src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Fri, 19 Aug 2011 09:30:59 +0200

author
brutisso
date
Fri, 19 Aug 2011 09:30:59 +0200
changeset 3065
ff53346271fe
parent 3028
f44782f04dd4
child 3067
7f776886a215
permissions
-rw-r--r--

6814390: G1: remove the concept of non-generational G1
Summary: Removed the possibility to turn off generational mode for G1.
Reviewed-by: johnc, ysr, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1MarkSweep.hpp"
    35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    39 #include "gc_implementation/g1/vm_operations_g1.hpp"
    40 #include "gc_implementation/shared/isGCActiveMark.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/genOopClosures.inline.hpp"
    43 #include "memory/generationSpec.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.pcgc.inline.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/vmThread.hpp"
    49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    51 // turn it on so that the contents of the young list (scan-only /
    52 // to-be-collected) are printed at "strategic" points before / during
    53 // / after the collection --- this is useful for debugging
    54 #define YOUNG_LIST_VERBOSE 0
    55 // CURRENT STATUS
    56 // This file is under construction.  Search for "FIXME".
    58 // INVARIANTS/NOTES
    59 //
    60 // All allocation activity covered by the G1CollectedHeap interface is
    61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    62 // and allocate_new_tlab, which are the "entry" points to the
    63 // allocation code from the rest of the JVM.  (Note that this does not
    64 // apply to TLAB allocation, which is not part of this interface: it
    65 // is done by clients of this interface.)
    67 // Local to this file.
    69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    70   SuspendibleThreadSet* _sts;
    71   G1RemSet* _g1rs;
    72   ConcurrentG1Refine* _cg1r;
    73   bool _concurrent;
    74 public:
    75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    76                               G1RemSet* g1rs,
    77                               ConcurrentG1Refine* cg1r) :
    78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    79   {}
    80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    82     // This path is executed by the concurrent refine or mutator threads,
    83     // concurrently, and so we do not care if card_ptr contains references
    84     // that point into the collection set.
    85     assert(!oops_into_cset, "should be");
    87     if (_concurrent && _sts->should_yield()) {
    88       // Caller will actually yield.
    89       return false;
    90     }
    91     // Otherwise, we finished successfully; return true.
    92     return true;
    93   }
    94   void set_concurrent(bool b) { _concurrent = b; }
    95 };
    98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    99   int _calls;
   100   G1CollectedHeap* _g1h;
   101   CardTableModRefBS* _ctbs;
   102   int _histo[256];
   103 public:
   104   ClearLoggedCardTableEntryClosure() :
   105     _calls(0)
   106   {
   107     _g1h = G1CollectedHeap::heap();
   108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   109     for (int i = 0; i < 256; i++) _histo[i] = 0;
   110   }
   111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   113       _calls++;
   114       unsigned char* ujb = (unsigned char*)card_ptr;
   115       int ind = (int)(*ujb);
   116       _histo[ind]++;
   117       *card_ptr = -1;
   118     }
   119     return true;
   120   }
   121   int calls() { return _calls; }
   122   void print_histo() {
   123     gclog_or_tty->print_cr("Card table value histogram:");
   124     for (int i = 0; i < 256; i++) {
   125       if (_histo[i] != 0) {
   126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   127       }
   128     }
   129   }
   130 };
   132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   133   int _calls;
   134   G1CollectedHeap* _g1h;
   135   CardTableModRefBS* _ctbs;
   136 public:
   137   RedirtyLoggedCardTableEntryClosure() :
   138     _calls(0)
   139   {
   140     _g1h = G1CollectedHeap::heap();
   141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   142   }
   143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   145       _calls++;
   146       *card_ptr = 0;
   147     }
   148     return true;
   149   }
   150   int calls() { return _calls; }
   151 };
   153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   154 public:
   155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   156     *card_ptr = CardTableModRefBS::dirty_card_val();
   157     return true;
   158   }
   159 };
   161 YoungList::YoungList(G1CollectedHeap* g1h)
   162   : _g1h(g1h), _head(NULL),
   163     _length(0),
   164     _last_sampled_rs_lengths(0),
   165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   166 {
   167   guarantee( check_list_empty(false), "just making sure..." );
   168 }
   170 void YoungList::push_region(HeapRegion *hr) {
   171   assert(!hr->is_young(), "should not already be young");
   172   assert(hr->get_next_young_region() == NULL, "cause it should!");
   174   hr->set_next_young_region(_head);
   175   _head = hr;
   177   hr->set_young();
   178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   179   ++_length;
   180 }
   182 void YoungList::add_survivor_region(HeapRegion* hr) {
   183   assert(hr->is_survivor(), "should be flagged as survivor region");
   184   assert(hr->get_next_young_region() == NULL, "cause it should!");
   186   hr->set_next_young_region(_survivor_head);
   187   if (_survivor_head == NULL) {
   188     _survivor_tail = hr;
   189   }
   190   _survivor_head = hr;
   192   ++_survivor_length;
   193 }
   195 void YoungList::empty_list(HeapRegion* list) {
   196   while (list != NULL) {
   197     HeapRegion* next = list->get_next_young_region();
   198     list->set_next_young_region(NULL);
   199     list->uninstall_surv_rate_group();
   200     list->set_not_young();
   201     list = next;
   202   }
   203 }
   205 void YoungList::empty_list() {
   206   assert(check_list_well_formed(), "young list should be well formed");
   208   empty_list(_head);
   209   _head = NULL;
   210   _length = 0;
   212   empty_list(_survivor_head);
   213   _survivor_head = NULL;
   214   _survivor_tail = NULL;
   215   _survivor_length = 0;
   217   _last_sampled_rs_lengths = 0;
   219   assert(check_list_empty(false), "just making sure...");
   220 }
   222 bool YoungList::check_list_well_formed() {
   223   bool ret = true;
   225   size_t length = 0;
   226   HeapRegion* curr = _head;
   227   HeapRegion* last = NULL;
   228   while (curr != NULL) {
   229     if (!curr->is_young()) {
   230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   231                              "incorrectly tagged (y: %d, surv: %d)",
   232                              curr->bottom(), curr->end(),
   233                              curr->is_young(), curr->is_survivor());
   234       ret = false;
   235     }
   236     ++length;
   237     last = curr;
   238     curr = curr->get_next_young_region();
   239   }
   240   ret = ret && (length == _length);
   242   if (!ret) {
   243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   245                            length, _length);
   246   }
   248   return ret;
   249 }
   251 bool YoungList::check_list_empty(bool check_sample) {
   252   bool ret = true;
   254   if (_length != 0) {
   255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   256                   _length);
   257     ret = false;
   258   }
   259   if (check_sample && _last_sampled_rs_lengths != 0) {
   260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   261     ret = false;
   262   }
   263   if (_head != NULL) {
   264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   265     ret = false;
   266   }
   267   if (!ret) {
   268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   269   }
   271   return ret;
   272 }
   274 void
   275 YoungList::rs_length_sampling_init() {
   276   _sampled_rs_lengths = 0;
   277   _curr               = _head;
   278 }
   280 bool
   281 YoungList::rs_length_sampling_more() {
   282   return _curr != NULL;
   283 }
   285 void
   286 YoungList::rs_length_sampling_next() {
   287   assert( _curr != NULL, "invariant" );
   288   size_t rs_length = _curr->rem_set()->occupied();
   290   _sampled_rs_lengths += rs_length;
   292   // The current region may not yet have been added to the
   293   // incremental collection set (it gets added when it is
   294   // retired as the current allocation region).
   295   if (_curr->in_collection_set()) {
   296     // Update the collection set policy information for this region
   297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   298   }
   300   _curr = _curr->get_next_young_region();
   301   if (_curr == NULL) {
   302     _last_sampled_rs_lengths = _sampled_rs_lengths;
   303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   304   }
   305 }
   307 void
   308 YoungList::reset_auxilary_lists() {
   309   guarantee( is_empty(), "young list should be empty" );
   310   assert(check_list_well_formed(), "young list should be well formed");
   312   // Add survivor regions to SurvRateGroup.
   313   _g1h->g1_policy()->note_start_adding_survivor_regions();
   314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   316   for (HeapRegion* curr = _survivor_head;
   317        curr != NULL;
   318        curr = curr->get_next_young_region()) {
   319     _g1h->g1_policy()->set_region_survivors(curr);
   321     // The region is a non-empty survivor so let's add it to
   322     // the incremental collection set for the next evacuation
   323     // pause.
   324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   325   }
   326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   328   _head   = _survivor_head;
   329   _length = _survivor_length;
   330   if (_survivor_head != NULL) {
   331     assert(_survivor_tail != NULL, "cause it shouldn't be");
   332     assert(_survivor_length > 0, "invariant");
   333     _survivor_tail->set_next_young_region(NULL);
   334   }
   336   // Don't clear the survivor list handles until the start of
   337   // the next evacuation pause - we need it in order to re-tag
   338   // the survivor regions from this evacuation pause as 'young'
   339   // at the start of the next.
   341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   343   assert(check_list_well_formed(), "young list should be well formed");
   344 }
   346 void YoungList::print() {
   347   HeapRegion* lists[] = {_head,   _survivor_head};
   348   const char* names[] = {"YOUNG", "SURVIVOR"};
   350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   352     HeapRegion *curr = lists[list];
   353     if (curr == NULL)
   354       gclog_or_tty->print_cr("  empty");
   355     while (curr != NULL) {
   356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   357                              "age: %4d, y: %d, surv: %d",
   358                              curr->bottom(), curr->end(),
   359                              curr->top(),
   360                              curr->prev_top_at_mark_start(),
   361                              curr->next_top_at_mark_start(),
   362                              curr->top_at_conc_mark_count(),
   363                              curr->age_in_surv_rate_group_cond(),
   364                              curr->is_young(),
   365                              curr->is_survivor());
   366       curr = curr->get_next_young_region();
   367     }
   368   }
   370   gclog_or_tty->print_cr("");
   371 }
   373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   374 {
   375   // Claim the right to put the region on the dirty cards region list
   376   // by installing a self pointer.
   377   HeapRegion* next = hr->get_next_dirty_cards_region();
   378   if (next == NULL) {
   379     HeapRegion* res = (HeapRegion*)
   380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   381                           NULL);
   382     if (res == NULL) {
   383       HeapRegion* head;
   384       do {
   385         // Put the region to the dirty cards region list.
   386         head = _dirty_cards_region_list;
   387         next = (HeapRegion*)
   388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   389         if (next == head) {
   390           assert(hr->get_next_dirty_cards_region() == hr,
   391                  "hr->get_next_dirty_cards_region() != hr");
   392           if (next == NULL) {
   393             // The last region in the list points to itself.
   394             hr->set_next_dirty_cards_region(hr);
   395           } else {
   396             hr->set_next_dirty_cards_region(next);
   397           }
   398         }
   399       } while (next != head);
   400     }
   401   }
   402 }
   404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   405 {
   406   HeapRegion* head;
   407   HeapRegion* hr;
   408   do {
   409     head = _dirty_cards_region_list;
   410     if (head == NULL) {
   411       return NULL;
   412     }
   413     HeapRegion* new_head = head->get_next_dirty_cards_region();
   414     if (head == new_head) {
   415       // The last region.
   416       new_head = NULL;
   417     }
   418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   419                                           head);
   420   } while (hr != head);
   421   assert(hr != NULL, "invariant");
   422   hr->set_next_dirty_cards_region(NULL);
   423   return hr;
   424 }
   426 void G1CollectedHeap::stop_conc_gc_threads() {
   427   _cg1r->stop();
   428   _cmThread->stop();
   429 }
   431 #ifdef ASSERT
   432 // A region is added to the collection set as it is retired
   433 // so an address p can point to a region which will be in the
   434 // collection set but has not yet been retired.  This method
   435 // therefore is only accurate during a GC pause after all
   436 // regions have been retired.  It is used for debugging
   437 // to check if an nmethod has references to objects that can
   438 // be move during a partial collection.  Though it can be
   439 // inaccurate, it is sufficient for G1 because the conservative
   440 // implementation of is_scavengable() for G1 will indicate that
   441 // all nmethods must be scanned during a partial collection.
   442 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   443   HeapRegion* hr = heap_region_containing(p);
   444   return hr != NULL && hr->in_collection_set();
   445 }
   446 #endif
   448 // Returns true if the reference points to an object that
   449 // can move in an incremental collecction.
   450 bool G1CollectedHeap::is_scavengable(const void* p) {
   451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   452   G1CollectorPolicy* g1p = g1h->g1_policy();
   453   HeapRegion* hr = heap_region_containing(p);
   454   if (hr == NULL) {
   455      // perm gen (or null)
   456      return false;
   457   } else {
   458     return !hr->isHumongous();
   459   }
   460 }
   462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   464   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   466   // Count the dirty cards at the start.
   467   CountNonCleanMemRegionClosure count1(this);
   468   ct_bs->mod_card_iterate(&count1);
   469   int orig_count = count1.n();
   471   // First clear the logged cards.
   472   ClearLoggedCardTableEntryClosure clear;
   473   dcqs.set_closure(&clear);
   474   dcqs.apply_closure_to_all_completed_buffers();
   475   dcqs.iterate_closure_all_threads(false);
   476   clear.print_histo();
   478   // Now ensure that there's no dirty cards.
   479   CountNonCleanMemRegionClosure count2(this);
   480   ct_bs->mod_card_iterate(&count2);
   481   if (count2.n() != 0) {
   482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   483                            count2.n(), orig_count);
   484   }
   485   guarantee(count2.n() == 0, "Card table should be clean.");
   487   RedirtyLoggedCardTableEntryClosure redirty;
   488   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   489   dcqs.apply_closure_to_all_completed_buffers();
   490   dcqs.iterate_closure_all_threads(false);
   491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   492                          clear.calls(), orig_count);
   493   guarantee(redirty.calls() == clear.calls(),
   494             "Or else mechanism is broken.");
   496   CountNonCleanMemRegionClosure count3(this);
   497   ct_bs->mod_card_iterate(&count3);
   498   if (count3.n() != orig_count) {
   499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   500                            orig_count, count3.n());
   501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   502   }
   504   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   505 }
   507 // Private class members.
   509 G1CollectedHeap* G1CollectedHeap::_g1h;
   511 // Private methods.
   513 HeapRegion*
   514 G1CollectedHeap::new_region_try_secondary_free_list() {
   515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   517     if (!_secondary_free_list.is_empty()) {
   518       if (G1ConcRegionFreeingVerbose) {
   519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   520                                "secondary_free_list has "SIZE_FORMAT" entries",
   521                                _secondary_free_list.length());
   522       }
   523       // It looks as if there are free regions available on the
   524       // secondary_free_list. Let's move them to the free_list and try
   525       // again to allocate from it.
   526       append_secondary_free_list();
   528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   529              "empty we should have moved at least one entry to the free_list");
   530       HeapRegion* res = _free_list.remove_head();
   531       if (G1ConcRegionFreeingVerbose) {
   532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   533                                "allocated "HR_FORMAT" from secondary_free_list",
   534                                HR_FORMAT_PARAMS(res));
   535       }
   536       return res;
   537     }
   539     // Wait here until we get notifed either when (a) there are no
   540     // more free regions coming or (b) some regions have been moved on
   541     // the secondary_free_list.
   542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   543   }
   545   if (G1ConcRegionFreeingVerbose) {
   546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   547                            "could not allocate from secondary_free_list");
   548   }
   549   return NULL;
   550 }
   552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   553   assert(!isHumongous(word_size) ||
   554                                   word_size <= (size_t) HeapRegion::GrainWords,
   555          "the only time we use this to allocate a humongous region is "
   556          "when we are allocating a single humongous region");
   558   HeapRegion* res;
   559   if (G1StressConcRegionFreeing) {
   560     if (!_secondary_free_list.is_empty()) {
   561       if (G1ConcRegionFreeingVerbose) {
   562         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   563                                "forced to look at the secondary_free_list");
   564       }
   565       res = new_region_try_secondary_free_list();
   566       if (res != NULL) {
   567         return res;
   568       }
   569     }
   570   }
   571   res = _free_list.remove_head_or_null();
   572   if (res == NULL) {
   573     if (G1ConcRegionFreeingVerbose) {
   574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   575                              "res == NULL, trying the secondary_free_list");
   576     }
   577     res = new_region_try_secondary_free_list();
   578   }
   579   if (res == NULL && do_expand) {
   580     if (expand(word_size * HeapWordSize)) {
   581       // Even though the heap was expanded, it might not have reached
   582       // the desired size. So, we cannot assume that the allocation
   583       // will succeed.
   584       res = _free_list.remove_head_or_null();
   585     }
   586   }
   587   return res;
   588 }
   590 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   591                                                           size_t word_size) {
   592   assert(isHumongous(word_size), "word_size should be humongous");
   593   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   595   size_t first = G1_NULL_HRS_INDEX;
   596   if (num_regions == 1) {
   597     // Only one region to allocate, no need to go through the slower
   598     // path. The caller will attempt the expasion if this fails, so
   599     // let's not try to expand here too.
   600     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   601     if (hr != NULL) {
   602       first = hr->hrs_index();
   603     } else {
   604       first = G1_NULL_HRS_INDEX;
   605     }
   606   } else {
   607     // We can't allocate humongous regions while cleanupComplete() is
   608     // running, since some of the regions we find to be empty might not
   609     // yet be added to the free list and it is not straightforward to
   610     // know which list they are on so that we can remove them. Note
   611     // that we only need to do this if we need to allocate more than
   612     // one region to satisfy the current humongous allocation
   613     // request. If we are only allocating one region we use the common
   614     // region allocation code (see above).
   615     wait_while_free_regions_coming();
   616     append_secondary_free_list_if_not_empty_with_lock();
   618     if (free_regions() >= num_regions) {
   619       first = _hrs.find_contiguous(num_regions);
   620       if (first != G1_NULL_HRS_INDEX) {
   621         for (size_t i = first; i < first + num_regions; ++i) {
   622           HeapRegion* hr = region_at(i);
   623           assert(hr->is_empty(), "sanity");
   624           assert(is_on_master_free_list(hr), "sanity");
   625           hr->set_pending_removal(true);
   626         }
   627         _free_list.remove_all_pending(num_regions);
   628       }
   629     }
   630   }
   631   return first;
   632 }
   634 HeapWord*
   635 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
   636                                                            size_t num_regions,
   637                                                            size_t word_size) {
   638   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   639   assert(isHumongous(word_size), "word_size should be humongous");
   640   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   642   // Index of last region in the series + 1.
   643   size_t last = first + num_regions;
   645   // We need to initialize the region(s) we just discovered. This is
   646   // a bit tricky given that it can happen concurrently with
   647   // refinement threads refining cards on these regions and
   648   // potentially wanting to refine the BOT as they are scanning
   649   // those cards (this can happen shortly after a cleanup; see CR
   650   // 6991377). So we have to set up the region(s) carefully and in
   651   // a specific order.
   653   // The word size sum of all the regions we will allocate.
   654   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   655   assert(word_size <= word_size_sum, "sanity");
   657   // This will be the "starts humongous" region.
   658   HeapRegion* first_hr = region_at(first);
   659   // The header of the new object will be placed at the bottom of
   660   // the first region.
   661   HeapWord* new_obj = first_hr->bottom();
   662   // This will be the new end of the first region in the series that
   663   // should also match the end of the last region in the seriers.
   664   HeapWord* new_end = new_obj + word_size_sum;
   665   // This will be the new top of the first region that will reflect
   666   // this allocation.
   667   HeapWord* new_top = new_obj + word_size;
   669   // First, we need to zero the header of the space that we will be
   670   // allocating. When we update top further down, some refinement
   671   // threads might try to scan the region. By zeroing the header we
   672   // ensure that any thread that will try to scan the region will
   673   // come across the zero klass word and bail out.
   674   //
   675   // NOTE: It would not have been correct to have used
   676   // CollectedHeap::fill_with_object() and make the space look like
   677   // an int array. The thread that is doing the allocation will
   678   // later update the object header to a potentially different array
   679   // type and, for a very short period of time, the klass and length
   680   // fields will be inconsistent. This could cause a refinement
   681   // thread to calculate the object size incorrectly.
   682   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   684   // We will set up the first region as "starts humongous". This
   685   // will also update the BOT covering all the regions to reflect
   686   // that there is a single object that starts at the bottom of the
   687   // first region.
   688   first_hr->set_startsHumongous(new_top, new_end);
   690   // Then, if there are any, we will set up the "continues
   691   // humongous" regions.
   692   HeapRegion* hr = NULL;
   693   for (size_t i = first + 1; i < last; ++i) {
   694     hr = region_at(i);
   695     hr->set_continuesHumongous(first_hr);
   696   }
   697   // If we have "continues humongous" regions (hr != NULL), then the
   698   // end of the last one should match new_end.
