src/share/vm/c1/c1_LinearScan.cpp

Mon, 31 Aug 2009 17:07:53 -0700

author
never
date
Mon, 31 Aug 2009 17:07:53 -0700
changeset 1388
ff1a29907b6c
parent 1279
bd02caa94611
child 1495
323bd24c6520
permissions
-rw-r--r--

6855215: Calculation error (NaN) after about 1500 calculations
Reviewed-by: kvn

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_LinearScan.cpp.incl"
    29 #ifndef PRODUCT
    31   static LinearScanStatistic _stat_before_alloc;
    32   static LinearScanStatistic _stat_after_asign;
    33   static LinearScanStatistic _stat_final;
    35   static LinearScanTimers _total_timer;
    37   // helper macro for short definition of timer
    38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    40   // helper macro for short definition of trace-output inside code
    41   #define TRACE_LINEAR_SCAN(level, code)       \
    42     if (TraceLinearScanLevel >= level) {       \
    43       code;                                    \
    44     }
    46 #else
    48   #define TIME_LINEAR_SCAN(timer_name)
    49   #define TRACE_LINEAR_SCAN(level, code)
    51 #endif
    53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    54 #ifdef _LP64
    55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
    56 #else
    57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
    58 #endif
    61 // Implementation of LinearScan
    63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    64  : _compilation(ir->compilation())
    65  , _ir(ir)
    66  , _gen(gen)
    67  , _frame_map(frame_map)
    68  , _num_virtual_regs(gen->max_virtual_register_number())
    69  , _has_fpu_registers(false)
    70  , _num_calls(-1)
    71  , _max_spills(0)
    72  , _unused_spill_slot(-1)
    73  , _intervals(0)   // initialized later with correct length
    74  , _new_intervals_from_allocation(new IntervalList())
    75  , _sorted_intervals(NULL)
    76  , _lir_ops(0)     // initialized later with correct length
    77  , _block_of_op(0) // initialized later with correct length
    78  , _has_info(0)
    79  , _has_call(0)
    80  , _scope_value_cache(0) // initialized later with correct length
    81  , _interval_in_loop(0, 0) // initialized later with correct length
    82  , _cached_blocks(*ir->linear_scan_order())
    83 #ifdef X86
    84  , _fpu_stack_allocator(NULL)
    85 #endif
    86 {
    87   // note: to use more than on instance of LinearScan at a time this function call has to
    88   //       be moved somewhere outside of this constructor:
    89   Interval::initialize();
    91   assert(this->ir() != NULL,          "check if valid");
    92   assert(this->compilation() != NULL, "check if valid");
    93   assert(this->gen() != NULL,         "check if valid");
    94   assert(this->frame_map() != NULL,   "check if valid");
    95 }
    98 // ********** functions for converting LIR-Operands to register numbers
    99 //
   100 // Emulate a flat register file comprising physical integer registers,
   101 // physical floating-point registers and virtual registers, in that order.
   102 // Virtual registers already have appropriate numbers, since V0 is
   103 // the number of physical registers.
   104 // Returns -1 for hi word if opr is a single word operand.
   105 //
   106 // Note: the inverse operation (calculating an operand for register numbers)
   107 //       is done in calc_operand_for_interval()
   109 int LinearScan::reg_num(LIR_Opr opr) {
   110   assert(opr->is_register(), "should not call this otherwise");
   112   if (opr->is_virtual_register()) {
   113     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   114     return opr->vreg_number();
   115   } else if (opr->is_single_cpu()) {
   116     return opr->cpu_regnr();
   117   } else if (opr->is_double_cpu()) {
   118     return opr->cpu_regnrLo();
   119 #ifdef X86
   120   } else if (opr->is_single_xmm()) {
   121     return opr->fpu_regnr() + pd_first_xmm_reg;
   122   } else if (opr->is_double_xmm()) {
   123     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   124 #endif
   125   } else if (opr->is_single_fpu()) {
   126     return opr->fpu_regnr() + pd_first_fpu_reg;
   127   } else if (opr->is_double_fpu()) {
   128     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   129   } else {
   130     ShouldNotReachHere();
   131     return -1;
   132   }
   133 }
   135 int LinearScan::reg_numHi(LIR_Opr opr) {
   136   assert(opr->is_register(), "should not call this otherwise");
   138   if (opr->is_virtual_register()) {
   139     return -1;
   140   } else if (opr->is_single_cpu()) {
   141     return -1;
   142   } else if (opr->is_double_cpu()) {
   143     return opr->cpu_regnrHi();
   144 #ifdef X86
   145   } else if (opr->is_single_xmm()) {
   146     return -1;
   147   } else if (opr->is_double_xmm()) {
   148     return -1;
   149 #endif
   150   } else if (opr->is_single_fpu()) {
   151     return -1;
   152   } else if (opr->is_double_fpu()) {
   153     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   154   } else {
   155     ShouldNotReachHere();
   156     return -1;
   157   }
   158 }
   161 // ********** functions for classification of intervals
   163 bool LinearScan::is_precolored_interval(const Interval* i) {
   164   return i->reg_num() < LinearScan::nof_regs;
   165 }
   167 bool LinearScan::is_virtual_interval(const Interval* i) {
   168   return i->reg_num() >= LIR_OprDesc::vreg_base;
   169 }
   171 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   172   return i->reg_num() < LinearScan::nof_cpu_regs;
   173 }
   175 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   176   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   177 }
   179 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   180   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   181 }
   183 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   185 }
   187 bool LinearScan::is_in_fpu_register(const Interval* i) {
   188   // fixed intervals not needed for FPU stack allocation
   189   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   190 }
   192 bool LinearScan::is_oop_interval(const Interval* i) {
   193   // fixed intervals never contain oops
   194   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   195 }
   198 // ********** General helper functions
   200 // compute next unused stack index that can be used for spilling
   201 int LinearScan::allocate_spill_slot(bool double_word) {
   202   int spill_slot;
   203   if (double_word) {
   204     if ((_max_spills & 1) == 1) {
   205       // alignment of double-word values
   206       // the hole because of the alignment is filled with the next single-word value
   207       assert(_unused_spill_slot == -1, "wasting a spill slot");
   208       _unused_spill_slot = _max_spills;
   209       _max_spills++;
   210     }
   211     spill_slot = _max_spills;
   212     _max_spills += 2;
   214   } else if (_unused_spill_slot != -1) {
   215     // re-use hole that was the result of a previous double-word alignment
   216     spill_slot = _unused_spill_slot;
   217     _unused_spill_slot = -1;
   219   } else {
   220     spill_slot = _max_spills;
   221     _max_spills++;
   222   }
   224   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   226   // the class OopMapValue uses only 11 bits for storing the name of the
