duke@435: /* duke@435: * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: // This file holds all globally used constants & types, class (forward) duke@435: // declarations and a few frequently used utility functions. duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Constants duke@435: duke@435: const int LogBytesPerShort = 1; duke@435: const int LogBytesPerInt = 2; duke@435: #ifdef _LP64 duke@435: const int LogBytesPerWord = 3; duke@435: #else duke@435: const int LogBytesPerWord = 2; duke@435: #endif duke@435: const int LogBytesPerLong = 3; duke@435: duke@435: const int BytesPerShort = 1 << LogBytesPerShort; duke@435: const int BytesPerInt = 1 << LogBytesPerInt; duke@435: const int BytesPerWord = 1 << LogBytesPerWord; duke@435: const int BytesPerLong = 1 << LogBytesPerLong; duke@435: duke@435: const int LogBitsPerByte = 3; duke@435: const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; duke@435: const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; duke@435: const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; duke@435: const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; duke@435: duke@435: const int BitsPerByte = 1 << LogBitsPerByte; duke@435: const int BitsPerShort = 1 << LogBitsPerShort; duke@435: const int BitsPerInt = 1 << LogBitsPerInt; duke@435: const int BitsPerWord = 1 << LogBitsPerWord; duke@435: const int BitsPerLong = 1 << LogBitsPerLong; duke@435: duke@435: const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; duke@435: const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; duke@435: duke@435: const int WordsPerLong = 2; // Number of stack entries for longs duke@435: coleenp@548: const int oopSize = sizeof(char*); // Full-width oop coleenp@548: extern int heapOopSize; // Oop within a java object duke@435: const int wordSize = sizeof(char*); duke@435: const int longSize = sizeof(jlong); duke@435: const int jintSize = sizeof(jint); duke@435: const int size_tSize = sizeof(size_t); duke@435: coleenp@548: const int BytesPerOop = BytesPerWord; // Full-width oop duke@435: coleenp@548: extern int LogBytesPerHeapOop; // Oop within a java object coleenp@548: extern int LogBitsPerHeapOop; coleenp@548: extern int BytesPerHeapOop; coleenp@548: extern int BitsPerHeapOop; duke@435: duke@435: const int BitsPerJavaInteger = 32; duke@435: const int BitsPerSize_t = size_tSize * BitsPerByte; duke@435: coleenp@548: // Size of a char[] needed to represent a jint as a string in decimal. coleenp@548: const int jintAsStringSize = 12; coleenp@548: duke@435: // In fact this should be duke@435: // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); duke@435: // see os::set_memory_serialize_page() duke@435: #ifdef _LP64 duke@435: const int SerializePageShiftCount = 4; duke@435: #else duke@435: const int SerializePageShiftCount = 3; duke@435: #endif duke@435: duke@435: // An opaque struct of heap-word width, so that HeapWord* can be a generic duke@435: // pointer into the heap. We require that object sizes be measured in duke@435: // units of heap words, so that that duke@435: // HeapWord* hw; duke@435: // hw += oop(hw)->foo(); duke@435: // works, where foo is a method (like size or scavenge) that returns the duke@435: // object size. duke@435: class HeapWord { duke@435: friend class VMStructs; jmasa@698: private: duke@435: char* i; jmasa@698: #ifdef ASSERT jmasa@698: public: jmasa@698: char* value() { return i; } jmasa@698: #endif duke@435: }; duke@435: duke@435: // HeapWordSize must be 2^LogHeapWordSize. coleenp@548: const int HeapWordSize = sizeof(HeapWord); duke@435: #ifdef _LP64 coleenp@548: const int LogHeapWordSize = 3; duke@435: #else coleenp@548: const int LogHeapWordSize = 2; duke@435: #endif coleenp@548: const int HeapWordsPerLong = BytesPerLong / HeapWordSize; coleenp@548: const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; duke@435: duke@435: // The larger HeapWordSize for 64bit requires larger heaps duke@435: // for the same application running in 64bit. See bug 4967770. duke@435: // The minimum alignment to a heap word size is done. Other duke@435: // parts of the memory system may required additional alignment duke@435: // and are responsible for those alignments. duke@435: #ifdef _LP64 duke@435: #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize) duke@435: #else duke@435: #define ScaleForWordSize(x) (x) duke@435: #endif duke@435: duke@435: // The minimum number of native machine words necessary to contain "byte_size" duke@435: // bytes. duke@435: inline size_t heap_word_size(size_t byte_size) { duke@435: return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; duke@435: } duke@435: duke@435: duke@435: const size_t K = 1024; duke@435: const size_t M = K*K; duke@435: const size_t G = M*K; duke@435: const size_t HWperKB = K / sizeof(HeapWord); duke@435: duke@435: const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint duke@435: const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint duke@435: duke@435: // Constants for converting from a base unit to milli-base units. For duke@435: // example from seconds to milliseconds and microseconds duke@435: duke@435: const int MILLIUNITS = 1000; // milli units per base unit duke@435: const int MICROUNITS = 1000000; // micro units per base unit duke@435: const int NANOUNITS = 1000000000; // nano units per base unit duke@435: duke@435: inline const char* proper_unit_for_byte_size(size_t s) { duke@435: if (s >= 10*M) { duke@435: return "M"; duke@435: } else if (s >= 10*K) { duke@435: return "K"; duke@435: } else { duke@435: return "B"; duke@435: } duke@435: } duke@435: duke@435: inline size_t byte_size_in_proper_unit(size_t s) { duke@435: if (s >= 10*M) { duke@435: return s/M; duke@435: } else if (s >= 10*K) { duke@435: return s/K; duke@435: } else { duke@435: return s; duke@435: } duke@435: } duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // VM type definitions duke@435: duke@435: // intx and uintx are the 'extended' int and 'extended' unsigned int types; duke@435: // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. duke@435: duke@435: typedef intptr_t intx; duke@435: typedef uintptr_t uintx; duke@435: duke@435: const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); duke@435: const intx max_intx = (uintx)min_intx - 1; duke@435: const uintx max_uintx = (uintx)-1; duke@435: duke@435: // Table of values: duke@435: // sizeof intx 4 8 duke@435: // min_intx 0x80000000 0x8000000000000000 duke@435: // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF duke@435: // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF duke@435: duke@435: typedef unsigned int uint; NEEDS_CLEANUP duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Java type definitions duke@435: duke@435: // All kinds of 'plain' byte addresses duke@435: typedef signed char s_char; duke@435: typedef unsigned char u_char; duke@435: typedef u_char* address; duke@435: typedef uintptr_t address_word; // unsigned integer which will hold a pointer duke@435: // except for some implementations of a C++ duke@435: // linkage pointer to function. Should never duke@435: // need one of those to be placed in this duke@435: // type anyway. duke@435: duke@435: // Utility functions to "portably" (?) bit twiddle pointers duke@435: // Where portable means keep ANSI C++ compilers quiet duke@435: duke@435: inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } duke@435: inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } duke@435: duke@435: // Utility functions to "portably" make cast to/from function pointers. duke@435: duke@435: inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } duke@435: inline address_word castable_address(address x) { return address_word(x) ; } duke@435: inline address_word castable_address(void* x) { return address_word(x) ; } duke@435: duke@435: // Pointer subtraction. duke@435: // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have duke@435: // the range we might need to find differences from one end of the heap duke@435: // to the other. duke@435: // A typical use might be: duke@435: // if (pointer_delta(end(), top()) >= size) { duke@435: // // enough room for an object of size duke@435: // ... duke@435: // and then additions like duke@435: // ... top() + size ... duke@435: // are safe because we know that top() is at least size below end(). duke@435: inline size_t pointer_delta(const void* left, duke@435: const void* right, duke@435: size_t element_size) { duke@435: return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; duke@435: } duke@435: // A version specialized for HeapWord*'s. duke@435: inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { duke@435: return pointer_delta(left, right, sizeof(HeapWord)); duke@435: } duke@435: duke@435: // duke@435: // ANSI C++ does not allow casting from one pointer type to a function pointer duke@435: // directly without at best a warning. This macro accomplishes it silently duke@435: // In every case that is present at this point the value be cast is a pointer duke@435: // to a C linkage function. In somecase the type used for the cast reflects duke@435: // that linkage and a picky compiler would not complain. In other cases because duke@435: // there is no convenient place to place a typedef with extern C linkage (i.e duke@435: // a platform dependent header file) it doesn't. At this point no compiler seems duke@435: // picky enough to catch these instances (which are few). It is possible that duke@435: // using templates could fix these for all cases. This use of templates is likely duke@435: // so far from the middle of the road that it is likely to be problematic in duke@435: // many C++ compilers. duke@435: // duke@435: #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value))) duke@435: #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) duke@435: duke@435: // Unsigned byte types for os and stream.hpp duke@435: duke@435: // Unsigned one, two, four and eigth byte quantities used for describing duke@435: // the .class file format. See JVM book chapter 4. duke@435: duke@435: typedef jubyte u1; duke@435: typedef jushort u2; duke@435: typedef juint u4; duke@435: typedef julong u8; duke@435: duke@435: const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte duke@435: const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort duke@435: const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint duke@435: const julong max_julong = (julong)-1; // 0xFF....FF largest julong duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // JVM spec restrictions duke@435: duke@435: const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // HotSwap - for JVMTI aka Class File Replacement and PopFrame duke@435: // duke@435: // Determines whether on-the-fly class replacement and frame popping are enabled. duke@435: duke@435: #define HOTSWAP duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Object alignment, in units of HeapWords. duke@435: // duke@435: // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and duke@435: // reference fields can be naturally aligned. duke@435: duke@435: const int MinObjAlignment = HeapWordsPerLong; duke@435: const int MinObjAlignmentInBytes = MinObjAlignment * HeapWordSize; duke@435: const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1; duke@435: coleenp@548: const int LogMinObjAlignment = LogHeapWordsPerLong; coleenp@548: const int LogMinObjAlignmentInBytes = LogMinObjAlignment + LogHeapWordSize; coleenp@548: duke@435: // Machine dependent stuff duke@435: duke@435: #include "incls/_globalDefinitions_pd.hpp.incl" duke@435: duke@435: // The byte alignment to be used by Arena::Amalloc. See bugid 4169348. duke@435: // Note: this value must be a power of 2 duke@435: duke@435: #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord) duke@435: duke@435: // Signed variants of alignment helpers. There are two versions of each, a macro duke@435: // for use in places like enum definitions that require compile-time constant duke@435: // expressions and a function for all other places so as to get type checking. duke@435: duke@435: #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1)) duke@435: duke@435: inline intptr_t align_size_up(intptr_t size, intptr_t alignment) { duke@435: return align_size_up_(size, alignment); duke@435: } duke@435: duke@435: #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1)) duke@435: duke@435: inline intptr_t align_size_down(intptr_t size, intptr_t alignment) { duke@435: return align_size_down_(size, alignment); duke@435: } duke@435: duke@435: // Align objects by rounding up their size, in HeapWord units. duke@435: duke@435: #define align_object_size_(size) align_size_up_(size, MinObjAlignment) duke@435: duke@435: inline intptr_t align_object_size(intptr_t size) { duke@435: return align_size_up(size, MinObjAlignment); duke@435: } duke@435: duke@435: // Pad out certain offsets to jlong alignment, in HeapWord units. duke@435: duke@435: #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong) duke@435: duke@435: inline intptr_t align_object_offset(intptr_t offset) { duke@435: return align_size_up(offset, HeapWordsPerLong); duke@435: } duke@435: duke@435: inline bool is_object_aligned(intptr_t offset) { duke@435: return offset == align_object_offset(offset); duke@435: } duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Utility macros for compilers duke@435: // used to silence compiler warnings duke@435: duke@435: #define Unused_Variable(var) var duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Miscellaneous duke@435: duke@435: // 6302670 Eliminate Hotspot __fabsf dependency duke@435: // All fabs() callers should call this function instead, which will implicitly duke@435: // convert the operand to double, avoiding a dependency on __fabsf which duke@435: // doesn't exist in early versions of Solaris 8. duke@435: inline double fabsd(double value) { duke@435: return fabs(value); duke@435: } duke@435: duke@435: inline jint low (jlong value) { return jint(value); } duke@435: inline jint high(jlong value) { return jint(value >> 32); } duke@435: duke@435: // the fancy casts are a hopefully portable way duke@435: // to do unsigned 32 to 64 bit type conversion duke@435: inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; duke@435: *value |= (jlong)(julong)(juint)low; } duke@435: duke@435: inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; duke@435: *value |= (jlong)high << 32; } duke@435: duke@435: inline jlong jlong_from(jint h, jint l) { duke@435: jlong result = 0; // initialization to avoid warning duke@435: set_high(&result, h); duke@435: set_low(&result, l); duke@435: return result; duke@435: } duke@435: duke@435: union jlong_accessor { duke@435: jint words[2]; duke@435: jlong long_value; duke@435: }; duke@435: coleenp@548: void basic_types_init(); // cannot define here; uses assert duke@435: duke@435: duke@435: // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java duke@435: enum BasicType { duke@435: T_BOOLEAN = 4, duke@435: T_CHAR = 5, duke@435: T_FLOAT = 6, duke@435: T_DOUBLE = 7, duke@435: T_BYTE = 8, duke@435: T_SHORT = 9, duke@435: T_INT = 10, duke@435: T_LONG = 11, duke@435: T_OBJECT = 12, duke@435: T_ARRAY = 13, duke@435: T_VOID = 14, duke@435: T_ADDRESS = 15, coleenp@548: T_NARROWOOP= 16, coleenp@548: T_CONFLICT = 17, // for stack value type with conflicting contents duke@435: T_ILLEGAL = 99 duke@435: }; duke@435: kvn@464: inline bool is_java_primitive(BasicType t) { kvn@464: return T_BOOLEAN <= t && t <= T_LONG; kvn@464: } kvn@464: duke@435: // Convert a char from a classfile signature to a BasicType duke@435: inline BasicType char2type(char c) { duke@435: switch( c ) { duke@435: case 'B': return T_BYTE; duke@435: case 'C': return T_CHAR; duke@435: case 'D': return T_DOUBLE; duke@435: case 'F': return T_FLOAT; duke@435: case 'I': return T_INT; duke@435: case 'J': return T_LONG; duke@435: case 'S': return T_SHORT; duke@435: case 'Z': return T_BOOLEAN; duke@435: case 'V': return T_VOID; duke@435: case 'L': return T_OBJECT; duke@435: case '[': return