   699   assert(hr == NULL || hr->end() == new_end, "sanity");
   701   // Up to this point no concurrent thread would have been able to
   702   // do any scanning on any region in this series. All the top
   703   // fields still point to bottom, so the intersection between
   704   // [bottom,top] and [card_start,card_end] will be empty. Before we
   705   // update the top fields, we'll do a storestore to make sure that
   706   // no thread sees the update to top before the zeroing of the
   707   // object header and the BOT initialization.
   708   OrderAccess::storestore();
   710   // Now that the BOT and the object header have been initialized,
   711   // we can update top of the "starts humongous" region.
   712   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   713          "new_top should be in this region");
   714   first_hr->set_top(new_top);
   715   if (_hr_printer.is_active()) {
   716     HeapWord* bottom = first_hr->bottom();
   717     HeapWord* end = first_hr->orig_end();
   718     if ((first + 1) == last) {
   719       // the series has a single humongous region
   720       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   721     } else {
   722       // the series has more than one humongous regions
   723       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   724     }
   725   }
   727   // Now, we will update the top fields of the "continues humongous"
   728   // regions. The reason we need to do this is that, otherwise,
   729   // these regions would look empty and this will confuse parts of
   730   // G1. For example, the code that looks for a consecutive number
   731   // of empty regions will consider them empty and try to
   732   // re-allocate them. We can extend is_empty() to also include
   733   // !continuesHumongous(), but it is easier to just update the top
   734   // fields here. The way we set top for all regions (i.e., top ==
   735   // end for all regions but the last one, top == new_top for the
   736   // last one) is actually used when we will free up the humongous
   737   // region in free_humongous_region().
   738   hr = NULL;
   739   for (size_t i = first + 1; i < last; ++i) {
   740     hr = region_at(i);
   741     if ((i + 1) == last) {
   742       // last continues humongous region
   743       assert(hr->bottom() < new_top && new_top <= hr->end(),
   744              "new_top should fall on this region");
   745       hr->set_top(new_top);
   746       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   747     } else {
   748       // not last one
   749       assert(new_top > hr->end(), "new_top should be above this region");
   750       hr->set_top(hr->end());
   751       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   752     }
   753   }
   754   // If we have continues humongous regions (hr != NULL), then the
   755   // end of the last one should match new_end and its top should
   756   // match new_top.
   757   assert(hr == NULL ||
   758          (hr->end() == new_end && hr->top() == new_top), "sanity");
   760   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   761   _summary_bytes_used += first_hr->used();
   762   _humongous_set.add(first_hr);
   764   return new_obj;
   765 }
   767 // If could fit into free regions w/o expansion, try.
   768 // Otherwise, if can expand, do so.
   769 // Otherwise, if using ex regions might help, try with ex given back.
   770 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   773   verify_region_sets_optional();
   775   size_t num_regions =
   776          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   777   size_t x_size = expansion_regions();
   778   size_t fs = _hrs.free_suffix();
   779   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
   780   if (first == G1_NULL_HRS_INDEX) {
   781     // The only thing we can do now is attempt expansion.
   782     if (fs + x_size >= num_regions) {
   783       // If the number of regions we're trying to allocate for this
   784       // object is at most the number of regions in the free suffix,
   785       // then the call to humongous_obj_allocate_find_first() above
   786       // should have succeeded and we wouldn't be here.
   787       //
   788       // We should only be trying to expand when the free suffix is
   789       // not sufficient for the object _and_ we have some expansion
   790       // room available.
   791       assert(num_regions > fs, "earlier allocation should have succeeded");
   793       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   794         // Even though the heap was expanded, it might not have
   795         // reached the desired size. So, we cannot assume that the
   796         // allocation will succeed.
   797         first = humongous_obj_allocate_find_first(num_regions, word_size);
   798       }
   799     }
   800   }
   802   HeapWord* result = NULL;
   803   if (first != G1_NULL_HRS_INDEX) {
   804     result =
   805       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   806     assert(result != NULL, "it should always return a valid result");
   807   }
   809   verify_region_sets_optional();
   811   return result;
   812 }
   814 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   815   assert_heap_not_locked_and_not_at_safepoint();
   816   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   818   unsigned int dummy_gc_count_before;
   819   return attempt_allocation(word_size, &dummy_gc_count_before);
   820 }
   822 HeapWord*
   823 G1CollectedHeap::mem_allocate(size_t word_size,
   824                               bool*  gc_overhead_limit_was_exceeded) {
   825   assert_heap_not_locked_and_not_at_safepoint();
   827   // Loop until the allocation is satisified, or unsatisfied after GC.
   828   for (int try_count = 1; /* we'll return */; try_count += 1) {
   829     unsigned int gc_count_before;
   831     HeapWord* result = NULL;
   832     if (!isHumongous(word_size)) {
   833       result = attempt_allocation(word_size, &gc_count_before);
   834     } else {
   835       result = attempt_allocation_humongous(word_size, &gc_count_before);
   836     }
   837     if (result != NULL) {
   838       return result;
   839     }
   841     // Create the garbage collection operation...
   842     VM_G1CollectForAllocation op(gc_count_before, word_size);
   843     // ...and get the VM thread to execute it.
   844     VMThread::execute(&op);
   846     if (op.prologue_succeeded() && op.pause_succeeded()) {
   847       // If the operation was successful we'll return the result even
   848       // if it is NULL. If the allocation attempt failed immediately
   849       // after a Full GC, it's unlikely we'll be able to allocate now.
   850       HeapWord* result = op.result();
   851       if (result != NULL && !isHumongous(word_size)) {
   852         // Allocations that take place on VM operations do not do any
   853         // card dirtying and we have to do it here. We only have to do
   854         // this for non-humongous allocations, though.
   855         dirty_young_block(result, word_size);
   856       }
   857       return result;
   858     } else {
   859       assert(op.result() == NULL,
   860              "the result should be NULL if the VM op did not succeed");
   861     }
   863     // Give a warning if we seem to be looping forever.
   864     if ((QueuedAllocationWarningCount > 0) &&
   865         (try_count % QueuedAllocationWarningCount == 0)) {
   866       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   867     }
   868   }
   870   ShouldNotReachHere();
   871   return NULL;
   872 }
   874 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   875                                            unsigned int *gc_count_before_ret) {
   876   // Make sure you read the note in attempt_allocation_humongous().
   878   assert_heap_not_locked_and_not_at_safepoint();
   879   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   880          "be called for humongous allocation requests");
   882   // We should only get here after the first-level allocation attempt
   883   // (attempt_allocation()) failed to allocate.
   885   // We will loop until a) we manage to successfully perform the
   886   // allocation or b) we successfully schedule a collection which
   887   // fails to perform the allocation. b) is the only case when we'll
   888   // return NULL.
   889   HeapWord* result = NULL;
   890   for (int try_count = 1; /* we'll return */; try_count += 1) {
   891     bool should_try_gc;
   892     unsigned int gc_count_before;
   894     {
   895       MutexLockerEx x(Heap_lock);
   897       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   898                                                       false /* bot_updates */);
   899       if (result != NULL) {
   900         return result;
   901       }
   903       // If we reach here, attempt_allocation_locked() above failed to
   904       // allocate a new region. So the mutator alloc region should be NULL.
   905       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   907       if (GC_locker::is_active_and_needs_gc()) {
   908         if (g1_policy()->can_expand_young_list()) {
   909           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   910                                                       false /* bot_updates */);
   911           if (result != NULL) {
   912             return result;
   913           }
   914         }
   915         should_try_gc = false;
   916       } else {
   917         // Read the GC count while still holding the Heap_lock.
   918         gc_count_before = SharedHeap::heap()->total_collections();
   919         should_try_gc = true;
   920       }
   921     }
   923     if (should_try_gc) {
   924       bool succeeded;
   925       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   926       if (result != NULL) {
   927         assert(succeeded, "only way to get back a non-NULL result");
   928         return result;
   929       }
   931       if (succeeded) {
   932         // If we get here we successfully scheduled a collection which
   933         // failed to allocate. No point in trying to allocate
   934         // further. We'll just return NULL.
   935         MutexLockerEx x(Heap_lock);
   936         *gc_count_before_ret = SharedHeap::heap()->total_collections();
   937         return NULL;
   938       }
   939     } else {
   940       GC_locker::stall_until_clear();
   941     }
   943     // We can reach here if we were unsuccessul in scheduling a
   944     // collection (because another thread beat us to it) or if we were
   945     // stalled due to the GC locker. In either can we should retry the
   946     // allocation attempt in case another thread successfully
   947     // performed a collection and reclaimed enough space. We do the
   948     // first attempt (without holding the Heap_lock) here and the
   949     // follow-on attempt will be at the start of the next loop
   950     // iteration (after taking the Heap_lock).
   951     result = _mutator_alloc_region.attempt_allocation(word_size,
   952                                                       false /* bot_updates */);
   953     if (result != NULL ){
   954       return result;
   955     }
   957     // Give a warning if we seem to be looping forever.
   958     if ((QueuedAllocationWarningCount > 0) &&
   959         (try_count % QueuedAllocationWarningCount == 0)) {
   960       warning("G1CollectedHeap::attempt_allocation_slow() "
   961               "retries %d times", try_count);
   962     }
   963   }
   965   ShouldNotReachHere();
   966   return NULL;
   967 }
   969 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
   970                                           unsigned int * gc_count_before_ret) {
   971   // The structure of this method has a lot of similarities to
   972   // attempt_allocation_slow(). The reason these two were not merged
   973   // into a single one is that such a method would require several "if
   974   // allocation is not humongous do this, otherwise do that"
   975   // conditional paths which would obscure its flow. In fact, an early
   976   // version of this code did use a unified method which was harder to
   977   // follow and, as a result, it had subtle bugs that were hard to
   978   // track down. So keeping these two methods separate allows each to
   979   // be more readable. It will be good to keep these two in sync as
   980   // much as possible.
   982   assert_heap_not_locked_and_not_at_safepoint();
   983   assert(isHumongous(word_size), "attempt_allocation_humongous() "
   984          "should only be called for humongous allocations");
   986   // We will loop until a) we manage to successfully perform the
   987   // allocation or b) we successfully schedule a collection which
   988   // fails to perform the allocation. b) is the only case when we'll
   989   // return NULL.
   990   HeapWord* result = NULL;
   991   for (int try_count = 1; /* we'll return */; try_count += 1) {
   992     bool should_try_gc;
   993     unsigned int gc_count_before;
   995     {
   996       MutexLockerEx x(Heap_lock);
   998       // Given that humongous objects are not allocated in young
   999       // regions, we'll first try to do the allocation without doing a
  1000       // collection hoping that there's enough space in the heap.
  1001       result = humongous_obj_allocate(word_size);
  1002       if (result != NULL) {
  1003         return result;
  1006       if (GC_locker::is_active_and_needs_gc()) {
  1007         should_try_gc = false;
  1008       } else {
  1009         // Read the GC count while still holding the Heap_lock.
  1010         gc_count_before = SharedHeap::heap()->total_collections();
  1011         should_try_gc = true;
  1015     if (should_try_gc) {
  1016       // If we failed to allocate the humongous object, we should try to
  1017       // do a collection pause (if we're allowed) in case it reclaims
  1018       // enough space for the allocation to succeed after the pause.
  1020       bool succeeded;
  1021       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1022       if (result != NULL) {
  1023         assert(succeeded, "only way to get back a non-NULL result");
  1024         return result;
  1027       if (succeeded) {
  1028         // If we get here we successfully scheduled a collection which
  1029         // failed to allocate. No point in trying to allocate
  1030         // further. We'll just return NULL.
  1031         MutexLockerEx x(Heap_lock);
  1032         *gc_count_before_ret = SharedHeap::heap()->total_collections();
  1033         return NULL;
  1035     } else {
  1036       GC_locker::stall_until_clear();
  1039     // We can reach here if we were unsuccessul in scheduling a
  1040     // collection (because another thread beat us to it) or if we were
  1041     // stalled due to the GC locker. In either can we should retry the
  1042     // allocation attempt in case another thread successfully
  1043     // performed a collection and reclaimed enough space.  Give a
  1044     // warning if we seem to be looping forever.
  1046     if ((QueuedAllocationWarningCount > 0) &&
  1047         (try_count % QueuedAllocationWarningCount == 0)) {
  1048       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1049               "retries %d times", try_count);
  1053   ShouldNotReachHere();
  1054   return NULL;
  1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1058                                        bool expect_null_mutator_alloc_region) {
  1059   assert_at_safepoint(true /* should_be_vm_thread */);
  1060   assert(_mutator_alloc_region.get() == NULL ||
  1061                                              !expect_null_mutator_alloc_region,
  1062          "the current alloc region was unexpectedly found to be non-NULL");
  1064   if (!isHumongous(word_size)) {
  1065     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1066                                                       false /* bot_updates */);
  1067   } else {
  1068     return humongous_obj_allocate(word_size);
  1071   ShouldNotReachHere();
  1074 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1075   ModRefBarrierSet* _mr_bs;
  1076 public:
  1077   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1078   bool doHeapRegion(HeapRegion* r) {
  1079     r->reset_gc_time_stamp();
  1080     if (r->continuesHumongous())
  1081       return false;
  1082     HeapRegionRemSet* hrrs = r->rem_set();
  1083     if (hrrs != NULL) hrrs->clear();
  1084     // You might think here that we could clear just the cards
  1085     // corresponding to the used region.  But no: if we leave a dirty card
  1086     // in a region we might allocate into, then it would prevent that card
  1087     // from being enqueued, and cause it to be missed.
  1088     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1089     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1090     return false;
  1092 };
  1095 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1096   ModRefBarrierSet* _mr_bs;
  1097 public:
  1098   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1099   bool doHeapRegion(HeapRegion* r) {
  1100     if (r->continuesHumongous()) return false;
  1101     if (r->used_region().word_size() != 0) {
  1102       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1104     return false;
  1106 };
  1108 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1109   G1CollectedHeap*   _g1h;
  1110   UpdateRSOopClosure _cl;
  1111   int                _worker_i;
  1112 public:
  1113   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1114     _cl(g1->g1_rem_set(), worker_i),
  1115     _worker_i(worker_i),
  1116     _g1h(g1)
  1117   { }
  1119   bool doHeapRegion(HeapRegion* r) {
  1120     if (!r->continuesHumongous()) {
  1121       _cl.set_from(r);
  1122       r->oop_iterate(&_cl);
  1124     return false;
  1126 };
  1128 class ParRebuildRSTask: public AbstractGangTask {
  1129   G1CollectedHeap* _g1;
  1130 public:
  1131   ParRebuildRSTask(G1CollectedHeap* g1)
  1132     : AbstractGangTask("ParRebuildRSTask"),
  1133       _g1(g1)
  1134   { }
  1136   void work(int i) {
  1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
  1138     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
  1139                                          HeapRegion::RebuildRSClaimValue);
  1141 };
  1143 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1144 private:
  1145   G1HRPrinter* _hr_printer;
  1146 public:
  1147   bool doHeapRegion(HeapRegion* hr) {
  1148     assert(!hr->is_young(), "not expecting to find young regions");
  1149     // We only generate output for non-empty regions.
  1150     if (!hr->is_empty()) {
  1151       if (!hr->isHumongous()) {
  1152         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1153       } else if (hr->startsHumongous()) {
  1154         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
  1155           // single humongous region
  1156           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1157         } else {
  1158           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1160       } else {
  1161         assert(hr->continuesHumongous(), "only way to get here");
  1162         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1165     return false;
  1168   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1169     : _hr_printer(hr_printer) { }
  1170 };
  1172 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1173                                     bool clear_all_soft_refs,
  1174                                     size_t word_size) {
  1175   assert_at_safepoint(true /* should_be_vm_thread */);
  1177   if (GC_locker::check_active_before_gc()) {
  1178     return false;
  1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1182   ResourceMark rm;
  1184   if (PrintHeapAtGC) {
  1185     Universe::print_heap_before_gc();
  1188   verify_region_sets_optional();
  1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1191                            collector_policy()->should_clear_all_soft_refs();
  1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1196     IsGCActiveMark x;
  1198     // Timing
  1199     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1200     assert(!system_gc || explicit_gc, "invariant");
  1201     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1202     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1203     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1204                 PrintGC, true, gclog_or_tty);
  1206     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1207     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1209     double start = os::elapsedTime();
  1210     g1_policy()->record_full_collection_start();
  1212     wait_while_free_regions_coming();
  1213     append_secondary_free_list_if_not_empty_with_lock();
  1215     gc_prologue(true);
  1216     increment_total_collections(true /* full gc */);
  1218     size_t g1h_prev_used = used();
  1219     assert(used() == recalculate_used(), "Should be equal");
  1221     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1222       HandleMark hm;  // Discard invalid handles created during verification
  1223       gclog_or_tty->print(" VerifyBeforeGC:");
  1224       prepare_for_verify();
  1225       Universe::verify(/* allow dirty */ true,
  1226                        /* silent      */ false,
  1227                        /* option      */ VerifyOption_G1UsePrevMarking);
  1231     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1233     // We want to discover references, but not process them yet.
  1234     // This mode is disabled in
  1235     // instanceRefKlass::process_discovered_references if the
  1236     // generation does some collection work, or
  1237     // instanceRefKlass::enqueue_discovered_references if the
  1238     // generation returns without doing any work.
  1239     ref_processor()->disable_discovery();
  1240     ref_processor()->abandon_partial_discovery();
  1241     ref_processor()->verify_no_references_recorded();
  1243     // Abandon current iterations of concurrent marking and concurrent
  1244     // refinement, if any are in progress.
  1245     concurrent_mark()->abort();
  1247     // Make sure we'll choose a new allocation region afterwards.
  1248     release_mutator_alloc_region();
  1249     abandon_gc_alloc_regions();
  1250     g1_rem_set()->cleanupHRRS();
  1251     tear_down_region_lists();
  1253     // We should call this after we retire any currently active alloc
  1254     // regions so that all the ALLOC / RETIRE events are generated
  1255     // before the start GC event.
  1256     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1258     // We may have added regions to the current incremental collection
  1259     // set between the last GC or pause and now. We need to clear the
  1260     // incremental collection set and then start rebuilding it afresh
  1261     // after this full GC.
  1262     abandon_collection_set(g1_policy()->inc_cset_head());
  1263     g1_policy()->clear_incremental_cset();
  1264     g1_policy()->stop_incremental_cset_building();
  1266     empty_young_list();
  1267     g1_policy()->set_full_young_gcs(true);
  1269     // See the comment in G1CollectedHeap::ref_processing_init() about
  1270     // how reference processing currently works in G1.
  1272     // Temporarily make reference _discovery_ single threaded (non-MT).
  1273     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
  1275     // Temporarily make refs discovery atomic
  1276     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
  1278     // Temporarily clear _is_alive_non_header
  1279     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
  1281     ref_processor()->enable_discovery();
  1282     ref_processor()->setup_policy(do_clear_all_soft_refs);
  1283     // Do collection work
  1285       HandleMark hm;  // Discard invalid handles created during gc
  1286       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
  1288     assert(free_regions() == 0, "we should not have added any free regions");
  1289     rebuild_region_lists();
  1291     _summary_bytes_used = recalculate_used();
  1293     ref_processor()->enqueue_discovered_references();
  1295     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1297     MemoryService::track_memory_usage();
  1299     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1300       HandleMark hm;  // Discard invalid handles created during verification
  1301       gclog_or_tty->print(" VerifyAfterGC:");
  1302       prepare_for_verify();
  1303       Universe::verify(/* allow dirty */ false,
  1304                        /* silent      */ false,
  1305                        /* option      */ VerifyOption_G1UsePrevMarking);
  1308     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1310     reset_gc_time_stamp();
  1311     // Since everything potentially moved, we will clear all remembered
  1312     // sets, and clear all cards.  Later we will rebuild remebered
  1313     // sets. We will also reset the GC time stamps of the regions.
  1314     PostMCRemSetClearClosure rs_clear(mr_bs());
  1315     heap_region_iterate(&rs_clear);
  1317     // Resize the heap if necessary.
  1318     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1320     if (_hr_printer.is_active()) {
  1321       // We should do this after we potentially resize the heap so
  1322       // that all the COMMIT / UNCOMMIT events are generated before
  1323       // the end GC event.
  1325       PostCompactionPrinterClosure cl(hr_printer());
  1326       heap_region_iterate(&cl);
  1328       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1331     if (_cg1r->use_cache()) {
  1332       _cg1r->clear_and_record_card_counts();
  1333       _cg1r->clear_hot_cache();
  1336     // Rebuild remembered sets of all regions.