   227   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   228   // that is not reported in product builds. Prevent this by checking the
   229   // spill slot here (altough this value and the later used location name
   230   // are slightly different)
   231   if (result > 2000) {
   232     bailout("too many stack slots used");
   233   }
   235   return result;
   236 }
   238 void LinearScan::assign_spill_slot(Interval* it) {
   239   // assign the canonical spill slot of the parent (if a part of the interval
   240   // is already spilled) or allocate a new spill slot
   241   if (it->canonical_spill_slot() >= 0) {
   242     it->assign_reg(it->canonical_spill_slot());
   243   } else {
   244     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   245     it->set_canonical_spill_slot(spill);
   246     it->assign_reg(spill);
   247   }
   248 }
   250 void LinearScan::propagate_spill_slots() {
   251   if (!frame_map()->finalize_frame(max_spills())) {
   252     bailout("frame too large");
   253   }
   254 }
   256 // create a new interval with a predefined reg_num
   257 // (only used for parent intervals that are created during the building phase)
   258 Interval* LinearScan::create_interval(int reg_num) {
   259   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   261   Interval* interval = new Interval(reg_num);
   262   _intervals.at_put(reg_num, interval);
   264   // assign register number for precolored intervals
   265   if (reg_num < LIR_OprDesc::vreg_base) {
   266     interval->assign_reg(reg_num);
   267   }
   268   return interval;
   269 }
   271 // assign a new reg_num to the interval and append it to the list of intervals
   272 // (only used for child intervals that are created during register allocation)
   273 void LinearScan::append_interval(Interval* it) {
   274   it->set_reg_num(_intervals.length());
   275   _intervals.append(it);
   276   _new_intervals_from_allocation->append(it);
   277 }
   279 // copy the vreg-flags if an interval is split
   280 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   281   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   282     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   283   }
   284   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   285     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   286   }
   288   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   289   //       intervals (only the very beginning of the interval must be in memory)
   290 }
   293 // ********** spill move optimization
   294 // eliminate moves from register to stack if stack slot is known to be correct
   296 // called during building of intervals
   297 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   298   assert(interval->is_split_parent(), "can only be called for split parents");
   300   switch (interval->spill_state()) {
   301     case noDefinitionFound:
   302       assert(interval->spill_definition_pos() == -1, "must no be set before");
   303       interval->set_spill_definition_pos(def_pos);
   304       interval->set_spill_state(oneDefinitionFound);
   305       break;
   307     case oneDefinitionFound:
   308       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   309       if (def_pos < interval->spill_definition_pos() - 2) {
   310         // second definition found, so no spill optimization possible for this interval
   311         interval->set_spill_state(noOptimization);
   312       } else {
   313         // two consecutive definitions (because of two-operand LIR form)
   314         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   315       }
   316       break;
   318     case noOptimization:
   319       // nothing to do
   320       break;
   322     default:
   323       assert(false, "other states not allowed at this time");
   324   }
   325 }
   327 // called during register allocation
   328 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   329   switch (interval->spill_state()) {
   330     case oneDefinitionFound: {
   331       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   332       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   334       if (def_loop_depth < spill_loop_depth) {
   335         // the loop depth of the spilling position is higher then the loop depth
   336         // at the definition of the interval -> move write to memory out of loop
   337         // by storing at definitin of the interval
   338         interval->set_spill_state(storeAtDefinition);
   339       } else {
   340         // the interval is currently spilled only once, so for now there is no
   341         // reason to store the interval at the definition
   342         interval->set_spill_state(oneMoveInserted);
   343       }
   344       break;
   345     }
   347     case oneMoveInserted: {
   348       // the interval is spilled more then once, so it is better to store it to
   349       // memory at the definition
   350       interval->set_spill_state(storeAtDefinition);
   351       break;
   352     }
   354     case storeAtDefinition:
   355     case startInMemory:
   356     case noOptimization:
   357     case noDefinitionFound:
   358       // nothing to do
   359       break;
   361     default:
   362       assert(false, "other states not allowed at this time");
   363   }
   364 }
   367 bool LinearScan::must_store_at_definition(const Interval* i) {
   368   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   369 }
   371 // called once before asignment of register numbers
   372 void LinearScan::eliminate_spill_moves() {
   373   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   374   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   376   // collect all intervals that must be stored after their definion.
   377   // the list is sorted by Interval::spill_definition_pos
   378   Interval* interval;
   379   Interval* temp_list;
   380   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   382 #ifdef ASSERT
   383   Interval* prev = NULL;
   384   Interval* temp = interval;
   385   while (temp != Interval::end()) {
   386     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   387     if (prev != NULL) {
   388       assert(temp->from() >= prev->from(), "intervals not sorted");
   389       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   390     }
   392     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   393     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   394     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   396     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   398     temp = temp->next();
   399   }
   400 #endif
   402   LIR_InsertionBuffer insertion_buffer;
   403   int num_blocks = block_count();
   404   for (int i = 0; i < num_blocks; i++) {
   405     BlockBegin* block = block_at(i);
   406     LIR_OpList* instructions = block->lir()->instructions_list();
   407     int         num_inst = instructions->length();
   408     bool        has_new = false;
   410     // iterate all instructions of the block. skip the first because it is always a label
   411     for (int j = 1; j < num_inst; j++) {
   412       LIR_Op* op = instructions->at(j);
   413       int op_id = op->id();
   415       if (op_id == -1) {
   416         // remove move from register to stack if the stack slot is guaranteed to be correct.
   417         // only moves that have been inserted by LinearScan can be removed.
