duke@435: /* mikael@4153: * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #ifndef SHARE_VM_C1_C1_VALUESTACK_HPP stefank@2314: #define SHARE_VM_C1_C1_VALUESTACK_HPP stefank@2314: stefank@2314: #include "c1/c1_Instruction.hpp" stefank@2314: duke@435: class ValueStack: public CompilationResourceObj { roland@2174: public: roland@2174: enum Kind { roland@2174: Parsing, // During abstract interpretation in GraphBuilder roland@2174: CallerState, // Caller state when inlining roland@2174: StateBefore, // Before before execution of instruction roland@2174: StateAfter, // After execution of instruction roland@2174: ExceptionState, // Exception handling of instruction roland@2174: EmptyExceptionState, // Exception handling of instructions not covered by an xhandler roland@2174: BlockBeginState // State of BlockBegin instruction with phi functions of this block roland@2174: }; roland@2174: duke@435: private: duke@435: IRScope* _scope; // the enclosing scope roland@2174: ValueStack* _caller_state; roland@2174: int _bci; roland@2174: Kind _kind; roland@2174: duke@435: Values _locals; // the locals duke@435: Values _stack; // the expression stack duke@435: Values _locks; // the monitor stack (holding the locked values) duke@435: duke@435: Value check(ValueTag tag, Value t) { duke@435: assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond"); duke@435: return t; duke@435: } duke@435: duke@435: Value check(ValueTag tag, Value t, Value h) { roland@2174: assert(h == NULL, "hi-word of doubleword value must be NULL"); duke@435: return check(tag, t); duke@435: } duke@435: duke@435: // helper routine iveresov@1939: static void apply(Values list, ValueVisitor* f); duke@435: roland@2174: // for simplified copying roland@2174: ValueStack(ValueStack* copy_from, Kind kind, int bci); roland@2174: duke@435: public: duke@435: // creation roland@2174: ValueStack(IRScope* scope, ValueStack* caller_state); duke@435: roland@2174: ValueStack* copy() { return new ValueStack(this, _kind, _bci); } roland@2174: ValueStack* copy(Kind new_kind, int new_bci) { return new ValueStack(this, new_kind, new_bci); } roland@2174: ValueStack* copy_for_parsing() { return new ValueStack(this, Parsing, -99); } roland@2174: never@2177: void set_caller_state(ValueStack* s) { never@2177: assert(kind() == EmptyExceptionState || never@2177: (Compilation::current()->env()->jvmti_can_access_local_variables() && kind() == ExceptionState), never@2177: "only EmptyExceptionStates can be modified"); never@2177: _caller_state = s; never@2177: } roland@2174: duke@435: bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals) duke@435: duke@435: // accessors duke@435: IRScope* scope() const { return _scope; } roland@2174: ValueStack* caller_state() const { return _caller_state; } roland@2174: int bci() const { return _bci; } roland@2174: Kind kind() const { return _kind; } roland@2174: duke@435: int locals_size() const { return _locals.length(); } duke@435: int stack_size() const { return _stack.length(); } duke@435: int locks_size() const { return _locks.length(); } duke@435: bool stack_is_empty() const { return _stack.is_empty(); } duke@435: bool no_active_locks() const { return _locks.is_empty(); } roland@2174: int total_locks_size() const; duke@435: duke@435: // locals access duke@435: void clear_locals(); // sets all locals to NULL; duke@435: duke@435: void invalidate_local(int i) { roland@2174: assert(_locals.at(i)->type()->is_single_word() || roland@2174: _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); duke@435: _locals.at_put(i, NULL); duke@435: } duke@435: roland@2174: Value local_at(int i) const { duke@435: Value x = _locals.at(i); roland@2174: assert(x == NULL || x->type()->is_single_word() || roland@2174: _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); duke@435: return x; duke@435: } duke@435: duke@435: void store_local(int i, Value x) { roland@2174: // When overwriting local i, check if i - 1 was the start of a roland@2174: // double word local and kill it. duke@435: if (i > 0) { duke@435: Value prev = _locals.at(i - 1); duke@435: if (prev != NULL && prev->type()->is_double_word()) { duke@435: _locals.at_put(i - 1, NULL); duke@435: } duke@435: } roland@2174: roland@2174: _locals.at_put(i, x); roland@2174: if (x->type()->is_double_word()) { roland@2174: // hi-word of doubleword value is always NULL roland@2174: _locals.at_put(i + 1, NULL); roland@2174: } duke@435: } duke@435: duke@435: // stack access duke@435: Value stack_at(int i) const { duke@435: Value x = _stack.at(i); duke@435: assert(x->type()->is_single_word() || roland@2174: _stack.at(i + 1) == NULL, "hi-word of doubleword value must be NULL"); duke@435: return x; duke@435: } duke@435: duke@435: Value stack_at_inc(int& i) const { duke@435: Value x = stack_at(i); duke@435: i += x->type()->size(); duke@435: return x; duke@435: } duke@435: twisti@3969: void stack_at_put(int i, Value x) { twisti@3969: _stack.at_put(i, x); twisti@3969: } twisti@3969: duke@435: // pinning support duke@435: void pin_stack_for_linear_scan(); duke@435: duke@435: // iteration iveresov@1939: void values_do(ValueVisitor* f); duke@435: duke@435: // untyped manipulation (for dup_x1, etc.) duke@435: void truncate_stack(int size) { _stack.trunc_to(size); } duke@435: void raw_push(Value t) { _stack.push(t); } duke@435: Value raw_pop() { return _stack.pop(); } duke@435: duke@435: // typed manipulation duke@435: void ipush(Value t) { _stack.push(check(intTag , t)); } duke@435: void fpush(Value t) { _stack.push(check(floatTag , t)); } duke@435: void apush(Value t) { _stack.push(check(objectTag , t)); } duke@435: void rpush(Value t) { _stack.push(check(addressTag, t)); } duke@435: void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); } duke@435: void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); } duke@435: duke@435: void push(ValueType* type, Value t) { duke@435: switch (type->tag()) { duke@435: case intTag : ipush(t); return; duke@435: case longTag : lpush(t); return; duke@435: case floatTag : fpush(t); return; duke@435: case doubleTag : dpush(t); return; duke@435: case objectTag : apush(t); return; duke@435: case addressTag: rpush(t); return; duke@435: } duke@435: ShouldNotReachHere(); duke@435: } duke@435: duke@435: Value ipop() { return check(intTag , _stack.pop()); } duke@435: Value fpop() { return check(floatTag , _stack.pop()); } duke@435: Value apop() { return check(objectTag , _stack.pop()); } duke@435: Value rpop() { return check(addressTag, _stack.pop()); } duke@435: Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); } duke@435: Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); } duke@435: duke@435: Value pop(ValueType* type) { duke@435: switch (type->tag()) { duke@435: case intTag : return ipop(); duke@435: case longTag : return lpop(); duke@435: case floatTag : return fpop(); duke@435: case doubleTag : return dpop(); duke@435: case objectTag : return apop(); duke@435: case addressTag: return rpop(); duke@435: } duke@435: ShouldNotReachHere(); duke@435: return NULL; duke@435: } duke@435: duke@435: Values* pop_arguments(int argument_size); duke@435: duke@435: // locks access roland@2174: int lock (Value obj); duke@435: int unlock(); duke@435: Value lock_at(int i) const { return _locks.at(i); } duke@435: duke@435: // SSA form IR support duke@435: void setup_phi_for_stack(BlockBegin* b, int index); duke@435: void setup_phi_for_local(BlockBegin* b, int index); duke@435: duke@435: // debugging duke@435: void print() PRODUCT_RETURN; duke@435: void verify() PRODUCT_RETURN; duke@435: }; duke@435: duke@435: duke@435: duke@435: // Macro definitions for simple iteration of stack and local values of a ValueStack duke@435: // The macros can be used like a for-loop. All variables (state, index and value) duke@435: // must be defined before the loop. duke@435: // When states are nested because of inlining, the stack of the innermost state duke@435: // cumulates also the stack of the nested states. In contrast, the locals of all duke@435: // states must be iterated each. duke@435: // Use the following code pattern to iterate all stack values and all nested local values: duke@435: // duke@435: // ValueStack* state = ... // state that