  1338     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1339       ParRebuildRSTask rebuild_rs_task(this);
  1340       assert(check_heap_region_claim_values(
  1341              HeapRegion::InitialClaimValue), "sanity check");
  1342       set_par_threads(workers()->total_workers());
  1343       workers()->run_task(&rebuild_rs_task);
  1344       set_par_threads(0);
  1345       assert(check_heap_region_claim_values(
  1346              HeapRegion::RebuildRSClaimValue), "sanity check");
  1347       reset_heap_region_claim_values();
  1348     } else {
  1349       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1350       heap_region_iterate(&rebuild_rs);
  1353     if (PrintGC) {
  1354       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1357     if (true) { // FIXME
  1358       // Ask the permanent generation to adjust size for full collections
  1359       perm()->compute_new_size();
  1362     // Start a new incremental collection set for the next pause
  1363     assert(g1_policy()->collection_set() == NULL, "must be");
  1364     g1_policy()->start_incremental_cset_building();
  1366     // Clear the _cset_fast_test bitmap in anticipation of adding
  1367     // regions to the incremental collection set for the next
  1368     // evacuation pause.
  1369     clear_cset_fast_test();
  1371     init_mutator_alloc_region();
  1373     double end = os::elapsedTime();
  1374     g1_policy()->record_full_collection_end();
  1376 #ifdef TRACESPINNING
  1377     ParallelTaskTerminator::print_termination_counts();
  1378 #endif
  1380     gc_epilogue(true);
  1382     // Discard all rset updates
  1383     JavaThread::dirty_card_queue_set().abandon_logs();
  1384     assert(!G1DeferredRSUpdate
  1385            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1388   _young_list->reset_sampled_info();
  1389   // At this point there should be no regions in the
  1390   // entire heap tagged as young.
  1391   assert( check_young_list_empty(true /* check_heap */),
  1392     "young list should be empty at this point");
  1394   // Update the number of full collections that have been completed.
  1395   increment_full_collections_completed(false /* concurrent */);
  1397   _hrs.verify_optional();
  1398   verify_region_sets_optional();
  1400   if (PrintHeapAtGC) {
  1401     Universe::print_heap_after_gc();
  1403   g1mm()->update_counters();
  1405   return true;
  1408 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1409   // do_collection() will return whether it succeeded in performing
  1410   // the GC. Currently, there is no facility on the
  1411   // do_full_collection() API to notify the caller than the collection
  1412   // did not succeed (e.g., because it was locked out by the GC
  1413   // locker). So, right now, we'll ignore the return value.
  1414   bool dummy = do_collection(true,                /* explicit_gc */
  1415                              clear_all_soft_refs,
  1416                              0                    /* word_size */);
  1419 // This code is mostly copied from TenuredGeneration.
  1420 void
  1421 G1CollectedHeap::
  1422 resize_if_necessary_after_full_collection(size_t word_size) {
  1423   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1425   // Include the current allocation, if any, and bytes that will be
  1426   // pre-allocated to support collections, as "used".
  1427   const size_t used_after_gc = used();
  1428   const size_t capacity_after_gc = capacity();
  1429   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1431   // This is enforced in arguments.cpp.
  1432   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1433          "otherwise the code below doesn't make sense");
  1435   // We don't have floating point command-line arguments
  1436   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1437   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1438   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1439   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1441   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1442   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1444   // We have to be careful here as these two calculations can overflow
  1445   // 32-bit size_t's.
  1446   double used_after_gc_d = (double) used_after_gc;
  1447   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1448   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1450   // Let's make sure that they are both under the max heap size, which
  1451   // by default will make them fit into a size_t.
  1452   double desired_capacity_upper_bound = (double) max_heap_size;
  1453   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1454                                     desired_capacity_upper_bound);
  1455   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1456                                     desired_capacity_upper_bound);
  1458   // We can now safely turn them into size_t's.
  1459   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1460   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1462   // This assert only makes sense here, before we adjust them
  1463   // with respect to the min and max heap size.
  1464   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1465          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1466                  "maximum_desired_capacity = "SIZE_FORMAT,
  1467                  minimum_desired_capacity, maximum_desired_capacity));
  1469   // Should not be greater than the heap max size. No need to adjust
  1470   // it with respect to the heap min size as it's a lower bound (i.e.,
  1471   // we'll try to make the capacity larger than it, not smaller).
  1472   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1473   // Should not be less than the heap min size. No need to adjust it
  1474   // with respect to the heap max size as it's an upper bound (i.e.,
  1475   // we'll try to make the capacity smaller than it, not greater).
  1476   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1478   if (PrintGC && Verbose) {
  1479     const double free_percentage =
  1480       (double) free_after_gc / (double) capacity_after_gc;
  1481     gclog_or_tty->print_cr("Computing new size after full GC ");
  1482     gclog_or_tty->print_cr("  "
  1483                            "  minimum_free_percentage: %6.2f",
  1484                            minimum_free_percentage);
  1485     gclog_or_tty->print_cr("  "
  1486                            "  maximum_free_percentage: %6.2f",
  1487                            maximum_free_percentage);
  1488     gclog_or_tty->print_cr("  "
  1489                            "  capacity: %6.1fK"
  1490                            "  minimum_desired_capacity: %6.1fK"
  1491                            "  maximum_desired_capacity: %6.1fK",
  1492                            (double) capacity_after_gc / (double) K,
  1493                            (double) minimum_desired_capacity / (double) K,
  1494                            (double) maximum_desired_capacity / (double) K);
  1495     gclog_or_tty->print_cr("  "
  1496                            "  free_after_gc: %6.1fK"
  1497                            "  used_after_gc: %6.1fK",
  1498                            (double) free_after_gc / (double) K,
  1499                            (double) used_after_gc / (double) K);
  1500     gclog_or_tty->print_cr("  "
  1501                            "   free_percentage: %6.2f",
  1502                            free_percentage);
  1504   if (capacity_after_gc < minimum_desired_capacity) {
  1505     // Don't expand unless it's significant
  1506     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1507     if (expand(expand_bytes)) {
  1508       if (PrintGC && Verbose) {
  1509         gclog_or_tty->print_cr("  "
  1510                                "  expanding:"
  1511                                "  max_heap_size: %6.1fK"
  1512                                "  minimum_desired_capacity: %6.1fK"
  1513                                "  expand_bytes: %6.1fK",
  1514                                (double) max_heap_size / (double) K,
  1515                                (double) minimum_desired_capacity / (double) K,
  1516                                (double) expand_bytes / (double) K);
  1520     // No expansion, now see if we want to shrink
  1521   } else if (capacity_after_gc > maximum_desired_capacity) {
  1522     // Capacity too large, compute shrinking size
  1523     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1524     shrink(shrink_bytes);
  1525     if (PrintGC && Verbose) {
  1526       gclog_or_tty->print_cr("  "
  1527                              "  shrinking:"
  1528                              "  min_heap_size: %6.1fK"
  1529                              "  maximum_desired_capacity: %6.1fK"
  1530                              "  shrink_bytes: %6.1fK",
  1531                              (double) min_heap_size / (double) K,
  1532                              (double) maximum_desired_capacity / (double) K,
  1533                              (double) shrink_bytes / (double) K);
  1539 HeapWord*
  1540 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1541                                            bool* succeeded) {
  1542   assert_at_safepoint(true /* should_be_vm_thread */);
  1544   *succeeded = true;
  1545   // Let's attempt the allocation first.
  1546   HeapWord* result =
  1547     attempt_allocation_at_safepoint(word_size,
  1548                                  false /* expect_null_mutator_alloc_region */);
  1549   if (result != NULL) {
  1550     assert(*succeeded, "sanity");
  1551     return result;
  1554   // In a G1 heap, we're supposed to keep allocation from failing by
  1555   // incremental pauses.  Therefore, at least for now, we'll favor
  1556   // expansion over collection.  (This might change in the future if we can
  1557   // do something smarter than full collection to satisfy a failed alloc.)
  1558   result = expand_and_allocate(word_size);
  1559   if (result != NULL) {
  1560     assert(*succeeded, "sanity");
  1561     return result;
  1564   // Expansion didn't work, we'll try to do a Full GC.
  1565   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1566                                     false, /* clear_all_soft_refs */
  1567                                     word_size);
  1568   if (!gc_succeeded) {
  1569     *succeeded = false;
  1570     return NULL;
  1573   // Retry the allocation
  1574   result = attempt_allocation_at_safepoint(word_size,
  1575                                   true /* expect_null_mutator_alloc_region */);
  1576   if (result != NULL) {
  1577     assert(*succeeded, "sanity");
  1578     return result;
  1581   // Then, try a Full GC that will collect all soft references.
  1582   gc_succeeded = do_collection(false, /* explicit_gc */
  1583                                true,  /* clear_all_soft_refs */
  1584                                word_size);
  1585   if (!gc_succeeded) {
  1586     *succeeded = false;
  1587     return NULL;
  1590   // Retry the allocation once more
  1591   result = attempt_allocation_at_safepoint(word_size,
  1592                                   true /* expect_null_mutator_alloc_region */);
  1593   if (result != NULL) {
  1594     assert(*succeeded, "sanity");
  1595     return result;
  1598   assert(!collector_policy()->should_clear_all_soft_refs(),
  1599          "Flag should have been handled and cleared prior to this point");
  1601   // What else?  We might try synchronous finalization later.  If the total
  1602   // space available is large enough for the allocation, then a more
  1603   // complete compaction phase than we've tried so far might be
  1604   // appropriate.
  1605   assert(*succeeded, "sanity");
  1606   return NULL;
  1609 // Attempting to expand the heap sufficiently
  1610 // to support an allocation of the given "word_size".  If
  1611 // successful, perform the allocation and return the address of the
  1612 // allocated block, or else "NULL".
  1614 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1615   assert_at_safepoint(true /* should_be_vm_thread */);
  1617   verify_region_sets_optional();
  1619   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1620   if (expand(expand_bytes)) {
  1621     _hrs.verify_optional();
  1622     verify_region_sets_optional();
  1623     return attempt_allocation_at_safepoint(word_size,
  1624                                  false /* expect_null_mutator_alloc_region */);
  1626   return NULL;
  1629 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1630                                              HeapWord* new_end) {
  1631   assert(old_end != new_end, "don't call this otherwise");
  1632   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1634   // Update the committed mem region.
  1635   _g1_committed.set_end(new_end);
  1636   // Tell the card table about the update.
  1637   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1638   // Tell the BOT about the update.
  1639   _bot_shared->resize(_g1_committed.word_size());
  1642 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1643   size_t old_mem_size = _g1_storage.committed_size();
  1644   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1645   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1646                                        HeapRegion::GrainBytes);
  1648   if (Verbose && PrintGC) {
  1649     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
  1650                            old_mem_size/K, aligned_expand_bytes/K);
  1653   // First commit the memory.
  1654   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1655   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1656   if (successful) {
  1657     // Then propagate this update to the necessary data structures.
  1658     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1659     update_committed_space(old_end, new_end);
  1661     FreeRegionList expansion_list("Local Expansion List");
  1662     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1663     assert(mr.start() == old_end, "post-condition");
  1664     // mr might be a smaller region than what was requested if
  1665     // expand_by() was unable to allocate the HeapRegion instances
  1666     assert(mr.end() <= new_end, "post-condition");
  1668     size_t actual_expand_bytes = mr.byte_size();
  1669     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1670     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1671            "post-condition");
  1672     if (actual_expand_bytes < aligned_expand_bytes) {
  1673       // We could not expand _hrs to the desired size. In this case we
  1674       // need to shrink the committed space accordingly.
  1675       assert(mr.end() < new_end, "invariant");
  1677       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1678       // First uncommit the memory.
  1679       _g1_storage.shrink_by(diff_bytes);
  1680       // Then propagate this update to the necessary data structures.
  1681       update_committed_space(new_end, mr.end());
  1683     _free_list.add_as_tail(&expansion_list);
  1685     if (_hr_printer.is_active()) {
  1686       HeapWord* curr = mr.start();
  1687       while (curr < mr.end()) {
  1688         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1689         _hr_printer.commit(curr, curr_end);
  1690         curr = curr_end;
  1692       assert(curr == mr.end(), "post-condition");
  1694   } else {
  1695     // The expansion of the virtual storage space was unsuccessful.
  1696     // Let's see if it was because we ran out of swap.
  1697     if (G1ExitOnExpansionFailure &&
  1698         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1699       // We had head room...
  1700       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1704   if (Verbose && PrintGC) {
  1705     size_t new_mem_size = _g1_storage.committed_size();
  1706     gclog_or_tty->print_cr("...%s, expanded to %ldK",
  1707                            (successful ? "Successful" : "Failed"),
  1708                            new_mem_size/K);
  1710   return successful;
  1713 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1714   size_t old_mem_size = _g1_storage.committed_size();
  1715   size_t aligned_shrink_bytes =
  1716     ReservedSpace::page_align_size_down(shrink_bytes);
  1717   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1718                                          HeapRegion::GrainBytes);
  1719   size_t num_regions_deleted = 0;
  1720   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1721   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1722   assert(mr.end() == old_end, "post-condition");
  1723   if (mr.byte_size() > 0) {
  1724     if (_hr_printer.is_active()) {
  1725       HeapWord* curr = mr.end();
  1726       while (curr > mr.start()) {
  1727         HeapWord* curr_end = curr;
  1728         curr -= HeapRegion::GrainWords;
  1729         _hr_printer.uncommit(curr, curr_end);
  1731       assert(curr == mr.start(), "post-condition");
  1734     _g1_storage.shrink_by(mr.byte_size());
  1735     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1736     assert(mr.start() == new_end, "post-condition");
  1738     _expansion_regions += num_regions_deleted;
  1739     update_committed_space(old_end, new_end);
  1740     HeapRegionRemSet::shrink_heap(n_regions());
  1742     if (Verbose && PrintGC) {
  1743       size_t new_mem_size = _g1_storage.committed_size();
  1744       gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1745                              old_mem_size/K, aligned_shrink_bytes/K,
  1746                              new_mem_size/K);
  1751 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1752   verify_region_sets_optional();
  1754   // We should only reach here at the end of a Full GC which means we
  1755   // should not not be holding to any GC alloc regions. The method
  1756   // below will make sure of that and do any remaining clean up.
  1757   abandon_gc_alloc_regions();
  1759   // Instead of tearing down / rebuilding the free lists here, we
  1760   // could instead use the remove_all_pending() method on free_list to
  1761   // remove only the ones that we need to remove.
  1762   tear_down_region_lists();  // We will rebuild them in a moment.
  1763   shrink_helper(shrink_bytes);
  1764   rebuild_region_lists();
  1766   _hrs.verify_optional();
  1767   verify_region_sets_optional();
  1770 // Public methods.
  1772 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1773 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1774 #endif // _MSC_VER
  1777 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1778   SharedHeap(policy_),
  1779   _g1_policy(policy_),
  1780   _dirty_card_queue_set(false),
  1781   _into_cset_dirty_card_queue_set(false),
  1782   _is_alive_closure(this),
  1783   _ref_processor(NULL),
  1784   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1785   _bot_shared(NULL),
  1786   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1787   _evac_failure_scan_stack(NULL) ,
  1788   _mark_in_progress(false),
  1789   _cg1r(NULL), _summary_bytes_used(0),
  1790   _refine_cte_cl(NULL),
  1791   _full_collection(false),
  1792   _free_list("Master Free List"),
  1793   _secondary_free_list("Secondary Free List"),
  1794   _humongous_set("Master Humongous Set"),
  1795   _free_regions_coming(false),
  1796   _young_list(new YoungList(this)),
  1797   _gc_time_stamp(0),
  1798   _retained_old_gc_alloc_region(NULL),
  1799   _surviving_young_words(NULL),
  1800   _full_collections_completed(0),
  1801   _in_cset_fast_test(NULL),
  1802   _in_cset_fast_test_base(NULL),
  1803   _dirty_cards_region_list(NULL) {
  1804   _g1h = this; // To catch bugs.
  1805   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1806     vm_exit_during_initialization("Failed necessary allocation.");
  1809   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1811   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1812   _task_queues = new RefToScanQueueSet(n_queues);
  1814   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1815   assert(n_rem_sets > 0, "Invariant.");
  1817   HeapRegionRemSetIterator** iter_arr =
  1818     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1819   for (int i = 0; i < n_queues; i++) {
  1820     iter_arr[i] = new HeapRegionRemSetIterator();
  1822   _rem_set_iterator = iter_arr;
  1824   for (int i = 0; i < n_queues; i++) {
  1825     RefToScanQueue* q = new RefToScanQueue();
  1826     q->initialize();
  1827     _task_queues->register_queue(i, q);
  1830   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1833 jint G1CollectedHeap::initialize() {
  1834   CollectedHeap::pre_initialize();
  1835   os::enable_vtime();
  1837   // Necessary to satisfy locking discipline assertions.
  1839   MutexLocker x(Heap_lock);
  1841   // We have to initialize the printer before committing the heap, as
  1842   // it will be used then.
  1843   _hr_printer.set_active(G1PrintHeapRegions);
  1845   // While there are no constraints in the GC code that HeapWordSize
  1846   // be any particular value, there are multiple other areas in the
  1847   // system which believe this to be true (e.g. oop->object_size in some
  1848   // cases incorrectly returns the size in wordSize units rather than
  1849   // HeapWordSize).
  1850   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1852   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1853   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1855   // Ensure that the sizes are properly aligned.
  1856   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1857   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1859   _cg1r = new ConcurrentG1Refine();
  1861   // Reserve the maximum.
  1862   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1863   // Includes the perm-gen.
  1865   // When compressed oops are enabled, the preferred heap base
  1866   // is calculated by subtracting the requested size from the
  1867   // 32Gb boundary and using the result as the base address for
  1868   // heap reservation. If the requested size is not aligned to
  1869   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1870   // into the ReservedHeapSpace constructor) then the actual
  1871   // base of the reserved heap may end up differing from the
  1872   // address that was requested (i.e. the preferred heap base).
  1873   // If this happens then we could end up using a non-optimal
  1874   // compressed oops mode.
  1876   // Since max_byte_size is aligned to the size of a heap region (checked
  1877   // above), we also need to align the perm gen size as it might not be.
  1878   const size_t total_reserved = max_byte_size +
  1879                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1880   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1882   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1884   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1885                             UseLargePages, addr);
  1887   if (UseCompressedOops) {
  1888     if (addr != NULL && !heap_rs.is_reserved()) {
  1889       // Failed to reserve at specified address - the requested memory
  1890       // region is taken already, for example, by 'java' launcher.
  1891       // Try again to reserver heap higher.
  1892       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1894       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1895                                  UseLargePages, addr);
  1897       if (addr != NULL && !heap_rs0.is_reserved()) {
  1898         // Failed to reserve at specified address again - give up.
  1899         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1900         assert(addr == NULL, "");
  1902         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1903                                    UseLargePages, addr);
  1904         heap_rs = heap_rs1;
  1905       } else {
  1906         heap_rs = heap_rs0;
  1911   if (!heap_rs.is_reserved()) {
  1912     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1913     return JNI_ENOMEM;
  1916   // It is important to do this in a way such that concurrent readers can't
  1917   // temporarily think somethings in the heap.  (I've actually seen this
  1918   // happen in asserts: DLD.)
  1919   _reserved.set_word_size(0);
  1920   _reserved.set_start((HeapWord*)heap_rs.base());
  1921   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1923   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1925   // Create the gen rem set (and barrier set) for the entire reserved region.
  1926   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1927   set_barrier_set(rem_set()->bs());
  1928   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1929     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1930   } else {
  1931     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1932     return JNI_ENOMEM;
  1935   // Also create a G1 rem set.
  1936   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1937     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1938   } else {
  1939     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1940     return JNI_ENOMEM;
  1943   // Carve out the G1 part of the heap.
  1945   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1946   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1947                            g1_rs.size()/HeapWordSize);
  1948   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1950   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1952   _g1_storage.initialize(g1_rs, 0);
  1953   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1954   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  1955                   (HeapWord*) _g1_reserved.end(),
  1956                   _expansion_regions);
  1958   // 6843694 - ensure that the maximum region index can fit
  1959   // in the remembered set structures.
  1960   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1961   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1963   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1964   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1965   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1966             "too many cards per region");
  1968   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  1970   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1971                                              heap_word_size(init_byte_size));
  1973   _g1h = this;
  1975    _in_cset_fast_test_length = max_regions();
  1976    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  1978    // We're biasing _in_cset_fast_test to avoid subtracting the
  1979    // beginning of the heap every time we want to index; basically
  1980    // it's the same with what we do with the card table.
