src/share/vm/gc_implementation/g1/heapRegion.hpp

Fri, 02 Oct 2009 16:20:42 -0400

author
tonyp
date
Fri, 02 Oct 2009 16:20:42 -0400
changeset 1455
ff2402f6a50b
parent 1377
2c79770d1f6e
child 1456
1f19207eefc2
permissions
-rw-r--r--

6882730: G1: parallel heap verification messes up region dump
Summary: It tidies up the G1 heap verification a bit. In particular, when the verification is done in parallel and there is a failure, this is propagated to the top level and the heap is dumped at the end, not by every thread that encounters a failure.
Reviewed-by: johnc, jmasa

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifndef SERIALGC
    27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    28 // can be collected independently.
    30 // NOTE: Although a HeapRegion is a Space, its
    31 // Space::initDirtyCardClosure method must not be called.
    32 // The problem is that the existence of this method breaks
    33 // the independence of barrier sets from remembered sets.
    34 // The solution is to remove this method from the definition
    35 // of a Space.
    37 class CompactibleSpace;
    38 class ContiguousSpace;
    39 class HeapRegionRemSet;
    40 class HeapRegionRemSetIterator;
    41 class HeapRegion;
    43 // A dirty card to oop closure for heap regions. It
    44 // knows how to get the G1 heap and how to use the bitmap
    45 // in the concurrent marker used by G1 to filter remembered
    46 // sets.
    48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    49 public:
    50   // Specification of possible DirtyCardToOopClosure filtering.
    51   enum FilterKind {
    52     NoFilterKind,
    53     IntoCSFilterKind,
    54     OutOfRegionFilterKind
    55   };
    57 protected:
    58   HeapRegion* _hr;
    59   FilterKind _fk;
    60   G1CollectedHeap* _g1;
    62   void walk_mem_region_with_cl(MemRegion mr,
    63                                HeapWord* bottom, HeapWord* top,
    64                                OopClosure* cl);
    66   // We don't specialize this for FilteringClosure; filtering is handled by
    67   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    68   // warning.
    69   void walk_mem_region_with_cl(MemRegion mr,
    70                                HeapWord* bottom, HeapWord* top,
    71                                FilteringClosure* cl) {
    72     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    73                                                        (OopClosure*)cl);
    74   }
    76   // Get the actual top of the area on which the closure will
    77   // operate, given where the top is assumed to be (the end of the
    78   // memory region passed to do_MemRegion) and where the object
    79   // at the top is assumed to start. For example, an object may
    80   // start at the top but actually extend past the assumed top,
    81   // in which case the top becomes the end of the object.
    82   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    83     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
    84   }
    86   // Walk the given memory region from bottom to (actual) top
    87   // looking for objects and applying the oop closure (_cl) to
    88   // them. The base implementation of this treats the area as
    89   // blocks, where a block may or may not be an object. Sub-
    90   // classes should override this to provide more accurate
    91   // or possibly more efficient walking.
    92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
    93     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
    94   }
    96 public:
    97   HeapRegionDCTOC(G1CollectedHeap* g1,
    98                   HeapRegion* hr, OopClosure* cl,
    99                   CardTableModRefBS::PrecisionStyle precision,
   100                   FilterKind fk);
   101 };
   104 // The complicating factor is that BlockOffsetTable diverged
   105 // significantly, and we need functionality that is only in the G1 version.
   106 // So I copied that code, which led to an alternate G1 version of
   107 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   108 // be reconciled, then G1OffsetTableContigSpace could go away.
