src/cpu/sparc/vm/macroAssembler_sparc.hpp

Mon, 07 Jan 2013 14:08:28 -0800

author
twisti
date
Mon, 07 Jan 2013 14:08:28 -0800
changeset 4412
ffa87474d7a4
parent 4356
18d56ca3e901
child 4542
db9981fd3124
permissions
-rw-r--r--

8004537: replace AbstractAssembler emit_long with emit_int32
Reviewed-by: jrose, kvn, twisti
Contributed-by: Morris Meyer <morris.meyer@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
    26 #define CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
    28 #include "asm/assembler.hpp"
    30 // <sys/trap.h> promises that the system will not use traps 16-31
    31 #define ST_RESERVED_FOR_USER_0 0x10
    33 class BiasedLockingCounters;
    36 // Register aliases for parts of the system:
    38 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
    39 // across context switches in V8+ ABI.  Of course, there are no 64 bit regs
    40 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
    42 // g2-g4 are scratch registers called "application globals".  Their
    43 // meaning is reserved to the "compilation system"--which means us!
    44 // They are are not supposed to be touched by ordinary C code, although
    45 // highly-optimized C code might steal them for temps.  They are safe
    46 // across thread switches, and the ABI requires that they be safe
    47 // across function calls.
    48 //
    49 // g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
    50 // across func calls, and V8+ also allows g5 to be clobbered across
    51 // func calls.  Also, g1 and g5 can get touched while doing shared
    52 // library loading.
    53 //
    54 // We must not touch g7 (it is the thread-self register) and g6 is
    55 // reserved for certain tools.  g0, of course, is always zero.
    56 //
    57 // (Sources:  SunSoft Compilers Group, thread library engineers.)
    59 // %%%% The interpreter should be revisited to reduce global scratch regs.
    61 // This global always holds the current JavaThread pointer:
    63 REGISTER_DECLARATION(Register, G2_thread , G2);
    64 REGISTER_DECLARATION(Register, G6_heapbase , G6);
    66 // The following globals are part of the Java calling convention:
    68 REGISTER_DECLARATION(Register, G5_method             , G5);
    69 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
    70 REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
    72 // The following globals are used for the new C1 & interpreter calling convention:
    73 REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
    75 // This local is used to preserve G2_thread in the interpreter and in stubs:
    76 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
    78 // These globals are used as scratch registers in the interpreter:
    80 REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
    81 REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
    82 REGISTER_DECLARATION(Register, G3_scratch    , G3);
    83 REGISTER_DECLARATION(Register, G4_scratch    , G4);
    85 // These globals are used as short-lived scratch registers in the compiler:
    87 REGISTER_DECLARATION(Register, Gtemp  , G5);
    89 // JSR 292 fixed register usages:
    90 REGISTER_DECLARATION(Register, G5_method_type        , G5);
    91 REGISTER_DECLARATION(Register, G3_method_handle      , G3);
    92 REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
    94 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
    95 // because a single patchable "set" instruction (NativeMovConstReg,
    96 // or NativeMovConstPatching for compiler1) instruction
    97 // serves to set up either quantity, depending on whether the compiled
    98 // call site is an inline cache or is megamorphic.  See the function
    99 // CompiledIC::set_to_megamorphic.
   100 //
   101 // If a inline cache targets an interpreted method, then the
   102 // G5 register will be used twice during the call.  First,
   103 // the call site will be patched to load a compiledICHolder
   104 // into G5. (This is an ordered pair of ic_klass, method.)
   105 // The c2i adapter will first check the ic_klass, then load
   106 // G5_method with the method part of the pair just before
   107 // jumping into the interpreter.
   108 //
   109 // Note that G5_method is only the method-self for the interpreter,
   110 // and is logically unrelated to G5_megamorphic_method.
   111 //
   112 // Invariants on G2_thread (the JavaThread pointer):
   113 //  - it should not be used for any other purpose anywhere
   114 //  - it must be re-initialized by StubRoutines::call_stub()
   115 //  - it must be preserved around every use of call_VM
   117 // We can consider using g2/g3/g4 to cache more values than the
   118 // JavaThread, such as the card-marking base or perhaps pointers into
   119 // Eden.  It's something of a waste to use them as scratch temporaries,
   120 // since they are not supposed to be volatile.  (Of course, if we find
   121 // that Java doesn't benefit from application globals, then we can just
   122 // use them as ordinary temporaries.)
   123 //
   124 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
   125 // it makes sense to use them routinely for procedure linkage,
   126 // whenever the On registers are not applicable.  Examples:  G5_method,
   127 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
   128 // stubs.  This means that compiler stubs, etc., should be kept to a
   129 // maximum of two or three G-register arguments.
   132 // stub frames
   134 REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
   136 // Interpreter frames
   138 #ifdef CC_INTERP
   139 REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
   140 REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
   141 REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
   142 REGISTER_DECLARATION(Register, L2_scratch       , L2);
   143 REGISTER_DECLARATION(Register, L3_scratch       , L3);
   144 REGISTER_DECLARATION(Register, L4_scratch       , L4);
   145 REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
   146 REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
   147 REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
   148 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   149 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   150                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
   151                                                        // is added and removed as needed in the frame code.
   152 // Interface to signature handler
   153 REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
   154 REGISTER_DECLARATION(Register, Lmethod          , L6); // Method* when calling signature handler
   156 #else
   157 REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
   158 REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
   159 REGISTER_DECLARATION(Register, Lmethod          , L2);
   160 REGISTER_DECLARATION(Register, Llocals          , L3);
   161 REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
   162                                                        // must match Llocals in asm interpreter
   163 REGISTER_DECLARATION(Register, Lmonitors        , L4);
   164 REGISTER_DECLARATION(Register, Lbyte_code       , L5);
   165 // When calling out from the interpreter we record SP so that we can remove any extra stack
   166 // space allocated during adapter transitions. This register is only live from the point
   167 // of the call until we return.
   168 REGISTER_DECLARATION(Register, Llast_SP         , L5);
   169 REGISTER_DECLARATION(Register, Lscratch         , L5);
   170 REGISTER_DECLARATION(Register, Lscratch2        , L6);
   171 REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
   173 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   174 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   175                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
   176                                                        // is added and removed as needed in the frame code.