  1981    _in_cset_fast_test = _in_cset_fast_test_base -
  1982                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  1984    // Clear the _cset_fast_test bitmap in anticipation of adding
  1985    // regions to the incremental collection set for the first
  1986    // evacuation pause.
  1987    clear_cset_fast_test();
  1989   // Create the ConcurrentMark data structure and thread.
  1990   // (Must do this late, so that "max_regions" is defined.)
  1991   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1992   _cmThread = _cm->cmThread();
  1994   // Initialize the from_card cache structure of HeapRegionRemSet.
  1995   HeapRegionRemSet::init_heap(max_regions());
  1997   // Now expand into the initial heap size.
  1998   if (!expand(init_byte_size)) {
  1999     vm_exit_during_initialization("Failed to allocate initial heap.");
  2000     return JNI_ENOMEM;
  2003   // Perform any initialization actions delegated to the policy.
  2004   g1_policy()->init();
  2006   g1_policy()->note_start_of_mark_thread();
  2008   _refine_cte_cl =
  2009     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2010                                     g1_rem_set(),
  2011                                     concurrent_g1_refine());
  2012   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2014   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2015                                                SATB_Q_FL_lock,
  2016                                                G1SATBProcessCompletedThreshold,
  2017                                                Shared_SATB_Q_lock);
  2019   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2020                                                 DirtyCardQ_FL_lock,
  2021                                                 concurrent_g1_refine()->yellow_zone(),
  2022                                                 concurrent_g1_refine()->red_zone(),
  2023                                                 Shared_DirtyCardQ_lock);
  2025   if (G1DeferredRSUpdate) {
  2026     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2027                                       DirtyCardQ_FL_lock,
  2028                                       -1, // never trigger processing
  2029                                       -1, // no limit on length
  2030                                       Shared_DirtyCardQ_lock,
  2031                                       &JavaThread::dirty_card_queue_set());
  2034   // Initialize the card queue set used to hold cards containing
  2035   // references into the collection set.
  2036   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2037                                              DirtyCardQ_FL_lock,
  2038                                              -1, // never trigger processing
  2039                                              -1, // no limit on length
  2040                                              Shared_DirtyCardQ_lock,
  2041                                              &JavaThread::dirty_card_queue_set());
  2043   // In case we're keeping closure specialization stats, initialize those
  2044   // counts and that mechanism.
  2045   SpecializationStats::clear();
  2047   // Do later initialization work for concurrent refinement.
  2048   _cg1r->init();
  2050   // Here we allocate the dummy full region that is required by the
  2051   // G1AllocRegion class. If we don't pass an address in the reserved
  2052   // space here, lots of asserts fire.
  2054   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2055                                              _g1_reserved.start());
  2056   // We'll re-use the same region whether the alloc region will
  2057   // require BOT updates or not and, if it doesn't, then a non-young
  2058   // region will complain that it cannot support allocations without
  2059   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2060   dummy_region->set_young();
  2061   // Make sure it's full.
  2062   dummy_region->set_top(dummy_region->end());
  2063   G1AllocRegion::setup(this, dummy_region);
  2065   init_mutator_alloc_region();
  2067   // Do create of the monitoring and management support so that
  2068   // values in the heap have been properly initialized.
  2069   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
  2071   return JNI_OK;
  2074 void G1CollectedHeap::ref_processing_init() {
  2075   // Reference processing in G1 currently works as follows:
  2076   //
  2077   // * There is only one reference processor instance that
  2078   //   'spans' the entire heap. It is created by the code
  2079   //   below.
  2080   // * Reference discovery is not enabled during an incremental
  2081   //   pause (see 6484982).
  2082   // * Discoverered refs are not enqueued nor are they processed
  2083   //   during an incremental pause (see 6484982).
  2084   // * Reference discovery is enabled at initial marking.
  2085   // * Reference discovery is disabled and the discovered
  2086   //   references processed etc during remarking.
  2087   // * Reference discovery is MT (see below).
  2088   // * Reference discovery requires a barrier (see below).
  2089   // * Reference processing is currently not MT (see 6608385).
  2090   // * A full GC enables (non-MT) reference discovery and
  2091   //   processes any discovered references.
  2093   SharedHeap::ref_processing_init();
  2094   MemRegion mr = reserved_region();
  2095   _ref_processor =
  2096     new ReferenceProcessor(mr,    // span
  2097                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
  2098                            (int) ParallelGCThreads,   // degree of mt processing
  2099                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
  2100                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
  2101                            false,                     // Reference discovery is not atomic
  2102                            &_is_alive_closure,        // is alive closure for efficiency
  2103                            true);                     // Setting next fields of discovered
  2104                                                       // lists requires a barrier.
  2107 size_t G1CollectedHeap::capacity() const {
  2108   return _g1_committed.byte_size();
  2111 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2112                                                  DirtyCardQueue* into_cset_dcq,
  2113                                                  bool concurrent,
  2114                                                  int worker_i) {
  2115   // Clean cards in the hot card cache
  2116   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2118   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2119   int n_completed_buffers = 0;
  2120   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2121     n_completed_buffers++;
  2123   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2124                                                   (double) n_completed_buffers);
  2125   dcqs.clear_n_completed_buffers();
  2126   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2130 // Computes the sum of the storage used by the various regions.
  2132 size_t G1CollectedHeap::used() const {
  2133   assert(Heap_lock->owner() != NULL,
  2134          "Should be owned on this thread's behalf.");
  2135   size_t result = _summary_bytes_used;
  2136   // Read only once in case it is set to NULL concurrently
  2137   HeapRegion* hr = _mutator_alloc_region.get();
  2138   if (hr != NULL)
  2139     result += hr->used();
  2140   return result;
  2143 size_t G1CollectedHeap::used_unlocked() const {
  2144   size_t result = _summary_bytes_used;
  2145   return result;
  2148 class SumUsedClosure: public HeapRegionClosure {
  2149   size_t _used;
  2150 public:
  2151   SumUsedClosure() : _used(0) {}
  2152   bool doHeapRegion(HeapRegion* r) {
  2153     if (!r->continuesHumongous()) {
  2154       _used += r->used();
  2156     return false;
  2158   size_t result() { return _used; }
  2159 };
  2161 size_t G1CollectedHeap::recalculate_used() const {
  2162   SumUsedClosure blk;
  2163   heap_region_iterate(&blk);
  2164   return blk.result();
  2167 size_t G1CollectedHeap::unsafe_max_alloc() {
  2168   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2169   // otherwise, is there space in the current allocation region?
  2171   // We need to store the current allocation region in a local variable
  2172   // here. The problem is that this method doesn't take any locks and
  2173   // there may be other threads which overwrite the current allocation
  2174   // region field. attempt_allocation(), for example, sets it to NULL
  2175   // and this can happen *after* the NULL check here but before the call
  2176   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2177   // to be a problem in the optimized build, since the two loads of the
  2178   // current allocation region field are optimized away.
  2179   HeapRegion* hr = _mutator_alloc_region.get();
  2180   if (hr == NULL) {
  2181     return 0;
  2183   return hr->free();
  2186 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2187   return
  2188     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2189      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  2192 #ifndef PRODUCT
  2193 void G1CollectedHeap::allocate_dummy_regions() {
  2194   // Let's fill up most of the region
  2195   size_t word_size = HeapRegion::GrainWords - 1024;
  2196   // And as a result the region we'll allocate will be humongous.
  2197   guarantee(isHumongous(word_size), "sanity");
  2199   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2200     // Let's use the existing mechanism for the allocation
  2201     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2202     if (dummy_obj != NULL) {
  2203       MemRegion mr(dummy_obj, word_size);
  2204       CollectedHeap::fill_with_object(mr);
  2205     } else {
  2206       // If we can't allocate once, we probably cannot allocate
  2207       // again. Let's get out of the loop.
  2208       break;
  2212 #endif // !PRODUCT
  2214 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2215   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2217   // We assume that if concurrent == true, then the caller is a
  2218   // concurrent thread that was joined the Suspendible Thread
  2219   // Set. If there's ever a cheap way to check this, we should add an
  2220   // assert here.
  2222   // We have already incremented _total_full_collections at the start
  2223   // of the GC, so total_full_collections() represents how many full
  2224   // collections have been started.
  2225   unsigned int full_collections_started = total_full_collections();
  2227   // Given that this method is called at the end of a Full GC or of a
  2228   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2229   // interrupt a concurrent cycle), the number of full collections
  2230   // completed should be either one (in the case where there was no
  2231   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2232   // behind the number of full collections started.
  2234   // This is the case for the inner caller, i.e. a Full GC.
  2235   assert(concurrent ||
  2236          (full_collections_started == _full_collections_completed + 1) ||
  2237          (full_collections_started == _full_collections_completed + 2),
  2238          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2239                  "is inconsistent with _full_collections_completed = %u",
  2240                  full_collections_started, _full_collections_completed));
  2242   // This is the case for the outer caller, i.e. the concurrent cycle.
  2243   assert(!concurrent ||
  2244          (full_collections_started == _full_collections_completed + 1),
  2245          err_msg("for outer caller (concurrent cycle): "
  2246                  "full_collections_started = %u "
  2247                  "is inconsistent with _full_collections_completed = %u",
  2248                  full_collections_started, _full_collections_completed));
  2250   _full_collections_completed += 1;
  2252   // We need to clear the "in_progress" flag in the CM thread before
  2253   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2254   // is set) so that if a waiter requests another System.gc() it doesn't
  2255   // incorrectly see that a marking cyle is still in progress.
  2256   if (concurrent) {
  2257     _cmThread->clear_in_progress();
  2260   // This notify_all() will ensure that a thread that called
  2261   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2262   // and it's waiting for a full GC to finish will be woken up. It is
  2263   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2264   FullGCCount_lock->notify_all();
  2267 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2268   assert_at_safepoint(true /* should_be_vm_thread */);
  2269   GCCauseSetter gcs(this, cause);
  2270   switch (cause) {
  2271     case GCCause::_heap_inspection:
  2272     case GCCause::_heap_dump: {
  2273       HandleMark hm;
  2274       do_full_collection(false);         // don't clear all soft refs
  2275       break;
  2277     default: // XXX FIX ME
  2278       ShouldNotReachHere(); // Unexpected use of this function
  2282 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2283   // The caller doesn't have the Heap_lock
  2284   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2286   unsigned int gc_count_before;
  2287   unsigned int full_gc_count_before;
  2289     MutexLocker ml(Heap_lock);
  2291     // Read the GC count while holding the Heap_lock
  2292     gc_count_before = SharedHeap::heap()->total_collections();
  2293     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2296   if (should_do_concurrent_full_gc(cause)) {
  2297     // Schedule an initial-mark evacuation pause that will start a
  2298     // concurrent cycle. We're setting word_size to 0 which means that
  2299     // we are not requesting a post-GC allocation.
  2300     VM_G1IncCollectionPause op(gc_count_before,
  2301                                0,     /* word_size */
  2302                                true,  /* should_initiate_conc_mark */
  2303                                g1_policy()->max_pause_time_ms(),
  2304                                cause);
  2305     VMThread::execute(&op);
  2306   } else {
  2307     if (cause == GCCause::_gc_locker
  2308         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2310       // Schedule a standard evacuation pause. We're setting word_size
  2311       // to 0 which means that we are not requesting a post-GC allocation.
  2312       VM_G1IncCollectionPause op(gc_count_before,
  2313                                  0,     /* word_size */
  2314                                  false, /* should_initiate_conc_mark */
  2315                                  g1_policy()->max_pause_time_ms(),
  2316                                  cause);
  2317       VMThread::execute(&op);
  2318     } else {
  2319       // Schedule a Full GC.
  2320       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2321       VMThread::execute(&op);
  2326 bool G1CollectedHeap::is_in(const void* p) const {
  2327   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
  2328   if (hr != NULL) {
  2329     return hr->is_in(p);
  2330   } else {
  2331     return _perm_gen->as_gen()->is_in(p);
  2335 // Iteration functions.
  2337 // Iterates an OopClosure over all ref-containing fields of objects
  2338 // within a HeapRegion.
  2340 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2341   MemRegion _mr;
  2342   OopClosure* _cl;
  2343 public:
  2344   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2345     : _mr(mr), _cl(cl) {}
  2346   bool doHeapRegion(HeapRegion* r) {
  2347     if (! r->continuesHumongous()) {
  2348       r->oop_iterate(_cl);
  2350     return false;
  2352 };
  2354 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2355   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2356   heap_region_iterate(&blk);
  2357   if (do_perm) {
  2358     perm_gen()->oop_iterate(cl);
  2362 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2363   IterateOopClosureRegionClosure blk(mr, cl);
  2364   heap_region_iterate(&blk);
  2365   if (do_perm) {
  2366     perm_gen()->oop_iterate(cl);
  2370 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2372 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2373   ObjectClosure* _cl;
  2374 public:
  2375   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2376   bool doHeapRegion(HeapRegion* r) {
  2377     if (! r->continuesHumongous()) {
  2378       r->object_iterate(_cl);
  2380     return false;
  2382 };
  2384 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2385   IterateObjectClosureRegionClosure blk(cl);
  2386   heap_region_iterate(&blk);
  2387   if (do_perm) {
  2388     perm_gen()->object_iterate(cl);
  2392 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2393   // FIXME: is this right?
  2394   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2397 // Calls a SpaceClosure on a HeapRegion.
  2399 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2400   SpaceClosure* _cl;
  2401 public:
  2402   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2403   bool doHeapRegion(HeapRegion* r) {
  2404     _cl->do_space(r);
  2405     return false;
  2407 };
  2409 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2410   SpaceClosureRegionClosure blk(cl);
  2411   heap_region_iterate(&blk);
  2414 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2415   _hrs.iterate(cl);
  2418 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2419                                                HeapRegionClosure* cl) const {
  2420   _hrs.iterate_from(r, cl);
  2423 void
  2424 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2425                                                  int worker,
  2426                                                  jint claim_value) {
  2427   const size_t regions = n_regions();
  2428   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
  2429   // try to spread out the starting points of the workers
  2430   const size_t start_index = regions / worker_num * (size_t) worker;
  2432   // each worker will actually look at all regions
  2433   for (size_t count = 0; count < regions; ++count) {
  2434     const size_t index = (start_index + count) % regions;
  2435     assert(0 <= index && index < regions, "sanity");
  2436     HeapRegion* r = region_at(index);
  2437     // we'll ignore "continues humongous" regions (we'll process them
  2438     // when we come across their corresponding "start humongous"
  2439     // region) and regions already claimed
  2440     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2441       continue;
  2443     // OK, try to claim it
  2444     if (r->claimHeapRegion(claim_value)) {
  2445       // success!
  2446       assert(!r->continuesHumongous(), "sanity");
  2447       if (r->startsHumongous()) {
  2448         // If the region is "starts humongous" we'll iterate over its
  2449         // "continues humongous" first; in fact we'll do them
  2450         // first. The order is important. In on case, calling the
  2451         // closure on the "starts humongous" region might de-allocate
  2452         // and clear all its "continues humongous" regions and, as a
  2453         // result, we might end up processing them twice. So, we'll do
  2454         // them first (notice: most closures will ignore them anyway) and
  2455         // then we'll do the "starts humongous" region.
  2456         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2457           HeapRegion* chr = region_at(ch_index);
  2459           // if the region has already been claimed or it's not
  2460           // "continues humongous" we're done
  2461           if (chr->claim_value() == claim_value ||
  2462               !chr->continuesHumongous()) {
  2463             break;
  2466           // Noone should have claimed it directly. We can given
  2467           // that we claimed its "starts humongous" region.
  2468           assert(chr->claim_value() != claim_value, "sanity");
  2469           assert(chr->humongous_start_region() == r, "sanity");
  2471           if (chr->claimHeapRegion(claim_value)) {
  2472             // we should always be able to claim it; noone else should
  2473             // be trying to claim this region
  2475             bool res2 = cl->doHeapRegion(chr);
  2476             assert(!res2, "Should not abort");
  2478             // Right now, this holds (i.e., no closure that actually
  2479             // does something with "continues humongous" regions
  2480             // clears them). We might have to weaken it in the future,
  2481             // but let's leave these two asserts here for extra safety.
  2482             assert(chr->continuesHumongous(), "should still be the case");
  2483             assert(chr->humongous_start_region() == r, "sanity");
  2484           } else {
  2485             guarantee(false, "we should not reach here");
  2490       assert(!r->continuesHumongous(), "sanity");
  2491       bool res = cl->doHeapRegion(r);
  2492       assert(!res, "Should not abort");
  2497 class ResetClaimValuesClosure: public HeapRegionClosure {
  2498 public:
  2499   bool doHeapRegion(HeapRegion* r) {
  2500     r->set_claim_value(HeapRegion::InitialClaimValue);
  2501     return false;
  2503 };
  2505 void
  2506 G1CollectedHeap::reset_heap_region_claim_values() {
  2507   ResetClaimValuesClosure blk;
  2508   heap_region_iterate(&blk);
  2511 #ifdef ASSERT
  2512 // This checks whether all regions in the heap have the correct claim
  2513 // value. I also piggy-backed on this a check to ensure that the
  2514 // humongous_start_region() information on "continues humongous"
  2515 // regions is correct.
  2517 class CheckClaimValuesClosure : public HeapRegionClosure {
  2518 private:
  2519   jint _claim_value;
  2520   size_t _failures;
  2521   HeapRegion* _sh_region;
  2522 public:
  2523   CheckClaimValuesClosure(jint claim_value) :
  2524     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2525   bool doHeapRegion(HeapRegion* r) {
  2526     if (r->claim_value() != _claim_value) {
  2527       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2528                              "claim value = %d, should be %d",
  2529                              r->bottom(), r->end(), r->claim_value(),
  2530                              _claim_value);
  2531       ++_failures;
  2533     if (!r->isHumongous()) {
  2534       _sh_region = NULL;
  2535     } else if (r->startsHumongous()) {
  2536       _sh_region = r;
  2537     } else if (r->continuesHumongous()) {
  2538       if (r->humongous_start_region() != _sh_region) {
  2539         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2540                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2541                                r->bottom(), r->end(),
  2542                                r->humongous_start_region(),
  2543                                _sh_region);
  2544         ++_failures;
  2547     return false;
  2549   size_t failures() {
  2550     return _failures;
  2552 };
  2554 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2555   CheckClaimValuesClosure cl(claim_value);
  2556   heap_region_iterate(&cl);
  2557   return cl.failures() == 0;
  2559 #endif // ASSERT
  2561 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2562   HeapRegion* r = g1_policy()->collection_set();
  2563   while (r != NULL) {
  2564     HeapRegion* next = r->next_in_collection_set();
  2565     if (cl->doHeapRegion(r)) {
  2566       cl->incomplete();
  2567       return;
  2569     r = next;
  2573 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2574                                                   HeapRegionClosure *cl) {
  2575   if (r == NULL) {
  2576     // The CSet is empty so there's nothing to do.
  2577     return;
  2580   assert(r->in_collection_set(),
  2581          "Start region must be a member of the collection set.");
  2582   HeapRegion* cur = r;
  2583   while (cur != NULL) {
  2584     HeapRegion* next = cur->next_in_collection_set();
  2585     if (cl->doHeapRegion(cur) && false) {
  2586       cl->incomplete();
  2587       return;
  2589     cur = next;
  2591   cur = g1_policy()->collection_set();
  2592   while (cur != r) {
  2593     HeapRegion* next = cur->next_in_collection_set();
  2594     if (cl->doHeapRegion(cur) && false) {
  2595       cl->incomplete();
  2596       return;
  2598     cur = next;
  2602 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2603   return n_regions() > 0 ? region_at(0) : NULL;
  2607 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2608   Space* res = heap_region_containing(addr);
  2609   if (res == NULL)
  2610     res = perm_gen()->space_containing(addr);
  2611   return res;
  2614 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2615   Space* sp = space_containing(addr);
  2616   if (sp != NULL) {
  2617     return sp->block_start(addr);
  2619   return NULL;
  2622 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2623   Space* sp = space_containing(addr);
  2624   assert(sp != NULL, "block_size of address outside of heap");
  2625   return sp->block_size(addr);
  2628 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2629   Space* sp = space_containing(addr);
  2630   return sp->block_is_obj(addr);
  2633 bool G1CollectedHeap::supports_tlab_allocation() const {
  2634   return true;
  2637 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2638   return HeapRegion::GrainBytes;
  2641 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2642   // Return the remaining space in the cur alloc region, but not less than
  2643   // the min TLAB size.
  2645   // Also, this value can be at most the humongous object threshold,
  2646   // since we can't allow tlabs to grow big enough to accomodate
  2647   // humongous objects.