   110 // The idea behind time stamps is the following. Doing a save_marks on
   111 // all regions at every GC pause is time consuming (if I remember
   112 // well, 10ms or so). So, we would like to do that only for regions
   113 // that are GC alloc regions. To achieve this, we use time
   114 // stamps. For every evacuation pause, G1CollectedHeap generates a
   115 // unique time stamp (essentially a counter that gets
   116 // incremented). Every time we want to call save_marks on a region,
   117 // we set the saved_mark_word to top and also copy the current GC
   118 // time stamp to the time stamp field of the space. Reading the
   119 // saved_mark_word involves checking the time stamp of the
   120 // region. If it is the same as the current GC time stamp, then we
   121 // can safely read the saved_mark_word field, as it is valid. If the
   122 // time stamp of the region is not the same as the current GC time
   123 // stamp, then we instead read top, as the saved_mark_word field is
   124 // invalid. Time stamps (on the regions and also on the
   125 // G1CollectedHeap) are reset at every cleanup (we iterate over
   126 // the regions anyway) and at the end of a Full GC. The current scheme
   127 // that uses sequential unsigned ints will fail only if we have 4b
   128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   130 class G1OffsetTableContigSpace: public ContiguousSpace {
   131   friend class VMStructs;
   132  protected:
   133   G1BlockOffsetArrayContigSpace _offsets;
   134   Mutex _par_alloc_lock;
   135   volatile unsigned _gc_time_stamp;
   137  public:
   138   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   139   // assumed to contain zeros.
   140   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   141                            MemRegion mr, bool is_zeroed = false);
   143   void set_bottom(HeapWord* value);
   144   void set_end(HeapWord* value);
   146   virtual HeapWord* saved_mark_word() const;
   147   virtual void set_saved_mark();
   148   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   151   virtual void clear(bool mangle_space);
   153   HeapWord* block_start(const void* p);
   154   HeapWord* block_start_const(const void* p) const;
   156   // Add offset table update.
   157   virtual HeapWord* allocate(size_t word_size);
   158   HeapWord* par_allocate(size_t word_size);
   160   // MarkSweep support phase3
   161   virtual HeapWord* initialize_threshold();
   162   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   164   virtual void print() const;
   165 };
   167 class HeapRegion: public G1OffsetTableContigSpace {
   168   friend class VMStructs;
   169  private:
   171   enum HumongousType {
   172     NotHumongous = 0,
   173     StartsHumongous,
   174     ContinuesHumongous
   175   };
   177   // The next filter kind that should be used for a "new_dcto_cl" call with
   178   // the "traditional" signature.
   179   HeapRegionDCTOC::FilterKind _next_fk;
   181   // Requires that the region "mr" be dense with objects, and begin and end
   182   // with an object.
   183   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   185   // The remembered set for this region.
   186   // (Might want to make this "inline" later, to avoid some alloc failure
   187   // issues.)
   188   HeapRegionRemSet* _rem_set;
   190   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   192  protected:
   193   // If this region is a member of a HeapRegionSeq, the index in that
   194   // sequence, otherwise -1.
   195   int  _hrs_index;
   197   HumongousType _humongous_type;
   198   // For a humongous region, region in which it starts.
   199   HeapRegion* _humongous_start_region;
   200   // For the start region of a humongous sequence, it's original end().
   201   HeapWord* _orig_end;
   203   // True iff the region is in current collection_set.
   204   bool _in_collection_set;
   206     // True iff the region is on the unclean list, waiting to be zero filled.
   207   bool _is_on_unclean_list;
   209   // True iff the region is on the free list, ready for allocation.
   210   bool _is_on_free_list;
   212   // Is this or has it been an allocation region in the current collection
   213   // pause.
   214   bool _is_gc_alloc_region;
   216   // True iff an attempt to evacuate an object in the region failed.
   217   bool _evacuation_failed;
   219   // A heap region may be a member one of a number of special subsets, each
   220   // represented as linked lists through the field below.  Currently, these
   221   // sets include:
   222   //   The collection set.
   223   //   The set of allocation regions used in a collection pause.
   224   //   Spaces that may contain gray objects.
   225   HeapRegion* _next_in_special_set;
   227   // next region in the young "generation" region set
   228   HeapRegion* _next_young_region;
   230   // Next region whose cards need cleaning
   231   HeapRegion* _next_dirty_cards_region;
   233   // For parallel heapRegion traversal.
   234   jint _claimed;
   236   // We use concurrent marking to determine the amount of live data
   237   // in each heap region.
   238   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   239   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   241   // See "sort_index" method.  -1 means is not in the array.