   177 REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
   178 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
   179 REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
   180 #endif /* CC_INTERP */
   182 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
   183 //       the interpreter code. If Lscratch2 needs to be used for some
   184 //       purpose than LcpoolCache should be restore after that for
   185 //       the interpreter to work right
   186 // (These assignments must be compatible with L7_thread_cache; see above.)
   188 // Since Lbcp points into the middle of the method object,
   189 // it is temporarily converted into a "bcx" during GC.
   191 // Exception processing
   192 // These registers are passed into exception handlers.
   193 // All exception handlers require the exception object being thrown.
   194 // In addition, an nmethod's exception handler must be passed
   195 // the address of the call site within the nmethod, to allow
   196 // proper selection of the applicable catch block.
   197 // (Interpreter frames use their own bcp() for this purpose.)
   198 //
   199 // The Oissuing_pc value is not always needed.  When jumping to a
   200 // handler that is known to be interpreted, the Oissuing_pc value can be
   201 // omitted.  An actual catch block in compiled code receives (from its
   202 // nmethod's exception handler) the thrown exception in the Oexception,
   203 // but it doesn't need the Oissuing_pc.
   204 //
   205 // If an exception handler (either interpreted or compiled)
   206 // discovers there is no applicable catch block, it updates
   207 // the Oissuing_pc to the continuation PC of its own caller,
   208 // pops back to that caller's stack frame, and executes that
   209 // caller's exception handler.  Obviously, this process will
   210 // iterate until the control stack is popped back to a method
   211 // containing an applicable catch block.  A key invariant is
   212 // that the Oissuing_pc value is always a value local to
   213 // the method whose exception handler is currently executing.
   214 //
   215 // Note:  The issuing PC value is __not__ a raw return address (I7 value).
   216 // It is a "return pc", the address __following__ the call.
   217 // Raw return addresses are converted to issuing PCs by frame::pc(),
   218 // or by stubs.  Issuing PCs can be used directly with PC range tables.
   219 //
   220 REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
   221 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
   224 // These must occur after the declarations above
   225 #ifndef DONT_USE_REGISTER_DEFINES
   227 #define Gthread             AS_REGISTER(Register, Gthread)
   228 #define Gmethod             AS_REGISTER(Register, Gmethod)
   229 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
   230 #define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
   231 #define Gargs               AS_REGISTER(Register, Gargs)
   232 #define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
   233 #define Gframe_size         AS_REGISTER(Register, Gframe_size)
   234 #define Gtemp               AS_REGISTER(Register, Gtemp)
   236 #ifdef CC_INTERP
   237 #define Lstate              AS_REGISTER(Register, Lstate)
   238 #define Lesp                AS_REGISTER(Register, Lesp)
   239 #define L1_scratch          AS_REGISTER(Register, L1_scratch)
   240 #define Lmirror             AS_REGISTER(Register, Lmirror)
   241 #define L2_scratch          AS_REGISTER(Register, L2_scratch)
   242 #define L3_scratch          AS_REGISTER(Register, L3_scratch)
   243 #define L4_scratch          AS_REGISTER(Register, L4_scratch)
   244 #define Lscratch            AS_REGISTER(Register, Lscratch)
   245 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
   246 #define L7_scratch          AS_REGISTER(Register, L7_scratch)
   247 #define Ostate              AS_REGISTER(Register, Ostate)
   248 #else
   249 #define Lesp                AS_REGISTER(Register, Lesp)
   250 #define Lbcp                AS_REGISTER(Register, Lbcp)
   251 #define Lmethod             AS_REGISTER(Register, Lmethod)
   252 #define Llocals             AS_REGISTER(Register, Llocals)
   253 #define Lmonitors           AS_REGISTER(Register, Lmonitors)
   254 #define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
   255 #define Lscratch            AS_REGISTER(Register, Lscratch)
   256 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
   257 #define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
   258 #endif /* ! CC_INTERP */
   260 #define Lentry_args         AS_REGISTER(Register, Lentry_args)
   261 #define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
   262 #define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
   263 #define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
   264 #define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
   265 #define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
   267 #define Oexception          AS_REGISTER(Register, Oexception)
   268 #define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
   270 #endif
   273 // Address is an abstraction used to represent a memory location.
   274 //
   275 // Note: A register location is represented via a Register, not
   276 //       via an address for efficiency & simplicity reasons.
   278 class Address VALUE_OBJ_CLASS_SPEC {
   279  private:
   280   Register           _base;           // Base register.
   281   RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
   282   RelocationHolder   _rspec;
   284  public:
   285   Address() : _base(noreg), _index_or_disp(noreg) {}
   287   Address(Register base, RegisterOrConstant index_or_disp)
   288     : _base(base),
   289       _index_or_disp(index_or_disp) {
   290   }
   292   Address(Register base, Register index)
   293     : _base(base),
   294       _index_or_disp(index) {
   295   }
   297   Address(Register base, int disp)
   298     : _base(base),
   299       _index_or_disp(disp) {
   300   }
   302 #ifdef ASSERT
   303   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   304   Address(Register base, ByteSize disp)
   305     : _base(base),
   306       _index_or_disp(in_bytes(disp)) {
   307   }
   308 #endif
   310   // accessors
   311   Register base()             const { return _base; }
   312   Register index()            const { return _index_or_disp.as_register(); }
   313   int      disp()             const { return _index_or_disp.as_constant(); }
   315   bool     has_index()        const { return _index_or_disp.is_register(); }
   316   bool     has_disp()         const { return _index_or_disp.is_constant(); }
   318   bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
   320   const relocInfo::relocType rtype() { return _rspec.type(); }
   321   const RelocationHolder&    rspec() { return _rspec; }
   323   RelocationHolder rspec(int offset) const {
   324     return offset == 0 ? _rspec : _rspec.plus(offset);
   325   }
   327   inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
   329   Address plus_disp(int plusdisp) const {     // bump disp by a small amount
   330     assert(_index_or_disp.is_constant(), "must have a displacement");
   331     Address a(base(), disp() + plusdisp);
   332     return a;
   333   }
   334   bool is_same_address(Address a) const {
   335     // disregard _rspec
   336     return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
   337   }
   339   Address after_save() const {
   340     Address a = (*this);
   341     a._base = a._base->after_save();
   342     return a;
   343   }
   345   Address after_restore() const {
   346     Address a = (*this);
   347     a._base = a._base->after_restore();
   348     return a;
   349   }
   351   // Convert the raw encoding form into the form expected by the
   352   // constructor for Address.
