup(total_args_passed, sig_bt); never@1622: never@1642: #ifdef ASSERT never@1642: AdapterHandlerEntry* shared_entry = NULL; never@1642: if (VerifyAdapterSharing && entry != NULL) { never@1642: shared_entry = entry; never@1642: entry = NULL; never@1642: } never@1642: #endif never@1642: never@1622: if (entry != NULL) { never@1622: return entry; duke@435: } duke@435: never@1642: // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage never@1642: int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); never@1642: never@1622: // Make a C heap allocated version of the fingerprint to store in the adapter never@1642: fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); never@1622: duke@435: // Create I2C & C2I handlers duke@435: twisti@1734: BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache kvn@1177: if (buf != NULL) { twisti@2103: CodeBuffer buffer(buf); kvn@1177: short buffer_locs[20]; kvn@1177: buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, kvn@1177: sizeof(buffer_locs)/sizeof(relocInfo)); kvn@1177: MacroAssembler _masm(&buffer); duke@435: kvn@1177: entry = SharedRuntime::generate_i2c2i_adapters(&_masm, kvn@1177: total_args_passed, kvn@1177: comp_args_on_stack, kvn@1177: sig_bt, never@1622: regs, never@1622: fingerprint); kvn@1177: never@1642: #ifdef ASSERT never@1642: if (VerifyAdapterSharing) { never@1642: if (shared_entry != NULL) { twisti@2103: assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt), never@1642: "code must match"); never@1642: // Release the one just created and return the original never@1642: _adapters->free_entry(entry); never@1642: return shared_entry; never@1642: } else { twisti@2103: entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt); never@1642: } never@1642: } never@1642: #endif never@1642: twisti@1734: B = AdapterBlob::create(&buffer); twisti@2103: NOT_PRODUCT(insts_size = buffer.insts_size()); duke@435: } kvn@463: if (B == NULL) { kvn@463: // CodeCache is full, disable compilation kvn@463: // Ought to log this but compile log is only per compile thread kvn@463: // and we're some non descript Java thread. kvn@1637: MutexUnlocker mu(AdapterHandlerLibrary_lock); kvn@1637: CompileBroker::handle_full_code_cache(); never@1622: return NULL; // Out of CodeCache space kvn@463: } twisti@2103: entry->relocate(B->content_begin()); duke@435: #ifndef PRODUCT duke@435: // debugging suppport twisti@3969: if (PrintAdapterHandlers || PrintStubCode) { kvn@4107: ttyLocker ttyl; twisti@3969: entry->print_adapter_on(tty); twisti@3969: tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", never@1622: _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), twisti@3969: method->signature()->as_C_string(), insts_size); duke@435: tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry()); twisti@3969: if (Verbose || PrintStubCode) { twisti@3969: address first_pc = entry->base_address(); kvn@4107: if (first_pc != NULL) { twisti@3969: Disassembler::decode(first_pc, first_pc + insts_size); kvn@4107: tty->cr(); kvn@4107: } twisti@3969: } duke@435: } duke@435: #endif duke@435: never@1622: _adapters->add(entry); duke@435: } duke@435: // Outside of the lock duke@435: if (B != NULL) { duke@435: char blob_id[256]; duke@435: jio_snprintf(blob_id, duke@435: sizeof(blob_id), never@1622: "%s(%s)@" PTR_FORMAT, twisti@1734: B->name(), never@1622: fingerprint->as_string(), twisti@2103: B->content_begin()); twisti@2103: Forte::register_stub(blob_id, B->content_begin(), B->content_end()); duke@435: duke@435: if (JvmtiExport::should_post_dynamic_code_generated()) { twisti@2103: JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end()); duke@435: } duke@435: } never@1622: return entry; duke@435: } duke@435: twisti@3969: address AdapterHandlerEntry::base_address() { twisti@3969: address base = _i2c_entry; twisti@3969: if (base == NULL) base = _c2i_entry; twisti@3969: assert(base <= _c2i_entry || _c2i_entry == NULL, ""); twisti@3969: assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); twisti@3969: return base; twisti@3969: } twisti@3969: duke@435: void AdapterHandlerEntry::relocate(address new_base) { twisti@3969: address old_base = base_address(); twisti@3969: assert(old_base != NULL, ""); twisti@3969: ptrdiff_t delta = new_base - old_base; twisti@3969: if (_i2c_entry != NULL) duke@435: _i2c_entry += delta; twisti@3969: if (_c2i_entry != NULL) duke@435: _c2i_entry += delta; twisti@3969: if (_c2i_unverified_entry != NULL) duke@435: _c2i_unverified_entry += delta; twisti@3969: assert(base_address() == new_base, ""); duke@435: } duke@435: never@1642: never@1642: void AdapterHandlerEntry::deallocate() { never@1642: delete _fingerprint; never@1642: #ifdef ASSERT zgu@3900: if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode); zgu@3900: if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode); never@1642: #endif never@1642: } never@1642: never@1642: never@1642: #ifdef ASSERT never@1642: // Capture the code before relocation so that it can be compared never@1642: // against other versions. If the code is captured after relocation never@1642: // then relative instructions won't be equivalent. never@1642: void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { zgu@3900: _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); never@1642: _code_length = length; never@1642: memcpy(_saved_code, buffer, length); never@1642: _total_args_passed = total_args_passed; zgu@3900: _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode); never@1642: memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType)); never@1642: } never@1642: never@1642: never@1642: bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { never@1642: if (length != _code_length) { never@1642: return false; never@1642: } never@1642: for (int i = 0; i < length; i++) { never@1642: if (buffer[i] != _saved_code[i]) { never@1642: return false; never@1642: } never@1642: } never@1642: return true; never@1642: } never@1642: #endif never@1642: never@1642: duke@435: // Create a native wrapper for this native method. The wrapper converts the duke@435: // java compiled calling convention to the native convention, handlizes duke@435: // arguments, and transitions to native. On return from the native we transition duke@435: // back to java blocking if a safepoint is in progress. twisti@2687: nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) { duke@435: ResourceMark rm; duke@435: nmethod* nm = NULL; duke@435: twisti@3969: assert(method->is_native(), "must be native"); twisti@3969: assert(method->is_method_handle_intrinsic() || twisti@3969: method->has_native_function(), "must have something valid to call!"); duke@435: duke@435: { duke@435: // perform the work while holding the lock, but perform any printing outside the lock duke@435: MutexLocker mu(AdapterHandlerLibrary_lock); duke@435: // See if somebody beat us to it duke@435: nm = method->code(); duke@435: if (nm) { duke@435: return nm; duke@435: } duke@435: kvn@1177: ResourceMark rm; duke@435: kvn@1177: BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache kvn@1177: if (buf != NULL) { twisti@2103: CodeBuffer buffer(buf); kvn@1177: double locs_buf[20]; kvn@1177: buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); kvn@1177: MacroAssembler _masm(&buffer); duke@435: kvn@1177: // Fill in the signature array, for the calling-convention call. twisti@4101: const int total_args_passed = method->size_of_parameters(); twisti@4101: twisti@4101: BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); twisti@4101: VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); kvn@1177: int i=0; kvn@1177: if( !method->is_static() ) // Pass in receiver first kvn@1177: sig_bt[i++] = T_OBJECT; kvn@1177: SignatureStream ss(method->signature()); kvn@1177: for( ; !ss.at_return_type(); ss.next()) { kvn@1177: sig_bt[i++] = ss.type(); // Collect remaining bits of signature kvn@1177: if( ss.type() == T_LONG || ss.type() == T_DOUBLE ) kvn@1177: sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots kvn@1177: } twisti@4101: assert(i == total_args_passed, ""); kvn@1177: BasicType ret_type = ss.type(); kvn@1177: twisti@3969: // Now get the compiled-Java layout as input (or output) arguments. twisti@3969: // NOTE: Stubs for compiled entry points of method handle intrinsics twisti@3969: // are just trampolines so the argument registers must be outgoing ones. twisti@3969: const bool is_outgoing = method->is_method_handle_intrinsic(); twisti@3969: int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); kvn@1177: kvn@1177: // Generate the compiled-to-native wrapper code kvn@1177: nm = SharedRuntime::generate_native_wrapper(&_masm, kvn@1177: method, twisti@2687: compile_id, twisti@4101: sig_bt, twisti@4101: regs, kvn@1177: ret_type); duke@435: } duke@435: } duke@435: duke@435: // Must unlock before calling set_code never@2083: duke@435: // Install the generated code. duke@435: if (nm != NULL) { twisti@2687: if (PrintCompilation) { twisti@2687: ttyLocker ttyl; twisti@2687: CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : ""); twisti@2687: } duke@435: method->set_code(method, nm); duke@435: nm->post_compiled_method_load_event(); duke@435: } else { duke@435: // CodeCache is full, disable compilation kvn@1637: CompileBroker::handle_full_code_cache(); duke@435: } duke@435: return nm; duke@435: } duke@435: never@3500: JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) never@3500: assert(thread == JavaThread::current(), "must be"); never@3500: // The code is about to enter a JNI lazy critical native method and never@3500: // _needs_gc is true, so if this thread is already in a critical never@3500: // section then just return, otherwise this thread should block never@3500: // until needs_gc has been cleared. never@3500: if (thread->in_critical()) { never@3500: return; never@3500: } never@3500: // Lock and unlock a critical section to give the system a chance to block never@3500: GC_locker::lock_critical(thread); never@3500: GC_locker::unlock_critical(thread); never@3500: JRT_END never@3500: kamg@551: #ifdef HAVE_DTRACE_H kamg@551: // Create a dtrace nmethod for this method. The wrapper converts the kamg@551: // java compiled calling convention to the native convention, makes a dummy call kamg@551: // (actually nops for the size of the call instruction, which become a trap if kamg@551: // probe is enabled). The returns to the caller. Since this all looks like a kamg@551: // leaf no thread transition is needed. kamg@551: kamg@551: nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) { kamg@551: ResourceMark rm; kamg@551: nmethod* nm = NULL; kamg@551: kamg@551: if (PrintCompilation) { kamg@551: ttyLocker ttyl; kamg@551: tty->print("--- n%s "); kamg@551: method->print_short_name(tty); kamg@551: if (method->is_static()) { kamg@551: tty->print(" (static)"); kamg@551: } kamg@551: tty->cr(); kamg@551: } kamg@551: kamg@551: { kamg@551: // perform the work while holding the lock, but perform any printing kamg@551: // outside the lock kamg@551: MutexLocker mu(AdapterHandlerLibrary_lock); kamg@551: // See if somebody beat us to it kamg@551: nm = method->code(); kamg@551: if (nm) { kamg@551: return nm; kamg@551: } kamg@551: kvn@1177: ResourceMark rm; kvn@1177: kvn@1177: BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache kvn@1177: if (buf != NULL) { twisti@2103: CodeBuffer buffer(buf); kvn@1177: // Need a few relocation entries kvn@1177: double locs_buf[20]; kvn@1177: buffer.insts()->initialize_shared_locs( kamg@551: (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); kvn@1177: MacroAssembler _masm(&buffer); kamg@551: kvn@1177: // Generate the compiled-to-native wrapper code kvn@1177: nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method); kvn@1177: } kamg@551: } kamg@551: return nm; kamg@551: } kamg@551: kamg@551: // the dtrace method needs to convert java lang string to utf8 string. kamg@551: void SharedRuntime::get_utf(oopDesc* src, address dst) { kamg@551: typeArrayOop jlsValue = java_lang_String::value(src); kamg@551: int jlsOffset = java_lang_String::offset(src); kamg@551: int jlsLen = java_lang_String::length(src); kamg@551: jchar* jlsPos = (jlsLen == 0) ? NULL : kamg@551: jlsValue->char_at_addr(jlsOffset); coleenp@4142: assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string"); kamg@551: (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size); kamg@551: } kamg@551: #endif // ndef HAVE_DTRACE_H kamg@551: duke@435: // ------------------------------------------------------------------------- duke@435: // Java-Java calling convention duke@435: // (what you use when Java calls Java) duke@435: duke@435: //------------------------------name_for_receiver---------------------------------- duke@435: // For a given signature, return