   418         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   419         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   420         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   422         LIR_Op1* op1 = (LIR_Op1*)op;
   423         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   425         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   426           // move target is a stack slot that is always correct, so eliminate instruction
   427           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   428           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   429         }
   431       } else {
   432         // insert move from register to stack just after the beginning of the interval
   433         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   434         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   436         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   437           if (!has_new) {
   438             // prepare insertion buffer (appended when all instructions of the block are processed)
   439             insertion_buffer.init(block->lir());
   440             has_new = true;
   441           }
   443           LIR_Opr from_opr = operand_for_interval(interval);
   444           LIR_Opr to_opr = canonical_spill_opr(interval);
   445           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   446           assert(to_opr->is_stack(), "to operand must be a stack slot");
   448           insertion_buffer.move(j, from_opr, to_opr);
   449           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   451           interval = interval->next();
   452         }
   453       }
   454     } // end of instruction iteration
   456     if (has_new) {
   457       block->lir()->append(&insertion_buffer);
   458     }
   459   } // end of block iteration
   461   assert(interval == Interval::end(), "missed an interval");
   462 }
   465 // ********** Phase 1: number all instructions in all blocks
   466 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   468 void LinearScan::number_instructions() {
   469   {
   470     // dummy-timer to measure the cost of the timer itself
   471     // (this time is then subtracted from all other timers to get the real value)
   472     TIME_LINEAR_SCAN(timer_do_nothing);
   473   }
   474   TIME_LINEAR_SCAN(timer_number_instructions);
   476   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   477   int num_blocks = block_count();
   478   int num_instructions = 0;
   479   int i;
   480   for (i = 0; i < num_blocks; i++) {
   481     num_instructions += block_at(i)->lir()->instructions_list()->length();
   482   }
   484   // initialize with correct length
   485   _lir_ops = LIR_OpArray(num_instructions);
   486   _block_of_op = BlockBeginArray(num_instructions);
   488   int op_id = 0;
   489   int idx = 0;
   491   for (i = 0; i < num_blocks; i++) {
   492     BlockBegin* block = block_at(i);
   493     block->set_first_lir_instruction_id(op_id);
   494     LIR_OpList* instructions = block->lir()->instructions_list();
   496     int num_inst = instructions->length();
   497     for (int j = 0; j < num_inst; j++) {
   498       LIR_Op* op = instructions->at(j);
   499       op->set_id(op_id);
   501       _lir_ops.at_put(idx, op);
   502       _block_of_op.at_put(idx, block);
   503       assert(lir_op_with_id(op_id) == op, "must match");
   505       idx++;
   506       op_id += 2; // numbering of lir_ops by two
   507     }
   508     block->set_last_lir_instruction_id(op_id - 2);
   509   }
   510   assert(idx == num_instructions, "must match");
   511   assert(idx * 2 == op_id, "must match");
   513   _has_call = BitMap(num_instructions); _has_call.clear();
   514   _has_info = BitMap(num_instructions); _has_info.clear();
   515 }
   518 // ********** Phase 2: compute local live sets separately for each block
   519 // (sets live_gen and live_kill for each block)
   521 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   522   LIR_Opr opr = value->operand();
   523   Constant* con = value->as_Constant();
   525   // check some asumptions about debug information
   526   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   527   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   528   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   530   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   531     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   532     int reg = opr->vreg_number();
   533     if (!live_kill.at(reg)) {
   534       live_gen.set_bit(reg);
   535       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   536     }
   537   }
   538 }
   541 void LinearScan::compute_local_live_sets() {
   542   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   544   int  num_blocks = block_count();
   545   int  live_size = live_set_size();
   546   bool local_has_fpu_registers = false;
   547   int  local_num_calls = 0;
   548   LIR_OpVisitState visitor;
   550   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   551   local_interval_in_loop.clear();
   553   // iterate all blocks
   554   for (int i = 0; i < num_blocks; i++) {
   555     BlockBegin* block = block_at(i);
   557     BitMap live_gen(live_size);  live_gen.clear();
   558     BitMap live_kill(live_size); live_kill.clear();
   560     if (block->is_set(BlockBegin::exception_entry_flag)) {
   561       // Phi functions at the begin of an exception handler are
   562       // implicitly defined (= killed) at the beginning of the block.
   563       for_each_phi_fun(block, phi,
   564         live_kill.set_bit(phi->operand()->vreg_number())
   565       );
   566     }
   568     LIR_OpList* instructions = block->lir()->instructions_list();
   569     int num_inst = instructions->length();
   571     // iterate all instructions of the block. skip the first because it is always a label
   572     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   573     for (int j = 1; j < num_inst; j++) {
   574       LIR_Op* op = instructions->at(j);
   576       // visit operation to collect all operands
   577       visitor.visit(op);
   579       if (visitor.has_call()) {
   580         _has_call.set_bit(op->id() >> 1);
   581         local_num_calls++;
   582       }
   583       if (visitor.info_count() > 0) {
   584         _has_info.set_bit(op->id() >> 1);
   585       }
   587       // iterate input operands of instruction
   588       int k, n, reg;
   589       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   590       for (k = 0; k < n; k++) {
   591         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   592         assert(opr->is_register(), "visitor should only return register operands");
   594         if (opr->is_virtual_register()) {
   595           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   596           reg = opr->vreg_number();
   597           if (!live_kill.at(reg)) {
   598             live_gen.set_bit(reg);
   599             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   600           }
   601           if (block->loop_index() >= 0) {
   602             local_interval_in_loop.set_bit(reg, block->loop_index());
   603           }
   604           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   605         }
   607 #ifdef ASSERT
   608         // fixed intervals are never live at block boundaries, so
   609         // they need not be processed in live sets.
   610         // this is checked by these assertions to be sure about it.
   611         // the entry block may have incoming values in registers, which is ok.
   612         if (!opr->is_virtual_register() && block != ir()->start()) {
   613           reg = reg_num(opr);
   614           if (is_processed_reg_num(reg)) {
   615             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   616           }
   617           reg = reg_numHi(opr);
   618           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   619             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   620           }
   621         }
   622 #endif
   623       }
   625       // Add uses of live locals from interpreter's point of view for proper debug information generation
   626       n = visitor.info_count();
   627       for (k = 0; k < n; k++) {
   628         CodeEmitInfo* info = visitor.info_at(k);
   629         ValueStack* stack = info->stack();
   630         for_each_state_value(stack, value,
   631           set_live_gen_kill(value, op, live_gen, live_kill)
   632         );
   633       }
   635       // iterate temp operands of instruction
   636       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   637       for (k = 0; k < n; k++) {
   638         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   639         assert(opr->is_register(), "visitor should only return register operands");
   641         if (opr->is_virtual_register()) {
   642           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   643           reg = opr->vreg_number();
   644           live_kill.set_bit(reg);
   645           if (block->loop_index() >= 0) {
   646             local_interval_in_loop.set_bit(reg, block->loop_index());
   647           }
   648           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   649         }
   651 #ifdef ASSERT
   652         // fixed intervals are never live at block boundaries, so
   653         // they need not be processed in live sets
   654         // process them only in debug mode so that this can be checked
   655         if (!opr->is_virtual_register()) {
   656           reg = reg_num(opr);
   657           if (is_processed_reg_num(reg)) {
   658             live_kill.set_bit(reg_num(opr));
   659           }
   660           reg = reg_numHi(opr);
   661           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   662             live_kill.set_bit(reg);
   663           }
   664         }
   665 #endif
   666       }
   668       // iterate output operands of instruction
   669       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   670       for (k = 0; k < n; k++) {
   671         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   672         assert(opr->is_register(), "visitor should only return register operands");
   674         if (opr->is_virtual_register()) {
   675           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   676           reg = opr->vreg_number();
   677           live_kill.set_bit(reg);
   678           if (block->loop_index() >= 0) {
   679             local_interval_in_loop.set_bit(reg, block->loop_index());
   680           }
   681           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   682         }
   684 #ifdef ASSERT
   685         // fixed intervals are never live at block boundaries, so
   686         // they need not be processed in live sets
   687         // process them only in debug mode so that this can be checked
   688         if (!opr->is_virtual_register()) {
   689           reg = reg_num(opr);
   690           if (is_processed_reg_num(reg)) {
   691             live_kill.set_bit(reg_num(opr));
   692           }
   693           reg = reg_numHi(opr);
   694           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   695             live_kill.set_bit(reg);
   696           }
   697         }
   698 #endif
   699       }
   700     } // end of instruction iteration
   702     block->set_live_gen (live_gen);
   703     block->set_live_kill(live_kill);
   704     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   705     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   707     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   708     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   709   } // end of block iteration
   711   // propagate local calculated information into LinearScan object
   712   _has_fpu_registers = local_has_fpu_registers;
   713   compilation()->set_has_fpu_code(local_has_fpu_registers);
   715   _num_calls = local_num_calls;
   716   _interval_in_loop = local_interval_in_loop;
   717 }
   720 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   721 // (sets live_in and live_out for each block)
   723 void LinearScan::compute_global_live_sets() {
   724   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   726   int  num_blocks = block_count();
   727   bool change_occurred;
   728   bool change_occurred_in_block;
   729   int  iteration_count = 0;
   730   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   732   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   733   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   734   // Exception handlers must be processed because not all live values are
   735   // present in the state array, e.g. because of global value numbering
   736   do {
   737     change_occurred = false;
   739     // iterate all blocks in reverse order
   740     for (int i = num_blocks - 1; i >= 0; i--) {
   741       BlockBegin* block = block_at(i);
   743       change_occurred_in_block = false;
   745       // live_out(block) is the union of live_in(sux), for successors sux of block
   746       int n = block->number_of_sux();
   747       int e = block->number_of_exception_handlers();
   748       if (n + e > 0) {
   749         // block has successors
   750         if (n > 0) {
   751           live_out.set_from(block->sux_at(0)->live_in());
   752           for (int j = 1; j < n; j++) {
   753             live_out.set_union(block->sux_at(j)->live_in());
   754           }
   755         } else {
   756           live_out.clear();
   757         }
   758         for (int j = 0; j < e; j++) {
   759           live_out.set_union(block->exception_handler_at(j)->live_in());
   760         }
   762         if (!block->live_out().is_same(live_out)) {
   763           // A change occurred.  Swap the old and new live out sets to avoid copying.