   353   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
   355   friend class Assembler;
   356 };
   359 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   360  private:
   361   address          _address;
   362   RelocationHolder _rspec;
   364   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
   365     switch (rtype) {
   366     case relocInfo::external_word_type:
   367       return external_word_Relocation::spec(addr);
   368     case relocInfo::internal_word_type:
   369       return internal_word_Relocation::spec(addr);
   370 #ifdef _LP64
   371     case relocInfo::opt_virtual_call_type:
   372       return opt_virtual_call_Relocation::spec();
   373     case relocInfo::static_call_type:
   374       return static_call_Relocation::spec();
   375     case relocInfo::runtime_call_type:
   376       return runtime_call_Relocation::spec();
   377 #endif
   378     case relocInfo::none:
   379       return RelocationHolder();
   380     default:
   381       ShouldNotReachHere();
   382       return RelocationHolder();
   383     }
   384   }
   386  protected:
   387   // creation
   388   AddressLiteral() : _address(NULL), _rspec(NULL) {}
   390  public:
   391   AddressLiteral(address addr, RelocationHolder const& rspec)
   392     : _address(addr),
   393       _rspec(rspec) {}
   395   // Some constructors to avoid casting at the call site.
   396   AddressLiteral(jobject obj, RelocationHolder const& rspec)
   397     : _address((address) obj),
   398       _rspec(rspec) {}
   400   AddressLiteral(intptr_t value, RelocationHolder const& rspec)
   401     : _address((address) value),
   402       _rspec(rspec) {}
   404   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
   405     : _address((address) addr),
   406     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   408   // Some constructors to avoid casting at the call site.
   409   AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
   410     : _address((address) addr),
   411     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   413   AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
   414     : _address((address) addr),
   415       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   417   AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
   418     : _address((address) addr),
   419       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   421   AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
   422     : _address((address) addr),
   423       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   425   AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
   426     : _address((address) addr),
   427       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   429   AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
   430     : _address((address) addr),
   431       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   433 #ifdef _LP64
   434   // 32-bit complains about a multiple declaration for int*.
   435   AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
   436     : _address((address) addr),
   437       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   438 #endif
   440   AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
   441     : _address((address) addr),
   442       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   444   AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
   445     : _address((address) addr),
   446       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   448   AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
   449     : _address((address) addr),
   450       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   452   AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
   453     : _address((address) addr),
   454       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   456   intptr_t value() const { return (intptr_t) _address; }
   457   int      low10() const;
   459   const relocInfo::relocType rtype() const { return _rspec.type(); }
   460   const RelocationHolder&    rspec() const { return _rspec; }
   462   RelocationHolder rspec(int offset) const {
   463     return offset == 0 ? _rspec : _rspec.plus(offset);
   464   }
   465 };
   467 // Convenience classes
   468 class ExternalAddress: public AddressLiteral {
   469  private:
   470   static relocInfo::relocType reloc_for_target(address target) {
   471     // Sometimes ExternalAddress is used for values which aren't
   472     // exactly addresses, like the card table base.
   473     // external_word_type can't be used for values in the first page
   474     // so just skip the reloc in that case.
   475     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
   476   }
   478  public:
   479   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
   480   ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
   481 };
   483 inline Address RegisterImpl::address_in_saved_window() const {
   484    return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
   485 }
   489 // Argument is an abstraction used to represent an outgoing
   490 // actual argument or an incoming formal parameter, whether
   491 // it resides in memory or in a register, in a manner consistent
   492 // with the SPARC Application Binary Interface, or ABI.  This is
   493 // often referred to as the native or C calling convention.
   495 class Argument VALUE_OBJ_CLASS_SPEC {
   496  private:
   497   int _number;
   498   bool _is_in;
   500  public:
   501 #ifdef _LP64
   502   enum {
   503     n_register_parameters = 6,          // only 6 registers may contain integer parameters
   504     n_float_register_parameters = 16    // Can have up to 16 floating registers
   505   };
   506 #else
   507   enum {
   508     n_register_parameters = 6           // only 6 registers may contain integer parameters
   509   };
   510 #endif
   512   // creation
   513   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
   515   int  number() const  { return _number;  }
   516   bool is_in()  const  { return _is_in;   }
   517   bool is_out() const  { return !is_in(); }
   519   Argument successor() const  { return Argument(number() + 1, is_in()); }
   520   Argument as_in()     const  { return Argument(number(), true ); }
   521   Argument as_out()    const  { return Argument(number(), false); }
   523   // locating register-based arguments:
   524   bool is_register() const { return _number < n_register_parameters; }
   526 #ifdef _LP64
   527   // locating Floating Point register-based arguments:
   528   bool is_float_register() const { return _number < n_float_register_parameters; }
   530   FloatRegister as_float_register() const {
   531     assert(is_float_register(), "must be a register argument");
   532     return as_FloatRegister(( number() *2 ) + 1);
   533   }
   534   FloatRegister as_double_register() const {
   535     assert(is_float_register(), "must be a register argument");
   536     return as_FloatRegister(( number() *2 ));
   537   }
   538 #endif
   540   Register as_register() const {
   541     assert(is_register(), "must be a register argument");
   542     return is_in() ? as_iRegister(number()) : as_oRegister(number());
   543   }
   545   // locating memory-based arguments
   546   Address as_address() const {
   547     assert(!is_register(), "must be a memory argument");
   548     return address_in_frame();
   549   }
   551   // When applied to a register-based argument, give the corresponding address
   552   // into the 6-word area "into which callee may store register arguments"
   553   // (This is a different place than the corresponding register-save area location.)
   554   Address address_in_frame() const;
   556   // debugging
   557   const char* name() const;
   559   friend class Assembler;
   560 };
   563 class RegistersForDebugging : public StackObj {
   564  public:
   565   intptr_t i[8], l[8], o[8], g[8];
   566   float    f[32];
   567   double   d[32];
   569   void print(outputStream* s);
   571   static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
   572   static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
   573   static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
   574   static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
   575   static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
   576   static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
   578   // gen asm code to save regs
   579   static void save_registers(MacroAssembler* a);
   581   // restore global registers in case C code disturbed them
   582   static void restore_registers(MacroAssembler* a, Register r);
   583 };
   586 // MacroAssembler extends Assembler by a few frequently used macros.