   242   int _sort_index;
   244   // <PREDICTION>
   245   double _gc_efficiency;
   246   // </PREDICTION>
   248   enum YoungType {
   249     NotYoung,                   // a region is not young
   250     ScanOnly,                   // a region is young and scan-only
   251     Young,                      // a region is young
   252     Survivor                    // a region is young and it contains
   253                                 // survivor
   254   };
   256   YoungType _young_type;
   257   int  _young_index_in_cset;
   258   SurvRateGroup* _surv_rate_group;
   259   int  _age_index;
   261   // The start of the unmarked area. The unmarked area extends from this
   262   // word until the top and/or end of the region, and is the part
   263   // of the region for which no marking was done, i.e. objects may
   264   // have been allocated in this part since the last mark phase.
   265   // "prev" is the top at the start of the last completed marking.
   266   // "next" is the top at the start of the in-progress marking (if any.)
   267   HeapWord* _prev_top_at_mark_start;
   268   HeapWord* _next_top_at_mark_start;
   269   // If a collection pause is in progress, this is the top at the start
   270   // of that pause.
   272   // We've counted the marked bytes of objects below here.
   273   HeapWord* _top_at_conc_mark_count;
   275   void init_top_at_mark_start() {
   276     assert(_prev_marked_bytes == 0 &&
   277            _next_marked_bytes == 0,
   278            "Must be called after zero_marked_bytes.");
   279     HeapWord* bot = bottom();
   280     _prev_top_at_mark_start = bot;
   281     _next_top_at_mark_start = bot;
   282     _top_at_conc_mark_count = bot;
   283   }
   285   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
   286   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
   287                         // made it so.
   289   void set_young_type(YoungType new_type) {
   290     //assert(_young_type != new_type, "setting the same type" );
   291     // TODO: add more assertions here
   292     _young_type = new_type;
   293   }
   295  public:
   296   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   297   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   298              MemRegion mr, bool is_zeroed);
   300   static int LogOfHRGrainBytes;
   301   static int LogOfHRGrainWords;
   302   // The normal type of these should be size_t. However, they used to
   303   // be members of an enum before and they are assumed by the
   304   // compilers to be ints. To avoid going and fixing all their uses,
   305   // I'm declaring them as ints. I'm not anticipating heap region
   306   // sizes to reach anywhere near 2g, so using an int here is safe.
   307   static int GrainBytes;
   308   static int GrainWords;
   309   static int CardsPerRegion;
   311   // It sets up the heap region size (GrainBytes / GrainWords), as
   312   // well as other related fields that are based on the heap region
   313   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   314   // CardsPerRegion). All those fields are considered constant
   315   // throughout the JVM's execution, therefore they should only be set
   316   // up once during initialization time.
   317   static void setup_heap_region_size(uintx min_heap_size);
   319   enum ClaimValues {
   320     InitialClaimValue     = 0,
   321     FinalCountClaimValue  = 1,
   322     NoteEndClaimValue     = 2,
   323     ScrubRemSetClaimValue = 3,
   324     ParVerifyClaimValue   = 4,
   325     RebuildRSClaimValue   = 5
   326   };
   328   // Concurrent refinement requires contiguous heap regions (in which TLABs
   329   // might be allocated) to be zero-filled.  Each region therefore has a
   330   // zero-fill-state.
   331   enum ZeroFillState {
   332     NotZeroFilled,
   333     ZeroFilling,
   334     ZeroFilled,
   335     Allocated
   336   };
   338   // If this region is a member of a HeapRegionSeq, the index in that
   339   // sequence, otherwise -1.
   340   int hrs_index() const { return _hrs_index; }
   341   void set_hrs_index(int index) { _hrs_index = index; }
   343   // The number of bytes marked live in the region in the last marking phase.
   344   size_t marked_bytes()    { return _prev_marked_bytes; }
   345   // The number of bytes counted in the next marking.
   346   size_t next_marked_bytes() { return _next_marked_bytes; }
   347   // The number of bytes live wrt the next marking.
   348   size_t next_live_bytes() {
   349     return (top() - next_top_at_mark_start())
   350       * HeapWordSize
   351       + next_marked_bytes();
   352   }
   354   // A lower bound on the amount of garbage bytes in the region.