is iterated duke@435: // int index; // current loop index (overwritten in loop) duke@435: // Value value; // value at current loop index (overwritten in loop) duke@435: // duke@435: // for_each_stack_value(state, index, value { duke@435: // do something with value and index duke@435: // } duke@435: // duke@435: // for_each_state(state) { duke@435: // for_each_local_value(state, index, value) { duke@435: // do something with value and index duke@435: // } duke@435: // } duke@435: // as an invariant, state is NULL now duke@435: duke@435: duke@435: // construct a unique variable name with the line number where the macro is used duke@435: #define temp_var3(x) temp__ ## x duke@435: #define temp_var2(x) temp_var3(x) duke@435: #define temp_var temp_var2(__LINE__) duke@435: duke@435: #define for_each_state(state) \ duke@435: for (; state != NULL; state = state->caller_state()) duke@435: duke@435: #define for_each_local_value(state, index, value) \ duke@435: int temp_var = state->locals_size(); \ duke@435: for (index = 0; \ duke@435: index < temp_var && (value = state->local_at(index), true); \ duke@435: index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \ duke@435: if (value != NULL) duke@435: duke@435: duke@435: #define for_each_stack_value(state, index, value) \ duke@435: int temp_var = state->stack_size(); \ duke@435: for (index = 0; \ duke@435: index < temp_var && (value = state->stack_at(index), true); \ duke@435: index += value->type()->size()) duke@435: duke@435: duke@435: #define for_each_lock_value(state, index, value) \ duke@435: int temp_var = state->locks_size(); \ duke@435: for (index = 0; \ duke@435: index < temp_var && (value = state->lock_at(index), true); \ duke@435: index++) \ duke@435: if (value != NULL) duke@435: duke@435: duke@435: // Macro definition for simple iteration of all state values of a ValueStack duke@435: // Because the code cannot be executed in a single loop, the code must be passed duke@435: // as a macro parameter. duke@435: // Use the following code pattern to iterate all stack values and all nested local values: duke@435: // duke@435: // ValueStack* state = ... // state that is iterated duke@435: // for_each_state_value(state, value, duke@435: // do something with value (note that this is a macro parameter) duke@435: // ); duke@435: duke@435: #define for_each_state_value(v_state, v_value, v_code) \ duke@435: { \ duke@435: int cur_index; \ duke@435: ValueStack* cur_state = v_state; \ roland@2174: Value v_value; \ roland@2174: for_each_state(cur_state) { \ roland@2174: { \ roland@2174: for_each_local_value(cur_state, cur_index, v_value) { \ roland@2174: v_code; \ roland@2174: } \ duke@435: } \ roland@2174: { \ roland@2174: for_each_stack_value(cur_state, cur_index, v_value) { \ roland@2174: v_code; \ roland@2174: } \ roland@2174: } \ duke@435: } \ duke@435: } duke@435: duke@435: duke@435: // Macro definition for simple iteration of all phif functions of a block, i.e all duke@435: // phi functions of the ValueStack where the block matches. duke@435: // Use the following code pattern to iterate all phi functions of a block: duke@435: // duke@435: // BlockBegin* block = ... // block that is iterated duke@435: // for_each_phi_function(block, phi, duke@435: // do something with the phi function phi (note that this is a macro parameter) duke@435: // ); duke@435: duke@435: #define for_each_phi_fun(v_block, v_phi, v_code) \ duke@435: { \ duke@435: int cur_index; \ duke@435: ValueStack* cur_state = v_block->state(); \ duke@435: Value value; \ duke@435: { \ duke@435: for_each_stack_value(cur_state, cur_index, value) { \ duke@435: Phi* v_phi = value->as_Phi(); \ duke@435: if (v_phi != NULL && v_phi->block() == v_block) { \ duke@435: v_code; \ duke@435: } \ duke@435: } \ duke@435: } \ duke@435: { \ duke@435: for_each_local_value(cur_state, cur_index, value) { \ duke@435: Phi* v_phi = value->as_Phi(); \ duke@435: if (v_phi != NULL && v_phi->block() == v_block) { \ duke@435: v_code; \ duke@435: } \ duke@435: } \ duke@435: } \ duke@435: } stefank@2314: stefank@2314: #endif // SHARE_VM_C1_C1_VALUESTACK_HPP