   587 //
   588 // Most of the standard SPARC synthetic ops are defined here.
   589 // Instructions for which a 'better' code sequence exists depending
   590 // on arguments should also go in here.
   592 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
   593 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
   594 #define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
   595 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
   598 class MacroAssembler : public Assembler {
   599   // code patchers need various routines like inv_wdisp()
   600   friend class NativeInstruction;
   601   friend class NativeGeneralJump;
   602   friend class Relocation;
   603   friend class Label;
   605  protected:
   606   static int  patched_branch(int dest_pos, int inst, int inst_pos);
   607   static int  branch_destination(int inst, int pos);
   609   // Support for VM calls
   610   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
   611   // may customize this version by overriding it for its purposes (e.g., to save/restore
   612   // additional registers when doing a VM call).
   613 #ifdef CC_INTERP
   614   #define VIRTUAL
   615 #else
   616   #define VIRTUAL virtual
   617 #endif
   619   VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
   621   //
   622   // It is imperative that all calls into the VM are handled via the call_VM macros.
   623   // They make sure that the stack linkage is setup correctly. call_VM's correspond
   624   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   625   //
   626   // This is the base routine called by the different versions of call_VM. The interpreter
   627   // may customize this version by overriding it for its purposes (e.g., to save/restore
   628   // additional registers when doing a VM call).
   629   //
   630   // A non-volatile java_thread_cache register should be specified so
   631   // that the G2_thread value can be preserved across the call.
   632   // (If java_thread_cache is noreg, then a slow get_thread call
   633   // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
   634   // thread.
   635   //
   636   // If no last_java_sp is specified (noreg) than SP will be used instead.
   638   virtual void call_VM_base(
   639     Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
   640     Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
   641     Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
   642     address         entry_point,            // the entry point
   643     int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
   644     bool            check_exception=true    // flag which indicates if exception should be checked
   645   );
   647   // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
   648   // The implementation is only non-empty for the InterpreterMacroAssembler,
   649   // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
   650   virtual void check_and_handle_popframe(Register scratch_reg);
   651   virtual void check_and_handle_earlyret(Register scratch_reg);
   653  public:
   654   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
   656   // Support for NULL-checks
   657   //
   658   // Generates code that causes a NULL OS exception if the content of reg is NULL.
   659   // If the accessed location is M[reg + offset] and the offset is known, provide the
   660   // offset.  No explicit code generation is needed if the offset is within a certain
   661   // range (0 <= offset <= page_size).
   662   //
   663   // %%%%%% Currently not done for SPARC
   665   void null_check(Register reg, int offset = -1);
   666   static bool needs_explicit_null_check(intptr_t offset);
   668   // support for delayed instructions
   669   MacroAssembler* delayed() { Assembler::delayed();  return this; }
   671   // branches that use right instruction for v8 vs. v9
   672   inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   673   inline void br( Condition c, bool a, Predict p, Label& L );
   675   inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   676   inline void fb( Condition c, bool a, Predict p, Label& L );
   678   // compares register with zero (32 bit) and branches (V9 and V8 instructions)
   679   void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
   680   // Compares a pointer register with zero and branches on (not)null.
   681   // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
   682   void br_null   ( Register s1, bool a, Predict p, Label& L );
   683   void br_notnull( Register s1, bool a, Predict p, Label& L );
   685   //
   686   // Compare registers and branch with nop in delay slot or cbcond without delay slot.
   687   //
   688   // ATTENTION: use these instructions with caution because cbcond instruction
   689   //            has very short distance: 512 instructions (2Kbyte).
   691   // Compare integer (32 bit) values (icc only).
   692   void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
   693   void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
   694   // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
   695   void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
   696   void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
   698   // Short branch version for compares a pointer pwith zero.
   699   void br_null_short   ( Register s1, Predict p, Label& L );
   700   void br_notnull_short( Register s1, Predict p, Label& L );
   702   // unconditional short branch
   703   void ba_short(Label& L);
   705   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   706   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
   708   // Branch that tests xcc in LP64 and icc in !LP64
   709   inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   710   inline void brx( Condition c, bool a, Predict p, Label& L );
   712   // unconditional branch
   713   inline void ba( Label& L );
   715   // Branch that tests fp condition codes
   716   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   717   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
   719   // get PC the best way
   720   inline int get_pc( Register d );
   722   // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
   723   inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
   724   inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
   726   inline void jmp( Register s1, Register s2 );
   727   inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
   729   // Check if the call target is out of wdisp30 range (relative to the code cache)
   730   static inline bool is_far_target(address d);
   731   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
   732   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
   733   inline void callr( Register s1, Register s2 );
   734   inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
   736   // Emits nothing on V8
   737   inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
   738   inline void iprefetch( Label& L);
   740   inline void tst( Register s ) { orcc( G0, s, G0 ); }
   742 #ifdef PRODUCT
   743   inline void ret(  bool trace = TraceJumps )   { if (trace) {
   744                                                     mov(I7, O7); // traceable register
   745                                                     JMP(O7, 2 * BytesPerInstWord);
   746                                                   } else {
   747                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   748                                                   }
   749                                                 }
   751   inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   752                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   753 #else
   754   void ret(  bool trace = TraceJumps );
   755   void retl( bool trace = TraceJumps );
   756 #endif /* PRODUCT */
   758   // Required platform-specific helpers for Label::patch_instructions.