   764           BitMap temp = block->live_out();
   765           block->set_live_out(live_out);
   766           live_out = temp;
   768           change_occurred = true;
   769           change_occurred_in_block = true;
   770         }
   771       }
   773       if (iteration_count == 0 || change_occurred_in_block) {
   774         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   775         // note: live_in has to be computed only in first iteration or if live_out has changed!
   776         BitMap live_in = block->live_in();
   777         live_in.set_from(block->live_out());
   778         live_in.set_difference(block->live_kill());
   779         live_in.set_union(block->live_gen());
   780       }
   782 #ifndef PRODUCT
   783       if (TraceLinearScanLevel >= 4) {
   784         char c = ' ';
   785         if (iteration_count == 0 || change_occurred_in_block) {
   786           c = '*';
   787         }
   788         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   789         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   790       }
   791 #endif
   792     }
   793     iteration_count++;
   795     if (change_occurred && iteration_count > 50) {
   796       BAILOUT("too many iterations in compute_global_live_sets");
   797     }
   798   } while (change_occurred);
   801 #ifdef ASSERT
   802   // check that fixed intervals are not live at block boundaries
   803   // (live set must be empty at fixed intervals)
   804   for (int i = 0; i < num_blocks; i++) {
   805     BlockBegin* block = block_at(i);
   806     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   807       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   808       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   809       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   810     }
   811   }
   812 #endif
   814   // check that the live_in set of the first block is empty
   815   BitMap live_in_args(ir()->start()->live_in().size());
   816   live_in_args.clear();
   817   if (!ir()->start()->live_in().is_same(live_in_args)) {
   818 #ifdef ASSERT
   819     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   820     tty->print_cr("affected registers:");
   821     print_bitmap(ir()->start()->live_in());
   823     // print some additional information to simplify debugging
   824     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   825       if (ir()->start()->live_in().at(i)) {
   826         Instruction* instr = gen()->instruction_for_vreg(i);
   827         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   829         for (int j = 0; j < num_blocks; j++) {
   830           BlockBegin* block = block_at(j);
   831           if (block->live_gen().at(i)) {
   832             tty->print_cr("  used in block B%d", block->block_id());
   833           }
   834           if (block->live_kill().at(i)) {
   835             tty->print_cr("  defined in block B%d", block->block_id());
   836           }
   837         }
   838       }
   839     }
   841 #endif
   842     // when this fails, virtual registers are used before they are defined.
   843     assert(false, "live_in set of first block must be empty");
   844     // bailout of if this occurs in product mode.
   845     bailout("live_in set of first block not empty");
   846   }
   847 }
   850 // ********** Phase 4: build intervals
   851 // (fills the list _intervals)
   853 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   854   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   855   LIR_Opr opr = value->operand();
   856   Constant* con = value->as_Constant();
   858   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   859     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   860     add_use(opr, from, to, use_kind);
   861   }
   862 }
   865 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   866   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   867   assert(opr->is_register(), "should not be called otherwise");
   869   if (opr->is_virtual_register()) {
   870     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   871     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   873   } else {
   874     int reg = reg_num(opr);
   875     if (is_processed_reg_num(reg)) {
   876       add_def(reg, def_pos, use_kind, opr->type_register());
   877     }
   878     reg = reg_numHi(opr);
   879     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   880       add_def(reg, def_pos, use_kind, opr->type_register());
   881     }
   882   }
   883 }
   885 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   886   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   887   assert(opr->is_register(), "should not be called otherwise");
   889   if (opr->is_virtual_register()) {
   890     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   891     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   893   } else {
   894     int reg = reg_num(opr);
   895     if (is_processed_reg_num(reg)) {
   896       add_use(reg, from, to, use_kind, opr->type_register());
   897     }
   898     reg = reg_numHi(opr);
   899     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   900       add_use(reg, from, to, use_kind, opr->type_register());
   901     }
   902   }
   903 }
   905 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   906   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   907   assert(opr->is_register(), "should not be called otherwise");
   909   if (opr->is_virtual_register()) {
   910     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   911     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   913   } else {
   914     int reg = reg_num(opr);
   915     if (is_processed_reg_num(reg)) {
   916       add_temp(reg, temp_pos, use_kind, opr->type_register());
   917     }
   918     reg = reg_numHi(opr);
   919     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   920       add_temp(reg, temp_pos, use_kind, opr->type_register());
   921     }
   922   }
   923 }
   926 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   927   Interval* interval = interval_at(reg_num);
   928   if (interval != NULL) {
   929     assert(interval->reg_num() == reg_num, "wrong interval");
   931     if (type != T_ILLEGAL) {
   932       interval->set_type(type);
   933     }
   935     Range* r = interval->first();
   936     if (r->from() <= def_pos) {
   937       // Update the starting point (when a range is first created for a use, its
   938       // start is the beginning of the current block until a def is encountered.)