T_ARRAY; duke@435: } duke@435: return T_ILLEGAL; duke@435: } duke@435: duke@435: extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar duke@435: inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } duke@435: extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements duke@435: extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar duke@435: inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } duke@435: extern BasicType name2type(const char* name); duke@435: duke@435: // Auxilary math routines duke@435: // least common multiple duke@435: extern size_t lcm(size_t a, size_t b); duke@435: duke@435: duke@435: // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java duke@435: enum BasicTypeSize { duke@435: T_BOOLEAN_size = 1, duke@435: T_CHAR_size = 1, duke@435: T_FLOAT_size = 1, duke@435: T_DOUBLE_size = 2, duke@435: T_BYTE_size = 1, duke@435: T_SHORT_size = 1, duke@435: T_INT_size = 1, duke@435: T_LONG_size = 2, duke@435: T_OBJECT_size = 1, duke@435: T_ARRAY_size = 1, coleenp@548: T_NARROWOOP_size = 1, duke@435: T_VOID_size = 0 duke@435: }; duke@435: duke@435: duke@435: // maps a BasicType to its instance field storage type: duke@435: // all sub-word integral types are widened to T_INT duke@435: extern BasicType type2field[T_CONFLICT+1]; duke@435: extern BasicType type2wfield[T_CONFLICT+1]; duke@435: duke@435: duke@435: // size in bytes duke@435: enum ArrayElementSize { duke@435: T_BOOLEAN_aelem_bytes = 1, duke@435: T_CHAR_aelem_bytes = 2, duke@435: T_FLOAT_aelem_bytes = 4, duke@435: T_DOUBLE_aelem_bytes = 8, duke@435: T_BYTE_aelem_bytes = 1, duke@435: T_SHORT_aelem_bytes = 2, duke@435: T_INT_aelem_bytes = 4, duke@435: T_LONG_aelem_bytes = 8, duke@435: #ifdef _LP64 duke@435: T_OBJECT_aelem_bytes = 8, duke@435: T_ARRAY_aelem_bytes = 8, duke@435: #else duke@435: T_OBJECT_aelem_bytes = 4, duke@435: T_ARRAY_aelem_bytes = 4, duke@435: #endif coleenp@548: T_NARROWOOP_aelem_bytes = 4, duke@435: T_VOID_aelem_bytes = 0 duke@435: }; duke@435: kvn@464: extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element kvn@464: #ifdef ASSERT kvn@464: extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts kvn@464: #else kvn@464: inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; } kvn@464: #endif duke@435: duke@435: duke@435: // JavaValue serves as a container for arbitrary Java values. duke@435: duke@435: class JavaValue { duke@435: duke@435: public: duke@435: typedef union JavaCallValue { duke@435: jfloat f; duke@435: jdouble d; duke@435: jint i; duke@435: jlong l; duke@435: jobject h; duke@435: } JavaCallValue; duke@435: duke@435: private: duke@435: BasicType _type; duke@435: JavaCallValue _value; duke@435: duke@435: public: duke@435: JavaValue(BasicType t = T_ILLEGAL) { _type = t; } duke@435: duke@435: JavaValue(jfloat value) { duke@435: _type = T_FLOAT; duke@435: _value.f = value; duke@435: } duke@435: duke@435: JavaValue(jdouble value) { duke@435: _type = T_DOUBLE; duke@435: _value.d = value; duke@435: } duke@435: duke@435: jfloat get_jfloat() const { return _value.f; } duke@435: jdouble get_jdouble() const { return _value.d; } duke@435: jint get_jint() const { return _value.i; } duke@435: jlong get_jlong() const { return _value.l; } duke@435: jobject get_jobject() const { return _value.h; } duke@435: JavaCallValue* get_value_addr() { return &_value; } duke@435: BasicType get_type() const { return _type; } duke@435: duke@435: void set_jfloat(jfloat f) { _value.f = f;} duke@435: void set_jdouble(jdouble d) { _value.d = d;} duke@435: void set_jint(jint i) { _value.i = i;} duke@435: void set_jlong(jlong l) { _value.l = l;} duke@435: void set_jobject(jobject h) { _value.h = h;} duke@435: void set_type(BasicType t) { _type = t; } duke@435: duke@435: jboolean get_jboolean() const { return (jboolean) (_value.i);} duke@435: jbyte get_jbyte() const { return (jbyte) (_value.i);} duke@435: jchar get_jchar() const { return (jchar) (_value.i);} duke@435: jshort get_jshort() const { return (jshort) (_value.i);} duke@435: duke@435: }; duke@435: duke@435: duke@435: #define STACK_BIAS 0 duke@435: // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff duke@435: // in order to extend the reach of the stack pointer. duke@435: #if defined(SPARC) && defined(_LP64) duke@435: #undef STACK_BIAS duke@435: #define STACK_BIAS 0x7ff duke@435: #endif duke@435: duke@435: duke@435: // TosState describes the top-of-stack state before and after the execution of duke@435: // a bytecode or method. The top-of-stack value may be cached in one or more CPU duke@435: // registers. The TosState corresponds to the 'machine represention' of this cached duke@435: // value. There's 4 states corresponding to the JAVA types int, long, float & double duke@435: // as well as a 5th state in case the top-of-stack value is actually on the top duke@435: // of stack (in memory) and thus not cached. The atos state corresponds to the itos duke@435: // state when it comes to machine representation but is used separately for (oop) duke@435: // type specific operations (e.g. verification code). duke@435: duke@435: enum TosState { // describes the tos cache contents duke@435: btos = 0, // byte, bool tos cached duke@435: ctos = 1, // short, char tos cached duke@435: stos = 2, // short, char tos cached duke@435: itos = 3, // int tos cached duke@435: ltos = 4, // long tos cached