  2649   HeapRegion* hr = _mutator_alloc_region.get();
  2650   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2651   if (hr == NULL) {
  2652     return max_tlab_size;
  2653   } else {
  2654     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2658 size_t G1CollectedHeap::max_capacity() const {
  2659   return _g1_reserved.byte_size();
  2662 jlong G1CollectedHeap::millis_since_last_gc() {
  2663   // assert(false, "NYI");
  2664   return 0;
  2667 void G1CollectedHeap::prepare_for_verify() {
  2668   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2669     ensure_parsability(false);
  2671   g1_rem_set()->prepare_for_verify();
  2674 class VerifyLivenessOopClosure: public OopClosure {
  2675   G1CollectedHeap* _g1h;
  2676   VerifyOption _vo;
  2677 public:
  2678   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2679     _g1h(g1h), _vo(vo)
  2680   { }
  2681   void do_oop(narrowOop *p) { do_oop_work(p); }
  2682   void do_oop(      oop *p) { do_oop_work(p); }
  2684   template <class T> void do_oop_work(T *p) {
  2685     oop obj = oopDesc::load_decode_heap_oop(p);
  2686     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2687               "Dead object referenced by a not dead object");
  2689 };
  2691 class VerifyObjsInRegionClosure: public ObjectClosure {
  2692 private:
  2693   G1CollectedHeap* _g1h;
  2694   size_t _live_bytes;
  2695   HeapRegion *_hr;
  2696   VerifyOption _vo;
  2697 public:
  2698   // _vo == UsePrevMarking -> use "prev" marking information,
  2699   // _vo == UseNextMarking -> use "next" marking information,
  2700   // _vo == UseMarkWord    -> use mark word from object header.
  2701   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2702     : _live_bytes(0), _hr(hr), _vo(vo) {
  2703     _g1h = G1CollectedHeap::heap();
  2705   void do_object(oop o) {
  2706     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2707     assert(o != NULL, "Huh?");
  2708     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2709       // If the object is alive according to the mark word,
  2710       // then verify that the marking information agrees.
  2711       // Note we can't verify the contra-positive of the
  2712       // above: if the object is dead (according to the mark
  2713       // word), it may not be marked, or may have been marked
  2714       // but has since became dead, or may have been allocated
  2715       // since the last marking.
  2716       if (_vo == VerifyOption_G1UseMarkWord) {
  2717         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2720       o->oop_iterate(&isLive);
  2721       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2722         size_t obj_size = o->size();    // Make sure we don't overflow
  2723         _live_bytes += (obj_size * HeapWordSize);
  2727   size_t live_bytes() { return _live_bytes; }
  2728 };
  2730 class PrintObjsInRegionClosure : public ObjectClosure {
  2731   HeapRegion *_hr;
  2732   G1CollectedHeap *_g1;
  2733 public:
  2734   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2735     _g1 = G1CollectedHeap::heap();
  2736   };
  2738   void do_object(oop o) {
  2739     if (o != NULL) {
  2740       HeapWord *start = (HeapWord *) o;
  2741       size_t word_sz = o->size();
  2742       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2743                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2744                           (void*) o, word_sz,
  2745                           _g1->isMarkedPrev(o),
  2746                           _g1->isMarkedNext(o),
  2747                           _hr->obj_allocated_since_prev_marking(o));
  2748       HeapWord *end = start + word_sz;
  2749       HeapWord *cur;
  2750       int *val;
  2751       for (cur = start; cur < end; cur++) {
  2752         val = (int *) cur;
  2753         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2757 };
  2759 class VerifyRegionClosure: public HeapRegionClosure {
  2760 private:
  2761   bool         _allow_dirty;
  2762   bool         _par;
  2763   VerifyOption _vo;
  2764   bool         _failures;
  2765 public:
  2766   // _vo == UsePrevMarking -> use "prev" marking information,
  2767   // _vo == UseNextMarking -> use "next" marking information,
  2768   // _vo == UseMarkWord    -> use mark word from object header.
  2769   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
  2770     : _allow_dirty(allow_dirty),
  2771       _par(par),
  2772       _vo(vo),
  2773       _failures(false) {}
  2775   bool failures() {
  2776     return _failures;
  2779   bool doHeapRegion(HeapRegion* r) {
  2780     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2781               "Should be unclaimed at verify points.");
  2782     if (!r->continuesHumongous()) {
  2783       bool failures = false;
  2784       r->verify(_allow_dirty, _vo, &failures);
  2785       if (failures) {
  2786         _failures = true;
  2787       } else {
  2788         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  2789         r->object_iterate(&not_dead_yet_cl);
  2790         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2791           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2792                                  "max_live_bytes "SIZE_FORMAT" "
  2793                                  "< calculated "SIZE_FORMAT,
  2794                                  r->bottom(), r->end(),
  2795                                  r->max_live_bytes(),
  2796                                  not_dead_yet_cl.live_bytes());
  2797           _failures = true;
  2801     return false; // stop the region iteration if we hit a failure
  2803 };
  2805 class VerifyRootsClosure: public OopsInGenClosure {
  2806 private:
  2807   G1CollectedHeap* _g1h;
  2808   VerifyOption     _vo;
  2809   bool             _failures;
  2810 public:
  2811   // _vo == UsePrevMarking -> use "prev" marking information,
  2812   // _vo == UseNextMarking -> use "next" marking information,
  2813   // _vo == UseMarkWord    -> use mark word from object header.
  2814   VerifyRootsClosure(VerifyOption vo) :
  2815     _g1h(G1CollectedHeap::heap()),
  2816     _vo(vo),
  2817     _failures(false) { }
  2819   bool failures() { return _failures; }
  2821   template <class T> void do_oop_nv(T* p) {
  2822     T heap_oop = oopDesc::load_heap_oop(p);
  2823     if (!oopDesc::is_null(heap_oop)) {
  2824       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2825       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2826         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2827                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2828         if (_vo == VerifyOption_G1UseMarkWord) {
  2829           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2831         obj->print_on(gclog_or_tty);
  2832         _failures = true;
  2837   void do_oop(oop* p)       { do_oop_nv(p); }
  2838   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2839 };
  2841 // This is the task used for parallel heap verification.
  2843 class G1ParVerifyTask: public AbstractGangTask {
  2844 private:
  2845   G1CollectedHeap* _g1h;
  2846   bool             _allow_dirty;
  2847   VerifyOption     _vo;
  2848   bool             _failures;
  2850 public:
  2851   // _vo == UsePrevMarking -> use "prev" marking information,
  2852   // _vo == UseNextMarking -> use "next" marking information,
  2853   // _vo == UseMarkWord    -> use mark word from object header.
  2854   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
  2855     AbstractGangTask("Parallel verify task"),
  2856     _g1h(g1h),
  2857     _allow_dirty(allow_dirty),
  2858     _vo(vo),
  2859     _failures(false) { }
  2861   bool failures() {
  2862     return _failures;
  2865   void work(int worker_i) {
  2866     HandleMark hm;
  2867     VerifyRegionClosure blk(_allow_dirty, true, _vo);
  2868     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2869                                           HeapRegion::ParVerifyClaimValue);
  2870     if (blk.failures()) {
  2871       _failures = true;
  2874 };
  2876 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2877   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
  2880 void G1CollectedHeap::verify(bool allow_dirty,
  2881                              bool silent,
  2882                              VerifyOption vo) {
  2883   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2884     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  2885     VerifyRootsClosure rootsCl(vo);
  2886     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2888     // We apply the relevant closures to all the oops in the
  2889     // system dictionary, the string table and the code cache.
  2890     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  2892     process_strong_roots(true,      // activate StrongRootsScope
  2893                          true,      // we set "collecting perm gen" to true,
  2894                                     // so we don't reset the dirty cards in the perm gen.
  2895                          SharedHeap::ScanningOption(so),  // roots scanning options
  2896                          &rootsCl,
  2897                          &blobsCl,
  2898                          &rootsCl);
  2900     // If we're verifying after the marking phase of a Full GC then we can't
  2901     // treat the perm gen as roots into the G1 heap. Some of the objects in
  2902     // the perm gen may be dead and hence not marked. If one of these dead
  2903     // objects is considered to be a root then we may end up with a false
  2904     // "Root location <x> points to dead ob <y>" failure.
  2905     if (vo != VerifyOption_G1UseMarkWord) {
  2906       // Since we used "collecting_perm_gen" == true above, we will not have
  2907       // checked the refs from perm into the G1-collected heap. We check those
  2908       // references explicitly below. Whether the relevant cards are dirty
  2909       // is checked further below in the rem set verification.
  2910       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  2911       perm_gen()->oop_iterate(&rootsCl);
  2913     bool failures = rootsCl.failures();
  2915     if (vo != VerifyOption_G1UseMarkWord) {
  2916       // If we're verifying during a full GC then the region sets
  2917       // will have been torn down at the start of the GC. Therefore
  2918       // verifying the region sets will fail. So we only verify
  2919       // the region sets when not in a full GC.
  2920       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  2921       verify_region_sets();
  2924     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  2925     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2926       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2927              "sanity check");
  2929       G1ParVerifyTask task(this, allow_dirty, vo);
  2930       int n_workers = workers()->total_workers();
  2931       set_par_threads(n_workers);
  2932       workers()->run_task(&task);
  2933       set_par_threads(0);
  2934       if (task.failures()) {
  2935         failures = true;
  2938       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2939              "sanity check");
  2941       reset_heap_region_claim_values();
  2943       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2944              "sanity check");
  2945     } else {
  2946       VerifyRegionClosure blk(allow_dirty, false, vo);
  2947       heap_region_iterate(&blk);
  2948       if (blk.failures()) {
  2949         failures = true;
  2952     if (!silent) gclog_or_tty->print("RemSet ");
  2953     rem_set()->verify();
  2955     if (failures) {
  2956       gclog_or_tty->print_cr("Heap:");
  2957       print_on(gclog_or_tty, true /* extended */);
  2958       gclog_or_tty->print_cr("");
  2959 #ifndef PRODUCT
  2960       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  2961         concurrent_mark()->print_reachable("at-verification-failure",
  2962                                            vo, false /* all */);
  2964 #endif
  2965       gclog_or_tty->flush();
  2967     guarantee(!failures, "there should not have been any failures");
  2968   } else {
  2969     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2973 class PrintRegionClosure: public HeapRegionClosure {
  2974   outputStream* _st;
  2975 public:
  2976   PrintRegionClosure(outputStream* st) : _st(st) {}
  2977   bool doHeapRegion(HeapRegion* r) {
  2978     r->print_on(_st);
  2979     return false;
  2981 };
  2983 void G1CollectedHeap::print() const { print_on(tty); }
  2985 void G1CollectedHeap::print_on(outputStream* st) const {
  2986   print_on(st, PrintHeapAtGCExtended);
  2989 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2990   st->print(" %-20s", "garbage-first heap");
  2991   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2992             capacity()/K, used_unlocked()/K);
  2993   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2994             _g1_storage.low_boundary(),
  2995             _g1_storage.high(),
  2996             _g1_storage.high_boundary());
  2997   st->cr();
  2998   st->print("  region size " SIZE_FORMAT "K, ",
  2999             HeapRegion::GrainBytes/K);
  3000   size_t young_regions = _young_list->length();
  3001   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  3002             young_regions, young_regions * HeapRegion::GrainBytes / K);
  3003   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  3004   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  3005             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  3006   st->cr();
  3007   perm()->as_gen()->print_on(st);
  3008   if (extended) {
  3009     st->cr();
  3010     print_on_extended(st);
  3014 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  3015   PrintRegionClosure blk(st);
  3016   heap_region_iterate(&blk);
  3019 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3020   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3021     workers()->print_worker_threads_on(st);
  3023   _cmThread->print_on(st);
  3024   st->cr();
  3025   _cm->print_worker_threads_on(st);
  3026   _cg1r->print_worker_threads_on(st);
  3027   st->cr();
  3030 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3031   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3032     workers()->threads_do(tc);
  3034   tc->do_thread(_cmThread);
  3035   _cg1r->threads_do(tc);
  3038 void G1CollectedHeap::print_tracing_info() const {
  3039   // We'll overload this to mean "trace GC pause statistics."
  3040   if (TraceGen0Time || TraceGen1Time) {
  3041     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3042     // to that.
  3043     g1_policy()->print_tracing_info();
  3045   if (G1SummarizeRSetStats) {
  3046     g1_rem_set()->print_summary_info();
  3048   if (G1SummarizeConcMark) {
  3049     concurrent_mark()->print_summary_info();
  3051   g1_policy()->print_yg_surv_rate_info();
  3052   SpecializationStats::print();
  3055 #ifndef PRODUCT
  3056 // Helpful for debugging RSet issues.
  3058 class PrintRSetsClosure : public HeapRegionClosure {
  3059 private:
  3060   const char* _msg;
  3061   size_t _occupied_sum;
  3063 public:
  3064   bool doHeapRegion(HeapRegion* r) {
  3065     HeapRegionRemSet* hrrs = r->rem_set();
  3066     size_t occupied = hrrs->occupied();
  3067     _occupied_sum += occupied;
  3069     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3070                            HR_FORMAT_PARAMS(r));
  3071     if (occupied == 0) {
  3072       gclog_or_tty->print_cr("  RSet is empty");
  3073     } else {
  3074       hrrs->print();
  3076     gclog_or_tty->print_cr("----------");
  3077     return false;
  3080   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3081     gclog_or_tty->cr();
  3082     gclog_or_tty->print_cr("========================================");
  3083     gclog_or_tty->print_cr(msg);
  3084     gclog_or_tty->cr();
  3087   ~PrintRSetsClosure() {
  3088     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3089     gclog_or_tty->print_cr("========================================");
  3090     gclog_or_tty->cr();
  3092 };
  3094 void G1CollectedHeap::print_cset_rsets() {
  3095   PrintRSetsClosure cl("Printing CSet RSets");
  3096   collection_set_iterate(&cl);
  3099 void G1CollectedHeap::print_all_rsets() {
  3100   PrintRSetsClosure cl("Printing All RSets");;
  3101   heap_region_iterate(&cl);
  3103 #endif // PRODUCT
  3105 G1CollectedHeap* G1CollectedHeap::heap() {
  3106   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3107          "not a garbage-first heap");
  3108   return _g1h;
  3111 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3112   // always_do_update_barrier = false;
  3113   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3114   // Call allocation profiler
  3115   AllocationProfiler::iterate_since_last_gc();
  3116   // Fill TLAB's and such
  3117   ensure_parsability(true);
  3120 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3121   // FIXME: what is this about?
  3122   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3123   // is set.
  3124   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3125                         "derived pointer present"));
  3126   // always_do_update_barrier = true;
  3129 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3130                                                unsigned int gc_count_before,
  3131                                                bool* succeeded) {
  3132   assert_heap_not_locked_and_not_at_safepoint();
  3133   g1_policy()->record_stop_world_start();
  3134   VM_G1IncCollectionPause op(gc_count_before,
  3135                              word_size,
  3136                              false, /* should_initiate_conc_mark */
  3137                              g1_policy()->max_pause_time_ms(),
  3138                              GCCause::_g1_inc_collection_pause);
  3139   VMThread::execute(&op);
  3141   HeapWord* result = op.result();
  3142   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3143   assert(result == NULL || ret_succeeded,
  3144          "the result should be NULL if the VM did not succeed");
  3145   *succeeded = ret_succeeded;
  3147   assert_heap_not_locked();
  3148   return result;
  3151 void
  3152 G1CollectedHeap::doConcurrentMark() {
  3153   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3154   if (!_cmThread->in_progress()) {
  3155     _cmThread->set_started();
  3156     CGC_lock->notify();
  3160 // <NEW PREDICTION>
  3162 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3163                                                        bool young) {
  3164   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3167 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3168                                                            predicted_time_ms) {
  3169   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3172 size_t G1CollectedHeap::pending_card_num() {
  3173   size_t extra_cards = 0;
  3174   JavaThread *curr = Threads::first();
  3175   while (curr != NULL) {
  3176     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3177     extra_cards += dcq.size();
  3178     curr = curr->next();
  3180   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3181   size_t buffer_size = dcqs.buffer_size();
  3182   size_t buffer_num = dcqs.completed_buffers_num();
  3183   return buffer_size * buffer_num + extra_cards;
  3186 size_t G1CollectedHeap::max_pending_card_num() {
  3187   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3188   size_t buffer_size = dcqs.buffer_size();
  3189   size_t buffer_num  = dcqs.completed_buffers_num();
  3190   int thread_num  = Threads::number_of_threads();
  3191   return (buffer_num + thread_num) * buffer_size;
  3194 size_t G1CollectedHeap::cards_scanned() {
  3195   return g1_rem_set()->cardsScanned();
  3198 void
  3199 G1CollectedHeap::setup_surviving_young_words() {
  3200   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3201   size_t array_length = g1_policy()->young_cset_length();
  3202   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3203   if (_surviving_young_words == NULL) {
  3204     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3205                           "Not enough space for young surv words summary.");
  3207   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3208 #ifdef ASSERT
  3209   for (size_t i = 0;  i < array_length; ++i) {
  3210     assert( _surviving_young_words[i] == 0, "memset above" );
  3212 #endif // !ASSERT
  3215 void
  3216 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3217   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3218   size_t array_length = g1_policy()->young_cset_length();
  3219   for (size_t i = 0; i < array_length; ++i)
  3220     _surviving_young_words[i] += surv_young_words[i];
  3223 void
  3224 G1CollectedHeap::cleanup_surviving_young_words() {
  3225   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3226   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3227   _surviving_young_words = NULL;
  3230 // </NEW PREDICTION>
  3232 #ifdef ASSERT
  3233 class VerifyCSetClosure: public HeapRegionClosure {
  3234 public:
  3235   bool doHeapRegion(HeapRegion* hr) {
  3236     // Here we check that the CSet region's RSet is ready for parallel
  3237     // iteration. The fields that we'll verify are only manipulated
  3238     // when the region is part of a CSet and is collected. Afterwards,
  3239     // we reset these fields when we clear the region's RSet (when the
  3240     // region is freed) so they are ready when the region is
  3241     // re-allocated. The only exception to this is if there's an
  3242     // evacuation failure and instead of freeing the region we leave
  3243     // it in the heap. In that case, we reset these fields during
  3244     // evacuation failure handling.
  3245     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3247     // Here's a good place to add any other checks we'd like to
  3248     // perform on CSet regions.
  3249     return false;
  3251 };
  3252 #endif // ASSERT
  3254 #if TASKQUEUE_STATS
  3255 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3256   st->print_raw_cr("GC Task Stats");
  3257   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3258   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3261 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3262   print_taskqueue_stats_hdr(st);
  3264   TaskQueueStats totals;
  3265   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3266   for (int i = 0; i < n; ++i) {
  3267     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3268     totals += task_queue(i)->stats;
  3270   st->print_raw("tot "); totals.print(st); st->cr();
  3272   DEBUG_ONLY(totals.verify());
  3275 void G1CollectedHeap::reset_taskqueue_stats() {
  3276   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3277   for (int i = 0; i < n; ++i) {
  3278     task_queue(i)->stats.reset();
  3281 #endif // TASKQUEUE_STATS
  3283 bool
  3284 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3285   assert_at_safepoint(true /* should_be_vm_thread */);
  3286   guarantee(!is_gc_active(), "collection is not reentrant");
  3288   if (GC_locker::check_active_before_gc()) {
  3289     return false;
  3292   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3293   ResourceMark rm;
  3295   if (PrintHeapAtGC) {
  3296     Universe::print_heap_before_gc();
  3299   verify_region_sets_optional();
  3300   verify_dirty_young_regions();
  3303     // This call will decide whether this pause is an initial-mark
  3304     // pause. If it is, during_initial_mark_pause() will return true
  3305     // for the duration of this pause.
  3306     g1_policy()->decide_on_conc_mark_initiation();
  3308     char verbose_str[128];
  3309     sprintf(verbose_str, "GC pause ");
  3310     if (g1_policy()->full_young_gcs()) {
  3311       strcat(verbose_str, "(young)");
  3312     } else {
  3313       strcat(verbose_str, "(partial)");
  3315     if (g1_policy()->during_initial_mark_pause()) {
  3316       strcat(verbose_str, " (initial-mark)");
  3317       // We are about to start a marking cycle, so we increment the
  3318       // full collection counter.
  3319       increment_total_full_collections();
  3322     // if PrintGCDetails is on, we'll print long statistics information
  3323     // in the collector policy code, so let's not print this as the output
  3324     // is messy if we do.