   759   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   760   void pd_patch_instruction(address branch, address target);
   762   // sethi Macro handles optimizations and relocations
   763 private:
   764   void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
   765 public:
   766   void sethi(const AddressLiteral& addrlit, Register d);
   767   void patchable_sethi(const AddressLiteral& addrlit, Register d);
   769   // compute the number of instructions for a sethi/set
   770   static int  insts_for_sethi( address a, bool worst_case = false );
   771   static int  worst_case_insts_for_set();
   773   // set may be either setsw or setuw (high 32 bits may be zero or sign)
   774 private:
   775   void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
   776   static int insts_for_internal_set(intptr_t value);
   777 public:
   778   void set(const AddressLiteral& addrlit, Register d);
   779   void set(intptr_t value, Register d);
   780   void set(address addr, Register d, RelocationHolder const& rspec);
   781   static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
   783   void patchable_set(const AddressLiteral& addrlit, Register d);
   784   void patchable_set(intptr_t value, Register d);
   785   void set64(jlong value, Register d, Register tmp);
   786   static int insts_for_set64(jlong value);
   788   // sign-extend 32 to 64
   789   inline void signx( Register s, Register d ) { sra( s, G0, d); }
   790   inline void signx( Register d )             { sra( d, G0, d); }
   792   inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
   793   inline void not1( Register d )             { xnor( d, G0, d ); }
   795   inline void neg( Register s, Register d ) { sub( G0, s, d ); }
   796   inline void neg( Register d )             { sub( G0, d, d ); }
   798   inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
   799   inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
   800   // Functions for isolating 64 bit atomic swaps for LP64
   801   // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
   802   inline void cas_ptr(  Register s1, Register s2, Register d) {
   803 #ifdef _LP64
   804     casx( s1, s2, d );
   805 #else
   806     cas( s1, s2, d );
   807 #endif
   808   }
   810   // Functions for isolating 64 bit shifts for LP64
   811   inline void sll_ptr( Register s1, Register s2, Register d );
   812   inline void sll_ptr( Register s1, int imm6a,   Register d );
   813   inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
   814   inline void srl_ptr( Register s1, Register s2, Register d );
   815   inline void srl_ptr( Register s1, int imm6a,   Register d );
   817   // little-endian
   818   inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
   819   inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
   821   inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
   822   inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
   824   inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
   825   inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
   827   using Assembler::add;
   828   inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype);
   829   inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
   830   inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
   831   inline void add(const Address& a, Register d, int offset = 0);
   833   using Assembler::andn;
   834   inline void andn(  Register s1, RegisterOrConstant s2, Register d);
   836   inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
   837   inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
   839   inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
   840   inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
   842   inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
   843   inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
   845   inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
   846   inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
   848   inline void clr( Register d ) { or3( G0, G0, d ); }
   850   inline void clrb( Register s1, Register s2);
   851   inline void clrh( Register s1, Register s2);
   852   inline void clr(  Register s1, Register s2);
   853   inline void clrx( Register s1, Register s2);
   855   inline void clrb( Register s1, int simm13a);
   856   inline void clrh( Register s1, int simm13a);
   857   inline void clr(  Register s1, int simm13a);
   858   inline void clrx( Register s1, int simm13a);
   860   // copy & clear upper word
   861   inline void clruw( Register s, Register d ) { srl( s, G0, d); }
   862   // clear upper word
   863   inline void clruwu( Register d ) { srl( d, G0, d); }
   865   using Assembler::ldsb;
   866   using Assembler::ldsh;
   867   using Assembler::ldsw;
   868   using Assembler::ldub;
   869   using Assembler::lduh;
   870   using Assembler::lduw;
   871   using Assembler::ldx;
   872   using Assembler::ldd;
   874 #ifdef ASSERT
   875   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   876   inline void ld(Register s1, ByteSize simm13a, Register d);
   877 #endif
   879   inline void ld(Register s1, Register s2, Register d);
   880   inline void ld(Register s1, int simm13a, Register d);
   882   inline void ldsb(const Address& a, Register d, int offset = 0);
   883   inline void ldsh(const Address& a, Register d, int offset = 0);
   884   inline void ldsw(const Address& a, Register d, int offset = 0);
   885   inline void ldub(const Address& a, Register d, int offset = 0);
   886   inline void lduh(const Address& a, Register d, int offset = 0);
   887   inline void lduw(const Address& a, Register d, int offset = 0);
   888   inline void ldx( const Address& a, Register d, int offset = 0);
   889   inline void ld(  const Address& a, Register d, int offset = 0);
   890   inline void ldd( const Address& a, Register d, int offset = 0);
   892   inline void ldub(Register s1, RegisterOrConstant s2, Register d );
   893   inline void ldsb(Register s1, RegisterOrConstant s2, Register d );
   894   inline void lduh(Register s1, RegisterOrConstant s2, Register d );
   895   inline void ldsh(Register s1, RegisterOrConstant s2, Register d );
   896   inline void lduw(Register s1, RegisterOrConstant s2, Register d );
   897   inline void ldsw(Register s1, RegisterOrConstant s2, Register d );
   898   inline void ldx( Register s1, RegisterOrConstant s2, Register d );
   899   inline void ld(  Register s1, RegisterOrConstant s2, Register d );
   900   inline void ldd( Register s1, RegisterOrConstant s2, Register d );
   902   using Assembler::ldf;
   903   inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
   904   inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
   906   // membar psuedo instruction.  takes into account target memory model.
   907   inline void membar( Assembler::Membar_mask_bits const7a );
   909   // returns if membar generates anything.
   910   inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
   912   // mov pseudo instructions
   913   inline void mov( Register s,  Register d) {
   914     if ( s != d )    or3( G0, s, d);
   915     else             assert_not_delayed();  // Put something useful in the delay slot!
   916   }
   918   inline void mov_or_nop( Register s,  Register d) {
   919     if ( s != d )    or3( G0, s, d);
   920     else             nop();
   921   }
   923   inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
   925   using Assembler::prefetch;
   926   inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
   928   using Assembler::stb;
   929   using Assembler::sth;
   930   using Assembler::stw;
   931   using Assembler::stx;
   932   using Assembler::std;
   934 #ifdef ASSERT
   935   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   936   inline void st(Register d, Register s1, ByteSize simm13a);
   937 #endif
   939   inline void st(Register d, Register s1, Register s2);
   940   inline void st(Register d, Register s1, int simm13a);
   942   inline void stb(Register d, const Address& a, int offset = 0 );
   943   inline void sth(Register d, const Address& a, int offset = 0 );
   944   inline void stw(Register d, const Address& a, int offset = 0 );
   945   inline void stx(Register d, const Address& a, int offset = 0 );
   946   inline void st( Register d, const Address& a, int offset = 0 );
   947   inline void std(Register d, const Address& a, int offset = 0 );
   949   inline void stb(Register d, Register s1, RegisterOrConstant s2 );
   950   inline void sth(Register d, Register s1, RegisterOrConstant s2 );
   951   inline void stw(Register d, Register s1, RegisterOrConstant s2 );
   952   inline void stx(Register d, Register s1, RegisterOrConstant s2 );
   953   inline void std(Register d, Register s1, RegisterOrConstant s2 );
   954   inline void st( Register d, Register s1, RegisterOrConstant s2 );
   956   using Assembler::stf;
   957   inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
   958   inline void stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
   960   // Note: offset is added to s2.