duke@435: ftos = 5, // float tos cached duke@435: dtos = 6, // double tos cached duke@435: atos = 7, // object cached duke@435: vtos = 8, // tos not cached duke@435: number_of_states, duke@435: ilgl // illegal state: should not occur duke@435: }; duke@435: duke@435: duke@435: inline TosState as_TosState(BasicType type) { duke@435: switch (type) { duke@435: case T_BYTE : return btos; duke@435: case T_BOOLEAN: return btos; duke@435: case T_CHAR : return ctos; duke@435: case T_SHORT : return stos; duke@435: case T_INT : return itos; duke@435: case T_LONG : return ltos; duke@435: case T_FLOAT : return ftos; duke@435: case T_DOUBLE : return dtos; duke@435: case T_VOID : return vtos; duke@435: case T_ARRAY : // fall through duke@435: case T_OBJECT : return atos; duke@435: } duke@435: return ilgl; duke@435: } duke@435: duke@435: duke@435: // Helper function to convert BasicType info into TosState duke@435: // Note: Cannot define here as it uses global constant at the time being. duke@435: TosState as_TosState(BasicType type); duke@435: duke@435: duke@435: // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses duke@435: duke@435: enum ReferenceType { duke@435: REF_NONE, // Regular class duke@435: REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below duke@435: REF_SOFT, // Subclass of java/lang/ref/SoftReference duke@435: REF_WEAK, // Subclass of java/lang/ref/WeakReference duke@435: REF_FINAL, // Subclass of java/lang/ref/FinalReference duke@435: REF_PHANTOM // Subclass of java/lang/ref/PhantomReference duke@435: }; duke@435: duke@435: duke@435: // JavaThreadState keeps track of which part of the code a thread is executing in. This duke@435: // information is needed by the safepoint code. duke@435: // duke@435: // There are 4 essential states: duke@435: // duke@435: // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) duke@435: // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles duke@435: // _thread_in_vm : Executing in the vm duke@435: // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) duke@435: // duke@435: // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in duke@435: // a transition from one state to another. These extra states makes it possible for the safepoint code to duke@435: // handle certain thread_states without having to suspend the thread - making the safepoint code faster. duke@435: // duke@435: // Given a state, the xxx_trans state can always be found by adding 1. duke@435: // duke@435: enum JavaThreadState { duke@435: _thread_uninitialized = 0, // should never happen (missing initialization) duke@435: _thread_new = 2, // just starting up, i.e., in process of being initialized duke@435: _thread_new_trans = 3, // corresponding transition state (not used, included for completness) duke@435: _thread_in_native = 4, // running in native code duke@435: _thread_in_native_trans = 5, // corresponding transition state duke@435: _thread_in_vm = 6, // running in VM duke@435: _thread_in_vm_trans = 7, // corresponding transition state duke@435: _thread_in_Java = 8, // running in Java or in stub code duke@435: _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) duke@435: _thread_blocked = 10, // blocked in vm duke@435: _thread_blocked_trans = 11, // corresponding transition state duke@435: _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation duke@435: }; duke@435: duke@435: duke@435: // Handy constants for deciding which compiler mode to use. duke@435: enum MethodCompilation { duke@435: InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation duke@435: InvalidOSREntryBci = -2 duke@435: }; duke@435: duke@435: // Enumeration to distinguish tiers of compilation duke@435: enum CompLevel { duke@435: CompLevel_none = 0, duke@435: CompLevel_fast_compile = 1, duke@435: CompLevel_full_optimization = 2, duke@435: duke@435: CompLevel_highest_tier = CompLevel_full_optimization, duke@435: #ifdef TIERED duke@435: CompLevel_initial_compile = CompLevel_fast_compile duke@435: #else duke@435: CompLevel_initial_compile = CompLevel_full_optimization duke@435: #endif // TIERED duke@435: }; duke@435: duke@435: inline bool is_tier1_compile(int comp_level) { duke@435: return comp_level == CompLevel_fast_compile; duke@435: } duke@435: inline bool is_tier2_compile(int comp_level) { duke@435: return comp_level == CompLevel_full_optimization; duke@435: } duke@435: inline bool is_highest_tier_compile(int comp_level) { duke@435: return comp_level == CompLevel_highest_tier; duke@435: } duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // 'Forward' declarations of frequently used classes duke@435: // (in order to reduce interface dependencies & reduce duke@435: // number of unnecessary compilations after changes) duke@435: duke@435: class symbolTable; duke@435: class ClassFileStream; duke@435: duke@435: class Event; duke@435: duke@435: class Thread; duke@435: class VMThread; duke@435: class JavaThread; duke@435: class Threads; duke@435: duke@435: class VM_Operation; duke@435: class VMOperationQueue; duke@435: duke@435: class CodeBlob; duke@435: class nmethod; duke@435: class OSRAdapter; duke@435: class I2CAdapter; duke@435: class C2IAdapter; duke@435: class CompiledIC; duke@435: class relocInfo; duke@435: class ScopeDesc; duke@435: class PcDesc; duke@435: duke@435: class Recompiler; duke@435: class Recompilee; duke@435: class