duke@435: /* xdono@631: * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: # include "incls/_precompiled.incl" duke@435: # include "incls/_c1_LIRGenerator_x86.cpp.incl" duke@435: duke@435: #ifdef ASSERT duke@435: #define __ gen()->lir(__FILE__, __LINE__)-> duke@435: #else duke@435: #define __ gen()->lir()-> duke@435: #endif duke@435: duke@435: // Item will be loaded into a byte register; Intel only duke@435: void LIRItem::load_byte_item() { duke@435: load_item(); duke@435: LIR_Opr res = result(); duke@435: duke@435: if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { duke@435: // make sure that it is a byte register duke@435: assert(!value()->type()->is_float() && !value()->type()->is_double(), duke@435: "can't load floats in byte register"); duke@435: LIR_Opr reg = _gen->rlock_byte(T_BYTE); duke@435: __ move(res, reg); duke@435: duke@435: _result = reg; duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRItem::load_nonconstant() { duke@435: LIR_Opr r = value()->operand(); duke@435: if (r->is_constant()) { duke@435: _result = r; duke@435: } else { duke@435: load_item(); duke@435: } duke@435: } duke@435: duke@435: //-------------------------------------------------------------- duke@435: // LIRGenerator duke@435: //-------------------------------------------------------------- duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } duke@435: LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } duke@435: LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } duke@435: LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } duke@435: LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } duke@435: LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } duke@435: LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } duke@435: LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { duke@435: LIR_Opr opr; duke@435: switch (type->tag()) { duke@435: case intTag: opr = FrameMap::rax_opr; break; duke@435: case objectTag: opr = FrameMap::rax_oop_opr; break; never@739: case longTag: opr = FrameMap::long0_opr; break; duke@435: case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; duke@435: case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; duke@435: duke@435: case addressTag: duke@435: default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; duke@435: } duke@435: duke@435: assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); duke@435: return opr; duke@435: } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::rlock_byte(BasicType type) { duke@435: LIR_Opr reg = new_register(T_INT); duke@435: set_vreg_flag(reg, LIRGenerator::byte_reg); duke@435: return reg; duke@435: } duke@435: duke@435: duke@435: //--------- loading items into registers -------------------------------- duke@435: duke@435: duke@435: // i486 instructions can inline constants duke@435: bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { duke@435: if (type == T_SHORT || type == T_CHAR) { duke@435: // there is no immediate move of word values in asembler_i486.?pp duke@435: return false; duke@435: } duke@435: Constant* c = v->as_Constant(); duke@435: if (c && c->state() == NULL) { duke@435: // constants of any type can be stored directly, except for duke@435: // unloaded object constants. duke@435: return true; duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: bool LIRGenerator::can_inline_as_constant(Value v) const { never@739: if (v->type()->tag() == longTag) return false; duke@435: return v->type()->tag() != objectTag || duke@435: (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); duke@435: } duke@435: duke@435: duke@435: bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { never@739: if (c->type() == T_LONG) return false; duke@435: return c->type() != T_OBJECT || c->as_jobject() == NULL; duke@435: } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::safepoint_poll_register() { duke@435: return LIR_OprFact::illegalOpr; duke@435: } duke@435: duke@435: duke@435: LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, duke@435: int shift, int disp, BasicType type) { duke@435: assert(base->is_register(), "must be"); duke@435: if (index->is_constant()) { duke@435: return new LIR_Address(base, duke@435: (index->as_constant_ptr()->as_jint() << shift) + disp, duke@435: type); duke@435: } else { duke@435: return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); duke@435: } duke@435: } duke@435: duke@435: duke@435: LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, duke@435: BasicType type, bool needs_card_mark) { duke@435: int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); duke@435: duke@435: LIR_Address* addr; duke@435: if (index_opr->is_constant()) { kvn@464: int elem_size = type2aelembytes(type); duke@435: addr = new LIR_Address(array_opr, duke@435: offset_in_bytes + index_opr->as_jint() * elem_size, type); duke@435: } else { never@739: #ifdef _LP64 never@739: if (index_opr->type() == T_INT) { never@739: LIR_Opr tmp = new_register(T_LONG); never@739: __ convert(Bytecodes::_i2l, index_opr, tmp); never@739: index_opr = tmp; never@739: } never@739: #endif // _LP64 duke@435: addr = new LIR_Address(array_opr, duke@435: index_opr, duke@435: LIR_Address::scale(type), duke@435: offset_in_bytes, type); duke@435: } duke@435: if (needs_card_mark) { duke@435: // This store will need a precise card mark, so go ahead and duke@435: // compute the full adddres instead of computing once for the duke@435: // store and again for the card mark. never@739: LIR_Opr tmp = new_pointer_register(); duke@435: __ leal(LIR_OprFact::address(addr), tmp); duke@435: return new LIR_Address(tmp, 0, type); duke@435: } else { duke@435: return addr; duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::increment_counter(address counter, int step) { never@739: LIR_Opr pointer = new_pointer_register(); never@739: __ move(LIR_OprFact::intptrConst(counter), pointer); duke@435: LIR_Address* addr = new LIR_Address(pointer, 0, T_INT); duke@435: increment_counter(addr, step); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::increment_counter(LIR_Address* addr, int step) { duke@435: __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { duke@435: __ cmp_mem_int(condition, base, disp, c, info); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { duke@435: __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) { duke@435: __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); duke@435: } duke@435: duke@435: duke@435: bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) { duke@435: if (tmp->is_valid()) { duke@435: if (is_power_of_2(c + 1)) { duke@435: __ move(left, tmp); duke@435: __ shift_left(left, log2_intptr(c + 1), left); duke@435: __ sub(left, tmp, result); duke@435: return true; duke@435: } else if (is_power_of_2(c - 1)) { duke@435: __ move(left, tmp); duke@435: __ shift_left(left, log2_intptr(c - 1), left); duke@435: __ add(left, tmp, result); duke@435: return true; duke@435: } duke@435: } duke@435: return false; duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { duke@435: BasicType type = item->type(); duke@435: __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); duke@435: } duke@435: duke@435: //---------------------------------------------------------------------- duke@435: // visitor functions duke@435: //---------------------------------------------------------------------- duke@435: duke@435: duke@435: void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { duke@435: assert(x->is_root(),""); duke@435: bool needs_range_check = true; duke@435: bool use_length = x->length() != NULL; duke@435: bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; duke@435: bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || duke@435: !get_jobject_constant(x->value())->is_null_object()); duke@435: duke@435: LIRItem array(x->array(), this); duke@435: LIRItem index(x->index(), this); duke@435: LIRItem value(x->value(), this); duke@435: LIRItem length(this); duke@435: duke@435: array.load_item(); duke@435: index.load_nonconstant(); duke@435: duke@435: if (use_length) { duke@435: needs_range_check = x->compute_needs_range_check(); duke@435: if (needs_range_check) { duke@435: length.set_instruction(x->length()); duke@435: length.load_item(); duke@435: } duke@435: } duke@435: if (needs_store_check) { duke@435: value.load_item(); duke@435: } else { duke@435: value.load_for_store(x->elt_type()); duke@435: } duke@435: duke@435: set_no_result(x); duke@435: duke@435: // the CodeEmitInfo must be duplicated for each different duke@435: // LIR-instruction because spilling can occur anywhere between two duke@435: // instructions and so the debug information must be different duke@435: CodeEmitInfo* range_check_info = state_for(x); duke@435: CodeEmitInfo* null_check_info = NULL; duke@435: if (x->needs_null_check()) { duke@435: null_check_info = new CodeEmitInfo(range_check_info); duke@435: } duke@435: duke@435: // emit array address setup early so it schedules better duke@435: LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store); duke@435: duke@435: if (GenerateRangeChecks && needs_range_check) { duke@435: if (use_length) { duke@435: __ cmp(lir_cond_belowEqual, length.result(), index.result()); duke@435: __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); duke@435: } else { duke@435: array_range_check(array.result(), index.result(), null_check_info, range_check_info); duke@435: // range_check also does the null check duke@435: null_check_info = NULL; duke@435: } duke@435: } duke@435: duke@435: if (GenerateArrayStoreCheck && needs_store_check) { duke@435: LIR_Opr tmp1 = new_register(objectType); duke@435: LIR_Opr tmp2 = new_register(objectType); duke@435: LIR_Opr tmp3 = new_register(objectType); duke@435: duke@435: CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); duke@435: __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info); duke@435: } duke@435: duke@435: if (obj_store) { ysr@777: // Needs GC write barriers. ysr@777: pre_barrier(LIR_OprFact::address(array_addr), false, NULL); duke@435: __ move(value.result(), array_addr, null_check_info); duke@435: // Seems to be a precise duke@435: post_barrier(LIR_OprFact::address(array_addr), value.result()); duke@435: } else { duke@435: __ move(value.result(), array_addr, null_check_info); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { duke@435: assert(x->is_root(),""); duke@435: LIRItem obj(x->obj(), this); duke@435: obj.load_item(); duke@435: duke@435: set_no_result(x); duke@435: duke@435: // "lock" stores the address of the monitor stack slot, so this is not an oop duke@435: LIR_Opr lock = new_register(T_INT); duke@435: // Need a scratch register for biased locking on x86 duke@435: LIR_Opr scratch = LIR_OprFact::illegalOpr; duke@435: if (UseBiasedLocking) { duke@435: scratch = new_register(T_INT); duke@435: } duke@435: duke@435: CodeEmitInfo* info_for_exception = NULL; duke@435: if (x->needs_null_check()) { duke@435: info_for_exception = state_for(x, x->lock_stack_before()); duke@435: } duke@435: // this CodeEmitInfo must not have the xhandlers because here the duke@435: // object is already locked (xhandlers expect object to be unlocked) duke@435: CodeEmitInfo* info = state_for(x, x->state(), true); duke@435: monitor_enter(obj.result(), lock, syncTempOpr(), scratch, duke@435: x->monitor_no(), info_for_exception, info); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_MonitorExit(MonitorExit* x) { duke@435: assert(x->is_root(),""); duke@435: duke@435: LIRItem obj(x->obj(), this); duke@435: obj.dont_load_item(); duke@435: duke@435: LIR_Opr lock = new_register(T_INT); duke@435: LIR_Opr obj_temp = new_register(T_INT); duke@435: set_no_result(x); duke@435: monitor_exit(obj_temp, lock, syncTempOpr(), x->monitor_no()); duke@435: } duke@435: duke@435: duke@435: // _ineg, _lneg, _fneg, _dneg duke@435: void LIRGenerator::do_NegateOp(NegateOp* x) { duke@435: LIRItem value(x->x(), this); duke@435: value.set_destroys_register(); duke@435: value.load_item(); duke@435: LIR_Opr reg = rlock(x); duke@435: __ negate(value.result(), reg); duke@435: duke@435: set_result(x, round_item(reg)); duke@435: } duke@435: duke@435: duke@435: // for _fadd, _fmul, _fsub, _fdiv, _frem duke@435: // _dadd, _dmul, _dsub, _ddiv, _drem duke@435: void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: LIRItem* left_arg = &left; duke@435: LIRItem* right_arg = &right; duke@435: assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands"); duke@435: bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); duke@435: if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { duke@435: left.load_item(); duke@435: } else { duke@435: left.dont_load_item(); duke@435: } duke@435: duke@435: // do not load right operand if it is a constant. only 0 and 1 are duke@435: // loaded because there are special instructions for loading them duke@435: // without memory access (not needed for SSE2 instructions) duke@435: bool must_load_right = false; duke@435: if (right.is_constant()) { duke@435: LIR_Const* c = right.result()->as_constant_ptr(); duke@435: assert(c != NULL, "invalid constant"); duke@435: assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type"); duke@435: duke@435: if (c->type() == T_FLOAT) { duke@435: must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); duke@435: } else { duke@435: must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); duke@435: } duke@435: } duke@435: duke@435: if (must_load_both) { duke@435: // frem and drem destroy also right operand, so move it to a new register duke@435: right.set_destroys_register(); duke@435: right.load_item(); duke@435: } else if (right.is_register() || must_load_right) { duke@435: right.load_item(); duke@435: } else { duke@435: right.dont_load_item(); duke@435: } duke@435: LIR_Opr reg = rlock(x); duke@435: LIR_Opr tmp = LIR_OprFact::illegalOpr; duke@435: if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { duke@435: tmp = new_register(T_DOUBLE); duke@435: } duke@435: duke@435: if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { duke@435: // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots duke@435: LIR_Opr fpu0, fpu1; duke@435: if (x->op() == Bytecodes::_frem) { duke@435: fpu0 = LIR_OprFact::single_fpu(0); duke@435: fpu1 = LIR_OprFact::single_fpu(1); duke@435: } else { duke@435: fpu0 = LIR_OprFact::double_fpu(0); duke@435: fpu1 = LIR_OprFact::double_fpu(1); duke@435: } duke@435: __ move(right.result(), fpu1); // order of left and right operand is important! duke@435: __ move(left.result(), fpu0); duke@435: __ rem (fpu0, fpu1, fpu0); duke@435: __ move(fpu0, reg); duke@435: duke@435: } else { duke@435: arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); duke@435: } duke@435: duke@435: set_result(x, round_item(reg)); duke@435: } duke@435: duke@435: duke@435: // for _ladd, _lmul, _lsub, _ldiv, _lrem duke@435: void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { duke@435: if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { duke@435: // long division is implemented as a direct call into the runtime duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: duke@435: // the check for division by zero destroys the right operand duke@435: right.set_destroys_register(); duke@435: duke@435: BasicTypeList signature(2); duke@435: signature.append(T_LONG); duke@435: signature.append(T_LONG); duke@435: CallingConvention* cc = frame_map()->c_calling_convention(&signature); duke@435: duke@435: // check for division by zero (destroys registers of right operand!) duke@435: CodeEmitInfo* info = state_for(x); duke@435: duke@435: const LIR_Opr result_reg = result_register_for(x->type()); duke@435: left.load_item_force(cc->at(1)); duke@435: right.load_item(); duke@435: duke@435: __ move(right.result(), cc->at(0)); duke@435: duke@435: __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); duke@435: __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); duke@435: duke@435: address entry; duke@435: switch (x->op()) { duke@435: case Bytecodes::_lrem: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); duke@435: break; // check if dividend is 0 is done elsewhere duke@435: case Bytecodes::_ldiv: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); duke@435: break; // check if dividend is 0 is done elsewhere duke@435: case Bytecodes::_lmul: duke@435: entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); duke@435: break; duke@435: default: duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); duke@435: __ move(result_reg, result); duke@435: } else if (x->op() == Bytecodes::_lmul) { duke@435: // missing test if instr is commutative and if we should swap duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: duke@435: // right register is destroyed by the long mul, so it must be duke@435: // copied to a new register. duke@435: right.set_destroys_register(); duke@435: duke@435: left.load_item(); duke@435: right.load_item(); duke@435: never@739: LIR_Opr reg = FrameMap::long0_opr; duke@435: arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } else { duke@435: // missing test if instr is commutative and if we should swap duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: duke@435: left.load_item(); twisti@1040: // don't load constants to save register duke@435: right.load_nonconstant(); duke@435: rlock_result(x); duke@435: arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); duke@435: } duke@435: } duke@435: duke@435: duke@435: duke@435: // for: _iadd, _imul, _isub, _idiv, _irem duke@435: void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { duke@435: if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { duke@435: // The requirements for division and modulo duke@435: // input : rax,: dividend min_int duke@435: // reg: divisor (may not be rax,/rdx) -1 duke@435: // duke@435: // output: rax,: quotient (= rax, idiv reg) min_int duke@435: // rdx: remainder (= rax, irem reg) 0 duke@435: duke@435: // rax, and rdx will be destroyed duke@435: duke@435: // Note: does this invalidate the spec ??? duke@435: LIRItem right(x->y(), this); duke@435: LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid duke@435: duke@435: // call state_for before load_item_force because state_for may duke@435: // force the evaluation of other instructions that are needed for duke@435: // correct debug info. Otherwise the live range of the fix duke@435: // register might be too long. duke@435: CodeEmitInfo* info = state_for(x); duke@435: duke@435: left.load_item_force(divInOpr()); duke@435: duke@435: right.load_item(); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: LIR_Opr result_reg; duke@435: if (x->op() == Bytecodes::_idiv) { duke@435: result_reg = divOutOpr(); duke@435: } else { duke@435: result_reg = remOutOpr(); duke@435: } duke@435: duke@435: if (!ImplicitDiv0Checks) { duke@435: __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); duke@435: __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); duke@435: } duke@435: LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation duke@435: if (x->op() == Bytecodes::_irem) { duke@435: __ irem(left.result(), right.result(), result_reg, tmp, info); duke@435: } else if (x->op() == Bytecodes::_idiv) { duke@435: __ idiv(left.result(), right.result(), result_reg, tmp, info); duke@435: } else { duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: __ move(result_reg, result); duke@435: } else { duke@435: // missing test if instr is commutative and if we should swap duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: LIRItem* left_arg = &left; duke@435: LIRItem* right_arg = &right; duke@435: if (x->is_commutative() && left.is_stack() && right.is_register()) { duke@435: // swap them if left is real stack (or cached) and right is real register(not cached) duke@435: left_arg = &right; duke@435: right_arg = &left; duke@435: } duke@435: duke@435: left_arg->load_item(); duke@435: duke@435: // do not need to load right, as we can handle stack and constants duke@435: if (x->op() == Bytecodes::_imul ) { duke@435: // check if we can use shift instead duke@435: bool use_constant = false; duke@435: bool use_tmp = false; duke@435: if (right_arg->is_constant()) { duke@435: int iconst = right_arg->get_jint_constant(); duke@435: if (iconst > 0) { duke@435: if (is_power_of_2(iconst)) { duke@435: use_constant = true; duke@435: } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { duke@435: use_constant = true; duke@435: use_tmp = true; duke@435: } duke@435: } duke@435: } duke@435: if (use_constant) { duke@435: right_arg->dont_load_item(); duke@435: } else { duke@435: right_arg->load_item(); duke@435: } duke@435: LIR_Opr tmp = LIR_OprFact::illegalOpr; duke@435: if (use_tmp) { duke@435: tmp = new_register(T_INT); duke@435: } duke@435: rlock_result(x); duke@435: duke@435: arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); duke@435: } else { duke@435: right_arg->dont_load_item(); duke@435: rlock_result(x); duke@435: LIR_Opr tmp = LIR_OprFact::illegalOpr; duke@435: arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { duke@435: // when an operand with use count 1 is the left operand, then it is duke@435: // likely that no move for 2-operand-LIR-form is necessary duke@435: if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { duke@435: x->swap_operands(); duke@435: } duke@435: duke@435: ValueTag tag = x->type()->tag(); duke@435: assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); duke@435: switch (tag) { duke@435: case floatTag: duke@435: case doubleTag: do_ArithmeticOp_FPU(x); return; duke@435: case longTag: do_ArithmeticOp_Long(x); return; duke@435: case intTag: do_ArithmeticOp_Int(x); return; duke@435: } duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: duke@435: // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr duke@435: void LIRGenerator::do_ShiftOp(ShiftOp* x) { duke@435: // count must always be in rcx duke@435: LIRItem value(x->x(), this); duke@435: LIRItem count(x->y(), this); duke@435: duke@435: ValueTag elemType = x->type()->tag(); duke@435: bool must_load_count = !count.is_constant() || elemType == longTag; duke@435: if (must_load_count) { duke@435: // count for long must be in register duke@435: count.load_item_force(shiftCountOpr()); duke@435: } else { duke@435: count.dont_load_item(); duke@435: } duke@435: value.load_item(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: duke@435: shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); duke@435: } duke@435: duke@435: duke@435: // _iand, _land, _ior, _lor, _ixor, _lxor duke@435: void LIRGenerator::do_LogicOp(LogicOp* x) { duke@435: // when an operand with use count 1 is the left operand, then it is duke@435: // likely that no move for 2-operand-LIR-form is necessary duke@435: if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { duke@435: x->swap_operands(); duke@435: } duke@435: duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: duke@435: left.load_item(); duke@435: right.load_nonconstant(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: duke@435: logic_op(x->op(), reg, left.result(), right.result()); duke@435: } duke@435: duke@435: duke@435: duke@435: // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg duke@435: void LIRGenerator::do_CompareOp(CompareOp* x) { duke@435: LIRItem left(x->x(), this); duke@435: LIRItem right(x->y(), this); duke@435: ValueTag tag = x->x()->type()->tag(); duke@435: if (tag == longTag) { duke@435: left.set_destroys_register(); duke@435: } duke@435: left.load_item(); duke@435: right.load_item(); duke@435: LIR_Opr reg = rlock_result(x); duke@435: duke@435: if (x->x()->type()->is_float_kind()) { duke@435: Bytecodes::Code code = x->op(); duke@435: __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); duke@435: } else if (x->x()->type()->tag() == longTag) { duke@435: __ lcmp2int(left.result(), right.result(), reg); duke@435: } else { duke@435: Unimplemented(); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_AttemptUpdate(Intrinsic* x) { duke@435: assert(x->number_of_arguments() == 3, "wrong type"); duke@435: LIRItem obj (x->argument_at(0), this); // AtomicLong object duke@435: LIRItem cmp_value (x->argument_at(1), this); // value to compare with field duke@435: LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value duke@435: duke@435: // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction never@739: cmp_value.load_item_force(FrameMap::long0_opr); duke@435: duke@435: // new value must be in rcx,ebx (hi,lo) never@739: new_value.load_item_force(FrameMap::long1_opr); duke@435: duke@435: // object pointer register is overwritten with field address duke@435: obj.load_item(); duke@435: duke@435: // generate compare-and-swap; produces zero condition if swap occurs duke@435: int value_offset = sun_misc_AtomicLongCSImpl::value_offset(); duke@435: LIR_Opr addr = obj.result(); duke@435: __ add(addr, LIR_OprFact::intConst(value_offset), addr); duke@435: LIR_Opr t1 = LIR_OprFact::illegalOpr; // no temp needed duke@435: LIR_Opr t2 = LIR_OprFact::illegalOpr; // no temp needed duke@435: __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2); duke@435: duke@435: // generate conditional move of boolean result duke@435: LIR_Opr result = rlock_result(x); duke@435: __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { duke@435: assert(x->number_of_arguments() == 4, "wrong type"); duke@435: LIRItem obj (x->argument_at(0), this); // object duke@435: LIRItem offset(x->argument_at(1), this); // offset of field duke@435: LIRItem cmp (x->argument_at(2), this); // value to compare with field duke@435: LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp duke@435: duke@435: assert(obj.type()->tag() == objectTag, "invalid type"); never@739: never@739: // In 64bit the type can be long, sparc doesn't have this assert never@739: // assert(offset.type()->tag() == intTag, "invalid type"); never@739: duke@435: assert(cmp.type()->tag() == type->tag(), "invalid type"); duke@435: assert(val.type()->tag() == type->tag(), "invalid type"); duke@435: duke@435: // get address of field duke@435: obj.load_item(); duke@435: offset.load_nonconstant(); duke@435: duke@435: if (type == objectType) { duke@435: cmp.load_item_force(FrameMap::rax_oop_opr); duke@435: val.load_item(); duke@435: } else if (type == intType) { duke@435: cmp.load_item_force(FrameMap::rax_opr); duke@435: val.load_item(); duke@435: } else if (type == longType) { never@739: cmp.load_item_force(FrameMap::long0_opr); never@739: val.load_item_force(FrameMap::long1_opr); duke@435: } else { duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: LIR_Opr addr = new_pointer_register(); duke@435: __ move(obj.result(), addr); duke@435: __ add(addr, offset.result(), addr); duke@435: ysr@777: if (type == objectType) { // Write-barrier needed for Object fields. ysr@777: // Do the pre-write barrier, if any. ysr@777: pre_barrier(addr, false, NULL); ysr@777: } duke@435: duke@435: LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience duke@435: if (type == objectType) duke@435: __ cas_obj(addr, cmp.result(), val.result(), ill, ill); duke@435: else if (type == intType) duke@435: __ cas_int(addr, cmp.result(), val.result(), ill, ill); duke@435: else if (type == longType) duke@435: __ cas_long(addr, cmp.result(), val.result(), ill, ill); duke@435: else { duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: // generate conditional move of boolean result duke@435: LIR_Opr result = rlock_result(x); duke@435: __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result); duke@435: if (type == objectType) { // Write-barrier needed for Object fields. duke@435: // Seems to be precise duke@435: post_barrier(addr, val.result()); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { duke@435: assert(x->number_of_arguments() == 1, "wrong type"); duke@435: LIRItem value(x->argument_at(0), this); duke@435: duke@435: bool use_fpu = false; duke@435: if (UseSSE >= 2) { duke@435: switch(x->id()) { duke@435: case vmIntrinsics::_dsin: duke@435: case vmIntrinsics::_dcos: duke@435: case vmIntrinsics::_dtan: duke@435: case vmIntrinsics::_dlog: duke@435: case vmIntrinsics::_dlog10: duke@435: use_fpu = true; duke@435: } duke@435: } else { duke@435: value.set_destroys_register(); duke@435: } duke@435: duke@435: value.load_item(); duke@435: duke@435: LIR_Opr calc_input = value.result(); duke@435: LIR_Opr calc_result = rlock_result(x); duke@435: duke@435: // sin and cos need two free fpu stack slots, so register two temporary operands duke@435: LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0); duke@435: LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1); duke@435: duke@435: if (use_fpu) { duke@435: LIR_Opr tmp = FrameMap::fpu0_double_opr; duke@435: __ move(calc_input, tmp); duke@435: duke@435: calc_input = tmp; duke@435: calc_result = tmp; duke@435: tmp1 = FrameMap::caller_save_fpu_reg_at(1); duke@435: tmp2 = FrameMap::caller_save_fpu_reg_at(2); duke@435: } duke@435: duke@435: switch(x->id()) { duke@435: case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break; duke@435: case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; duke@435: case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break; duke@435: case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break; duke@435: case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break; never@1388: case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break; never@1388: case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break; duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: duke@435: if (use_fpu) { duke@435: __ move(calc_result, x->operand()); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_ArrayCopy(Intrinsic* x) { duke@435: assert(x->number_of_arguments() == 5, "wrong type"); duke@435: LIRItem src(x->argument_at(0), this); duke@435: LIRItem src_pos(x->argument_at(1), this); duke@435: LIRItem dst(x->argument_at(2), this); duke@435: LIRItem dst_pos(x->argument_at(3), this); duke@435: LIRItem length(x->argument_at(4), this); duke@435: duke@435: // operands for arraycopy must use fixed registers, otherwise duke@435: // LinearScan will fail allocation (because arraycopy always needs a duke@435: // call) never@739: never@739: #ifndef _LP64 duke@435: src.load_item_force (FrameMap::rcx_oop_opr); duke@435: src_pos.load_item_force (FrameMap::rdx_opr); duke@435: dst.load_item_force (FrameMap::rax_oop_opr); duke@435: dst_pos.load_item_force (FrameMap::rbx_opr); duke@435: length.load_item_force (FrameMap::rdi_opr); duke@435: LIR_Opr tmp = (FrameMap::rsi_opr); never@739: #else never@739: never@739: // The java calling convention will give us enough registers never@739: // so that on the stub side the args will be perfect already. never@739: // On the other slow/special case side we call C and the arg never@739: // positions are not similar enough to pick one as the best. never@739: // Also because the java calling convention is a "shifted" version never@739: // of the C convention we can process the java args trivially into C never@739: // args without worry of overwriting during the xfer never@739: never@739: src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); never@739: src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); never@739: dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); never@739: dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); never@739: length.load_item_force (FrameMap::as_opr(j_rarg4)); never@739: never@739: LIR_Opr tmp = FrameMap::as_opr(j_rarg5); never@739: #endif // LP64 never@739: duke@435: set_no_result(x); duke@435: duke@435: int flags; duke@435: ciArrayKlass* expected_type; duke@435: arraycopy_helper(x, &flags, &expected_type); duke@435: duke@435: CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?) duke@435: __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint duke@435: } duke@435: duke@435: duke@435: // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f duke@435: // _i2b, _i2c, _i2s duke@435: LIR_Opr fixed_register_for(BasicType type) { duke@435: switch (type) { duke@435: case T_FLOAT: return FrameMap::fpu0_float_opr; duke@435: case T_DOUBLE: return FrameMap::fpu0_double_opr; duke@435: case T_INT: return FrameMap::rax_opr; never@739: case T_LONG: return FrameMap::long0_opr; duke@435: default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; duke@435: } duke@435: } duke@435: duke@435: void LIRGenerator::do_Convert(Convert* x) { duke@435: // flags that vary for the different operations and different SSE-settings duke@435: bool fixed_input, fixed_result, round_result, needs_stub; duke@435: duke@435: switch (x->op()) { duke@435: case Bytecodes::_i2l: // fall through duke@435: case Bytecodes::_l2i: // fall through duke@435: case Bytecodes::_i2b: // fall through duke@435: case Bytecodes::_i2c: // fall through duke@435: case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; duke@435: duke@435: case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; duke@435: case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; duke@435: case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; duke@435: case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; duke@435: case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; duke@435: case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; duke@435: case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; duke@435: case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; duke@435: case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; duke@435: case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; duke@435: default: ShouldNotReachHere(); duke@435: } duke@435: duke@435: LIRItem value(x->value(), this); duke@435: value.load_item(); duke@435: LIR_Opr input = value.result(); duke@435: LIR_Opr result = rlock(x); duke@435: duke@435: // arguments of lir_convert duke@435: LIR_Opr conv_input = input; duke@435: LIR_Opr conv_result = result; duke@435: ConversionStub* stub = NULL; duke@435: duke@435: if (fixed_input) { duke@435: conv_input = fixed_register_for(input->type()); duke@435: __ move(input, conv_input); duke@435: } duke@435: duke@435: assert(fixed_result == false || round_result == false, "cannot set both"); duke@435: if (fixed_result) { duke@435: conv_result = fixed_register_for(result->type()); duke@435: } else if (round_result) { duke@435: result = new_register(result->type()); duke@435: set_vreg_flag(result, must_start_in_memory); duke@435: } duke@435: duke@435: if (needs_stub) { duke@435: stub = new ConversionStub(x->op(), conv_input, conv_result); duke@435: } duke@435: duke@435: __ convert(x->op(), conv_input, conv_result, stub); duke@435: duke@435: if (result != conv_result) { duke@435: __ move(conv_result, result); duke@435: } duke@435: duke@435: assert(result->is_virtual(), "result must be virtual register"); duke@435: set_result(x, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewInstance(NewInstance* x) { duke@435: if (PrintNotLoaded && !x->klass()->is_loaded()) { duke@435: tty->print_cr(" ###class not loaded at new bci %d", x->bci()); duke@435: } duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: LIR_Opr reg = result_register_for(x->type()); duke@435: LIR_Opr klass_reg = new_register(objectType); duke@435: new_instance(reg, x->klass(), duke@435: FrameMap::rcx_oop_opr, duke@435: FrameMap::rdi_oop_opr, duke@435: FrameMap::rsi_oop_opr, duke@435: LIR_OprFact::illegalOpr, duke@435: FrameMap::rdx_oop_opr, info); duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: duke@435: LIRItem length(x->length(), this); duke@435: length.load_item_force(FrameMap::rbx_opr); duke@435: duke@435: LIR_Opr reg = result_register_for(x->type()); duke@435: LIR_Opr tmp1 = FrameMap::rcx_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::rsi_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::rdi_oop_opr; duke@435: LIR_Opr tmp4 = reg; duke@435: LIR_Opr klass_reg = FrameMap::rdx_oop_opr; duke@435: LIR_Opr len = length.result(); duke@435: BasicType elem_type = x->elt_type(); duke@435: jrose@1424: __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); duke@435: duke@435: CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); duke@435: __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { duke@435: LIRItem length(x->length(), this); duke@435: // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction duke@435: // and therefore provide the state before the parameters have been consumed duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || PatchALot) { duke@435: patching_info = state_for(x, x->state_before()); duke@435: } duke@435: duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: duke@435: const LIR_Opr reg = result_register_for(x->type()); duke@435: LIR_Opr tmp1 = FrameMap::rcx_oop_opr; duke@435: LIR_Opr tmp2 = FrameMap::rsi_oop_opr; duke@435: LIR_Opr tmp3 = FrameMap::rdi_oop_opr; duke@435: LIR_Opr tmp4 = reg; duke@435: LIR_Opr klass_reg = FrameMap::rdx_oop_opr; duke@435: duke@435: length.load_item_force(FrameMap::rbx_opr); duke@435: LIR_Opr len = length.result(); duke@435: duke@435: CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); duke@435: ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass()); duke@435: if (obj == ciEnv::unloaded_ciobjarrayklass()) { duke@435: BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); duke@435: } duke@435: jobject2reg_with_patching(klass_reg, obj, patching_info); duke@435: __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { duke@435: Values* dims = x->dims(); duke@435: int i = dims->length(); duke@435: LIRItemList* items = new LIRItemList(dims->length(), NULL); duke@435: while (i-- > 0) { duke@435: LIRItem* size = new LIRItem(dims->at(i), this); duke@435: items->at_put(i, size); duke@435: } duke@435: never@1368: // Evaluate state_for early since it may emit code. duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || PatchALot) { duke@435: patching_info = state_for(x, x->state_before()); duke@435: duke@435: // cannot re-use same xhandlers for multiple CodeEmitInfos, so never@1368: // clone all handlers. This is handled transparently in other never@1368: // places by the CodeEmitInfo cloning logic but is handled never@1368: // specially here because a stub isn't being used. duke@435: x->set_exception_handlers(new XHandlers(x->exception_handlers())); duke@435: } duke@435: CodeEmitInfo* info = state_for(x, x->state()); duke@435: duke@435: i = dims->length(); duke@435: while (i-- > 0) { duke@435: LIRItem* size = items->at(i); duke@435: size->load_nonconstant(); duke@435: duke@435: store_stack_parameter(size->result(), in_ByteSize(i*4)); duke@435: } duke@435: duke@435: LIR_Opr reg = result_register_for(x->type()); duke@435: jobject2reg_with_patching(reg, x->klass(), patching_info); duke@435: duke@435: LIR_Opr rank = FrameMap::rbx_opr; duke@435: __ move(LIR_OprFact::intConst(x->rank()), rank); duke@435: LIR_Opr varargs = FrameMap::rcx_opr; duke@435: __ move(FrameMap::rsp_opr, varargs); duke@435: LIR_OprList* args = new LIR_OprList(3); duke@435: args->append(reg); duke@435: args->append(rank); duke@435: args->append(varargs); duke@435: __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), duke@435: LIR_OprFact::illegalOpr, duke@435: reg, args, info); duke@435: duke@435: LIR_Opr result = rlock_result(x); duke@435: __ move(reg, result); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_BlockBegin(BlockBegin* x) { duke@435: // nothing to do for now duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_CheckCast(CheckCast* x) { duke@435: LIRItem obj(x->obj(), this); duke@435: duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) { duke@435: // must do this before locking the destination register as an oop register, duke@435: // and before the obj is loaded (the latter is for deoptimization) duke@435: patching_info = state_for(x, x->state_before()); duke@435: } duke@435: obj.load_item(); duke@435: duke@435: // info for exceptions duke@435: CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks()); duke@435: duke@435: CodeStub* stub; duke@435: if (x->is_incompatible_class_change_check()) { duke@435: assert(patching_info == NULL, "can't patch this"); duke@435: stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); duke@435: } else { duke@435: stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); duke@435: } duke@435: LIR_Opr reg = rlock_result(x); duke@435: __ checkcast(reg, obj.result(), x->klass(), duke@435: new_register(objectType), new_register(objectType), duke@435: !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr, duke@435: x->direct_compare(), info_for_exception, patching_info, stub, duke@435: x->profiled_method(), x->profiled_bci()); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_InstanceOf(InstanceOf* x) { duke@435: LIRItem obj(x->obj(), this); duke@435: duke@435: // result and test object may not be in same register duke@435: LIR_Opr reg = rlock_result(x); duke@435: CodeEmitInfo* patching_info = NULL; duke@435: if ((!x->klass()->is_loaded() || PatchALot)) { duke@435: // must do this before locking the destination register as an oop register duke@435: patching_info = state_for(x, x->state_before()); duke@435: } duke@435: obj.load_item(); duke@435: LIR_Opr tmp = new_register(objectType); duke@435: __ instanceof(reg, obj.result(), x->klass(), duke@435: tmp, new_register(objectType), LIR_OprFact::illegalOpr, duke@435: x->direct_compare(), patching_info); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::do_If(If* x) { duke@435: assert(x->number_of_sux() == 2, "inconsistency"); duke@435: ValueTag tag = x->x()->type()->tag(); duke@435: bool is_safepoint = x->is_safepoint(); duke@435: duke@435: If::Condition cond = x->cond(); duke@435: duke@435: LIRItem xitem(x->x(), this); duke@435: LIRItem yitem(x->y(), this); duke@435: LIRItem* xin = &xitem; duke@435: LIRItem* yin = &yitem; duke@435: duke@435: if (tag == longTag) { duke@435: // for longs, only conditions "eql", "neq", "lss", "geq" are valid; duke@435: // mirror for other conditions duke@435: if (cond == If::gtr || cond == If::leq) { duke@435: cond = Instruction::mirror(cond); duke@435: xin = &yitem; duke@435: yin = &xitem; duke@435: } duke@435: xin->set_destroys_register(); duke@435: } duke@435: xin->load_item(); duke@435: if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { duke@435: // inline long zero duke@435: yin->dont_load_item(); duke@435: } else if (tag == longTag || tag == floatTag || tag == doubleTag) { duke@435: // longs cannot handle constants at right side duke@435: yin->load_item(); duke@435: } else { duke@435: yin->dont_load_item(); duke@435: } duke@435: duke@435: // add safepoint before generating condition code so it can be recomputed duke@435: if (x->is_safepoint()) { duke@435: // increment backedge counter if needed duke@435: increment_backedge_counter(state_for(x, x->state_before())); duke@435: duke@435: __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); duke@435: } duke@435: set_no_result(x); duke@435: duke@435: LIR_Opr left = xin->result(); duke@435: LIR_Opr right = yin->result(); duke@435: __ cmp(lir_cond(cond), left, right); duke@435: profile_branch(x, cond); duke@435: move_to_phi(x->state()); duke@435: if (x->x()->type()->is_float_kind()) { duke@435: __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); duke@435: } else { duke@435: __ branch(lir_cond(cond), right->type(), x->tsux()); duke@435: } duke@435: assert(x->default_sux() == x->fsux(), "wrong destination above"); duke@435: __ jump(x->default_sux()); duke@435: } duke@435: duke@435: duke@435: LIR_Opr LIRGenerator::getThreadPointer() { never@739: #ifdef _LP64 never@739: return FrameMap::as_pointer_opr(r15_thread); never@739: #else duke@435: LIR_Opr result = new_register(T_INT); duke@435: __ get_thread(result); duke@435: return result; never@739: #endif // duke@435: } duke@435: duke@435: void LIRGenerator::trace_block_entry(BlockBegin* block) { duke@435: store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); duke@435: LIR_OprList* args = new LIR_OprList(); duke@435: address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); duke@435: __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, duke@435: CodeEmitInfo* info) { duke@435: if (address->type() == T_LONG) { duke@435: address = new LIR_Address(address->base(), duke@435: address->index(), address->scale(), duke@435: address->disp(), T_DOUBLE); duke@435: // Transfer the value atomically by using FP moves. This means duke@435: // the value has to be moved between CPU and FPU registers. It duke@435: // always has to be moved through spill slot since there's no duke@435: // quick way to pack the value into an SSE register. duke@435: LIR_Opr temp_double = new_register(T_DOUBLE); duke@435: LIR_Opr spill = new_register(T_LONG); duke@435: set_vreg_flag(spill, must_start_in_memory); duke@435: __ move(value, spill); duke@435: __ volatile_move(spill, temp_double, T_LONG); duke@435: __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); duke@435: } else { duke@435: __ store(value, address, info); duke@435: } duke@435: } duke@435: duke@435: duke@435: duke@435: void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, duke@435: CodeEmitInfo* info) { duke@435: if (address->type() == T_LONG) { duke@435: address = new LIR_Address(address->base(), duke@435: address->index(), address->scale(), duke@435: address->disp(), T_DOUBLE); duke@435: // Transfer the value atomically by using FP moves. This means duke@435: // the value has to be moved between CPU and FPU registers. In duke@435: // SSE0 and SSE1 mode it has to be moved through spill slot but in duke@435: // SSE2+ mode it can be moved directly. duke@435: LIR_Opr temp_double = new_register(T_DOUBLE); duke@435: __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); duke@435: __ volatile_move(temp_double, result, T_LONG); duke@435: if (UseSSE < 2) { duke@435: // no spill slot needed in SSE2 mode because xmm->cpu register move is possible duke@435: set_vreg_flag(result, must_start_in_memory); duke@435: } duke@435: } else { duke@435: __ load(address, result, info); duke@435: } duke@435: } duke@435: duke@435: void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset, duke@435: BasicType type, bool is_volatile) { duke@435: if (is_volatile && type == T_LONG) { duke@435: LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE); duke@435: LIR_Opr tmp = new_register(T_DOUBLE); duke@435: __ load(addr, tmp); duke@435: LIR_Opr spill = new_register(T_LONG); duke@435: set_vreg_flag(spill, must_start_in_memory); duke@435: __ move(tmp, spill); duke@435: __ move(spill, dst); duke@435: } else { duke@435: LIR_Address* addr = new LIR_Address(src, offset, type); duke@435: __ load(addr, dst); duke@435: } duke@435: } duke@435: duke@435: duke@435: void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, duke@435: BasicType type, bool is_volatile) { duke@435: if (is_volatile && type == T_LONG) { duke@435: LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE); duke@435: LIR_Opr tmp = new_register(T_DOUBLE); duke@435: LIR_Opr spill = new_register(T_DOUBLE); duke@435: set_vreg_flag(spill, must_start_in_memory); duke@435: __ move(data, spill); duke@435: __ move(spill, tmp); duke@435: __ move(tmp, addr); duke@435: } else { duke@435: LIR_Address* addr = new LIR_Address(src, offset, type); duke@435: bool is_obj = (type == T_ARRAY || type == T_OBJECT); duke@435: if (is_obj) { ysr@777: // Do the pre-write barrier, if any. ysr@777: pre_barrier(LIR_OprFact::address(addr), false, NULL); duke@435: __ move(data, addr); duke@435: assert(src->is_register(), "must be register"); duke@435: // Seems to be a precise address duke@435: post_barrier(LIR_OprFact::address(addr), data); duke@435: } else { duke@435: __ move(data, addr); duke@435: } duke@435: } duke@435: }