the VMReg for parameter 0. duke@435: VMReg SharedRuntime::name_for_receiver() { duke@435: VMRegPair regs; duke@435: BasicType sig_bt = T_OBJECT; duke@435: (void) java_calling_convention(&sig_bt, ®s, 1, true); duke@435: // Return argument 0 register. In the LP64 build pointers duke@435: // take 2 registers, but the VM wants only the 'main' name. duke@435: return regs.first(); duke@435: } duke@435: roland@5222: VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { duke@435: // This method is returning a data structure allocating as a duke@435: // ResourceObject, so do not put any ResourceMarks in here. duke@435: char *s = sig->as_C_string(); duke@435: int len = (int)strlen(s); ccheung@5259: s++; len--; // Skip opening paren duke@435: char *t = s+len; duke@435: while( *(--t) != ')' ) ; // Find close paren duke@435: duke@435: BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 ); duke@435: VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 ); duke@435: int cnt = 0; twisti@1573: if (has_receiver) { duke@435: sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature duke@435: } duke@435: duke@435: while( s < t ) { duke@435: switch( *s++ ) { // Switch on signature character duke@435: case 'B': sig_bt[cnt++] = T_BYTE; break; duke@435: case 'C': sig_bt[cnt++] = T_CHAR; break; duke@435: case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; duke@435: case 'F': sig_bt[cnt++] = T_FLOAT; break; duke@435: case 'I': sig_bt[cnt++] = T_INT; break; duke@435: case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; duke@435: case 'S': sig_bt[cnt++] = T_SHORT; break; duke@435: case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; duke@435: case 'V': sig_bt[cnt++] = T_VOID; break; duke@435: case 'L': // Oop duke@435: while( *s++ != ';' ) ; // Skip signature duke@435: sig_bt[cnt++] = T_OBJECT; duke@435: break; duke@435: case '[': { // Array duke@435: do { // Skip optional size duke@435: while( *s >= '0' && *s <= '9' ) s++; duke@435: } while( *s++ == '[' ); // Nested arrays? duke@435: // Skip element type duke@435: if( s[-1] == 'L' ) duke@435: while( *s++ != ';' ) ; // Skip signature duke@435: sig_bt[cnt++] = T_ARRAY; duke@435: break; duke@435: } duke@435: default : ShouldNotReachHere(); duke@435: } duke@435: } roland@5222: roland@5222: if (has_appendix) { roland@5222: sig_bt[cnt++] = T_OBJECT; roland@5222: } roland@5222: duke@435: assert( cnt < 256, "grow table size" ); duke@435: duke@435: int comp_args_on_stack; duke@435: comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); duke@435: duke@435: // the calling convention doesn't count out_preserve_stack_slots so duke@435: // we must add that in to get "true" stack offsets. duke@435: duke@435: if (comp_args_on_stack) { duke@435: for (int i = 0; i < cnt; i++) { duke@435: VMReg reg1 = regs[i].first(); duke@435: if( reg1->is_stack()) { duke@435: // Yuck duke@435: reg1 = reg1->bias(out_preserve_stack_slots()); duke@435: } duke@435: VMReg reg2 = regs[i].second(); duke@435: if( reg2->is_stack()) { duke@435: // Yuck duke@435: reg2 = reg2->bias(out_preserve_stack_slots()); duke@435: } duke@435: regs[i].set_pair(reg2, reg1); duke@435: } duke@435: } duke@435: duke@435: // results duke@435: *arg_size = cnt; duke@435: return regs; duke@435: } duke@435: duke@435: // OSR Migration Code duke@435: // duke@435: // This code is used convert interpreter frames into compiled frames. It is duke@435: // called from very start of a compiled OSR nmethod. A temp array is duke@435: // allocated to hold the interesting bits of the interpreter frame. All duke@435: // active locks are inflated to allow them to move. The displaced headers and duke@435: // active interpeter locals are copied into the temp buffer. Then we return duke@435: // back to the compiled code. The compiled code then pops the current duke@435: // interpreter frame off the stack and pushes a new compiled frame. Then it duke@435: // copies the interpreter locals and displaced headers where it wants. duke@435: // Finally it calls back to free the temp buffer. duke@435: // duke@435: // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. duke@435: duke@435: JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) duke@435: duke@435: // duke@435: // This code is