   355   size_t garbage_bytes() {
   356     size_t used_at_mark_start_bytes =
   357       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   358     assert(used_at_mark_start_bytes >= marked_bytes(),
   359            "Can't mark more than we have.");
   360     return used_at_mark_start_bytes - marked_bytes();
   361   }
   363   // An upper bound on the number of live bytes in the region.
   364   size_t max_live_bytes() { return used() - garbage_bytes(); }
   366   void add_to_marked_bytes(size_t incr_bytes) {
   367     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   368     guarantee( _next_marked_bytes <= used(), "invariant" );
   369   }
   371   void zero_marked_bytes()      {
   372     _prev_marked_bytes = _next_marked_bytes = 0;
   373   }
   375   bool isHumongous() const { return _humongous_type != NotHumongous; }
   376   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   377   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   378   // For a humongous region, region in which it starts.
   379   HeapRegion* humongous_start_region() const {
   380     return _humongous_start_region;
   381   }
   383   // Causes the current region to represent a humongous object spanning "n"
   384   // regions.
   385   virtual void set_startsHumongous();
   387   // The regions that continue a humongous sequence should be added using
   388   // this method, in increasing address order.
   389   void set_continuesHumongous(HeapRegion* start);
   391   void add_continuingHumongousRegion(HeapRegion* cont);
   393   // If the region has a remembered set, return a pointer to it.
   394   HeapRegionRemSet* rem_set() const {
   395     return _rem_set;
   396   }
   398   // True iff the region is in current collection_set.
   399   bool in_collection_set() const {
   400     return _in_collection_set;
   401   }
   402   void set_in_collection_set(bool b) {
   403     _in_collection_set = b;
   404   }
   405   HeapRegion* next_in_collection_set() {
   406     assert(in_collection_set(), "should only invoke on member of CS.");
   407     assert(_next_in_special_set == NULL ||
   408            _next_in_special_set->in_collection_set(),
   409            "Malformed CS.");
   410     return _next_in_special_set;
   411   }
   412   void set_next_in_collection_set(HeapRegion* r) {
   413     assert(in_collection_set(), "should only invoke on member of CS.");
   414     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   415     _next_in_special_set = r;
   416   }
   418   // True iff it is or has been an allocation region in the current
   419   // collection pause.
   420   bool is_gc_alloc_region() const {
   421     return _is_gc_alloc_region;
   422   }
   423   void set_is_gc_alloc_region(bool b) {
   424     _is_gc_alloc_region = b;
   425   }
   426   HeapRegion* next_gc_alloc_region() {
   427     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   428     assert(_next_in_special_set == NULL ||
   429            _next_in_special_set->is_gc_alloc_region(),
   430            "Malformed CS.");
   431     return _next_in_special_set;
   432   }
   433   void set_next_gc_alloc_region(HeapRegion* r) {
   434     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   435     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   436     _next_in_special_set = r;
   437   }
   439   bool is_on_free_list() {
   440     return _is_on_free_list;
   441   }
   443   void set_on_free_list(bool b) {
   444     _is_on_free_list = b;
   445   }
   447   HeapRegion* next_from_free_list() {
   448     assert(is_on_free_list(),
   449            "Should only invoke on free space.");
   450     assert(_next_in_special_set == NULL ||
   451            _next_in_special_set->is_on_free_list(),
   452            "Malformed Free List.");
   453     return _next_in_special_set;
   454   }
   456   void set_next_on_free_list(HeapRegion* r) {
   457     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
   458     _next_in_special_set = r;
   459   }
   461   bool is_on_unclean_list() {
   462     return _is_on_unclean_list;
   463   }
   465   void set_on_unclean_list(bool b);
   467   HeapRegion* next_from_unclean_list() {
   468     assert(is_on_unclean_list(),
   469            "Should only invoke on unclean space.");
   470     assert(_next_in_special_set == NULL ||
   471            _next_in_special_set->is_on_unclean_list(),
   472            "Malformed unclean List.");
   473     return _next_in_special_set;
   474   }
   476   void set_next_on_unclean_list(HeapRegion* r);
   478   HeapRegion* get_next_young_region() { return _next_young_region; }
   479   void set_next_young_region(HeapRegion* hr) {
   480     _next_young_region = hr;
   481   }
   483   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   484   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   485   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   486   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   488   // Allows logical separation between objects allocated before and after.