   939       r->set_from(def_pos);
   940       interval->add_use_pos(def_pos, use_kind);
   942     } else {
   943       // Dead value - make vacuous interval
   944       // also add use_kind for dead intervals
   945       interval->add_range(def_pos, def_pos + 1);
   946       interval->add_use_pos(def_pos, use_kind);
   947       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   948     }
   950   } else {
   951     // Dead value - make vacuous interval
   952     // also add use_kind for dead intervals
   953     interval = create_interval(reg_num);
   954     if (type != T_ILLEGAL) {
   955       interval->set_type(type);
   956     }
   958     interval->add_range(def_pos, def_pos + 1);
   959     interval->add_use_pos(def_pos, use_kind);
   960     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   961   }
   963   change_spill_definition_pos(interval, def_pos);
   964   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
   965         // detection of method-parameters and roundfp-results
   966         // TODO: move this directly to position where use-kind is computed
   967     interval->set_spill_state(startInMemory);
   968   }
   969 }
   971 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
   972   Interval* interval = interval_at(reg_num);
   973   if (interval == NULL) {
   974     interval = create_interval(reg_num);
   975   }
   976   assert(interval->reg_num() == reg_num, "wrong interval");
   978   if (type != T_ILLEGAL) {
   979     interval->set_type(type);
   980   }
   982   interval->add_range(from, to);
   983   interval->add_use_pos(to, use_kind);
   984 }
   986 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
   987   Interval* interval = interval_at(reg_num);
   988   if (interval == NULL) {
   989     interval = create_interval(reg_num);
   990   }
   991   assert(interval->reg_num() == reg_num, "wrong interval");
   993   if (type != T_ILLEGAL) {
   994     interval->set_type(type);
   995   }
   997   interval->add_range(temp_pos, temp_pos + 1);
   998   interval->add_use_pos(temp_pos, use_kind);
   999 }
  1002 // the results of this functions are used for optimizing spilling and reloading
  1003 // if the functions return shouldHaveRegister and the interval is spilled,
  1004 // it is not reloaded to a register.
  1005 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1006   if (op->code() == lir_move) {
  1007     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1008     LIR_Op1* move = (LIR_Op1*)op;
  1009     LIR_Opr res = move->result_opr();
  1010     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1012     if (result_in_memory) {
  1013       // Begin of an interval with must_start_in_memory set.
  1014       // This interval will always get a stack slot first, so return noUse.
  1015       return noUse;
  1017     } else if (move->in_opr()->is_stack()) {
  1018       // method argument (condition must be equal to handle_method_arguments)
  1019       return noUse;
  1021     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1022       // Move from register to register
  1023       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1024         // special handling of phi-function moves inside osr-entry blocks
  1025         // input operand must have a register instead of output operand (leads to better register allocation)
  1026         return shouldHaveRegister;
  1031   if (opr->is_virtual() &&
  1032       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1033     // result is a stack-slot, so prevent immediate reloading
  1034     return noUse;
  1037   // all other operands require a register
  1038   return mustHaveRegister;
  1041 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1042   if (op->code() == lir_move) {
  1043     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1044     LIR_Op1* move = (LIR_Op1*)op;
  1045     LIR_Opr res = move->result_opr();
  1046     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1048     if (result_in_memory) {
  1049       // Move to an interval with must_start_in_memory set.
  1050       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1051       return mustHaveRegister;
  1053     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1054       // Move from register to register
  1055       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1056         // special handling of phi-function moves inside osr-entry blocks
  1057         // input operand must have a register instead of output operand (leads to better register allocation)
  1058         return mustHaveRegister;
  1061       // The input operand is not forced to a register (moves from stack to register are allowed),
  1062       // but it is faster if the input operand is in a register
  1063       return shouldHaveRegister;
  1068 #ifdef X86
  1069   if (op->code() == lir_cmove) {
  1070     // conditional moves can handle stack operands
  1071     assert(op->result_opr()->is_register(), "result must always be in a register");
  1072     return shouldHaveRegister;
  1075   // optimizations for second input operand of arithmehtic operations on Intel
  1076   // this operand is allowed to be on the stack in some cases
  1077   BasicType opr_type = opr->type_register();
  1078   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1079     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1080       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1081       switch (op->code()) {
  1082         case lir_cmp:
  1083         case lir_add:
  1084         case lir_sub:
  1085         case lir_mul:
  1086         case lir_div:
  1088           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1089           LIR_Op2* op2 = (LIR_Op2*)op;
  1090           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1091             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1092             return shouldHaveRegister;
  1096     } else {
  1097       // FPU stack float instruction
  1098       switch (op->code()) {
  1099         case lir_add:
  1100         case lir_sub:
  1101         case lir_mul:
  1102         case lir_div:
  1104           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1105           LIR_Op2* op2 = (LIR_Op2*)op;
  1106           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1107             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1108             return shouldHaveRegister;
  1114   } else if (opr_type != T_LONG) {
  1115     // integer instruction (note: long operands must always be in register)
  1116     switch (op->code()) {
  1117       case lir_cmp:
  1118       case lir_add:
  1119       case lir_sub:
  1120       case lir_logic_and:
  1121       case lir_logic_or:
  1122       case lir_logic_xor:
  1124         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1125         LIR_Op2* op2 = (LIR_Op2*)op;
  1126         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1127           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1128           return shouldHaveRegister;
  1133 #endif // X86
  1135   // all other operands require a register
  1136   return mustHaveRegister;
  1140 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1141   // special handling for method arguments (moves from stack to virtual register):
  1142   // the interval gets no register assigned, but the stack slot.
  1143   // it is split before the first use by the register allocator.