RecompilationPolicy; duke@435: class RFrame; duke@435: class CompiledRFrame; duke@435: class InterpretedRFrame; duke@435: duke@435: class frame; duke@435: duke@435: class vframe; duke@435: class javaVFrame; duke@435: class interpretedVFrame; duke@435: class compiledVFrame; duke@435: class deoptimizedVFrame; duke@435: class externalVFrame; duke@435: class entryVFrame; duke@435: duke@435: class RegisterMap; duke@435: duke@435: class Mutex; duke@435: class Monitor; duke@435: class BasicLock; duke@435: class BasicObjectLock; duke@435: duke@435: class PeriodicTask; duke@435: duke@435: class JavaCallWrapper; duke@435: duke@435: class oopDesc; duke@435: duke@435: class NativeCall; duke@435: duke@435: class zone; duke@435: duke@435: class StubQueue; duke@435: duke@435: class outputStream; duke@435: duke@435: class ResourceArea; duke@435: duke@435: class DebugInformationRecorder; duke@435: class ScopeValue; duke@435: class CompressedStream; duke@435: class DebugInfoReadStream; duke@435: class DebugInfoWriteStream; duke@435: class LocationValue; duke@435: class ConstantValue; duke@435: class IllegalValue; duke@435: duke@435: class PrivilegedElement; duke@435: class MonitorArray; duke@435: duke@435: class MonitorInfo; duke@435: duke@435: class OffsetClosure; duke@435: class OopMapCache; duke@435: class InterpreterOopMap; duke@435: class OopMapCacheEntry; duke@435: class OSThread; duke@435: duke@435: typedef int (*OSThreadStartFunc)(void*); duke@435: duke@435: class Space; duke@435: duke@435: class JavaValue; duke@435: class methodHandle; duke@435: class JavaCallArguments; duke@435: duke@435: // Basic support for errors (general debug facilities not defined at this point fo the include phase) duke@435: duke@435: extern void basic_fatal(const char* msg); duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Special constants for debugging duke@435: duke@435: const jint badInt = -3; // generic "bad int" value duke@435: const long badAddressVal = -2; // generic "bad address" value duke@435: const long badOopVal = -1; // generic "bad oop" value duke@435: const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC duke@435: const int badHandleValue = 0xBC; // value used to zap vm handle area duke@435: const int badResourceValue = 0xAB; // value used to zap resource area duke@435: const int freeBlockPad = 0xBA; // value used to pad freed blocks. duke@435: const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. duke@435: const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area duke@435: const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC duke@435: const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation duke@435: const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation duke@435: duke@435: duke@435: // (These must be implemented as #defines because C++ compilers are duke@435: // not obligated to inline non-integral constants!) duke@435: #define badAddress ((address)::badAddressVal) duke@435: #define badOop ((oop)::badOopVal) duke@435: #define badHeapWord (::badHeapWordVal) duke@435: #define badJNIHandle ((oop)::badJNIHandleVal) duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Utility functions for bitfield manipulations duke@435: duke@435: const intptr_t AllBits = ~0; // all bits set in a word duke@435: const intptr_t NoBits = 0; // no bits set in a word duke@435: const jlong NoLongBits = 0; // no bits set in a long duke@435: const intptr_t OneBit = 1; // only right_most bit set in a word duke@435: duke@435: // get a word with the n.th or the right-most or left-most n bits set duke@435: // (note: #define used only so that they can be used in enum constant definitions) duke@435: #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n)) duke@435: #define right_n_bits(n) (nth_bit(n) - 1) duke@435: #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n))) duke@435: duke@435: // bit-operations using a mask m duke@435: inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } duke@435: inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } duke@435: inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } duke@435: inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } duke@435: inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } duke@435: duke@435: // bit-operations using the n.th bit duke@435: inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } duke@435: inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } duke@435: inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } duke@435: duke@435: // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) duke@435: inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { duke@435: return mask_bits(x >> start_bit_no, right_n_bits(field_length)); duke@435: } duke@435: duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Utility functions for integers duke@435: duke@435: // Avoid use of global min/max macros which may cause unwanted double duke@435: // evaluation of arguments. duke@435: #ifdef max duke@435: #undef max duke@435: #endif duke@435: duke@435: #ifdef min duke@435: #undef min duke@435: #endif duke@435: duke@435: #define max(a,b) Do_not_use_max_use_MAX2_instead duke@435: #define min(a,b) Do_not_use_min_use_MIN2_instead duke@435: duke@435: // It is necessary to use templates here. Having normal overloaded duke@435: // functions does not work because it is necessary