  3325     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3326     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3327     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3329     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3330     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3332     // If the secondary_free_list is not empty, append it to the
  3333     // free_list. No need to wait for the cleanup operation to finish;
  3334     // the region allocation code will check the secondary_free_list
  3335     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3336     // set, skip this step so that the region allocation code has to
  3337     // get entries from the secondary_free_list.
  3338     if (!G1StressConcRegionFreeing) {
  3339       append_secondary_free_list_if_not_empty_with_lock();
  3342     assert(check_young_list_well_formed(),
  3343       "young list should be well formed");
  3345     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3346       IsGCActiveMark x;
  3348       gc_prologue(false);
  3349       increment_total_collections(false /* full gc */);
  3350       increment_gc_time_stamp();
  3352       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3353         HandleMark hm;  // Discard invalid handles created during verification
  3354         gclog_or_tty->print(" VerifyBeforeGC:");
  3355         prepare_for_verify();
  3356         Universe::verify(/* allow dirty */ false,
  3357                          /* silent      */ false,
  3358                          /* option      */ VerifyOption_G1UsePrevMarking);
  3362       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3364       // Please see comment in G1CollectedHeap::ref_processing_init()
  3365       // to see how reference processing currently works in G1.
  3366       //
  3367       // We want to turn off ref discovery, if necessary, and turn it back on
  3368       // on again later if we do. XXX Dubious: why is discovery disabled?
  3369       bool was_enabled = ref_processor()->discovery_enabled();
  3370       if (was_enabled) ref_processor()->disable_discovery();
  3372       // Forget the current alloc region (we might even choose it to be part
  3373       // of the collection set!).
  3374       release_mutator_alloc_region();
  3376       // We should call this after we retire the mutator alloc
  3377       // region(s) so that all the ALLOC / RETIRE events are generated
  3378       // before the start GC event.
  3379       _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3381       // The elapsed time induced by the start time below deliberately elides
  3382       // the possible verification above.
  3383       double start_time_sec = os::elapsedTime();
  3384       size_t start_used_bytes = used();
  3386 #if YOUNG_LIST_VERBOSE
  3387       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3388       _young_list->print();
  3389       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3390 #endif // YOUNG_LIST_VERBOSE
  3392       g1_policy()->record_collection_pause_start(start_time_sec,
  3393                                                  start_used_bytes);
  3395 #if YOUNG_LIST_VERBOSE
  3396       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3397       _young_list->print();
  3398 #endif // YOUNG_LIST_VERBOSE
  3400       if (g1_policy()->during_initial_mark_pause()) {
  3401         concurrent_mark()->checkpointRootsInitialPre();
  3403       perm_gen()->save_marks();
  3405       // We must do this before any possible evacuation that should propagate
  3406       // marks.
  3407       if (mark_in_progress()) {
  3408         double start_time_sec = os::elapsedTime();
  3410         _cm->drainAllSATBBuffers();
  3411         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  3412         g1_policy()->record_satb_drain_time(finish_mark_ms);
  3414       // Record the number of elements currently on the mark stack, so we
  3415       // only iterate over these.  (Since evacuation may add to the mark
  3416       // stack, doing more exposes race conditions.)  If no mark is in
  3417       // progress, this will be zero.
  3418       _cm->set_oops_do_bound();
  3420       if (mark_in_progress()) {
  3421         concurrent_mark()->newCSet();
  3424 #if YOUNG_LIST_VERBOSE
  3425       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3426       _young_list->print();
  3427       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3428 #endif // YOUNG_LIST_VERBOSE
  3430       g1_policy()->choose_collection_set(target_pause_time_ms);
  3432       if (_hr_printer.is_active()) {
  3433         HeapRegion* hr = g1_policy()->collection_set();
  3434         while (hr != NULL) {
  3435           G1HRPrinter::RegionType type;
  3436           if (!hr->is_young()) {
  3437             type = G1HRPrinter::Old;
  3438           } else if (hr->is_survivor()) {
  3439             type = G1HRPrinter::Survivor;
  3440           } else {
  3441             type = G1HRPrinter::Eden;
  3443           _hr_printer.cset(hr);
  3444           hr = hr->next_in_collection_set();
  3448       // We have chosen the complete collection set. If marking is
  3449       // active then, we clear the region fields of any of the
  3450       // concurrent marking tasks whose region fields point into
  3451       // the collection set as these values will become stale. This
  3452       // will cause the owning marking threads to claim a new region
  3453       // when marking restarts.
  3454       if (mark_in_progress()) {
  3455         concurrent_mark()->reset_active_task_region_fields_in_cset();
  3458 #ifdef ASSERT
  3459       VerifyCSetClosure cl;
  3460       collection_set_iterate(&cl);
  3461 #endif // ASSERT
  3463       setup_surviving_young_words();
  3465       // Initialize the GC alloc regions.
  3466       init_gc_alloc_regions();
  3468       // Actually do the work...
  3469       evacuate_collection_set();
  3471       free_collection_set(g1_policy()->collection_set());
  3472       g1_policy()->clear_collection_set();
  3474       cleanup_surviving_young_words();
  3476       // Start a new incremental collection set for the next pause.
  3477       g1_policy()->start_incremental_cset_building();
  3479       // Clear the _cset_fast_test bitmap in anticipation of adding
  3480       // regions to the incremental collection set for the next
  3481       // evacuation pause.
  3482       clear_cset_fast_test();
  3484       _young_list->reset_sampled_info();
  3486       // Don't check the whole heap at this point as the
  3487       // GC alloc regions from this pause have been tagged
  3488       // as survivors and moved on to the survivor list.
  3489       // Survivor regions will fail the !is_young() check.
  3490       assert(check_young_list_empty(false /* check_heap */),
  3491         "young list should be empty");
  3493 #if YOUNG_LIST_VERBOSE
  3494       gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3495       _young_list->print();
  3496 #endif // YOUNG_LIST_VERBOSE
  3498       g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3499         _young_list->first_survivor_region(),
  3500         _young_list->last_survivor_region());
  3502       _young_list->reset_auxilary_lists();
  3504       if (evacuation_failed()) {
  3505         _summary_bytes_used = recalculate_used();
  3506       } else {
  3507         // The "used" of the the collection set have already been subtracted
  3508         // when they were freed.  Add in the bytes evacuated.
  3509         _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3512       if (g1_policy()->during_initial_mark_pause()) {
  3513         concurrent_mark()->checkpointRootsInitialPost();
  3514         set_marking_started();
  3515         // CAUTION: after the doConcurrentMark() call below,
  3516         // the concurrent marking thread(s) could be running
  3517         // concurrently with us. Make sure that anything after
  3518         // this point does not assume that we are the only GC thread
  3519         // running. Note: of course, the actual marking work will
  3520         // not start until the safepoint itself is released in
  3521         // ConcurrentGCThread::safepoint_desynchronize().
  3522         doConcurrentMark();
  3525       allocate_dummy_regions();
  3527 #if YOUNG_LIST_VERBOSE
  3528       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3529       _young_list->print();
  3530       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3531 #endif // YOUNG_LIST_VERBOSE
  3533       init_mutator_alloc_region();
  3535       double end_time_sec = os::elapsedTime();
  3536       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3537       g1_policy()->record_pause_time_ms(pause_time_ms);
  3538       g1_policy()->record_collection_pause_end();
  3540       MemoryService::track_memory_usage();
  3542       // In prepare_for_verify() below we'll need to scan the deferred
  3543       // update buffers to bring the RSets up-to-date if
  3544       // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3545       // the update buffers we'll probably need to scan cards on the
  3546       // regions we just allocated to (i.e., the GC alloc
  3547       // regions). However, during the last GC we called
  3548       // set_saved_mark() on all the GC alloc regions, so card
  3549       // scanning might skip the [saved_mark_word()...top()] area of
  3550       // those regions (i.e., the area we allocated objects into
  3551       // during the last GC). But it shouldn't. Given that
  3552       // saved_mark_word() is conditional on whether the GC time stamp
  3553       // on the region is current or not, by incrementing the GC time
  3554       // stamp here we invalidate all the GC time stamps on all the
  3555       // regions and saved_mark_word() will simply return top() for
  3556       // all the regions. This is a nicer way of ensuring this rather
  3557       // than iterating over the regions and fixing them. In fact, the
  3558       // GC time stamp increment here also ensures that
  3559       // saved_mark_word() will return top() between pauses, i.e.,
  3560       // during concurrent refinement. So we don't need the
  3561       // is_gc_active() check to decided which top to use when
  3562       // scanning cards (see CR 7039627).
  3563       increment_gc_time_stamp();
  3565       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3566         HandleMark hm;  // Discard invalid handles created during verification
  3567         gclog_or_tty->print(" VerifyAfterGC:");
  3568         prepare_for_verify();
  3569         Universe::verify(/* allow dirty */ true,
  3570                          /* silent      */ false,
  3571                          /* option      */ VerifyOption_G1UsePrevMarking);
  3574       if (was_enabled) ref_processor()->enable_discovery();
  3577         size_t expand_bytes = g1_policy()->expansion_amount();
  3578         if (expand_bytes > 0) {
  3579           size_t bytes_before = capacity();
  3580           if (!expand(expand_bytes)) {
  3581             // We failed to expand the heap so let's verify that
  3582             // committed/uncommitted amount match the backing store
  3583             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3584             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3589       // We should do this after we potentially expand the heap so
  3590       // that all the COMMIT events are generated before the end GC
  3591       // event, and after we retire the GC alloc regions so that all
  3592       // RETIRE events are generated before the end GC event.
  3593       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3595       // We have to do this after we decide whether to expand the heap or not.
  3596       g1_policy()->print_heap_transition();
  3598       if (mark_in_progress()) {
  3599         concurrent_mark()->update_g1_committed();
  3602 #ifdef TRACESPINNING
  3603       ParallelTaskTerminator::print_termination_counts();
  3604 #endif
  3606       gc_epilogue(false);
  3609     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3610       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3611       print_tracing_info();
  3612       vm_exit(-1);
  3616   _hrs.verify_optional();
  3617   verify_region_sets_optional();
  3619   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3620   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3622   if (PrintHeapAtGC) {
  3623     Universe::print_heap_after_gc();
  3625   g1mm()->update_counters();
  3627   if (G1SummarizeRSetStats &&
  3628       (G1SummarizeRSetStatsPeriod > 0) &&
  3629       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3630     g1_rem_set()->print_summary_info();
  3633   return true;
  3636 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3638   size_t gclab_word_size;
  3639   switch (purpose) {
  3640     case GCAllocForSurvived:
  3641       gclab_word_size = YoungPLABSize;
  3642       break;
  3643     case GCAllocForTenured:
  3644       gclab_word_size = OldPLABSize;
  3645       break;
  3646     default:
  3647       assert(false, "unknown GCAllocPurpose");
  3648       gclab_word_size = OldPLABSize;
  3649       break;
  3651   return gclab_word_size;
  3654 void G1CollectedHeap::init_mutator_alloc_region() {
  3655   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3656   _mutator_alloc_region.init();
  3659 void G1CollectedHeap::release_mutator_alloc_region() {
  3660   _mutator_alloc_region.release();
  3661   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3664 void G1CollectedHeap::init_gc_alloc_regions() {
  3665   assert_at_safepoint(true /* should_be_vm_thread */);
  3667   _survivor_gc_alloc_region.init();
  3668   _old_gc_alloc_region.init();
  3669   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  3670   _retained_old_gc_alloc_region = NULL;
  3672   // We will discard the current GC alloc region if:
  3673   // a) it's in the collection set (it can happen!),
  3674   // b) it's already full (no point in using it),
  3675   // c) it's empty (this means that it was emptied during
  3676   // a cleanup and it should be on the free list now), or
  3677   // d) it's humongous (this means that it was emptied
  3678   // during a cleanup and was added to the free list, but
  3679   // has been subseqently used to allocate a humongous
  3680   // object that may be less than the region size).
  3681   if (retained_region != NULL &&
  3682       !retained_region->in_collection_set() &&
  3683       !(retained_region->top() == retained_region->end()) &&
  3684       !retained_region->is_empty() &&
  3685       !retained_region->isHumongous()) {
  3686     retained_region->set_saved_mark();
  3687     _old_gc_alloc_region.set(retained_region);
  3688     _hr_printer.reuse(retained_region);
  3692 void G1CollectedHeap::release_gc_alloc_regions() {
  3693   _survivor_gc_alloc_region.release();
  3694   // If we have an old GC alloc region to release, we'll save it in
  3695   // _retained_old_gc_alloc_region. If we don't
  3696   // _retained_old_gc_alloc_region will become NULL. This is what we
  3697   // want either way so no reason to check explicitly for either
  3698   // condition.
  3699   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  3702 void G1CollectedHeap::abandon_gc_alloc_regions() {
  3703   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  3704   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  3705   _retained_old_gc_alloc_region = NULL;
  3708 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3709   _drain_in_progress = false;
  3710   set_evac_failure_closure(cl);
  3711   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3714 void G1CollectedHeap::finalize_for_evac_failure() {
  3715   assert(_evac_failure_scan_stack != NULL &&
  3716          _evac_failure_scan_stack->length() == 0,
  3717          "Postcondition");
  3718   assert(!_drain_in_progress, "Postcondition");
  3719   delete _evac_failure_scan_stack;
  3720   _evac_failure_scan_stack = NULL;
  3723 // *** Sequential G1 Evacuation
  3725 class G1IsAliveClosure: public BoolObjectClosure {
  3726   G1CollectedHeap* _g1;
  3727 public:
  3728   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3729   void do_object(oop p) { assert(false, "Do not call."); }
  3730   bool do_object_b(oop p) {
  3731     // It is reachable if it is outside the collection set, or is inside
  3732     // and forwarded.
  3734 #ifdef G1_DEBUG
  3735     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3736                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3737                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3738 #endif // G1_DEBUG
  3740     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3742 };
  3744 class G1KeepAliveClosure: public OopClosure {
  3745   G1CollectedHeap* _g1;
  3746 public:
  3747   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3748   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3749   void do_oop(      oop* p) {
  3750     oop obj = *p;
  3751 #ifdef G1_DEBUG
  3752     if (PrintGC && Verbose) {
  3753       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3754                              p, (void*) obj, (void*) *p);
  3756 #endif // G1_DEBUG
  3758     if (_g1->obj_in_cs(obj)) {
  3759       assert( obj->is_forwarded(), "invariant" );
  3760       *p = obj->forwardee();
  3761 #ifdef G1_DEBUG
  3762       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3763                              (void*) obj, (void*) *p);
  3764 #endif // G1_DEBUG
  3767 };
  3769 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3770 private:
  3771   G1CollectedHeap* _g1;
  3772   DirtyCardQueue *_dcq;
  3773   CardTableModRefBS* _ct_bs;
  3775 public:
  3776   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3777     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3779   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3780   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3781   template <class T> void do_oop_work(T* p) {
  3782     assert(_from->is_in_reserved(p), "paranoia");
  3783     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3784         !_from->is_survivor()) {
  3785       size_t card_index = _ct_bs->index_for(p);
  3786       if (_ct_bs->mark_card_deferred(card_index)) {
  3787         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3791 };
  3793 class RemoveSelfPointerClosure: public ObjectClosure {
  3794 private:
  3795   G1CollectedHeap* _g1;
  3796   ConcurrentMark* _cm;
  3797   HeapRegion* _hr;
  3798   size_t _prev_marked_bytes;
  3799   size_t _next_marked_bytes;
  3800   OopsInHeapRegionClosure *_cl;
  3801 public:
  3802   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
  3803                            OopsInHeapRegionClosure* cl) :
  3804     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3805     _next_marked_bytes(0), _cl(cl) {}
  3807   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3808   size_t next_marked_bytes() { return _next_marked_bytes; }
  3810   // <original comment>
  3811   // The original idea here was to coalesce evacuated and dead objects.
  3812   // However that caused complications with the block offset table (BOT).
  3813   // In particular if there were two TLABs, one of them partially refined.
  3814   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3815   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3816   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3817   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3818   // would point into middle of the filler object.
  3819   // The current approach is to not coalesce and leave the BOT contents intact.
  3820   // </original comment>
  3821   //
  3822   // We now reset the BOT when we start the object iteration over the
  3823   // region and refine its entries for every object we come across. So
  3824   // the above comment is not really relevant and we should be able
  3825   // to coalesce dead objects if we want to.
  3826   void do_object(oop obj) {
  3827     HeapWord* obj_addr = (HeapWord*) obj;
  3828     assert(_hr->is_in(obj_addr), "sanity");
  3829     size_t obj_size = obj->size();
  3830     _hr->update_bot_for_object(obj_addr, obj_size);
  3831     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3832       // The object failed to move.
  3833       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3834       _cm->markPrev(obj);
  3835       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3836       _prev_marked_bytes += (obj_size * HeapWordSize);
  3837       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3838         _cm->markAndGrayObjectIfNecessary(obj);
  3840       obj->set_mark(markOopDesc::prototype());
  3841       // While we were processing RSet buffers during the
  3842       // collection, we actually didn't scan any cards on the
  3843       // collection set, since we didn't want to update remebered
  3844       // sets with entries that point into the collection set, given
  3845       // that live objects fromthe collection set are about to move
  3846       // and such entries will be stale very soon. This change also
  3847       // dealt with a reliability issue which involved scanning a
  3848       // card in the collection set and coming across an array that
  3849       // was being chunked and looking malformed. The problem is
  3850       // that, if evacuation fails, we might have remembered set
  3851       // entries missing given that we skipped cards on the
  3852       // collection set. So, we'll recreate such entries now.
  3853       obj->oop_iterate(_cl);
  3854       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3855     } else {
  3856       // The object has been either evacuated or is dead. Fill it with a
  3857       // dummy object.
  3858       MemRegion mr((HeapWord*)obj, obj_size);
  3859       CollectedHeap::fill_with_object(mr);
  3860       _cm->clearRangeBothMaps(mr);
  3863 };
  3865 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3866   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
  3867   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3868   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3869   OopsInHeapRegionClosure *cl;
  3870   if (G1DeferredRSUpdate) {
  3871     cl = &deferred_update;
  3872   } else {
  3873     cl = &immediate_update;
  3875   HeapRegion* cur = g1_policy()->collection_set();
  3876   while (cur != NULL) {
  3877     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3878     assert(!cur->isHumongous(), "sanity");
  3880     if (cur->evacuation_failed()) {
  3881       assert(cur->in_collection_set(), "bad CS");
  3882       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
  3884       // In the common case we make sure that this is done when the
  3885       // region is freed so that it is "ready-to-go" when it's
  3886       // re-allocated. However, when evacuation failure happens, a
  3887       // region will remain in the heap and might ultimately be added
  3888       // to a CSet in the future. So we have to be careful here and
  3889       // make sure the region's RSet is ready for parallel iteration
  3890       // whenever this might be required in the future.
  3891       cur->rem_set()->reset_for_par_iteration();
  3892       cur->reset_bot();
  3893       cl->set_region(cur);
  3894       cur->object_iterate(&rspc);
  3896       // A number of manipulations to make the TAMS be the current top,
  3897       // and the marked bytes be the ones observed in the iteration.
  3898       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3899         // The comments below are the postconditions achieved by the
  3900         // calls.  Note especially the last such condition, which says that
  3901         // the count of marked bytes has been properly restored.
  3902         cur->note_start_of_marking(false);
  3903         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3904         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3905         // _next_marked_bytes == prev_marked_bytes.
  3906         cur->note_end_of_marking();
  3907         // _prev_top_at_mark_start == top(),
  3908         // _prev_marked_bytes == prev_marked_bytes
  3910       // If there is no mark in progress, we modified the _next variables
  3911       // above needlessly, but harmlessly.
  3912       if (_g1h->mark_in_progress()) {
  3913         cur->note_start_of_marking(false);
  3914         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3915         // _next_marked_bytes == next_marked_bytes.
  3918       // Now make sure the region has the right index in the sorted array.
  3919       g1_policy()->note_change_in_marked_bytes(cur);
  3921     cur = cur->next_in_collection_set();
  3923   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3925   // Now restore saved marks, if any.
  3926   if (_objs_with_preserved_marks != NULL) {
  3927     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3928     guarantee(_objs_with_preserved_marks->length() ==
  3929               _preserved_marks_of_objs->length(), "Both or none.");
  3930     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3931       oop obj   = _objs_with_preserved_marks->at(i);
  3932       markOop m = _preserved_marks_of_objs->at(i);
  3933       obj->set_mark(m);
  3935     // Delete the preserved marks growable arrays (allocated on the C heap).
