duke@435: /* duke@435: * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_psYoungGen.cpp.incl" duke@435: duke@435: PSYoungGen::PSYoungGen(size_t initial_size, duke@435: size_t min_size, duke@435: size_t max_size) : duke@435: _init_gen_size(initial_size), duke@435: _min_gen_size(min_size), duke@435: _max_gen_size(max_size) duke@435: {} duke@435: duke@435: void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) { duke@435: assert(_init_gen_size != 0, "Should have a finite size"); duke@435: _virtual_space = new PSVirtualSpace(rs, alignment); duke@435: if (!_virtual_space->expand_by(_init_gen_size)) { duke@435: vm_exit_during_initialization("Could not reserve enough space for " duke@435: "object heap"); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) { duke@435: initialize_virtual_space(rs, alignment); duke@435: initialize_work(); duke@435: } duke@435: duke@435: void PSYoungGen::initialize_work() { duke@435: duke@435: _reserved = MemRegion((HeapWord*)_virtual_space->low_boundary(), duke@435: (HeapWord*)_virtual_space->high_boundary()); duke@435: duke@435: MemRegion cmr((HeapWord*)_virtual_space->low(), duke@435: (HeapWord*)_virtual_space->high()); duke@435: Universe::heap()->barrier_set()->resize_covered_region(cmr); duke@435: duke@435: if (UseNUMA) { duke@435: _eden_space = new MutableNUMASpace(); duke@435: } else { duke@435: _eden_space = new MutableSpace(); duke@435: } duke@435: _from_space = new MutableSpace(); duke@435: _to_space = new MutableSpace(); duke@435: duke@435: if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) { duke@435: vm_exit_during_initialization("Could not allocate a young gen space"); duke@435: } duke@435: duke@435: // Allocate the mark sweep views of spaces duke@435: _eden_mark_sweep = duke@435: new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio); duke@435: _from_mark_sweep = duke@435: new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio); duke@435: _to_mark_sweep = duke@435: new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio); duke@435: duke@435: if (_eden_mark_sweep == NULL || duke@435: _from_mark_sweep == NULL || duke@435: _to_mark_sweep == NULL) { duke@435: vm_exit_during_initialization("Could not complete allocation" duke@435: " of the young generation"); duke@435: } duke@435: duke@435: // Generation Counters - generation 0, 3 subspaces duke@435: _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space); duke@435: duke@435: // Compute maximum space sizes for performance counters duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: size_t alignment = heap->intra_heap_alignment(); duke@435: size_t size = _virtual_space->reserved_size(); duke@435: duke@435: size_t max_survivor_size; duke@435: size_t max_eden_size; duke@435: duke@435: if (UseAdaptiveSizePolicy) { duke@435: max_survivor_size = size / MinSurvivorRatio; duke@435: duke@435: // round the survivor space size down to the nearest alignment duke@435: // and make sure its size is greater than 0. duke@435: max_survivor_size = align_size_down(max_survivor_size, alignment); duke@435: max_survivor_size = MAX2(max_survivor_size, alignment); duke@435: duke@435: // set the maximum size of eden to be the size of the young gen duke@435: // less two times the minimum survivor size. The minimum survivor duke@435: // size for UseAdaptiveSizePolicy is one alignment. duke@435: max_eden_size = size - 2 * alignment; duke@435: } else { duke@435: max_survivor_size = size / InitialSurvivorRatio; duke@435: duke@435: // round the survivor space size down to the nearest alignment duke@435: // and make sure its size is greater than 0. duke@435: max_survivor_size = align_size_down(max_survivor_size, alignment); duke@435: max_survivor_size = MAX2(max_survivor_size, alignment); duke@435: duke@435: // set the maximum size of eden to be the size of the young gen duke@435: // less two times the survivor size when the generation is 100% duke@435: // committed. The minimum survivor size for -UseAdaptiveSizePolicy duke@435: // is dependent on the committed portion (current capacity) of the duke@435: // generation - the less space committed, the smaller the survivor duke@435: // space, possibly as small as an alignment. However, we are interested duke@435: // in the case where the young generation is 100% committed, as this duke@435: // is the point where eden reachs its maximum size. At this point, duke@435: // the size of a survivor space is max_survivor_size. duke@435: max_eden_size = size - 2 * max_survivor_size; duke@435: } duke@435: duke@435: _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space, duke@435: _gen_counters); duke@435: _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space, duke@435: _gen_counters); duke@435: _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space, duke@435: _gen_counters); duke@435: duke@435: compute_initial_space_boundaries(); duke@435: } duke@435: duke@435: void PSYoungGen::compute_initial_space_boundaries() { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: // Compute sizes jmasa@448: size_t alignment = heap->intra_heap_alignment(); duke@435: size_t size = _virtual_space->committed_size(); duke@435: duke@435: size_t survivor_size = size / InitialSurvivorRatio; duke@435: survivor_size = align_size_down(survivor_size, alignment); duke@435: // ... but never less than an alignment duke@435: survivor_size = MAX2(survivor_size, alignment); duke@435: duke@435: // Young generation is eden + 2 survivor spaces duke@435: size_t eden_size = size - (2 * survivor_size); duke@435: duke@435: // Now go ahead and set 'em. duke@435: set_space_boundaries(eden_size, survivor_size); duke@435: space_invariants(); duke@435: duke@435: if (UsePerfData) { duke@435: _eden_counters->update_capacity(); duke@435: _from_counters->update_capacity(); duke@435: _to_counters->update_capacity(); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) { duke@435: assert(eden_size < _virtual_space->committed_size(), "just checking"); duke@435: assert(eden_size > 0 && survivor_size > 0, "just checking"); duke@435: duke@435: // Initial layout is Eden, to, from. After swapping survivor spaces, duke@435: // that leaves us with Eden, from, to, which is step one in our two duke@435: // step resize-with-live-data procedure. duke@435: char *eden_start = _virtual_space->low(); duke@435: char *to_start = eden_start + eden_size; duke@435: char *from_start = to_start + survivor_size; duke@435: char *from_end = from_start + survivor_size; duke@435: duke@435: assert(from_end == _virtual_space->high(), "just checking"); duke@435: assert(is_object_aligned((intptr_t)eden_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)to_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)from_start), "checking alignment"); duke@435: duke@435: MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start); duke@435: MemRegion to_mr ((HeapWord*)to_start, (HeapWord*)from_start); duke@435: MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end); duke@435: duke@435: eden_space()->initialize(eden_mr, true); duke@435: to_space()->initialize(to_mr , true); duke@435: from_space()->initialize(from_mr, true); duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: void PSYoungGen::space_invariants() { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t alignment = heap->intra_heap_alignment(); duke@435: duke@435: // Currently, our eden size cannot shrink to zero duke@435: guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small"); duke@435: guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small"); duke@435: guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small"); duke@435: duke@435: // Relationship of spaces to each other duke@435: char* eden_start = (char*)eden_space()->bottom(); duke@435: char* eden_end = (char*)eden_space()->end(); duke@435: char* from_start = (char*)from_space()->bottom(); duke@435: char* from_end = (char*)from_space()->end(); duke@435: char* to_start = (char*)to_space()->bottom(); duke@435: char* to_end = (char*)to_space()->end(); duke@435: duke@435: guarantee(eden_start >= _virtual_space->low(), "eden bottom"); duke@435: guarantee(eden_start < eden_end, "eden space consistency"); duke@435: guarantee(from_start < from_end, "from space consistency"); duke@435: guarantee(to_start < to_end, "to space consistency"); duke@435: duke@435: // Check whether from space is below to space duke@435: if (from_start < to_start) { duke@435: // Eden, from, to duke@435: guarantee(eden_end <= from_start, "eden/from boundary"); duke@435: guarantee(from_end <= to_start, "from/to boundary"); duke@435: guarantee(to_end <= _virtual_space->high(), "to end"); duke@435: } else { duke@435: // Eden, to, from duke@435: guarantee(eden_end <= to_start, "eden/to boundary"); duke@435: guarantee(to_end <= from_start, "to/from boundary"); duke@435: guarantee(from_end <= _virtual_space->high(), "from end"); duke@435: } duke@435: duke@435: // More checks that the virtual space is consistent with the spaces duke@435: assert(_virtual_space->committed_size() >= duke@435: (eden_space()->capacity_in_bytes() + duke@435: to_space()->capacity_in_bytes() + duke@435: from_space()->capacity_in_bytes()), "Committed size is inconsistent"); duke@435: assert(_virtual_space->committed_size() <= _virtual_space->reserved_size(), duke@435: "Space invariant"); duke@435: char* eden_top = (char*)eden_space()->top(); duke@435: char* from_top = (char*)from_space()->top(); duke@435: char* to_top = (char*)to_space()->top(); duke@435: assert(eden_top <= _virtual_space->high(), "eden top"); duke@435: assert(from_top <= _virtual_space->high(), "from top"); duke@435: assert(to_top <= _virtual_space->high(), "to top"); duke@435: duke@435: _virtual_space->verify(); duke@435: } duke@435: #endif duke@435: duke@435: void PSYoungGen::resize(size_t eden_size, size_t survivor_size) { duke@435: // Resize the generation if needed. If the generation resize duke@435: // reports false, do not attempt to resize the spaces. duke@435: if (resize_generation(eden_size, survivor_size)) { duke@435: // Then we lay out the spaces inside the generation duke@435: resize_spaces(eden_size, survivor_size); duke@435: duke@435: space_invariants(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("Young generation size: " duke@435: "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT duke@435: " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT duke@435: " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT, duke@435: eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(), duke@435: _max_gen_size, min_gen_size()); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) { duke@435: const size_t alignment = _virtual_space->alignment(); duke@435: size_t orig_size = _virtual_space->committed_size(); duke@435: bool size_changed = false; duke@435: duke@435: // There used to be this guarantee there. duke@435: // guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments"); duke@435: // Code below forces this requirement. In addition the desired eden duke@435: // size and disired survivor sizes are desired goals and may duke@435: // exceed the total generation size. duke@435: duke@435: assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking"); duke@435: duke@435: // Adjust new generation size duke@435: const size_t eden_plus_survivors = duke@435: align_size_up(eden_size + 2 * survivor_size, alignment); duke@435: size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()), duke@435: min_gen_size()); duke@435: assert(desired_size <= max_size(), "just checking"); duke@435: duke@435: if (desired_size > orig_size) { duke@435: // Grow the generation duke@435: size_t change = desired_size - orig_size; duke@435: assert(change % alignment == 0, "just checking"); duke@435: if (!_virtual_space->expand_by(change)) { duke@435: return false; // Error if we fail to resize! duke@435: } duke@435: duke@435: size_changed = true; duke@435: } else if (desired_size < orig_size) { duke@435: size_t desired_change = orig_size - desired_size; duke@435: assert(desired_change % alignment == 0, "just checking"); duke@435: duke@435: desired_change = limit_gen_shrink(desired_change); duke@435: duke@435: if (desired_change > 0) { duke@435: virtual_space()->shrink_by(desired_change); duke@435: reset_survivors_after_shrink(); duke@435: duke@435: size_changed = true; duke@435: } duke@435: } else { duke@435: if (Verbose && PrintGC) { duke@435: if (orig_size == gen_size_limit()) { duke@435: gclog_or_tty->print_cr("PSYoung generation size at maximum: " duke@435: SIZE_FORMAT "K", orig_size/K); duke@435: } else if (orig_size == min_gen_size()) { duke@435: gclog_or_tty->print_cr("PSYoung generation size at minium: " duke@435: SIZE_FORMAT "K", orig_size/K); duke@435: } duke@435: } duke@435: } duke@435: duke@435: if (size_changed) { duke@435: post_resize(); duke@435: duke@435: if (Verbose && PrintGC) { duke@435: size_t current_size = _virtual_space->committed_size(); duke@435: gclog_or_tty->print_cr("PSYoung generation size changed: " duke@435: SIZE_FORMAT "K->" SIZE_FORMAT "K", duke@435: orig_size/K, current_size/K); duke@435: } duke@435: } duke@435: duke@435: guarantee(eden_plus_survivors <= _virtual_space->committed_size() || duke@435: _virtual_space->committed_size() == max_size(), "Sanity"); duke@435: duke@435: return true; duke@435: } duke@435: duke@435: duke@435: void PSYoungGen::resize_spaces(size_t requested_eden_size, duke@435: size_t requested_survivor_size) { duke@435: assert(UseAdaptiveSizePolicy, "sanity check"); duke@435: assert(requested_eden_size > 0 && requested_survivor_size > 0, duke@435: "just checking"); duke@435: duke@435: // We require eden and to space to be empty duke@435: if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) { duke@435: return; duke@435: } duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: " duke@435: SIZE_FORMAT duke@435: ", requested_survivor_size: " SIZE_FORMAT ")", duke@435: requested_eden_size, requested_survivor_size); duke@435: gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, duke@435: eden_space()->bottom(), duke@435: eden_space()->end(), duke@435: pointer_delta(eden_space()->end(), duke@435: eden_space()->bottom(), duke@435: sizeof(char))); duke@435: gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, duke@435: from_space()->bottom(), duke@435: from_space()->end(), duke@435: pointer_delta(from_space()->end(), duke@435: from_space()->bottom(), duke@435: sizeof(char))); duke@435: gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") " duke@435: SIZE_FORMAT, duke@435: to_space()->bottom(), duke@435: to_space()->end(), duke@435: pointer_delta( to_space()->end(), duke@435: to_space()->bottom(), duke@435: sizeof(char))); duke@435: } duke@435: duke@435: // There's nothing to do if the new sizes are the same as the current duke@435: if (requested_survivor_size == to_space()->capacity_in_bytes() && duke@435: requested_survivor_size == from_space()->capacity_in_bytes() && duke@435: requested_eden_size == eden_space()->capacity_in_bytes()) { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" capacities are the right sizes, returning"); duke@435: } duke@435: return; duke@435: } duke@435: duke@435: char* eden_start = (char*)eden_space()->bottom(); duke@435: char* eden_end = (char*)eden_space()->end(); duke@435: char* from_start = (char*)from_space()->bottom(); duke@435: char* from_end = (char*)from_space()->end(); duke@435: char* to_start = (char*)to_space()->bottom(); duke@435: char* to_end = (char*)to_space()->end(); duke@435: duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t alignment = heap->intra_heap_alignment(); duke@435: const bool maintain_minimum = duke@435: (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size(); duke@435: duke@435: // Check whether from space is below to space duke@435: if (from_start < to_start) { duke@435: // Eden, from, to duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" Eden, from, to:"); duke@435: } duke@435: duke@435: // Set eden duke@435: // "requested_eden_size" is a goal for the size of eden duke@435: // and may not be attainable. "eden_size" below is duke@435: // calculated based on the location of from-space and duke@435: // the goal for the size of eden. from-space is duke@435: // fixed in place because it contains live data. duke@435: // The calculation is done this way to avoid 32bit duke@435: // overflow (i.e., eden_start + requested_eden_size duke@435: // may too large for representation in 32bits). duke@435: size_t eden_size; duke@435: if (maintain_minimum) { duke@435: // Only make eden larger than the requested size if duke@435: // the minimum size of the generation has to be maintained. duke@435: // This could be done in general but policy at a higher duke@435: // level is determining a requested size for eden and that duke@435: // should be honored unless there is a fundamental reason. duke@435: eden_size = pointer_delta(from_start, duke@435: eden_start, duke@435: sizeof(char)); duke@435: } else { duke@435: eden_size = MIN2(requested_eden_size, duke@435: pointer_delta(from_start, eden_start, sizeof(char))); duke@435: } duke@435: duke@435: eden_end = eden_start + eden_size; duke@435: assert(eden_end >= eden_start, "addition overflowed") duke@435: duke@435: // To may resize into from space as long as it is clear of live data. duke@435: // From space must remain page aligned, though, so we need to do some duke@435: // extra calculations. duke@435: duke@435: // First calculate an optimal to-space duke@435: to_end = (char*)_virtual_space->high(); duke@435: to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: duke@435: // Does the optimal to-space overlap from-space? duke@435: if (to_start < (char*)from_space()->end()) { duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: // Calculate the minimum offset possible for from_end duke@435: size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char)); duke@435: duke@435: // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME! duke@435: if (from_size == 0) { duke@435: from_size = alignment; duke@435: } else { duke@435: from_size = align_size_up(from_size, alignment); duke@435: } duke@435: duke@435: from_end = from_start + from_size; duke@435: assert(from_end > from_start, "addition overflow or from_size problem"); duke@435: duke@435: guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right"); duke@435: duke@435: // Now update to_start with the new from_end duke@435: to_start = MAX2(from_end, to_start); duke@435: } duke@435: duke@435: guarantee(to_start != to_end, "to space is zero sized"); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" [eden_start .. eden_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: eden_start, duke@435: eden_end, duke@435: pointer_delta(eden_end, eden_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [from_start .. from_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: from_start, duke@435: from_end, duke@435: pointer_delta(from_end, from_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [ to_start .. to_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: to_start, duke@435: to_end, duke@435: pointer_delta( to_end, to_start, sizeof(char))); duke@435: } duke@435: } else { duke@435: // Eden, to, from duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" Eden, to, from:"); duke@435: } duke@435: duke@435: // To space gets priority over eden resizing. Note that we position duke@435: // to space as if we were able to resize from space, even though from duke@435: // space is not modified. duke@435: // Giving eden priority was tried and gave poorer performance. duke@435: to_end = (char*)pointer_delta(_virtual_space->high(), duke@435: (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: to_end = MIN2(to_end, from_start); duke@435: to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size, duke@435: sizeof(char)); duke@435: // if the space sizes are to be increased by several times then duke@435: // 'to_start' will point beyond the young generation. In this case duke@435: // 'to_start' should be adjusted. duke@435: to_start = MAX2(to_start, eden_start + alignment); duke@435: duke@435: // Compute how big eden can be, then adjust end. duke@435: // See comments above on calculating eden_end. duke@435: size_t eden_size; duke@435: if (maintain_minimum) { duke@435: eden_size = pointer_delta(to_start, eden_start, sizeof(char)); duke@435: } else { duke@435: eden_size = MIN2(requested_eden_size, duke@435: pointer_delta(to_start, eden_start, sizeof(char))); duke@435: } duke@435: eden_end = eden_start + eden_size; duke@435: assert(eden_end >= eden_start, "addition overflowed") duke@435: duke@435: // Could choose to not let eden shrink duke@435: // to_start = MAX2(to_start, eden_end); duke@435: duke@435: // Don't let eden shrink down to 0 or less. duke@435: eden_end = MAX2(eden_end, eden_start + alignment); duke@435: to_start = MAX2(to_start, eden_end); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" [eden_start .. eden_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: eden_start, duke@435: eden_end, duke@435: pointer_delta(eden_end, eden_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [ to_start .. to_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: to_start, duke@435: to_end, duke@435: pointer_delta( to_end, to_start, sizeof(char))); duke@435: gclog_or_tty->print_cr(" [from_start .. from_end): " duke@435: "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, duke@435: from_start, duke@435: from_end, duke@435: pointer_delta(from_end, from_start, sizeof(char))); duke@435: } duke@435: } duke@435: duke@435: duke@435: guarantee((HeapWord*)from_start <= from_space()->bottom(), duke@435: "from start moved to the right"); duke@435: guarantee((HeapWord*)from_end >= from_space()->top(), duke@435: "from end moved into live data"); duke@435: assert(is_object_aligned((intptr_t)eden_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)from_start), "checking alignment"); duke@435: assert(is_object_aligned((intptr_t)to_start), "checking alignment"); duke@435: duke@435: MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end); duke@435: MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); duke@435: MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end); duke@435: duke@435: // Let's make sure the call to initialize doesn't reset "top"! duke@435: HeapWord* old_from_top = from_space()->top(); duke@435: duke@435: // For PrintAdaptiveSizePolicy block below duke@435: size_t old_from = from_space()->capacity_in_bytes(); duke@435: size_t old_to = to_space()->capacity_in_bytes(); duke@435: duke@435: eden_space()->initialize(edenMR, true); duke@435: to_space()->initialize(toMR , true); duke@435: from_space()->initialize(fromMR, false); // Note, not cleared! duke@435: duke@435: assert(from_space()->top() == old_from_top, "from top changed!"); duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); duke@435: assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); duke@435: duke@435: gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: " duke@435: "collection: %d " duke@435: "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> " duke@435: "(" SIZE_FORMAT ", " SIZE_FORMAT ") ", duke@435: heap->total_collections(), duke@435: old_from, old_to, duke@435: from_space()->capacity_in_bytes(), duke@435: to_space()->capacity_in_bytes()); duke@435: gclog_or_tty->cr(); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::swap_spaces() { duke@435: MutableSpace* s = from_space(); duke@435: _from_space = to_space(); duke@435: _to_space = s; duke@435: duke@435: // Now update the decorators. duke@435: PSMarkSweepDecorator* md = from_mark_sweep(); duke@435: _from_mark_sweep = to_mark_sweep(); duke@435: _to_mark_sweep = md; duke@435: duke@435: assert(from_mark_sweep()->space() == from_space(), "Sanity"); duke@435: assert(to_mark_sweep()->space() == to_space(), "Sanity"); duke@435: } duke@435: duke@435: size_t PSYoungGen::capacity_in_bytes() const { duke@435: return eden_space()->capacity_in_bytes() duke@435: + from_space()->capacity_in_bytes(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::used_in_bytes() const { duke@435: return eden_space()->used_in_bytes() duke@435: + from_space()->used_in_bytes(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::free_in_bytes() const { duke@435: return eden_space()->free_in_bytes() duke@435: + from_space()->free_in_bytes(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: size_t PSYoungGen::capacity_in_words() const { duke@435: return eden_space()->capacity_in_words() duke@435: + from_space()->capacity_in_words(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::used_in_words() const { duke@435: return eden_space()->used_in_words() duke@435: + from_space()->used_in_words(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: duke@435: size_t PSYoungGen::free_in_words() const { duke@435: return eden_space()->free_in_words() duke@435: + from_space()->free_in_words(); // to_space() is only used during scavenge duke@435: } duke@435: duke@435: void PSYoungGen::object_iterate(ObjectClosure* blk) { duke@435: eden_space()->object_iterate(blk); duke@435: from_space()->object_iterate(blk); duke@435: to_space()->object_iterate(blk); duke@435: } duke@435: duke@435: void PSYoungGen::precompact() { duke@435: eden_mark_sweep()->precompact(); duke@435: from_mark_sweep()->precompact(); duke@435: to_mark_sweep()->precompact(); duke@435: } duke@435: duke@435: void PSYoungGen::adjust_pointers() { duke@435: eden_mark_sweep()->adjust_pointers(); duke@435: from_mark_sweep()->adjust_pointers(); duke@435: to_mark_sweep()->adjust_pointers(); duke@435: } duke@435: duke@435: void PSYoungGen::compact() { duke@435: eden_mark_sweep()->compact(ZapUnusedHeapArea); duke@435: from_mark_sweep()->compact(ZapUnusedHeapArea); duke@435: // Mark sweep stores preserved markOops in to space, don't disturb! duke@435: to_mark_sweep()->compact(false); duke@435: } duke@435: duke@435: void PSYoungGen::move_and_update(ParCompactionManager* cm) { duke@435: PSParallelCompact::move_and_update(cm, PSParallelCompact::eden_space_id); duke@435: PSParallelCompact::move_and_update(cm, PSParallelCompact::from_space_id); duke@435: PSParallelCompact::move_and_update(cm, PSParallelCompact::to_space_id); duke@435: } duke@435: duke@435: void PSYoungGen::print() const { print_on(tty); } duke@435: void PSYoungGen::print_on(outputStream* st) const { duke@435: st->print(" %-15s", "PSYoungGen"); duke@435: if (PrintGCDetails && Verbose) { duke@435: st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT, duke@435: capacity_in_bytes(), used_in_bytes()); duke@435: } else { duke@435: st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", duke@435: capacity_in_bytes()/K, used_in_bytes()/K); duke@435: } duke@435: _virtual_space->print_space_boundaries_on(st); duke@435: st->print(" eden"); eden_space()->print_on(st); duke@435: st->print(" from"); from_space()->print_on(st); duke@435: st->print(" to "); to_space()->print_on(st); duke@435: } duke@435: duke@435: void PSYoungGen::print_used_change(size_t prev_used) const { duke@435: gclog_or_tty->print(" [%s:", name()); duke@435: gclog_or_tty->print(" " SIZE_FORMAT "K" duke@435: "->" SIZE_FORMAT "K" duke@435: "(" SIZE_FORMAT "K)", duke@435: prev_used / K, used_in_bytes() / K, duke@435: capacity_in_bytes() / K); duke@435: gclog_or_tty->print("]"); duke@435: } duke@435: duke@435: size_t PSYoungGen::available_for_expansion() { duke@435: ShouldNotReachHere(); duke@435: return 0; duke@435: } duke@435: duke@435: size_t PSYoungGen::available_for_contraction() { duke@435: ShouldNotReachHere(); duke@435: return 0; duke@435: } duke@435: duke@435: size_t PSYoungGen::available_to_min_gen() { duke@435: assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant"); duke@435: return virtual_space()->committed_size() - min_gen_size(); duke@435: } duke@435: duke@435: // This method assumes that from-space has live data and that duke@435: // any shrinkage of the young gen is limited by location of duke@435: // from-space. duke@435: size_t PSYoungGen::available_to_live() { duke@435: size_t delta_in_survivor = 0; duke@435: ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); jmasa@448: const size_t space_alignment = heap->intra_heap_alignment(); duke@435: const size_t gen_alignment = heap->young_gen_alignment(); duke@435: duke@435: MutableSpace* space_shrinking = NULL; duke@435: if (from_space()->end() > to_space()->end()) { duke@435: space_shrinking = from_space(); duke@435: } else { duke@435: space_shrinking = to_space(); duke@435: } duke@435: duke@435: // Include any space that is committed but not included in duke@435: // the survivor spaces. duke@435: assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(), duke@435: "Survivor space beyond high end"); duke@435: size_t unused_committed = pointer_delta(virtual_space()->high(), duke@435: space_shrinking->end(), sizeof(char)); duke@435: duke@435: if (space_shrinking->is_empty()) { duke@435: // Don't let the space shrink to 0 duke@435: assert(space_shrinking->capacity_in_bytes() >= space_alignment, duke@435: "Space is too small"); duke@435: delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment; duke@435: } else { duke@435: delta_in_survivor = pointer_delta(space_shrinking->end(), duke@435: space_shrinking->top(), duke@435: sizeof(char)); duke@435: } duke@435: duke@435: size_t delta_in_bytes = unused_committed + delta_in_survivor; duke@435: delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment); duke@435: return delta_in_bytes; duke@435: } duke@435: duke@435: // Return the number of bytes available for resizing down the young duke@435: // generation. This is the minimum of duke@435: // input "bytes" duke@435: // bytes to the minimum young gen size duke@435: // bytes to the size currently being used + some small extra duke@435: size_t PSYoungGen::limit_gen_shrink(size_t bytes) { duke@435: // Allow shrinkage into the current eden but keep eden large enough duke@435: // to maintain the minimum young gen size duke@435: bytes = MIN3(bytes, available_to_min_gen(), available_to_live()); duke@435: return align_size_down(bytes, virtual_space()->alignment()); duke@435: } duke@435: duke@435: void PSYoungGen::reset_after_change() { duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: void PSYoungGen::reset_survivors_after_shrink() { duke@435: _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(), duke@435: (HeapWord*)virtual_space()->high_boundary()); duke@435: PSScavenge::reference_processor()->set_span(_reserved); duke@435: duke@435: MutableSpace* space_shrinking = NULL; duke@435: if (from_space()->end() > to_space()->end()) { duke@435: space_shrinking = from_space(); duke@435: } else { duke@435: space_shrinking = to_space(); duke@435: } duke@435: duke@435: HeapWord* new_end = (HeapWord*)virtual_space()->high(); duke@435: assert(new_end >= space_shrinking->bottom(), "Shrink was too large"); duke@435: // Was there a shrink of the survivor space? duke@435: if (new_end < space_shrinking->end()) { duke@435: MemRegion mr(space_shrinking->bottom(), new_end); duke@435: space_shrinking->initialize(mr, false /* clear */); duke@435: } duke@435: } duke@435: duke@435: // This method currently does not expect to expand into eden (i.e., duke@435: // the virtual space boundaries is expected to be consistent duke@435: // with the eden boundaries.. duke@435: void PSYoungGen::post_resize() { duke@435: assert_locked_or_safepoint(Heap_lock); duke@435: assert((eden_space()->bottom() < to_space()->bottom()) && duke@435: (eden_space()->bottom() < from_space()->bottom()), duke@435: "Eden is assumed to be below the survivor spaces"); duke@435: duke@435: MemRegion cmr((HeapWord*)virtual_space()->low(), duke@435: (HeapWord*)virtual_space()->high()); duke@435: Universe::heap()->barrier_set()->resize_covered_region(cmr); duke@435: space_invariants(); duke@435: } duke@435: duke@435: duke@435: duke@435: void PSYoungGen::update_counters() { duke@435: if (UsePerfData) { duke@435: _eden_counters->update_all(); duke@435: _from_counters->update_all(); duke@435: _to_counters->update_all(); duke@435: _gen_counters->update_all(); duke@435: } duke@435: } duke@435: duke@435: void PSYoungGen::verify(bool allow_dirty) { duke@435: eden_space()->verify(allow_dirty); duke@435: from_space()->verify(allow_dirty); duke@435: to_space()->verify(allow_dirty); duke@435: }