to provide both 32- duke@435: // and 64-bit overloaded functions, which does not work, and having duke@435: // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) duke@435: // will be even more error-prone than macros. duke@435: template inline T MAX2(T a, T b) { return (a > b) ? a : b; } duke@435: template inline T MIN2(T a, T b) { return (a < b) ? a : b; } duke@435: template inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } duke@435: template inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } duke@435: template inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } duke@435: template inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } duke@435: duke@435: template inline T ABS(T x) { return (x > 0) ? x : -x; } duke@435: duke@435: // true if x is a power of 2, false otherwise duke@435: inline bool is_power_of_2(intptr_t x) { duke@435: return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); duke@435: } duke@435: duke@435: // long version of is_power_of_2 duke@435: inline bool is_power_of_2_long(jlong x) { duke@435: return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); duke@435: } duke@435: duke@435: //* largest i such that 2^i <= x duke@435: // A negative value of 'x' will return '31' duke@435: inline int log2_intptr(intptr_t x) { duke@435: int i = -1; duke@435: uintptr_t p = 1; duke@435: while (p != 0 && p <= (uintptr_t)x) { duke@435: // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) duke@435: i++; p *= 2; duke@435: } duke@435: // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) duke@435: // (if p = 0 then overflow occured and i = 31) duke@435: return i; duke@435: } duke@435: duke@435: //* largest i such that 2^i <= x duke@435: // A negative value of 'x' will return '63' duke@435: inline int log2_long(jlong x) { duke@435: int i = -1; duke@435: julong p = 1; duke@435: while (p != 0 && p <= (julong)x) { duke@435: // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) duke@435: i++; p *= 2; duke@435: } duke@435: // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) rasbold@580: // (if p = 0 then overflow occured and i = 63) duke@435: return i; duke@435: } duke@435: duke@435: //* the argument must be exactly a power of 2 duke@435: inline int exact_log2(intptr_t x) { duke@435: #ifdef ASSERT duke@435: if (!is_power_of_2(x)) basic_fatal("x must be a power of 2"); duke@435: #endif duke@435: return log2_intptr(x); duke@435: } duke@435: duke@435: duke@435: // returns integer round-up to the nearest multiple of s (s must be a power of two) duke@435: inline intptr_t round_to(intptr_t x, uintx s) { duke@435: #ifdef ASSERT duke@435: if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); duke@435: #endif duke@435: const uintx m = s - 1; duke@435: return mask_bits(x + m, ~m); duke@435: } duke@435: duke@435: // returns integer round-down to the nearest multiple of s (s must be a power of two) duke@435: inline intptr_t round_down(intptr_t x, uintx s) { duke@435: #ifdef ASSERT duke@435: if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); duke@435: #endif duke@435: const uintx m = s - 1; duke@435: return mask_bits(x, ~m); duke@435: } duke@435: duke@435: duke@435: inline bool is_odd (intx x) { return x & 1; } duke@435: inline bool is_even(intx x) { return !is_odd(x); } duke@435: duke@435: // "to" should be greater than "from." duke@435: inline intx byte_size(void* from, void* to) { duke@435: return (address)to - (address)from; duke@435: } duke@435: duke@435: //---------------------------------------------------------------------------------------------------- duke@435: // Avoid non-portable casts with these routines (DEPRECATED) duke@435: duke@435: // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE duke@435: // Bytes is optimized machine-specifically and may be much faster then the portable routines below. duke@435: duke@435: // Given sequence of four bytes, build into a 32-bit word duke@435: // following the conventions used in class files. duke@435: // On the 386, this could be realized with a simple address cast. duke@435: // duke@435: duke@435: // This routine takes eight bytes: duke@435: inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { duke@435: return ( u8(c1) << 56 ) & ( u8(0xff) << 56 ) duke@435: | ( u8(c2) << 48 ) & ( u8(0xff) << 48 ) duke@435: | ( u8(c3) << 40 ) & ( u8(0xff) << 40 ) duke@435: | ( u8(c4) << 32 ) & ( u8(0xff) << 32 ) duke@435: | ( u8(c5) << 24 ) & ( u8(0xff) << 24 ) duke@435: | ( u8(c6) << 16 ) & ( u8(0xff) << 16 ) duke@435: | ( u8(c7) << 8 ) & ( u8(0xff) << 8 ) duke@435: | ( u8(c8) << 0 ) & ( u8(0xff) << 0 ); duke@435: } duke@435: duke@435: // This routine takes four bytes: duke@435: inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { duke@435: return ( u4(c1) << 24 ) & 0xff000000 duke@435: | ( u4(c2) << 16 ) & 0x00ff0000 duke@435: | ( u4(c3) << 8 ) & 0x0000ff00 duke@435: | ( u4(c4) << 0 ) & 0x000000ff; duke@435: } duke@435: duke@435: // And this one works if the four bytes are contiguous in memory: duke@435: inline u4 build_u4_from( u1* p ) { duke@435: return build_u4_from( p[0], p[1], p[2], p[3] ); duke@435: } duke@435: duke@435: // Ditto for two-byte ints: duke@435: inline u2 build_u2_from( u1 c1, u1 c2 ) { duke@435: return u2(( u2(c1) << 8 ) & 0xff00 duke@435: | ( u2(c2) << 0 ) & 0x00ff); duke@435: } duke@435: duke@435: // And this one works if the two