  1145   if (op->code() == lir_move) {
  1146     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1147     LIR_Op1* move = (LIR_Op1*)op;
  1149     if (move->in_opr()->is_stack()) {
  1150 #ifdef ASSERT
  1151       int arg_size = compilation()->method()->arg_size();
  1152       LIR_Opr o = move->in_opr();
  1153       if (o->is_single_stack()) {
  1154         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1155       } else if (o->is_double_stack()) {
  1156         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1157       } else {
  1158         ShouldNotReachHere();
  1161       assert(move->id() > 0, "invalid id");
  1162       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1163       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1165       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1166 #endif
  1168       Interval* interval = interval_at(reg_num(move->result_opr()));
  1170       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1171       interval->set_canonical_spill_slot(stack_slot);
  1172       interval->assign_reg(stack_slot);
  1177 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1178   // special handling for doubleword move from memory to register:
  1179   // in this case the registers of the input address and the result
  1180   // registers must not overlap -> add a temp range for the input registers
  1181   if (op->code() == lir_move) {
  1182     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1183     LIR_Op1* move = (LIR_Op1*)op;
  1185     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1186       LIR_Address* address = move->in_opr()->as_address_ptr();
  1187       if (address != NULL) {
  1188         if (address->base()->is_valid()) {
  1189           add_temp(address->base(), op->id(), noUse);
  1191         if (address->index()->is_valid()) {
  1192           add_temp(address->index(), op->id(), noUse);
  1199 void LinearScan::add_register_hints(LIR_Op* op) {
  1200   switch (op->code()) {
  1201     case lir_move:      // fall through
  1202     case lir_convert: {
  1203       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1204       LIR_Op1* move = (LIR_Op1*)op;
  1206       LIR_Opr move_from = move->in_opr();
  1207       LIR_Opr move_to = move->result_opr();
  1209       if (move_to->is_register() && move_from->is_register()) {
  1210         Interval* from = interval_at(reg_num(move_from));
  1211         Interval* to = interval_at(reg_num(move_to));
  1212         if (from != NULL && to != NULL) {
  1213           to->set_register_hint(from);
  1214           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1217       break;
  1219     case lir_cmove: {
  1220       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1221       LIR_Op2* cmove = (LIR_Op2*)op;
  1223       LIR_Opr move_from = cmove->in_opr1();
  1224       LIR_Opr move_to = cmove->result_opr();
  1226       if (move_to->is_register() && move_from->is_register()) {
  1227         Interval* from = interval_at(reg_num(move_from));
  1228         Interval* to = interval_at(reg_num(move_to));
  1229         if (from != NULL && to != NULL) {
  1230           to->set_register_hint(from);
  1231           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1234       break;
  1240 void LinearScan::build_intervals() {
  1241   TIME_LINEAR_SCAN(timer_build_intervals);
  1243   // initialize interval list with expected number of intervals
  1244   // (32 is added to have some space for split children without having to resize the list)
  1245   _intervals = IntervalList(num_virtual_regs() + 32);
  1246   // initialize all slots that are used by build_intervals
  1247   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1249   // create a list with all caller-save registers (cpu, fpu, xmm)
  1250   // when an instruction is a call, a temp range is created for all these registers
  1251   int num_caller_save_registers = 0;
  1252   int caller_save_registers[LinearScan::nof_regs];
  1254   int i;
  1255   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
  1256     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1257     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1258     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1259     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1262   // temp ranges for fpu registers are only created when the method has
  1263   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1264   // perfomed and so the temp ranges would be useless
  1265   if (has_fpu_registers()) {
  1266 #ifdef X86
  1267     if (UseSSE < 2) {
  1268 #endif
  1269       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1270         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1271         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1272         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1273         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1275 #ifdef X86
  1277     if (UseSSE > 0) {
  1278       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1279         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1280         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1281         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1282         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1285 #endif
  1287   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1290   LIR_OpVisitState visitor;
  1292   // iterate all blocks in reverse order
  1293   for (i = block_count() - 1; i >= 0; i--) {
  1294     BlockBegin* block = block_at(i);
  1295     LIR_OpList* instructions = block->lir()->instructions_list();
  1296     int         block_from =   block->first_lir_instruction_id();
  1297     int         block_to =     block->last_lir_instruction_id();
  1299     assert(block_from == instructions->at(0)->id(), "must be");
  1300     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1302     // Update intervals for registers live at the end of this block;
  1303     BitMap live = block->live_out();
  1304     int size = (int)live.size();
  1305     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
  1306       assert(live.at(number), "should not stop here otherwise");
  1307       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1308       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1310       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1312       // add special use positions for loop-end blocks when the
  1313       // interval is used anywhere inside this loop.  It's possible
  1314       // that the block was part of a non-natural loop, so it might
  1315       // have an invalid loop index.
  1316       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1317           block->loop_index() != -1 &&
  1318           is_interval_in_loop(number, block->loop_index())) {
  1319         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1323     // iterate all instructions of the block in reverse order.
  1324     // skip the first instruction because it is always a label
  1325     // definitions of intervals are processed before uses
  1326     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1327     for (int j = instructions->length() - 1; j >= 1; j--) {
  1328       LIR_Op* op = instructions->at(j);
  1329       int op_id = op->id();
  1331       // visit operation to collect all operands
  1332       visitor.visit(op);
  1334       // add a temp range for each register if operation destroys caller-save registers
  1335       if (visitor.has_call()) {
  1336         for (int k = 0; k < num_caller_save_registers; k++) {
  1337           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1339         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1342       // Add any platform dependent temps
  1343       pd_add_temps(op);
  1345       // visit definitions (output and temp operands)
  1346       int k, n;
  1347       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1348       for (k = 0; k < n; k++) {
  1349         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1350         assert(opr->is_register(), "visitor should only return register operands");
  1351         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1354       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1355       for (k = 0; k < n; k++) {
  1356         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1357         assert(opr->is_register(), "visitor should only return register operands");
  1358         add_temp(opr, op_id, mustHaveRegister);
  1361       // visit uses (input operands)
  1362       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1363       for (k = 0; k < n; k++) {
  1364         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1365         assert(opr->is_register(), "visitor should only return register operands");
  1366         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1369       // Add uses of live locals from interpreter's point of view for proper
  1370       // debug information generation
  1371       // Treat these operands as temp values (if the life range is extended
  1372       // to a call site, the value would be in a register at the call otherwise)
  1373       n = visitor.info_count();
  1374       for (k = 0; k < n; k++) {
  1375         CodeEmitInfo* info = visitor.info_at(k);
  1376         ValueStack* stack = info->stack();
  1377         for_each_state_value(stack, value,
  1378           add_use(value, block_from, op_id + 1, noUse);
  1379         );
  1382       // special steps for some instructions (especially moves)
  1383       handle_method_arguments(op);
  1384       handle_doubleword_moves(op);
  1385       add_register_hints(op);
  1387     } // end of instruction iteration
  1388   } // end of block iteration
  1391   // add the range [0, 1[ to all fixed intervals