  3936     delete _objs_with_preserved_marks;
  3937     delete _preserved_marks_of_objs;
  3938     _objs_with_preserved_marks = NULL;
  3939     _preserved_marks_of_objs = NULL;
  3943 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3944   _evac_failure_scan_stack->push(obj);
  3947 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3948   assert(_evac_failure_scan_stack != NULL, "precondition");
  3950   while (_evac_failure_scan_stack->length() > 0) {
  3951      oop obj = _evac_failure_scan_stack->pop();
  3952      _evac_failure_closure->set_region(heap_region_containing(obj));
  3953      obj->oop_iterate_backwards(_evac_failure_closure);
  3957 oop
  3958 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3959                                                oop old) {
  3960   assert(obj_in_cs(old),
  3961          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  3962                  (HeapWord*) old));
  3963   markOop m = old->mark();
  3964   oop forward_ptr = old->forward_to_atomic(old);
  3965   if (forward_ptr == NULL) {
  3966     // Forward-to-self succeeded.
  3967     if (_evac_failure_closure != cl) {
  3968       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3969       assert(!_drain_in_progress,
  3970              "Should only be true while someone holds the lock.");
  3971       // Set the global evac-failure closure to the current thread's.
  3972       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3973       set_evac_failure_closure(cl);
  3974       // Now do the common part.
  3975       handle_evacuation_failure_common(old, m);
  3976       // Reset to NULL.
  3977       set_evac_failure_closure(NULL);
  3978     } else {
  3979       // The lock is already held, and this is recursive.
  3980       assert(_drain_in_progress, "This should only be the recursive case.");
  3981       handle_evacuation_failure_common(old, m);
  3983     return old;
  3984   } else {
  3985     // Forward-to-self failed. Either someone else managed to allocate
  3986     // space for this object (old != forward_ptr) or they beat us in
  3987     // self-forwarding it (old == forward_ptr).
  3988     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  3989            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  3990                    "should not be in the CSet",
  3991                    (HeapWord*) old, (HeapWord*) forward_ptr));
  3992     return forward_ptr;
  3996 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3997   set_evacuation_failed(true);
  3999   preserve_mark_if_necessary(old, m);
  4001   HeapRegion* r = heap_region_containing(old);
  4002   if (!r->evacuation_failed()) {
  4003     r->set_evacuation_failed(true);
  4004     _hr_printer.evac_failure(r);
  4007   push_on_evac_failure_scan_stack(old);
  4009   if (!_drain_in_progress) {
  4010     // prevent recursion in copy_to_survivor_space()
  4011     _drain_in_progress = true;
  4012     drain_evac_failure_scan_stack();
  4013     _drain_in_progress = false;
  4017 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4018   assert(evacuation_failed(), "Oversaving!");
  4019   // We want to call the "for_promotion_failure" version only in the
  4020   // case of a promotion failure.
  4021   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4022     if (_objs_with_preserved_marks == NULL) {
  4023       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4024       _objs_with_preserved_marks =
  4025         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4026       _preserved_marks_of_objs =
  4027         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4029     _objs_with_preserved_marks->push(obj);
  4030     _preserved_marks_of_objs->push(m);
  4034 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4035                                                   size_t word_size) {
  4036   if (purpose == GCAllocForSurvived) {
  4037     HeapWord* result = survivor_attempt_allocation(word_size);
  4038     if (result != NULL) {
  4039       return result;
  4040     } else {
  4041       // Let's try to allocate in the old gen in case we can fit the
  4042       // object there.
  4043       return old_attempt_allocation(word_size);
  4045   } else {
  4046     assert(purpose ==  GCAllocForTenured, "sanity");
  4047     HeapWord* result = old_attempt_allocation(word_size);
  4048     if (result != NULL) {
  4049       return result;
  4050     } else {
  4051       // Let's try to allocate in the survivors in case we can fit the
  4052       // object there.
  4053       return survivor_attempt_allocation(word_size);
  4057   ShouldNotReachHere();
  4058   // Trying to keep some compilers happy.
  4059   return NULL;
  4062 #ifndef PRODUCT
  4063 bool GCLabBitMapClosure::do_bit(size_t offset) {
  4064   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  4065   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  4066   return true;
  4068 #endif // PRODUCT
  4070 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4071   : _g1h(g1h),
  4072     _refs(g1h->task_queue(queue_num)),
  4073     _dcq(&g1h->dirty_card_queue_set()),
  4074     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4075     _g1_rem(g1h->g1_rem_set()),
  4076     _hash_seed(17), _queue_num(queue_num),
  4077     _term_attempts(0),
  4078     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4079     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4080     _age_table(false),
  4081     _strong_roots_time(0), _term_time(0),
  4082     _alloc_buffer_waste(0), _undo_waste(0)
  4084   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4085   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4086   // non-young regions (where the age is -1)
  4087   // We also add a few elements at the beginning and at the end in
  4088   // an attempt to eliminate cache contention
  4089   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  4090   size_t array_length = PADDING_ELEM_NUM +
  4091                         real_length +
  4092                         PADDING_ELEM_NUM;
  4093   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4094   if (_surviving_young_words_base == NULL)
  4095     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4096                           "Not enough space for young surv histo.");
  4097   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4098   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4100   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4101   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4103   _start = os::elapsedTime();
  4106 void
  4107 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4109   st->print_raw_cr("GC Termination Stats");
  4110   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4111                    " ------waste (KiB)------");
  4112   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4113                    "  total   alloc    undo");
  4114   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4115                    " ------- ------- -------");
  4118 void
  4119 G1ParScanThreadState::print_termination_stats(int i,
  4120                                               outputStream* const st) const
  4122   const double elapsed_ms = elapsed_time() * 1000.0;
  4123   const double s_roots_ms = strong_roots_time() * 1000.0;
  4124   const double term_ms    = term_time() * 1000.0;
  4125   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4126                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4127                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4128                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4129                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4130                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4131                alloc_buffer_waste() * HeapWordSize / K,
  4132                undo_waste() * HeapWordSize / K);
  4135 #ifdef ASSERT
  4136 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4137   assert(ref != NULL, "invariant");
  4138   assert(UseCompressedOops, "sanity");
  4139   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4140   oop p = oopDesc::load_decode_heap_oop(ref);
  4141   assert(_g1h->is_in_g1_reserved(p),
  4142          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4143   return true;
  4146 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4147   assert(ref != NULL, "invariant");
  4148   if (has_partial_array_mask(ref)) {
  4149     // Must be in the collection set--it's already been copied.
  4150     oop p = clear_partial_array_mask(ref);
  4151     assert(_g1h->obj_in_cs(p),
  4152            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4153   } else {
  4154     oop p = oopDesc::load_decode_heap_oop(ref);
  4155     assert(_g1h->is_in_g1_reserved(p),
  4156            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4158   return true;
  4161 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4162   if (ref.is_narrow()) {
  4163     return verify_ref((narrowOop*) ref);
  4164   } else {
  4165     return verify_ref((oop*) ref);
  4168 #endif // ASSERT
  4170 void G1ParScanThreadState::trim_queue() {
  4171   StarTask ref;
  4172   do {
  4173     // Drain the overflow stack first, so other threads can steal.
  4174     while (refs()->pop_overflow(ref)) {
  4175       deal_with_reference(ref);
  4177     while (refs()->pop_local(ref)) {
  4178       deal_with_reference(ref);
  4180   } while (!refs()->is_empty());
  4183 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4184   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4185   _par_scan_state(par_scan_state) { }
  4187 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  4188   // This is called _after_ do_oop_work has been called, hence after
  4189   // the object has been relocated to its new location and *p points
  4190   // to its new location.
  4192   T heap_oop = oopDesc::load_heap_oop(p);
  4193   if (!oopDesc::is_null(heap_oop)) {
  4194     oop obj = oopDesc::decode_heap_oop(heap_oop);
  4195     HeapWord* addr = (HeapWord*)obj;
  4196     if (_g1->is_in_g1_reserved(addr)) {
  4197       _cm->grayRoot(oop(addr));
  4202 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4203   size_t    word_sz = old->size();
  4204   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4205   // +1 to make the -1 indexes valid...
  4206   int       young_index = from_region->young_index_in_cset()+1;
  4207   assert( (from_region->is_young() && young_index > 0) ||
  4208           (!from_region->is_young() && young_index == 0), "invariant" );
  4209   G1CollectorPolicy* g1p = _g1->g1_policy();
  4210   markOop m = old->mark();
  4211   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4212                                            : m->age();
  4213   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4214                                                              word_sz);
  4215   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4216   oop       obj     = oop(obj_ptr);
  4218   if (obj_ptr == NULL) {
  4219     // This will either forward-to-self, or detect that someone else has
  4220     // installed a forwarding pointer.
  4221     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4222     return _g1->handle_evacuation_failure_par(cl, old);
  4225   // We're going to allocate linearly, so might as well prefetch ahead.
  4226   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4228   oop forward_ptr = old->forward_to_atomic(obj);
  4229   if (forward_ptr == NULL) {
  4230     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4231     if (g1p->track_object_age(alloc_purpose)) {
  4232       // We could simply do obj->incr_age(). However, this causes a
  4233       // performance issue. obj->incr_age() will first check whether
  4234       // the object has a displaced mark by checking its mark word;
  4235       // getting the mark word from the new location of the object
  4236       // stalls. So, given that we already have the mark word and we
  4237       // are about to install it anyway, it's better to increase the
  4238       // age on the mark word, when the object does not have a
  4239       // displaced mark word. We're not expecting many objects to have
  4240       // a displaced marked word, so that case is not optimized
  4241       // further (it could be...) and we simply call obj->incr_age().
  4243       if (m->has_displaced_mark_helper()) {
  4244         // in this case, we have to install the mark word first,
  4245         // otherwise obj looks to be forwarded (the old mark word,
  4246         // which contains the forward pointer, was copied)
  4247         obj->set_mark(m);
  4248         obj->incr_age();
  4249       } else {
  4250         m = m->incr_age();
  4251         obj->set_mark(m);
  4253       _par_scan_state->age_table()->add(obj, word_sz);
  4254     } else {
  4255       obj->set_mark(m);
  4258     // preserve "next" mark bit
  4259     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4260       if (!use_local_bitmaps ||
  4261           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4262         // if we couldn't mark it on the local bitmap (this happens when
  4263         // the object was not allocated in the GCLab), we have to bite
  4264         // the bullet and do the standard parallel mark
  4265         _cm->markAndGrayObjectIfNecessary(obj);
  4267 #if 1
  4268       if (_g1->isMarkedNext(old)) {
  4269         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4271 #endif
  4274     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4275     surv_young_words[young_index] += word_sz;
  4277     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4278       arrayOop(old)->set_length(0);
  4279       oop* old_p = set_partial_array_mask(old);
  4280       _par_scan_state->push_on_queue(old_p);
  4281     } else {
  4282       // No point in using the slower heap_region_containing() method,
  4283       // given that we know obj is in the heap.
  4284       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4285       obj->oop_iterate_backwards(_scanner);
  4287   } else {
  4288     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4289     obj = forward_ptr;
  4291   return obj;
  4294 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
  4295 template <class T>
  4296 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
  4297 ::do_oop_work(T* p) {
  4298   oop obj = oopDesc::load_decode_heap_oop(p);
  4299   assert(barrier != G1BarrierRS || obj != NULL,
  4300          "Precondition: G1BarrierRS implies obj is nonNull");
  4302   // here the null check is implicit in the cset_fast_test() test
  4303   if (_g1->in_cset_fast_test(obj)) {
  4304     if (obj->is_forwarded()) {
  4305       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  4306     } else {
  4307       oop copy_oop = copy_to_survivor_space(obj);
  4308       oopDesc::encode_store_heap_oop(p, copy_oop);
  4310     // When scanning the RS, we only care about objs in CS.
  4311     if (barrier == G1BarrierRS) {
  4312       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4316   if (barrier == G1BarrierEvac && obj != NULL) {
  4317     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4320   if (do_gen_barrier && obj != NULL) {
  4321     par_do_barrier(p);
  4325 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4326 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4328 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4329   assert(has_partial_array_mask(p), "invariant");
  4330   oop old = clear_partial_array_mask(p);
  4331   assert(old->is_objArray(), "must be obj array");
  4332   assert(old->is_forwarded(), "must be forwarded");
  4333   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4335   objArrayOop obj = objArrayOop(old->forwardee());
  4336   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4337   // Process ParGCArrayScanChunk elements now
  4338   // and push the remainder back onto queue
  4339   int start     = arrayOop(old)->length();
  4340   int end       = obj->length();
  4341   int remainder = end - start;
  4342   assert(start <= end, "just checking");
  4343   if (remainder > 2 * ParGCArrayScanChunk) {
  4344     // Test above combines last partial chunk with a full chunk
  4345     end = start + ParGCArrayScanChunk;
  4346     arrayOop(old)->set_length(end);
  4347     // Push remainder.
  4348     oop* old_p = set_partial_array_mask(old);
  4349     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  4350     _par_scan_state->push_on_queue(old_p);
  4351   } else {
  4352     // Restore length so that the heap remains parsable in
  4353     // case of evacuation failure.
  4354     arrayOop(old)->set_length(end);
  4356   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4357   // process our set of indices (include header in first chunk)
  4358   obj->oop_iterate_range(&_scanner, start, end);
  4361 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4362 protected:
  4363   G1CollectedHeap*              _g1h;
  4364   G1ParScanThreadState*         _par_scan_state;
  4365   RefToScanQueueSet*            _queues;
  4366   ParallelTaskTerminator*       _terminator;
  4368   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4369   RefToScanQueueSet*      queues()         { return _queues; }
  4370   ParallelTaskTerminator* terminator()     { return _terminator; }
  4372 public:
  4373   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4374                                 G1ParScanThreadState* par_scan_state,
  4375                                 RefToScanQueueSet* queues,
  4376                                 ParallelTaskTerminator* terminator)
  4377     : _g1h(g1h), _par_scan_state(par_scan_state),
  4378       _queues(queues), _terminator(terminator) {}
  4380   void do_void();
  4382 private:
  4383   inline bool offer_termination();
  4384 };
  4386 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4387   G1ParScanThreadState* const pss = par_scan_state();
  4388   pss->start_term_time();
  4389   const bool res = terminator()->offer_termination();
  4390   pss->end_term_time();
  4391   return res;
  4394 void G1ParEvacuateFollowersClosure::do_void() {
  4395   StarTask stolen_task;
  4396   G1ParScanThreadState* const pss = par_scan_state();
  4397   pss->trim_queue();
  4399   do {
  4400     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4401       assert(pss->verify_task(stolen_task), "sanity");
  4402       if (stolen_task.is_narrow()) {
  4403         pss->deal_with_reference((narrowOop*) stolen_task);
  4404       } else {
  4405         pss->deal_with_reference((oop*) stolen_task);
  4408       // We've just processed a reference and we might have made
  4409       // available new entries on the queues. So we have to make sure
  4410       // we drain the queues as necessary.
  4411       pss->trim_queue();
  4413   } while (!offer_termination());
  4415   pss->retire_alloc_buffers();
  4418 class G1ParTask : public AbstractGangTask {
  4419 protected:
  4420   G1CollectedHeap*       _g1h;
  4421   RefToScanQueueSet      *_queues;
  4422   ParallelTaskTerminator _terminator;
  4423   int _n_workers;
  4425   Mutex _stats_lock;
  4426   Mutex* stats_lock() { return &_stats_lock; }
  4428   size_t getNCards() {
  4429     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4430       / G1BlockOffsetSharedArray::N_bytes;
  4433 public:
  4434   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4435     : AbstractGangTask("G1 collection"),
  4436       _g1h(g1h),
  4437       _queues(task_queues),
  4438       _terminator(workers, _queues),
  4439       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  4440       _n_workers(workers)
  4441   {}
  4443   RefToScanQueueSet* queues() { return _queues; }
  4445   RefToScanQueue *work_queue(int i) {
  4446     return queues()->queue(i);
  4449   void work(int i) {
  4450     if (i >= _n_workers) return;  // no work needed this round
  4452     double start_time_ms = os::elapsedTime() * 1000.0;
  4453     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
  4455     ResourceMark rm;
  4456     HandleMark   hm;
  4458     G1ParScanThreadState            pss(_g1h, i);
  4459     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4460     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4461     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4463     pss.set_evac_closure(&scan_evac_cl);
  4464     pss.set_evac_failure_closure(&evac_failure_cl);
  4465     pss.set_partial_scan_closure(&partial_scan_cl);
  4467     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4468     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4469     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4470     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4472     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4473     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4474     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4476     OopsInHeapRegionClosure        *scan_root_cl;
  4477     OopsInHeapRegionClosure        *scan_perm_cl;
  4479     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4480       scan_root_cl = &scan_mark_root_cl;
  4481       scan_perm_cl = &scan_mark_perm_cl;
  4482     } else {
  4483       scan_root_cl = &only_scan_root_cl;
  4484       scan_perm_cl = &only_scan_perm_cl;
  4487     pss.start_strong_roots();
  4488     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4489                                   SharedHeap::SO_AllClasses,
  4490                                   scan_root_cl,
  4491                                   &push_heap_rs_cl,
  4492                                   scan_perm_cl,
  4493                                   i);
  4494     pss.end_strong_roots();
  4497       double start = os::elapsedTime();
  4498       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4499       evac.do_void();
  4500       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4501       double term_ms = pss.term_time()*1000.0;
  4502       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4503       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
  4505     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4506     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4508     // Clean up any par-expanded rem sets.
  4509     HeapRegionRemSet::par_cleanup();
  4511     if (ParallelGCVerbose) {
  4512       MutexLocker x(stats_lock());
  4513       pss.print_termination_stats(i);
  4516     assert(pss.refs()->is_empty(), "should be empty");
  4517     double end_time_ms = os::elapsedTime() * 1000.0;
  4518     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
  4520 };
  4522 // *** Common G1 Evacuation Stuff
  4524 // This method is run in a GC worker.
  4526 void
  4527 G1CollectedHeap::
  4528 g1_process_strong_roots(bool collecting_perm_gen,
  4529                         SharedHeap::ScanningOption so,
  4530                         OopClosure* scan_non_heap_roots,
  4531                         OopsInHeapRegionClosure* scan_rs,
  4532                         OopsInGenClosure* scan_perm,
  4533                         int worker_i) {
  4534   // First scan the strong roots, including the perm gen.
  4535   double ext_roots_start = os::elapsedTime();
  4536   double closure_app_time_sec = 0.0;
  4538   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4539   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4540   buf_scan_perm.set_generation(perm_gen());
  4542   // Walk the code cache w/o buffering, because StarTask cannot handle
  4543   // unaligned oop locations.
  4544   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4546   process_strong_roots(false, // no scoping; this is parallel code
  4547                        collecting_perm_gen, so,
  4548                        &buf_scan_non_heap_roots,
  4549                        &eager_scan_code_roots,
  4550                        &buf_scan_perm);
  4552   // Now the ref_processor roots.
  4553   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4554     // We need to treat the discovered reference lists as roots and
  4555     // keep entries (which are added by the marking threads) on them
  4556     // live until they can be processed at the end of marking.
  4557     ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
  4558     ref_processor()->oops_do(&buf_scan_non_heap_roots);
  4561   // Finish up any enqueued closure apps (attributed as object copy time).
  4562   buf_scan_non_heap_roots.done();
  4563   buf_scan_perm.done();
  4565   double ext_roots_end = os::elapsedTime();
  4567   g1_policy()->reset_obj_copy_time(worker_i);
  4568   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4569                                 buf_scan_non_heap_roots.closure_app_seconds();
  4570   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4572   double ext_root_time_ms =
  4573     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4575   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4577   // Scan strong roots in mark stack.
  4578   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4579     concurrent_mark()->oops_do(scan_non_heap_roots);
  4581   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4582   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4584   // Now scan the complement of the collection set.
  4585   if (scan_rs != NULL) {
  4586     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4589   _process_strong_tasks->all_tasks_completed();
  4592 void
  4593 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4594                                        OopClosure* non_root_closure) {
  4595   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4596   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4599 void G1CollectedHeap::evacuate_collection_set() {
  4600   set_evacuation_failed(false);
  4602   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4603   concurrent_g1_refine()->set_use_cache(false);
  4604   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4606   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4607   set_par_threads(n_workers);
  4608   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4610   init_for_evac_failure(NULL);
  4612   rem_set()->prepare_for_younger_refs_iterate(true);
  4614   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4615   double start_par = os::elapsedTime();
  4616   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4617     // The individual threads will set their evac-failure closures.
  4618     StrongRootsScope srs(this);
  4619     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  4620     workers()->run_task(&g1_par_task);
  4621   } else {
  4622     StrongRootsScope srs(this);
  4623     g1_par_task.work(0);
  4626   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4627   g1_policy()->record_par_time(par_time);
  4628   set_par_threads(0);
  4630   // Weak root processing.