bytes are contiguous in memory: duke@435: inline u2 build_u2_from( u1* p ) { duke@435: return build_u2_from( p[0], p[1] ); duke@435: } duke@435: duke@435: // Ditto for floats: duke@435: inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { duke@435: u4 u = build_u4_from( c1, c2, c3, c4 ); duke@435: return *(jfloat*)&u; duke@435: } duke@435: duke@435: inline jfloat build_float_from( u1* p ) { duke@435: u4 u = build_u4_from( p ); duke@435: return *(jfloat*)&u; duke@435: } duke@435: duke@435: duke@435: // now (64-bit) longs duke@435: duke@435: inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { duke@435: return ( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ) duke@435: | ( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ) duke@435: | ( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ) duke@435: | ( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ) duke@435: | ( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ) duke@435: | ( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ) duke@435: | ( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ) duke@435: | ( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ); duke@435: } duke@435: duke@435: inline jlong build_long_from( u1* p ) { duke@435: return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] ); duke@435: } duke@435: duke@435: duke@435: // Doubles, too! duke@435: inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { duke@435: jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 ); duke@435: return *(jdouble*)&u; duke@435: } duke@435: duke@435: inline jdouble build_double_from( u1* p ) { duke@435: jlong u = build_long_from( p ); duke@435: return *(jdouble*)&u; duke@435: } duke@435: duke@435: duke@435: // Portable routines to go the other way: duke@435: duke@435: inline void explode_short_to( u2 x, u1& c1, u1& c2 ) { duke@435: c1 = u1(x >> 8); duke@435: c2 = u1(x); duke@435: } duke@435: duke@435: inline void explode_short_to( u2 x, u1* p ) { duke@435: explode_short_to( x, p[0], p[1]); duke@435: } duke@435: duke@435: inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) { duke@435: c1 = u1(x >> 24); duke@435: c2 = u1(x >> 16); duke@435: c3 = u1(x >> 8); duke@435: c4 = u1(x); duke@435: } duke@435: duke@435: inline void explode_int_to( u4 x, u1* p ) { duke@435: explode_int_to( x, p[0], p[1], p[2], p[3]); duke@435: } duke@435: duke@435: duke@435: // Pack and extract shorts to/from ints: duke@435: duke@435: inline int extract_low_short_from_int(jint x) { duke@435: return x & 0xffff; duke@435: } duke@435: duke@435: inline int extract_high_short_from_int(jint x) { duke@435: return (x >> 16) & 0xffff; duke@435: } duke@435: duke@435: inline int build_int_from_shorts( jushort low, jushort high ) { duke@435: return ((int)((unsigned int)high << 16) | (unsigned int)low); duke@435: } duke@435: duke@435: // Printf-style formatters for fixed- and variable-width types as pointers and duke@435: // integers. duke@435: // duke@435: // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) duke@435: // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or duke@435: // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll" duke@435: // (in ILP32). duke@435: duke@435: // Format 32-bit quantities. duke@435: #define INT32_FORMAT "%d" duke@435: #define UINT32_FORMAT "%u" duke@435: #define INT32_FORMAT_W(width) "%" #width "d" duke@435: #define UINT32_FORMAT_W(width) "%" #width "u" duke@435: duke@435: #define PTR32_FORMAT "0x%08x" duke@435: duke@435: // Format 64-bit quantities. duke@435: #define INT64_FORMAT "%" FORMAT64_MODIFIER "d" duke@435: #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u" duke@435: #define PTR64_FORMAT "0x%016" FORMAT64_MODIFIER "x" duke@435: duke@435: #define INT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "d" duke@435: #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u" duke@435: duke@435: // Format macros that allow the field width to be specified. The width must be duke@435: // a string literal (e.g., "8") or a macro that evaluates to one. duke@435: #ifdef _LP64 duke@435: #define SSIZE_FORMAT_W(width) INT64_FORMAT_W(width) duke@435: #define SIZE_FORMAT_W(width) UINT64_FORMAT_W(width) duke@435: #else duke@435: #define SSIZE_FORMAT_W(width) INT32_FORMAT_W(width) duke@435: #define SIZE_FORMAT_W(width) UINT32_FORMAT_W(width) duke@435: #endif // _LP64 duke@435: duke@435: // Format pointers and size_t (or size_t-like integer types) which change size duke@435: // between 32- and 64-bit. duke@435: #ifdef _LP64 duke@435: #define PTR_FORMAT PTR64_FORMAT duke@435: #define UINTX_FORMAT UINT64_FORMAT duke@435: #define INTX_FORMAT INT64_FORMAT duke@435: #define SIZE_FORMAT UINT64_FORMAT duke@435: #define SSIZE_FORMAT INT64_FORMAT duke@435: #else // !_LP64 duke@435: #define PTR_FORMAT PTR32_FORMAT duke@435: #define UINTX_FORMAT UINT32_FORMAT duke@435: #define INTX_FORMAT INT32_FORMAT duke@435: #define SIZE_FORMAT UINT32_FORMAT duke@435: #define SSIZE_FORMAT INT32_FORMAT duke@435: #endif // _LP64 duke@435: duke@435: #define INTPTR_FORMAT PTR_FORMAT duke@435: duke@435: // Enable zap-a-lot if in debug version. duke@435: duke@435: # ifdef ASSERT duke@435: # ifdef COMPILER2 duke@435: # define ENABLE_ZAP_DEAD_LOCALS duke@435: #endif /* COMPILER2 */ duke@435: # endif /* ASSERT */ duke@435: duke@435: #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))