   489   void save_marks();
   491   // Reset HR stuff to default values.
   492   void hr_clear(bool par, bool clear_space);
   494   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   496   // Ensure that "this" is zero-filled.
   497   void ensure_zero_filled();
   498   // This one requires that the calling thread holds ZF_mon.
   499   void ensure_zero_filled_locked();
   501   // Get the start of the unmarked area in this region.
   502   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   503   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   505   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   506   // allocated in the current region before the last call to "save_mark".
   507   void oop_before_save_marks_iterate(OopClosure* cl);
   509   // This call determines the "filter kind" argument that will be used for
   510   // the next call to "new_dcto_cl" on this region with the "traditional"
   511   // signature (i.e., the call below.)  The default, in the absence of a
   512   // preceding call to this method, is "NoFilterKind", and a call to this
   513   // method is necessary for each such call, or else it reverts to the
   514   // default.
   515   // (This is really ugly, but all other methods I could think of changed a
   516   // lot of main-line code for G1.)
   517   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   518     _next_fk = nfk;
   519   }
   521   DirtyCardToOopClosure*
   522   new_dcto_closure(OopClosure* cl,
   523                    CardTableModRefBS::PrecisionStyle precision,
   524                    HeapRegionDCTOC::FilterKind fk);
   526 #if WHASSUP
   527   DirtyCardToOopClosure*
   528   new_dcto_closure(OopClosure* cl,
   529                    CardTableModRefBS::PrecisionStyle precision,
   530                    HeapWord* boundary) {
   531     assert(boundary == NULL, "This arg doesn't make sense here.");
   532     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   533     _next_fk = HeapRegionDCTOC::NoFilterKind;
   534     return res;
   535   }
   536 #endif
   538   //
   539   // Note the start or end of marking. This tells the heap region
   540   // that the collector is about to start or has finished (concurrently)
   541   // marking the heap.
   542   //
   544   // Note the start of a marking phase. Record the
   545   // start of the unmarked area of the region here.
   546   void note_start_of_marking(bool during_initial_mark) {
   547     init_top_at_conc_mark_count();
   548     _next_marked_bytes = 0;
   549     if (during_initial_mark && is_young() && !is_survivor())
   550       _next_top_at_mark_start = bottom();
   551     else
   552       _next_top_at_mark_start = top();
   553   }
   555   // Note the end of a marking phase. Install the start of
   556   // the unmarked area that was captured at start of marking.
   557   void note_end_of_marking() {
   558     _prev_top_at_mark_start = _next_top_at_mark_start;
   559     _prev_marked_bytes = _next_marked_bytes;
   560     _next_marked_bytes = 0;
   562     guarantee(_prev_marked_bytes <=
   563               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   564               "invariant");
   565   }
   567   // After an evacuation, we need to update _next_top_at_mark_start
   568   // to be the current top.  Note this is only valid if we have only
   569   // ever evacuated into this region.  If we evacuate, allocate, and
   570   // then evacuate we are in deep doodoo.
   571   void note_end_of_copying() {
   572     assert(top() >= _next_top_at_mark_start,
   573            "Increase only");
   574     // Survivor regions will be scanned on the start of concurrent
   575     // marking.
   576     if (!is_survivor()) {
   577       _next_top_at_mark_start = top();
   578     }
   579   }
   581   // Returns "false" iff no object in the region was allocated when the
   582   // last mark phase ended.
   583   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   585   // If "is_marked()" is true, then this is the index of the region in
   586   // an array constructed at the end of marking of the regions in a
   587   // "desirability" order.