  1392   // -> the register allocator need not handle unhandled fixed intervals
  1393   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1394     Interval* interval = interval_at(n);
  1395     if (interval != NULL) {
  1396       interval->add_range(0, 1);
  1402 // ********** Phase 5: actual register allocation
  1404 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1405   if (*a != NULL) {
  1406     if (*b != NULL) {
  1407       return (*a)->from() - (*b)->from();
  1408     } else {
  1409       return -1;
  1411   } else {
  1412     if (*b != NULL) {
  1413       return 1;
  1414     } else {
  1415       return 0;
  1420 #ifndef PRODUCT
  1421 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1422   int from = -1;
  1423   int i, j;
  1424   for (i = 0; i < intervals->length(); i ++) {
  1425     Interval* it = intervals->at(i);
  1426     if (it != NULL) {
  1427       if (from > it->from()) {
  1428         assert(false, "");
  1429         return false;
  1431       from = it->from();
  1435   // check in both directions if sorted list and unsorted list contain same intervals
  1436   for (i = 0; i < interval_count(); i++) {
  1437     if (interval_at(i) != NULL) {
  1438       int num_found = 0;
  1439       for (j = 0; j < intervals->length(); j++) {
  1440         if (interval_at(i) == intervals->at(j)) {
  1441           num_found++;
  1444       assert(num_found == 1, "lists do not contain same intervals");
  1447   for (j = 0; j < intervals->length(); j++) {
  1448     int num_found = 0;
  1449     for (i = 0; i < interval_count(); i++) {
  1450       if (interval_at(i) == intervals->at(j)) {
  1451         num_found++;
  1454     assert(num_found == 1, "lists do not contain same intervals");
  1457   return true;
  1459 #endif
  1461 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1462   if (*prev != NULL) {
  1463     (*prev)->set_next(interval);
  1464   } else {
  1465     *first = interval;
  1467   *prev = interval;
  1470 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1471   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1473   *list1 = *list2 = Interval::end();
  1475   Interval* list1_prev = NULL;
  1476   Interval* list2_prev = NULL;
  1477   Interval* v;
  1479   const int n = _sorted_intervals->length();
  1480   for (int i = 0; i < n; i++) {
  1481     v = _sorted_intervals->at(i);
  1482     if (v == NULL) continue;
  1484     if (is_list1(v)) {
  1485       add_to_list(list1, &list1_prev, v);
  1486     } else if (is_list2 == NULL || is_list2(v)) {
  1487       add_to_list(list2, &list2_prev, v);
  1491   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1492   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1494   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1495   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1499 void LinearScan::sort_intervals_before_allocation() {
  1500   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1502   IntervalList* unsorted_list = &_intervals;
  1503   int unsorted_len = unsorted_list->length();
  1504   int sorted_len = 0;
  1505   int unsorted_idx;
  1506   int sorted_idx = 0;
  1507   int sorted_from_max = -1;
  1509   // calc number of items for sorted list (sorted list must not contain NULL values)
  1510   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1511     if (unsorted_list->at(unsorted_idx) != NULL) {
  1512       sorted_len++;
  1515   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1517   // special sorting algorithm: the original interval-list is almost sorted,
  1518   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1519   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1520     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1522     if (cur_interval != NULL) {
  1523       int cur_from = cur_interval->from();
  1525       if (sorted_from_max <= cur_from) {
  1526         sorted_list->at_put(sorted_idx++, cur_interval);
  1527         sorted_from_max = cur_interval->from();
  1528       } else {
  1529         // the asumption that the intervals are already sorted failed,
  1530         // so this interval must be sorted in manually
  1531         int j;
  1532         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1533           sorted_list->at_put(j + 1, sorted_list->at(j));
  1535         sorted_list->at_put(j + 1, cur_interval);
  1536         sorted_idx++;
  1540   _sorted_intervals = sorted_list;
  1543 void LinearScan::sort_intervals_after_allocation() {
  1544   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1546   IntervalArray* old_list      = _sorted_intervals;
  1547   IntervalList*  new_list      = _new_intervals_from_allocation;
  1548   int old_len = old_list->length();
  1549   int new_len = new_list->length();
  1551   if (new_len == 0) {
  1552     // no intervals have been added during allocation, so sorted list is already up to date
  1553     return;
  1556   // conventional sort-algorithm for new intervals
  1557   new_list->sort(interval_cmp);
  1559   // merge old and new list (both already sorted) into one combined list
  1560   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1561   int old_idx = 0;
  1562   int new_idx = 0;
  1564   while (old_idx + new_idx < old_len + new_len) {
  1565     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1566       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1567       old_idx++;
  1568     } else {
  1569       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1570       new_idx++;
  1574   _sorted_intervals = combined_list;
  1578 void LinearScan::allocate_registers() {
  1579   TIME_LINEAR_SCAN(timer_allocate_registers);
  1581   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1582   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1584   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1585   if (has_fpu_registers()) {
  1586     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1587 #ifdef ASSERT
  1588   } else {
  1589     // fpu register allocation is omitted because no virtual fpu registers are present
  1590     // just check this again...
  1591     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1592     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1593 #endif
  1596   // allocate cpu registers
  1597   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1598   cpu_lsw.walk();
  1599   cpu_lsw.finish_allocation();
  1601   if (has_fpu_registers()) {
  1602     // allocate fpu registers
  1603     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1604     fpu_lsw.walk();
  1605     fpu_lsw.finish_allocation();
  1610 // ********** Phase 6: resolve data flow
  1611 // (insert moves at edges between blocks if intervals have been split)
  1613 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1614 // instead of returning NULL
  1615 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1616   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1617   if (result != NULL) {
  1618     return result;
  1621   assert(false, "must find an interval, but do a clean bailout in product mode");
  1622   result = new Interval(LIR_OprDesc::vreg_base);
  1623   result->assign_reg(0);
  1624   result->set_type(T_INT);
  1625   BAILOUT_("LinearScan: interval is NULL", result);
  1629 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1630   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1631   assert(interval_at(reg_num) != NULL, "no interval found");
  1633   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1636 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1637   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1638   assert(interval_at(reg_num) != NULL, "no interval found");
  1640   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1643 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1644   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1645   assert(interval_at(reg_num) != NULL, "no interval found");
  1647   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1651 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1652   DEBUG_ONLY(move_resolver.check_empty());
  1654   const int num_regs = num_virtual_regs();
  1655   const int size = live_set_size();
  1656   const BitMap live_at_edge = to_block->live_in();
  1658   // visit all registers where the live_at_edge bit is set
  1659   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  1660     assert(r < num_regs, "live information set for not exisiting interval");
  1661     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1663     Interval* from_interval = interval_at_block_end(from_block, r);
  1664     Interval* to_interval = interval_at_block_begin(to_block, r);
  1666     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1667       // need to insert move instruction
  1668       move_resolver.add_mapping(from_interval, to_interval);
  1674 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1675   if (from_block->number_of_sux() <= 1) {
  1676     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1678     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1679     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1680     if (branch != NULL) {
  1681       // insert moves before branch
  1682       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1683       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1684     } else {
  1685       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1688   } else {
  1689     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1690 #ifdef ASSERT
  1691     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1693     // because the number of predecessor edges matches the number of
  1694     // successor edges, blocks which are reached by switch statements
  1695     // may have be more than one predecessor but it will be guaranteed
  1696     // that all predecessors will be the same.