   961   using Assembler::sub;
   962   inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
   964   using Assembler::swap;
   965   inline void swap(Address& a, Register d, int offset = 0);
   967   // address pseudos: make these names unlike instruction names to avoid confusion
   968   inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
   969   inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
   970   inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
   971   inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
   972   inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
   973   inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
   974   inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
   975   inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
   976   inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
   978   // ring buffer traceable jumps
   980   void jmp2( Register r1, Register r2, const char* file, int line );
   981   void jmp ( Register r1, int offset,  const char* file, int line );
   983   void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
   984   void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
   987   // argument pseudos:
   989   inline void load_argument( Argument& a, Register  d );
   990   inline void store_argument( Register s, Argument& a );
   991   inline void store_ptr_argument( Register s, Argument& a );
   992   inline void store_float_argument( FloatRegister s, Argument& a );
   993   inline void store_double_argument( FloatRegister s, Argument& a );
   994   inline void store_long_argument( Register s, Argument& a );
   996   // handy macros:
   998   inline void round_to( Register r, int modulus ) {
   999     assert_not_delayed();
  1000     inc( r, modulus - 1 );
  1001     and3( r, -modulus, r );
  1004   // --------------------------------------------------
  1006   // Functions for isolating 64 bit loads for LP64
  1007   // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
  1008   // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
  1009   inline void ld_ptr(Register s1, Register s2, Register d);
  1010   inline void ld_ptr(Register s1, int simm13a, Register d);
  1011   inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
  1012   inline void ld_ptr(const Address& a, Register d, int offset = 0);
  1013   inline void st_ptr(Register d, Register s1, Register s2);
  1014   inline void st_ptr(Register d, Register s1, int simm13a);
  1015   inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
  1016   inline void st_ptr(Register d, const Address& a, int offset = 0);
  1018 #ifdef ASSERT
  1019   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
  1020   inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
  1021   inline void st_ptr(Register d, Register s1, ByteSize simm13a);
  1022 #endif
  1024   // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
  1025   // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
  1026   inline void ld_long(Register s1, Register s2, Register d);
  1027   inline void ld_long(Register s1, int simm13a, Register d);
  1028   inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
  1029   inline void ld_long(const Address& a, Register d, int offset = 0);
  1030   inline void st_long(Register d, Register s1, Register s2);
  1031   inline void st_long(Register d, Register s1, int simm13a);
  1032   inline void st_long(Register d, Register s1, RegisterOrConstant s2);
  1033   inline void st_long(Register d, const Address& a, int offset = 0);
  1035   // Helpers for address formation.
  1036   // - They emit only a move if s2 is a constant zero.
  1037   // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
  1038   // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
  1039   RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  1040   RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  1041   RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
  1043   RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
  1044     if (is_simm13(src.constant_or_zero()))
  1045       return src;               // register or short constant
  1046     guarantee(temp != noreg, "constant offset overflow");
  1047     set(src.as_constant(), temp);
  1048     return temp;
  1051   // --------------------------------------------------
  1053  public:
  1054   // traps as per trap.h (SPARC ABI?)
  1056   void breakpoint_trap();
  1057   void breakpoint_trap(Condition c, CC cc);
  1058   void flush_windows_trap();
  1059   void clean_windows_trap();
  1060   void get_psr_trap();
  1061   void set_psr_trap();
  1063   // V8/V9 flush_windows
  1064   void flush_windows();
  1066   // Support for serializing memory accesses between threads
  1067   void serialize_memory(Register thread, Register tmp1, Register tmp2);
  1069   // Stack frame creation/removal
  1070   void enter();
  1071   void leave();
  1073   // V8/V9 integer multiply
  1074   void mult(Register s1, Register s2, Register d);
  1075   void mult(Register s1, int simm13a, Register d);
  1077   // V8/V9 read and write of condition codes.
  1078   void read_ccr(Register d);
  1079   void write_ccr(Register s);
  1081   // Manipulation of C++ bools
  1082   // These are idioms to flag the need for care with accessing bools but on
  1083   // this platform we assume byte size
  1085   inline void stbool(Register d, const Address& a) { stb(d, a); }
  1086   inline void ldbool(const Address& a, Register d) { ldub(a, d); }
  1087   inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
  1089   // klass oop manipulations if compressed
  1090   void load_klass(Register src_oop, Register klass);
  1091   void store_klass(Register klass, Register dst_oop);
  1092   void store_klass_gap(Register s, Register dst_oop);
  1094    // oop manipulations
  1095   void load_heap_oop(const Address& s, Register d);
  1096   void load_heap_oop(Register s1, Register s2, Register d);
  1097   void load_heap_oop(Register s1, int simm13a, Register d);
  1098   void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
  1099   void store_heap_oop(Register d, Register s1, Register s2);
  1100   void store_heap_oop(Register d, Register s1, int simm13a);
  1101   void store_heap_oop(Register d, const Address& a, int offset = 0);
  1103   void encode_heap_oop(Register src, Register dst);
  1104   void encode_heap_oop(Register r) {
  1105     encode_heap_oop(r, r);
  1107   void decode_heap_oop(Register src, Register dst);
  1108   void decode_heap_oop(Register r) {
  1109     decode_heap_oop(r, r);
  1111   void encode_heap_oop_not_null(Register r);
  1112   void decode_heap_oop_not_null(Register r);
  1113   void encode_heap_oop_not_null(Register src, Register dst);
  1114   void decode_heap_oop_not_null(Register src, Register dst);
  1116   void encode_klass_not_null(Register r);
  1117   void decode_klass_not_null(Register r);
  1118   void encode_klass_not_null(Register src, Register dst);
  1119   void decode_klass_not_null(Register src, Register dst);
  1121   // Support for managing the JavaThread pointer (i.e.; the reference to
  1122   // thread-local information).