   588   int sort_index() {
   589     return _sort_index;
   590   }
   591   void set_sort_index(int i) {
   592     _sort_index = i;
   593   }
   595   void init_top_at_conc_mark_count() {
   596     _top_at_conc_mark_count = bottom();
   597   }
   599   void set_top_at_conc_mark_count(HeapWord *cur) {
   600     assert(bottom() <= cur && cur <= end(), "Sanity.");
   601     _top_at_conc_mark_count = cur;
   602   }
   604   HeapWord* top_at_conc_mark_count() {
   605     return _top_at_conc_mark_count;
   606   }
   608   void reset_during_compaction() {
   609     guarantee( isHumongous() && startsHumongous(),
   610                "should only be called for humongous regions");
   612     zero_marked_bytes();
   613     init_top_at_mark_start();
   614   }
   616   // <PREDICTION>
   617   void calc_gc_efficiency(void);
   618   double gc_efficiency() { return _gc_efficiency;}
   619   // </PREDICTION>
   621   bool is_young() const     { return _young_type != NotYoung; }
   622   bool is_scan_only() const { return _young_type == ScanOnly; }
   623   bool is_survivor() const  { return _young_type == Survivor; }
   625   int  young_index_in_cset() const { return _young_index_in_cset; }
   626   void set_young_index_in_cset(int index) {
   627     assert( (index == -1) || is_young(), "pre-condition" );
   628     _young_index_in_cset = index;
   629   }
   631   int age_in_surv_rate_group() {
   632     assert( _surv_rate_group != NULL, "pre-condition" );
   633     assert( _age_index > -1, "pre-condition" );
   634     return _surv_rate_group->age_in_group(_age_index);
   635   }
   637   void recalculate_age_in_surv_rate_group() {
   638     assert( _surv_rate_group != NULL, "pre-condition" );
   639     assert( _age_index > -1, "pre-condition" );
   640     _age_index = _surv_rate_group->recalculate_age_index(_age_index);
   641   }
   643   void record_surv_words_in_group(size_t words_survived) {
   644     assert( _surv_rate_group != NULL, "pre-condition" );
   645     assert( _age_index > -1, "pre-condition" );
   646     int age_in_group = age_in_surv_rate_group();
   647     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   648   }
   650   int age_in_surv_rate_group_cond() {
   651     if (_surv_rate_group != NULL)
   652       return age_in_surv_rate_group();
   653     else
   654       return -1;
   655   }
   657   SurvRateGroup* surv_rate_group() {
   658     return _surv_rate_group;
   659   }
   661   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   662     assert( surv_rate_group != NULL, "pre-condition" );
   663     assert( _surv_rate_group == NULL, "pre-condition" );
   664     assert( is_young(), "pre-condition" );
   666     _surv_rate_group = surv_rate_group;
   667     _age_index = surv_rate_group->next_age_index();
   668   }
   670   void uninstall_surv_rate_group() {
   671     if (_surv_rate_group != NULL) {
   672       assert( _age_index > -1, "pre-condition" );
   673       assert( is_young(), "pre-condition" );
   675       _surv_rate_group = NULL;
   676       _age_index = -1;
   677     } else {
   678       assert( _age_index == -1, "pre-condition" );
   679     }
   680   }
   682   void set_young() { set_young_type(Young); }
   684   void set_scan_only() { set_young_type(ScanOnly); }
   686   void set_survivor() { set_young_type(Survivor); }
   688   void set_not_young() { set_young_type(NotYoung); }
   690   // Determine if an object has been allocated since the last
   691   // mark performed by the collector. This returns true iff the object
   692   // is within the unmarked area of the region.
   693   bool obj_allocated_since_prev_marking(oop obj) const {
   694     return (HeapWord *) obj >= prev_top_at_mark_start();
   695   }
   696   bool obj_allocated_since_next_marking(oop obj) const {
   697     return (HeapWord *) obj >= next_top_at_mark_start();
   698   }
   700   // For parallel heapRegion traversal.
   701   bool claimHeapRegion(int claimValue);
   702   jint claim_value() { return _claimed; }
   703   // Use this carefully: only when you're sure no one is claiming...
   704   void set_claim_value(int claimValue) { _claimed = claimValue; }
   706   // Returns the "evacuation_failed" property of the region.