dependent on the memory layout of the interpreter local duke@435: // array and the monitors. On all of our platforms the layout is identical duke@435: // so this code is shared. If some platform lays the their arrays out duke@435: // differently then this code could move to platform specific code or duke@435: // the code here could be modified to copy items one at a time using duke@435: // frame accessor methods and be platform independent. duke@435: duke@435: frame fr = thread->last_frame(); duke@435: assert( fr.is_interpreted_frame(), "" ); duke@435: assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); duke@435: duke@435: // Figure out how many monitors are active. duke@435: int active_monitor_count = 0; duke@435: for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); duke@435: kptr < fr.interpreter_frame_monitor_begin(); duke@435: kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { duke@435: if( kptr->obj() != NULL ) active_monitor_count++; duke@435: } duke@435: duke@435: // QQQ we could place number of active monitors in the array so that compiled code duke@435: // could double check it. duke@435: coleenp@4037: Method* moop = fr.interpreter_frame_method(); duke@435: int max_locals = moop->max_locals(); duke@435: // Allocate temp buffer, 1 word per local & 2 per active monitor duke@435: int buf_size_words = max_locals + active_monitor_count*2; zgu@3900: intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); duke@435: duke@435: // Copy the locals. Order is preserved so that loading of longs works. duke@435: // Since there's no GC I can copy the oops blindly. duke@435: assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); twisti@1861: Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), duke@435: (HeapWord*)&buf[0], duke@435: max_locals); duke@435: duke@435: // Inflate locks. Copy the displaced headers. Be careful, there can be holes. duke@435: int i = max_locals; duke@435: for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); duke@435: kptr2 < fr.interpreter_frame_monitor_begin(); duke@435: kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { duke@435: if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array duke@435: BasicLock *lock = kptr2->lock(); duke@435: // Inflate so the displaced header becomes position-independent duke@435: if (lock->displaced_header()->is_unlocked()) duke@435: ObjectSynchronizer::inflate_helper(kptr2->obj()); duke@435: // Now the displaced header is free to move duke@435: buf[i++] = (intptr_t)lock->displaced_header(); hseigel@5784: buf[i++] = cast_from_oop(kptr2->obj()); duke@435: } duke@435: } duke@435: assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); duke@435: duke@435: return buf; duke@435: JRT_END duke@435: duke@435: JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) zgu@3900: FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode); duke@435: JRT_END duke@435: duke@435: bool AdapterHandlerLibrary::contains(CodeBlob* b) { never@1622: AdapterHandlerTableIterator iter(_adapters); never@1622: while (iter.has_next()) { never@1622: AdapterHandlerEntry* a = iter.next(); never@1622: if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true; duke@435: } duke@435: return false; duke@435: } duke@435: bobv@2036: void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { never@1622: AdapterHandlerTableIterator iter(_adapters); never@1622: while (iter.has_next()) { never@1622: AdapterHandlerEntry* a = iter.next(); twisti@3969: if (b == CodeCache::find_blob(a->get_i2c_entry())) { bobv@2036: st->print("Adapter for signature: "); twisti@3969: a->print_adapter_on(tty); duke@435: return; duke@435: } duke@435: } duke@435: assert(false, "Should have found handler"); duke@435: } never@1622: twisti@3969: void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { twisti@3969: st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, twisti@3969: (intptr_t) this, fingerprint()->as_string(), twisti@3969: get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry()); twisti@3969: twisti@3969: } twisti@3969: bobv@2036: #ifndef PRODUCT bobv@2036: never@1622: void AdapterHandlerLibrary::print_statistics() { never@1622: _adapters->print_statistics(); never@1622: } never@1622: duke@435: #endif /* PRODUCT */