  4631   // Note: when JSR 292 is enabled and code blobs can contain
  4632   // non-perm oops then we will need to process the code blobs
  4633   // here too.
  4635     G1IsAliveClosure is_alive(this);
  4636     G1KeepAliveClosure keep_alive(this);
  4637     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4639   release_gc_alloc_regions();
  4640   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4642   concurrent_g1_refine()->clear_hot_cache();
  4643   concurrent_g1_refine()->set_use_cache(true);
  4645   finalize_for_evac_failure();
  4647   // Must do this before removing self-forwarding pointers, which clears
  4648   // the per-region evac-failure flags.
  4649   concurrent_mark()->complete_marking_in_collection_set();
  4651   if (evacuation_failed()) {
  4652     remove_self_forwarding_pointers();
  4653     if (PrintGCDetails) {
  4654       gclog_or_tty->print(" (to-space overflow)");
  4655     } else if (PrintGC) {
  4656       gclog_or_tty->print("--");
  4660   if (G1DeferredRSUpdate) {
  4661     RedirtyLoggedCardTableEntryFastClosure redirty;
  4662     dirty_card_queue_set().set_closure(&redirty);
  4663     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4665     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4666     dcq.merge_bufferlists(&dirty_card_queue_set());
  4667     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4669   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4672 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  4673                                      size_t* pre_used,
  4674                                      FreeRegionList* free_list,
  4675                                      HumongousRegionSet* humongous_proxy_set,
  4676                                      HRRSCleanupTask* hrrs_cleanup_task,
  4677                                      bool par) {
  4678   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  4679     if (hr->isHumongous()) {
  4680       assert(hr->startsHumongous(), "we should only see starts humongous");
  4681       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  4682     } else {
  4683       free_region(hr, pre_used, free_list, par);
  4685   } else {
  4686     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  4690 void G1CollectedHeap::free_region(HeapRegion* hr,
  4691                                   size_t* pre_used,
  4692                                   FreeRegionList* free_list,
  4693                                   bool par) {
  4694   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  4695   assert(!hr->is_empty(), "the region should not be empty");
  4696   assert(free_list != NULL, "pre-condition");
  4698   *pre_used += hr->used();
  4699   hr->hr_clear(par, true /* clear_space */);
  4700   free_list->add_as_head(hr);
  4703 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  4704                                      size_t* pre_used,
  4705                                      FreeRegionList* free_list,
  4706                                      HumongousRegionSet* humongous_proxy_set,
  4707                                      bool par) {
  4708   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  4709   assert(free_list != NULL, "pre-condition");
  4710   assert(humongous_proxy_set != NULL, "pre-condition");
  4712   size_t hr_used = hr->used();
  4713   size_t hr_capacity = hr->capacity();
  4714   size_t hr_pre_used = 0;
  4715   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  4716   hr->set_notHumongous();
  4717   free_region(hr, &hr_pre_used, free_list, par);
  4719   size_t i = hr->hrs_index() + 1;
  4720   size_t num = 1;
  4721   while (i < n_regions()) {
  4722     HeapRegion* curr_hr = region_at(i);
  4723     if (!curr_hr->continuesHumongous()) {
  4724       break;
  4726     curr_hr->set_notHumongous();
  4727     free_region(curr_hr, &hr_pre_used, free_list, par);
  4728     num += 1;
  4729     i += 1;
  4731   assert(hr_pre_used == hr_used,
  4732          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  4733                  "should be the same", hr_pre_used, hr_used));
  4734   *pre_used += hr_pre_used;
  4737 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  4738                                        FreeRegionList* free_list,
  4739                                        HumongousRegionSet* humongous_proxy_set,
  4740                                        bool par) {
  4741   if (pre_used > 0) {
  4742     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  4743     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4744     assert(_summary_bytes_used >= pre_used,
  4745            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  4746                    "should be >= pre_used: "SIZE_FORMAT,
  4747                    _summary_bytes_used, pre_used));
  4748     _summary_bytes_used -= pre_used;
  4750   if (free_list != NULL && !free_list->is_empty()) {
  4751     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  4752     _free_list.add_as_head(free_list);
  4754   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  4755     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  4756     _humongous_set.update_from_proxy(humongous_proxy_set);
  4760 class G1ParCleanupCTTask : public AbstractGangTask {
  4761   CardTableModRefBS* _ct_bs;
  4762   G1CollectedHeap* _g1h;
  4763   HeapRegion* volatile _su_head;
  4764 public:
  4765   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4766                      G1CollectedHeap* g1h) :
  4767     AbstractGangTask("G1 Par Cleanup CT Task"),
  4768     _ct_bs(ct_bs), _g1h(g1h) { }
  4770   void work(int i) {
  4771     HeapRegion* r;
  4772     while (r = _g1h->pop_dirty_cards_region()) {
  4773       clear_cards(r);
  4777   void clear_cards(HeapRegion* r) {
  4778     // Cards of the survivors should have already been dirtied.
  4779     if (!r->is_survivor()) {
  4780       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4783 };
  4785 #ifndef PRODUCT
  4786 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4787   G1CollectedHeap* _g1h;
  4788   CardTableModRefBS* _ct_bs;
  4789 public:
  4790   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  4791     : _g1h(g1h), _ct_bs(ct_bs) { }
  4792   virtual bool doHeapRegion(HeapRegion* r) {
  4793     if (r->is_survivor()) {
  4794       _g1h->verify_dirty_region(r);
  4795     } else {
  4796       _g1h->verify_not_dirty_region(r);
  4798     return false;
  4800 };
  4802 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  4803   // All of the region should be clean.
  4804   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  4805   MemRegion mr(hr->bottom(), hr->end());
  4806   ct_bs->verify_not_dirty_region(mr);
  4809 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  4810   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  4811   // dirty allocated blocks as they allocate them. The thread that
  4812   // retires each region and replaces it with a new one will do a
  4813   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  4814   // not dirty that area (one less thing to have to do while holding
  4815   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  4816   // is dirty.
  4817   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  4818   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  4819   ct_bs->verify_dirty_region(mr);
  4822 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  4823   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  4824   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  4825     verify_dirty_region(hr);
  4829 void G1CollectedHeap::verify_dirty_young_regions() {
  4830   verify_dirty_young_list(_young_list->first_region());
  4831   verify_dirty_young_list(_young_list->first_survivor_region());
  4833 #endif
  4835 void G1CollectedHeap::cleanUpCardTable() {
  4836   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4837   double start = os::elapsedTime();
  4839   // Iterate over the dirty cards region list.
  4840   G1ParCleanupCTTask cleanup_task(ct_bs, this);
  4842   if (ParallelGCThreads > 0) {
  4843     set_par_threads(workers()->total_workers());
  4844     workers()->run_task(&cleanup_task);
  4845     set_par_threads(0);
  4846   } else {
  4847     while (_dirty_cards_region_list) {
  4848       HeapRegion* r = _dirty_cards_region_list;
  4849       cleanup_task.clear_cards(r);
  4850       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4851       if (_dirty_cards_region_list == r) {
  4852         // The last region.
  4853         _dirty_cards_region_list = NULL;
  4855       r->set_next_dirty_cards_region(NULL);
  4859   double elapsed = os::elapsedTime() - start;
  4860   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4861 #ifndef PRODUCT
  4862   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4863     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  4864     heap_region_iterate(&cleanup_verifier);
  4866 #endif
  4869 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4870   size_t pre_used = 0;
  4871   FreeRegionList local_free_list("Local List for CSet Freeing");
  4873   double young_time_ms     = 0.0;
  4874   double non_young_time_ms = 0.0;
  4876   // Since the collection set is a superset of the the young list,
  4877   // all we need to do to clear the young list is clear its
  4878   // head and length, and unlink any young regions in the code below
  4879   _young_list->clear();
  4881   G1CollectorPolicy* policy = g1_policy();
  4883   double start_sec = os::elapsedTime();
  4884   bool non_young = true;
  4886   HeapRegion* cur = cs_head;
  4887   int age_bound = -1;
  4888   size_t rs_lengths = 0;
  4890   while (cur != NULL) {
  4891     assert(!is_on_master_free_list(cur), "sanity");
  4893     if (non_young) {
  4894       if (cur->is_young()) {
  4895         double end_sec = os::elapsedTime();
  4896         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4897         non_young_time_ms += elapsed_ms;
  4899         start_sec = os::elapsedTime();
  4900         non_young = false;
  4902     } else {
  4903       double end_sec = os::elapsedTime();
  4904       double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4905       young_time_ms += elapsed_ms;
  4907       start_sec = os::elapsedTime();
  4908       non_young = true;
  4911     rs_lengths += cur->rem_set()->occupied();
  4913     HeapRegion* next = cur->next_in_collection_set();
  4914     assert(cur->in_collection_set(), "bad CS");
  4915     cur->set_next_in_collection_set(NULL);
  4916     cur->set_in_collection_set(false);
  4918     if (cur->is_young()) {
  4919       int index = cur->young_index_in_cset();
  4920       guarantee( index != -1, "invariant" );
  4921       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4922       size_t words_survived = _surviving_young_words[index];
  4923       cur->record_surv_words_in_group(words_survived);
  4925       // At this point the we have 'popped' cur from the collection set
  4926       // (linked via next_in_collection_set()) but it is still in the
  4927       // young list (linked via next_young_region()). Clear the
  4928       // _next_young_region field.
  4929       cur->set_next_young_region(NULL);
  4930     } else {
  4931       int index = cur->young_index_in_cset();
  4932       guarantee( index == -1, "invariant" );
  4935     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4936             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4937             "invariant" );
  4939     if (!cur->evacuation_failed()) {
  4940       // And the region is empty.
  4941       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
  4942       free_region(cur, &pre_used, &local_free_list, false /* par */);
  4943     } else {
  4944       cur->uninstall_surv_rate_group();
  4945       if (cur->is_young())
  4946         cur->set_young_index_in_cset(-1);
  4947       cur->set_not_young();
  4948       cur->set_evacuation_failed(false);
  4950     cur = next;
  4953   policy->record_max_rs_lengths(rs_lengths);
  4954   policy->cset_regions_freed();
  4956   double end_sec = os::elapsedTime();
  4957   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4958   if (non_young)
  4959     non_young_time_ms += elapsed_ms;
  4960   else
  4961     young_time_ms += elapsed_ms;
  4963   update_sets_after_freeing_regions(pre_used, &local_free_list,
  4964                                     NULL /* humongous_proxy_set */,
  4965                                     false /* par */);
  4966   policy->record_young_free_cset_time_ms(young_time_ms);
  4967   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4970 // This routine is similar to the above but does not record
  4971 // any policy statistics or update free lists; we are abandoning
  4972 // the current incremental collection set in preparation of a
  4973 // full collection. After the full GC we will start to build up
  4974 // the incremental collection set again.
  4975 // This is only called when we're doing a full collection
  4976 // and is immediately followed by the tearing down of the young list.
  4978 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  4979   HeapRegion* cur = cs_head;
  4981   while (cur != NULL) {
  4982     HeapRegion* next = cur->next_in_collection_set();
  4983     assert(cur->in_collection_set(), "bad CS");
  4984     cur->set_next_in_collection_set(NULL);
  4985     cur->set_in_collection_set(false);
  4986     cur->set_young_index_in_cset(-1);
  4987     cur = next;
  4991 void G1CollectedHeap::set_free_regions_coming() {
  4992   if (G1ConcRegionFreeingVerbose) {
  4993     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  4994                            "setting free regions coming");
  4997   assert(!free_regions_coming(), "pre-condition");
  4998   _free_regions_coming = true;
  5001 void G1CollectedHeap::reset_free_regions_coming() {
  5003     assert(free_regions_coming(), "pre-condition");
  5004     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5005     _free_regions_coming = false;
  5006     SecondaryFreeList_lock->notify_all();
  5009   if (G1ConcRegionFreeingVerbose) {
  5010     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5011                            "reset free regions coming");
  5015 void G1CollectedHeap::wait_while_free_regions_coming() {
  5016   // Most of the time we won't have to wait, so let's do a quick test
  5017   // first before we take the lock.
  5018   if (!free_regions_coming()) {
  5019     return;
  5022   if (G1ConcRegionFreeingVerbose) {
  5023     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5024                            "waiting for free regions");
  5028     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5029     while (free_regions_coming()) {
  5030       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5034   if (G1ConcRegionFreeingVerbose) {
  5035     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5036                            "done waiting for free regions");
  5040 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5041   assert(heap_lock_held_for_gc(),
  5042               "the heap lock should already be held by or for this thread");
  5043   _young_list->push_region(hr);
  5044   g1_policy()->set_region_short_lived(hr);
  5047 class NoYoungRegionsClosure: public HeapRegionClosure {
  5048 private:
  5049   bool _success;
  5050 public:
  5051   NoYoungRegionsClosure() : _success(true) { }
  5052   bool doHeapRegion(HeapRegion* r) {
  5053     if (r->is_young()) {
  5054       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5055                              r->bottom(), r->end());
  5056       _success = false;
  5058     return false;
  5060   bool success() { return _success; }
  5061 };
  5063 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5064   bool ret = _young_list->check_list_empty(check_sample);
  5066   if (check_heap) {
  5067     NoYoungRegionsClosure closure;
  5068     heap_region_iterate(&closure);
  5069     ret = ret && closure.success();
  5072   return ret;
  5075 void G1CollectedHeap::empty_young_list() {
  5076   assert(heap_lock_held_for_gc(),
  5077               "the heap lock should already be held by or for this thread");
  5079   _young_list->empty_list();
  5082 // Done at the start of full GC.
  5083 void G1CollectedHeap::tear_down_region_lists() {
  5084   _free_list.remove_all();
  5087 class RegionResetter: public HeapRegionClosure {
  5088   G1CollectedHeap* _g1h;
  5089   FreeRegionList _local_free_list;
  5091 public:
  5092   RegionResetter() : _g1h(G1CollectedHeap::heap()),
  5093                      _local_free_list("Local Free List for RegionResetter") { }
  5095   bool doHeapRegion(HeapRegion* r) {
  5096     if (r->continuesHumongous()) return false;
  5097     if (r->top() > r->bottom()) {
  5098       if (r->top() < r->end()) {
  5099         Copy::fill_to_words(r->top(),
  5100                           pointer_delta(r->end(), r->top()));
  5102     } else {
  5103       assert(r->is_empty(), "tautology");
  5104       _local_free_list.add_as_tail(r);
  5106     return false;
  5109   void update_free_lists() {
  5110     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
  5111                                             false /* par */);
  5113 };
  5115 // Done at the end of full GC.
  5116 void G1CollectedHeap::rebuild_region_lists() {
  5117   // This needs to go at the end of the full GC.
  5118   RegionResetter rs;
  5119   heap_region_iterate(&rs);
  5120   rs.update_free_lists();
  5123 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5124   _refine_cte_cl->set_concurrent(concurrent);
  5127 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5128   HeapRegion* hr = heap_region_containing(p);
  5129   if (hr == NULL) {
  5130     return is_in_permanent(p);
  5131   } else {
  5132     return hr->is_in(p);
  5136 // Methods for the mutator alloc region
  5138 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  5139                                                       bool force) {
  5140   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5141   assert(!force || g1_policy()->can_expand_young_list(),
  5142          "if force is true we should be able to expand the young list");
  5143   bool young_list_full = g1_policy()->is_young_list_full();
  5144   if (force || !young_list_full) {
  5145     HeapRegion* new_alloc_region = new_region(word_size,
  5146                                               false /* do_expand */);
  5147     if (new_alloc_region != NULL) {
  5148       g1_policy()->update_region_num(true /* next_is_young */);
  5149       set_region_short_lived_locked(new_alloc_region);
  5150       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  5151       g1mm()->update_eden_counters();
  5152       return new_alloc_region;
  5155   return NULL;
  5158 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  5159                                                   size_t allocated_bytes) {
  5160   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5161   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  5163   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  5164   _summary_bytes_used += allocated_bytes;
  5165   _hr_printer.retire(alloc_region);
  5168 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  5169                                                     bool force) {
  5170   return _g1h->new_mutator_alloc_region(word_size, force);
  5173 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  5174                                        size_t allocated_bytes) {
  5175   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  5178 // Methods for the GC alloc regions
  5180 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  5181                                                  size_t count,
  5182                                                  GCAllocPurpose ap) {
  5183   assert(FreeList_lock->owned_by_self(), "pre-condition");
  5185   if (count < g1_policy()->max_regions(ap)) {
  5186     HeapRegion* new_alloc_region = new_region(word_size,
  5187                                               true /* do_expand */);
  5188     if (new_alloc_region != NULL) {
  5189       // We really only need to do this for old regions given that we
  5190       // should never scan survivors. But it doesn't hurt to do it
  5191       // for survivors too.
  5192       new_alloc_region->set_saved_mark();
  5193       if (ap == GCAllocForSurvived) {
  5194         new_alloc_region->set_survivor();
  5195         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  5196       } else {
  5197         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  5199       return new_alloc_region;
  5200     } else {
  5201       g1_policy()->note_alloc_region_limit_reached(ap);
  5204   return NULL;
  5207 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  5208                                              size_t allocated_bytes,
  5209                                              GCAllocPurpose ap) {
  5210   alloc_region->note_end_of_copying();
  5211   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  5212   if (ap == GCAllocForSurvived) {
  5213     young_list()->add_survivor_region(alloc_region);
  5215   _hr_printer.retire(alloc_region);
  5218 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  5219                                                        bool force) {
  5220   assert(!force, "not supported for GC alloc regions");
  5221   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  5224 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  5225                                           size_t allocated_bytes) {
  5226   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  5227                                GCAllocForSurvived);
  5230 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  5231                                                   bool force) {
  5232   assert(!force, "not supported for GC alloc regions");
  5233   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  5236 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  5237                                      size_t allocated_bytes) {
  5238   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  5239                                GCAllocForTenured);
  5241 // Heap region set verification
  5243 class VerifyRegionListsClosure : public HeapRegionClosure {
  5244 private:
  5245   HumongousRegionSet* _humongous_set;
  5246   FreeRegionList*     _free_list;
  5247   size_t              _region_count;
  5249 public:
  5250   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
  5251                            FreeRegionList* free_list) :
  5252     _humongous_set(humongous_set), _free_list(free_list),
  5253     _region_count(0) { }
  5255   size_t region_count()      { return _region_count;      }
  5257   bool doHeapRegion(HeapRegion* hr) {
  5258     _region_count += 1;
  5260     if (hr->continuesHumongous()) {
  5261       return false;
  5264     if (hr->is_young()) {
  5265       // TODO
  5266     } else if (hr->startsHumongous()) {
  5267       _humongous_set->verify_next_region(hr);
  5268     } else if (hr->is_empty()) {
  5269       _free_list->verify_next_region(hr);
  5271     return false;
  5273 };
  5275 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
  5276                                              HeapWord* bottom) {
  5277   HeapWord* end = bottom + HeapRegion::GrainWords;
  5278   MemRegion mr(bottom, end);
  5279   assert(_g1_reserved.contains(mr), "invariant");
  5280   // This might return NULL if the allocation fails
  5281   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  5284 void G1CollectedHeap::verify_region_sets() {
  5285   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5287   // First, check the explicit lists.
  5288   _free_list.verify();
  5290     // Given that a concurrent operation might be adding regions to
  5291     // the secondary free list we have to take the lock before
  5292     // verifying it.
  5293     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5294     _secondary_free_list.verify();
  5296   _humongous_set.verify();
  5298   // If a concurrent region freeing operation is in progress it will
  5299   // be difficult to correctly attributed any free regions we come
  5300   // across to the correct free list given that they might belong to
  5301   // one of several (free_list, secondary_free_list, any local lists,
  5302   // etc.). So, if that's the case we will skip the rest of the
  5303   // verification operation. Alternatively, waiting for the concurrent
  5304   // operation to complete will have a non-trivial effect on the GC's
  5305   // operation (no concurrent operation will last longer than the
  5306   // interval between two calls to verification) and it might hide
  5307   // any issues that we would like to catch during testing.
  5308   if (free_regions_coming()) {
  5309     return;
  5312   // Make sure we append the secondary_free_list on the free_list so
  5313   // that all free regions we will come across can be safely
  5314   // attributed to the free_list.
  5315   append_secondary_free_list_if_not_empty_with_lock();
  5317   // Finally, make sure that the region accounting in the lists is
  5318   // consistent with what we see in the heap.
  5319   _humongous_set.verify_start();
  5320   _free_list.verify_start();
  5322   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  5323   heap_region_iterate(&cl);
  5325   _humongous_set.verify_end();
  5326   _free_list.verify_end();

mercurial