   707   bool evacuation_failed() { return _evacuation_failed; }
   709   // Sets the "evacuation_failed" property of the region.
   710   void set_evacuation_failed(bool b) {
   711     _evacuation_failed = b;
   713     if (b) {
   714       init_top_at_conc_mark_count();
   715       _next_marked_bytes = 0;
   716     }
   717   }
   719   // Requires that "mr" be entirely within the region.
   720   // Apply "cl->do_object" to all objects that intersect with "mr".
   721   // If the iteration encounters an unparseable portion of the region,
   722   // or if "cl->abort()" is true after a closure application,
   723   // terminate the iteration and return the address of the start of the
   724   // subregion that isn't done.  (The two can be distinguished by querying
   725   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   726   // completed.
   727   HeapWord*
   728   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   730   HeapWord*
   731   oops_on_card_seq_iterate_careful(MemRegion mr,
   732                                    FilterOutOfRegionClosure* cl);
   734   // The region "mr" is entirely in "this", and starts and ends at block
   735   // boundaries. The caller declares that all the contained blocks are
   736   // coalesced into one.
   737   void declare_filled_region_to_BOT(MemRegion mr) {
   738     _offsets.single_block(mr.start(), mr.end());
   739   }
   741   // A version of block start that is guaranteed to find *some* block
   742   // boundary at or before "p", but does not object iteration, and may
   743   // therefore be used safely when the heap is unparseable.
   744   HeapWord* block_start_careful(const void* p) const {
   745     return _offsets.block_start_careful(p);
   746   }
   748   // Requires that "addr" is within the region.  Returns the start of the
   749   // first ("careful") block that starts at or after "addr", or else the
   750   // "end" of the region if there is no such block.
   751   HeapWord* next_block_start_careful(HeapWord* addr);
   753   // Returns the zero-fill-state of the current region.
   754   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
   755   bool zero_fill_is_allocated() { return _zfs == Allocated; }
   756   Thread* zero_filler() { return _zero_filler; }
   758   // Indicate that the contents of the region are unknown, and therefore
   759   // might require zero-filling.
   760   void set_zero_fill_needed() {
   761     set_zero_fill_state_work(NotZeroFilled);
   762   }
   763   void set_zero_fill_in_progress(Thread* t) {
   764     set_zero_fill_state_work(ZeroFilling);
   765     _zero_filler = t;
   766   }
   767   void set_zero_fill_complete();
   768   void set_zero_fill_allocated() {
   769     set_zero_fill_state_work(Allocated);
   770   }
   772   void set_zero_fill_state_work(ZeroFillState zfs);
   774   // This is called when a full collection shrinks the heap.
   775   // We want to set the heap region to a value which says
   776   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
   777   // that role.
   778   void reset_zero_fill() {
   779     set_zero_fill_state_work(NotZeroFilled);
   780     _zero_filler = NULL;
   781   }
   783 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   784   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   785   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   787   CompactibleSpace* next_compaction_space() const;
   789   virtual void reset_after_compaction();
   791   void print() const;
   792   void print_on(outputStream* st) const;
   794   // use_prev_marking == true  -> use "prev" marking information,
   795   // use_prev_marking == false -> use "next" marking information
   796   // NOTE: Only the "prev" marking information is guaranteed to be
   797   // consistent most of the time, so most calls to this should use
   798   // use_prev_marking == true. Currently, there is only one case where
   799   // this is called with use_prev_marking == false, which is to verify
   800   // the "next" marking information at the end of remark.
   801   void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
   803   // Override; it uses the "prev" marking information
   804   virtual void verify(bool allow_dirty) const;
   806 #ifdef DEBUG
   807   HeapWord* allocate(size_t size);
   808 #endif
   809 };
   811 // HeapRegionClosure is used for iterating over regions.
   812 // Terminates the iteration when the "doHeapRegion" method returns "true".
   813 class HeapRegionClosure : public StackObj {
   814   friend class HeapRegionSeq;
   815   friend class G1CollectedHeap;
   817   bool _complete;
   818   void incomplete() { _complete = false; }
   820  public:
   821   HeapRegionClosure(): _complete(true) {}
   823   // Typically called on each region until it returns true.