  1123   void get_thread();                                // load G2_thread
  1124   void verify_thread();                             // verify G2_thread contents
  1125   void save_thread   (const Register threache); // save to cache
  1126   void restore_thread(const Register thread_cache); // restore from cache
  1128   // Support for last Java frame (but use call_VM instead where possible)
  1129   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
  1130   void reset_last_Java_frame(void);
  1132   // Call into the VM.
  1133   // Passes the thread pointer (in O0) as a prepended argument.
  1134   // Makes sure oop return values are visible to the GC.
  1135   void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1136   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
  1137   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1138   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1140   // these overloadings are not presently used on SPARC:
  1141   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1142   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  1143   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1144   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1146   void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
  1147   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
  1148   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
  1149   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
  1151   void get_vm_result  (Register oop_result);
  1152   void get_vm_result_2(Register metadata_result);
  1154   // vm result is currently getting hijacked to for oop preservation
  1155   void set_vm_result(Register oop_result);
  1157   // Emit the CompiledIC call idiom
  1158   void ic_call(address entry, bool emit_delay = true);
  1160   // if call_VM_base was called with check_exceptions=false, then call
  1161   // check_and_forward_exception to handle exceptions when it is safe
  1162   void check_and_forward_exception(Register scratch_reg);
  1164  private:
  1165   // For V8
  1166   void read_ccr_trap(Register ccr_save);
  1167   void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
  1169 #ifdef ASSERT
  1170   // For V8 debugging.  Uses V8 instruction sequence and checks
  1171   // result with V9 insturctions rdccr and wrccr.
  1172   // Uses Gscatch and Gscatch2
  1173   void read_ccr_v8_assert(Register ccr_save);
  1174   void write_ccr_v8_assert(Register ccr_save);
  1175 #endif // ASSERT
  1177  public:
  1179   // Write to card table for - register is destroyed afterwards.
  1180   void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
  1182   void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  1184 #ifndef SERIALGC
  1185   // General G1 pre-barrier generator.
  1186   void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
  1188   // General G1 post-barrier generator
  1189   void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  1190 #endif // SERIALGC
  1192   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1193   void push_fTOS();
  1195   // pops double TOS element from CPU stack and pushes on FPU stack
  1196   void pop_fTOS();
  1198   void empty_FPU_stack();
  1200   void push_IU_state();
  1201   void pop_IU_state();
  1203   void push_FPU_state();
  1204   void pop_FPU_state();
  1206   void push_CPU_state();
  1207   void pop_CPU_state();
  1209   // if heap base register is used - reinit it with the correct value
  1210   void reinit_heapbase();
  1212   // Debugging
  1213   void _verify_oop(Register reg, const char * msg, const char * file, int line);
  1214   void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
  1216   // TODO: verify_method and klass metadata (compare against vptr?)
  1217   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  1218   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
  1220 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
  1221 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
  1222 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
  1223 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
  1225         // only if +VerifyOops
  1226   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1227         // only if +VerifyFPU
  1228   void stop(const char* msg);                          // prints msg, dumps registers and stops execution
  1229   void warn(const char* msg);                          // prints msg, but don't stop
  1230   void untested(const char* what = "");
  1231   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  1232   void should_not_reach_here()                   { stop("should not reach here"); }
  1233   void print_CPU_state();
  1235   // oops in code
  1236   AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
  1237   AddressLiteral constant_oop_address(jobject obj);                          // find_index
  1238   inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
  1239   inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
  1240   inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
  1242   // metadata in code that we have to keep track of
  1243   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
  1244   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
  1245   inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
  1246   inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
  1247   inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
  1249   void set_narrow_oop( jobject obj, Register d );
  1250   void set_narrow_klass( Klass* k, Register d );
  1252   // nop padding
  1253   void align(int modulus);
  1255   // declare a safepoint
  1256   void safepoint();
  1258   // factor out part of stop into subroutine to save space
  1259   void stop_subroutine();
  1260   // factor out part of verify_oop into subroutine to save space
  1261   void verify_oop_subroutine();
  1263   // side-door communication with signalHandler in os_solaris.cpp
  1264   static address _verify_oop_implicit_branch[3];
  1266   int total_frame_size_in_bytes(int extraWords);
  1268   // used when extraWords known statically
  1269   void save_frame(int extraWords = 0);
  1270   void save_frame_c1(int size_in_bytes);
  1271   // make a frame, and simultaneously pass up one or two register value
  1272   // into the new register window
  1273   void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
  1275   // give no. (outgoing) params, calc # of words will need on frame
  1276   void calc_mem_param_words(Register Rparam_words, Register Rresult);
  1278   // used to calculate frame size dynamically
  1279   // result is in bytes and must be negated for save inst
  1280   void calc_frame_size(Register extraWords, Register resultReg);
  1282   // calc and also save
  1283   void calc_frame_size_and_save(Register extraWords, Register resultReg);
  1285   static void debug(char* msg, RegistersForDebugging* outWindow);
  1287   // implementations of bytecodes used by both interpreter and compiler
  1289   void lcmp( Register Ra_hi, Register Ra_low,
  1290              Register Rb_hi, Register Rb_low,
  1291              Register Rresult);
  1293   void lneg( Register Rhi, Register Rlow );
  1295   void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
  1296               Register Rout_high, Register Rout_low, Register Rtemp );
  1298   void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
  1299               Register Rout_high, Register Rout_low, Register Rtemp );
  1301   void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
  1302               Register Rout_high, Register Rout_low, Register Rtemp );
  1304 #ifdef _LP64
  1305   void lcmp( Register Ra, Register Rb, Register Rresult);
  1306 #endif
  1308   // Load and store values by size and signed-ness
  1309   void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
  1310   void store_sized_value(Register src, Address dst, size_t size_in_bytes);
  1312   void float_cmp( bool is_float, int unordered_result,
  1313                   FloatRegister Fa, FloatRegister Fb,
  1314                   Register Rresult);
  1316   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1317   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
  1318   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1319   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  1321   void save_all_globals_into_locals();
  1322   void restore_globals_from_locals();
  1324   void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  1325     address lock_addr=0, bool use_call_vm=false);
  1326   void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  1327     address lock_addr=0, bool use_call_vm=false);
  1328   void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
  1330   // These set the icc condition code to equal if the lock succeeded
  1331   // and notEqual if it failed and requires a slow case
  1332   void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
  1333                             Register Rscratch,
  1334                             BiasedLockingCounters* counters = NULL,
  1335                             bool try_bias = UseBiasedLocking);
  1336   void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
  1337                               Register Rscratch,
  1338                               bool try_bias = UseBiasedLocking);
  1340   // Biased locking support
  1341   // Upon entry, lock_reg must point to the lock record on the stack,
  1342   // obj_reg must contain the target object, and mark_reg must contain
  1343   // the target object's header.