   824   virtual bool doHeapRegion(HeapRegion* r) = 0;
   826   // True after iteration if the closure was applied to all heap regions
   827   // and returned "false" in all cases.
   828   bool complete() { return _complete; }
   829 };
   831 // A linked lists of heap regions.  It leaves the "next" field
   832 // unspecified; that's up to subtypes.
   833 class RegionList VALUE_OBJ_CLASS_SPEC {
   834 protected:
   835   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
   836   virtual void set_next(HeapRegion* chr,
   837                         HeapRegion* new_next) = 0;
   839   HeapRegion* _hd;
   840   HeapRegion* _tl;
   841   size_t _sz;
   843   // Protected constructor because this type is only meaningful
   844   // when the _get/_set next functions are defined.
   845   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
   846 public:
   847   void reset() {
   848     _hd = NULL;
   849     _tl = NULL;
   850     _sz = 0;
   851   }
   852   HeapRegion* hd() { return _hd; }
   853   HeapRegion* tl() { return _tl; }
   854   size_t sz() { return _sz; }
   855   size_t length();
   857   bool well_formed() {
   858     return
   859       ((hd() == NULL && tl() == NULL && sz() == 0)
   860        || (hd() != NULL && tl() != NULL && sz() > 0))
   861       && (sz() == length());
   862   }
   863   virtual void insert_before_head(HeapRegion* r);
   864   void prepend_list(RegionList* new_list);
   865   virtual HeapRegion* pop();
   866   void dec_sz() { _sz--; }
   867   // Requires that "r" is an element of the list, and is not the tail.
   868   void delete_after(HeapRegion* r);
   869 };
   871 class EmptyNonHRegionList: public RegionList {
   872 protected:
   873   // Protected constructor because this type is only meaningful
   874   // when the _get/_set next functions are defined.
   875   EmptyNonHRegionList() : RegionList() {}
   877 public:
   878   void insert_before_head(HeapRegion* r) {
   879     //    assert(r->is_empty(), "Better be empty");
   880     assert(!r->isHumongous(), "Better not be humongous.");
   881     RegionList::insert_before_head(r);
   882   }
   883   void prepend_list(EmptyNonHRegionList* new_list) {
   884     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
   885     //     "Better be empty");
   886     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
   887            "Better not be humongous.");
   888     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
   889     //     "Better be empty");
   890     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
   891            "Better not be humongous.");
   892     RegionList::prepend_list(new_list);
   893   }
   894 };
   896 class UncleanRegionList: public EmptyNonHRegionList {
   897 public:
   898   HeapRegion* get_next(HeapRegion* hr) {
   899     return hr->next_from_unclean_list();
   900   }
   901   void set_next(HeapRegion* hr, HeapRegion* new_next) {
   902     hr->set_next_on_unclean_list(new_next);
   903   }
   905   UncleanRegionList() : EmptyNonHRegionList() {}
   907   void insert_before_head(HeapRegion* r) {
   908     assert(!r->is_on_free_list(),
   909            "Better not already be on free list");
   910     assert(!r->is_on_unclean_list(),
   911            "Better not already be on unclean list");
   912     r->set_zero_fill_needed();
   913     r->set_on_unclean_list(true);
   914     EmptyNonHRegionList::insert_before_head(r);
   915   }
   916   void prepend_list(UncleanRegionList* new_list) {
   917     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
   918            "Better not already be on free list");
   919     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
   920            "Better already be marked as on unclean list");
   921     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
   922            "Better not already be on free list");
   923     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
   924            "Better already be marked as on unclean list");
   925     EmptyNonHRegionList::prepend_list(new_list);
   926   }
   927   HeapRegion* pop() {
   928     HeapRegion* res = RegionList::pop();
   929     if (res != NULL) res->set_on_unclean_list(false);
   930     return res;
   931   }
   932 };
   934 // Local Variables: ***
   935 // c-indentation-style: gnu ***
   936 // End: ***
   938 #endif // SERIALGC

mercurial