  1344   // Destroys mark_reg if an attempt is made to bias an anonymously
  1345   // biased lock. In this case a failure will go either to the slow
  1346   // case or fall through with the notEqual condition code set with
  1347   // the expectation that the slow case in the runtime will be called.
  1348   // In the fall-through case where the CAS-based lock is done,
  1349   // mark_reg is not destroyed.
  1350   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  1351                             Label& done, Label* slow_case = NULL,
  1352                             BiasedLockingCounters* counters = NULL);
  1353   // Upon entry, the base register of mark_addr must contain the oop.
  1354   // Destroys temp_reg.
  1356   // If allow_delay_slot_filling is set to true, the next instruction
  1357   // emitted after this one will go in an annulled delay slot if the
  1358   // biased locking exit case failed.
  1359   void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
  1361   // allocation
  1362   void eden_allocate(
  1363     Register obj,                      // result: pointer to object after successful allocation
  1364     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1365     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1366     Register t1,                       // temp register
  1367     Register t2,                       // temp register
  1368     Label&   slow_case                 // continuation point if fast allocation fails
  1369   );
  1370   void tlab_allocate(
  1371     Register obj,                      // result: pointer to object after successful allocation
  1372     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1373     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1374     Register t1,                       // temp register
  1375     Label&   slow_case                 // continuation point if fast allocation fails
  1376   );
  1377   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1378   void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  1379                             Register t1, Register t2);
  1381   // interface method calling
  1382   void lookup_interface_method(Register recv_klass,
  1383                                Register intf_klass,
  1384                                RegisterOrConstant itable_index,
  1385                                Register method_result,
  1386                                Register temp_reg, Register temp2_reg,
  1387                                Label& no_such_interface);
  1389   // virtual method calling
  1390   void lookup_virtual_method(Register recv_klass,
  1391                              RegisterOrConstant vtable_index,
  1392                              Register method_result);
  1394   // Test sub_klass against super_klass, with fast and slow paths.
  1396   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  1397   // One of the three labels can be NULL, meaning take the fall-through.
  1398   // If super_check_offset is -1, the value is loaded up from super_klass.
  1399   // No registers are killed, except temp_reg and temp2_reg.
  1400   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
  1401   void check_klass_subtype_fast_path(Register sub_klass,
  1402                                      Register super_klass,
  1403                                      Register temp_reg,
  1404                                      Register temp2_reg,
  1405                                      Label* L_success,
  1406                                      Label* L_failure,
  1407                                      Label* L_slow_path,
  1408                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  1410   // The rest of the type check; must be wired to a corresponding fast path.
  1411   // It does not repeat the fast path logic, so don't use it standalone.
  1412   // The temp_reg can be noreg, if no temps are available.
  1413   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
  1414   // Updates the sub's secondary super cache as necessary.
  1415   void check_klass_subtype_slow_path(Register sub_klass,
  1416                                      Register super_klass,
  1417                                      Register temp_reg,
  1418                                      Register temp2_reg,
  1419                                      Register temp3_reg,
  1420                                      Register temp4_reg,
  1421                                      Label* L_success,
  1422                                      Label* L_failure);
  1424   // Simplified, combined version, good for typical uses.
  1425   // Falls through on failure.
  1426   void check_klass_subtype(Register sub_klass,
  1427                            Register super_klass,
  1428                            Register temp_reg,
  1429                            Register temp2_reg,
  1430                            Label& L_success);
  1432   // method handles (JSR 292)
  1433   // offset relative to Gargs of argument at tos[arg_slot].
  1434   // (arg_slot == 0 means the last argument, not the first).
  1435   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
  1436                                      Register temp_reg,
  1437                                      int extra_slot_offset = 0);
  1438   // Address of Gargs and argument_offset.
  1439   Address            argument_address(RegisterOrConstant arg_slot,
  1440                                       Register temp_reg = noreg,
  1441                                       int extra_slot_offset = 0);
  1443   // Stack overflow checking
  1445   // Note: this clobbers G3_scratch
  1446   void bang_stack_with_offset(int offset) {
  1447     // stack grows down, caller passes positive offset
  1448     assert(offset > 0, "must bang with negative offset");
  1449     set((-offset)+STACK_BIAS, G3_scratch);
  1450     st(G0, SP, G3_scratch);
  1453   // Writes to stack successive pages until offset reached to check for
  1454   // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
  1455   void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
  1457   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
  1459   void verify_tlab();
  1461   Condition negate_condition(Condition cond);
  1463   // Helper functions for statistics gathering.
  1464   // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
  1465   void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
  1466   // Unconditional increment.
  1467   void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
  1468   void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
  1470   // Compare char[] arrays aligned to 4 bytes.
  1471   void char_arrays_equals(Register ary1, Register ary2,
  1472                           Register limit, Register result,
  1473                           Register chr1, Register chr2, Label& Ldone);
  1474   // Use BIS for zeroing
  1475   void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
  1477 #undef VIRTUAL
  1478 };
  1480 /**
  1481  * class SkipIfEqual:
  1483  * Instantiating this class will result in assembly code being output that will
  1484  * jump around any code emitted between the creation of the instance and it's
  1485  * automatic destruction at the end of a scope block, depending on the value of
  1486  * the flag passed to the constructor, which will be checked at run-time.
  1487  */
  1488 class SkipIfEqual : public StackObj {
  1489  private:
  1490   MacroAssembler* _masm;
  1491   Label _label;
  1493  public:
  1494    // 'temp' is a temp register that this object can use (and trash)
  1495    SkipIfEqual(MacroAssembler*, Register temp,
  1496                const bool* flag_addr, Assembler::Condition condition);
  1497    ~SkipIfEqual();
  1498 };
  1500 #endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP

mercurial