  1697     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1698       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1700 #endif
  1702     move_resolver.set_insert_position(to_block->lir(), 0);
  1707 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1708 void LinearScan::resolve_data_flow() {
  1709   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1711   int num_blocks = block_count();
  1712   MoveResolver move_resolver(this);
  1713   BitMap block_completed(num_blocks);  block_completed.clear();
  1714   BitMap already_resolved(num_blocks); already_resolved.clear();
  1716   int i;
  1717   for (i = 0; i < num_blocks; i++) {
  1718     BlockBegin* block = block_at(i);
  1720     // check if block has only one predecessor and only one successor
  1721     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1722       LIR_OpList* instructions = block->lir()->instructions_list();
  1723       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1724       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1725       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1727       // check if block is empty (only label and branch)
  1728       if (instructions->length() == 2) {
  1729         BlockBegin* pred = block->pred_at(0);
  1730         BlockBegin* sux = block->sux_at(0);
  1732         // prevent optimization of two consecutive blocks
  1733         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1734           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1735           block_completed.set_bit(block->linear_scan_number());
  1737           // directly resolve between pred and sux (without looking at the empty block between)
  1738           resolve_collect_mappings(pred, sux, move_resolver);
  1739           if (move_resolver.has_mappings()) {
  1740             move_resolver.set_insert_position(block->lir(), 0);
  1741             move_resolver.resolve_and_append_moves();
  1749   for (i = 0; i < num_blocks; i++) {
  1750     if (!block_completed.at(i)) {
  1751       BlockBegin* from_block = block_at(i);
  1752       already_resolved.set_from(block_completed);
  1754       int num_sux = from_block->number_of_sux();
  1755       for (int s = 0; s < num_sux; s++) {
  1756         BlockBegin* to_block = from_block->sux_at(s);
  1758         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1759         if (!already_resolved.at(to_block->linear_scan_number())) {
  1760           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1761           already_resolved.set_bit(to_block->linear_scan_number());
  1763           // collect all intervals that have been split between from_block and to_block
  1764           resolve_collect_mappings(from_block, to_block, move_resolver);
  1765           if (move_resolver.has_mappings()) {
  1766             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1767             move_resolver.resolve_and_append_moves();
  1776 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1777   if (interval_at(reg_num) == NULL) {
  1778     // if a phi function is never used, no interval is created -> ignore this
  1779     return;
  1782   Interval* interval = interval_at_block_begin(block, reg_num);
  1783   int reg = interval->assigned_reg();
  1784   int regHi = interval->assigned_regHi();
  1786   if ((reg < nof_regs && interval->always_in_memory()) ||
  1787       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1788     // the interval is split to get a short range that is located on the stack
  1789     // in the following two cases:
  1790     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1791     //   this is an optimization for exception handling that reduces the number of moves that
  1792     //   are necessary for resolving the states when an exception uses this exception handler
  1793     // * the interval would be on the fpu stack at the begin of the exception handler
  1794     //   this is not allowed because of the complicated fpu stack handling on Intel
  1796     // range that will be spilled to memory
  1797     int from_op_id = block->first_lir_instruction_id();
  1798     int to_op_id = from_op_id + 1;  // short live range of length 1
  1799     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1800            "no split allowed between exception entry and first instruction");
  1802     if (interval->from() != from_op_id) {
  1803       // the part before from_op_id is unchanged
  1804       interval = interval->split(from_op_id);
  1805       interval->assign_reg(reg, regHi);
  1806       append_interval(interval);
  1808     assert(interval->from() == from_op_id, "must be true now");
  1810     Interval* spilled_part = interval;
  1811     if (interval->to() != to_op_id) {
  1812       // the part after to_op_id is unchanged
  1813       spilled_part = interval->split_from_start(to_op_id);
  1814       append_interval(spilled_part);
  1815       move_resolver.add_mapping(spilled_part, interval);
  1817     assign_spill_slot(spilled_part);
  1819     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1823 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1824   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1825   DEBUG_ONLY(move_resolver.check_empty());
  1827   // visit all registers where the live_in bit is set
  1828   int size = live_set_size();
  1829   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1830     resolve_exception_entry(block, r, move_resolver);
  1833   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1834   for_each_phi_fun(block, phi,
  1835     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1836   );
  1838   if (move_resolver.has_mappings()) {
  1839     // insert moves after first instruction
  1840     move_resolver.set_insert_position(block->lir(), 1);
  1841     move_resolver.resolve_and_append_moves();
  1846 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1847   if (interval_at(reg_num) == NULL) {
  1848     // if a phi function is never used, no interval is created -> ignore this
  1849     return;
  1852   // the computation of to_interval is equal to resolve_collect_mappings,
  1853   // but from_interval is more complicated because of phi functions
  1854   BlockBegin* to_block = handler->entry_block();
  1855   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1857   if (phi != NULL) {
  1858     // phi function of the exception entry block
  1859     // no moves are created for this phi function in the LIR_Generator, so the
  1860     // interval at the throwing instruction must be searched using the operands
  1861     // of the phi function
  1862     Value from_value = phi->operand_at(handler->phi_operand());
  1864     // with phi functions it can happen that the same from_value is used in
  1865     // multiple mappings, so notify move-resolver that this is allowed
  1866     move_resolver.set_multiple_reads_allowed();
  1868     Constant* con = from_value->as_Constant();
  1869     if (con != NULL && !con->is_pinned()) {
  1870       // unpinned constants may have no register, so add mapping from constant to interval
  1871       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1872     } else {
  1873       // search split child at the throwing op_id
  1874       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1875       move_resolver.add_mapping(from_interval, to_interval);
  1878   } else {
  1879     // no phi function, so use reg_num also for from_interval
  1880     // search split child at the throwing op_id
  1881     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1882     if (from_interval != to_interval) {
  1883       // optimization to reduce number of moves: when to_interval is on stack and
  1884       // the stack slot is known to be always correct, then no move is necessary
  1885       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1886         move_resolver.add_mapping(from_interval, to_interval);
  1892 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1893   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1895   DEBUG_ONLY(move_resolver.check_empty());
  1896   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1897   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1898   assert(handler->entry_code() == NULL, "code already present");
  1900   // visit all registers where the live_in bit is set
  1901   BlockBegin* block = handler->entry_block();
  1902   int size = live_set_size();
  1903   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1904     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1907   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1908   for_each_phi_fun(block, phi,
  1909     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1910   );
  1912   if (move_resolver.has_mappings()) {
  1913     LIR_List* entry_code = new LIR_List(compilation());
  1914     move_resolver.set_insert_position(entry_code, 0);
  1915     move_resolver.resolve_and_append_moves();
  1917     entry_code->jump(handler->entry_block());
  1918     handler->set_entry_code(entry_code);
  1923 void LinearScan::resolve_exception_handlers() {
  1924   MoveResolver move_resolver(this);
  1925   LIR_OpVisitState visitor;
  1926   int num_blocks = block_count();
  1928   int i;
  1929   for (i = 0; i < num_blocks; i++) {
  1930     BlockBegin* block = block_at(i);
  1931     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1932       resolve_exception_entry(block, move_resolver);
  1936   for (i = 0; i < num_blocks; i++) {
  1937     BlockBegin* block = block_at(i);
  1938     LIR_List* ops = block->lir();
  1939     int num_ops = ops->length();
  1941     // iterate all instructions of the block. skip the first because it is always a label
  1942     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  1943     for (int j = 1; j < num_ops; j++) {
  1944       LIR_Op* op = ops->at(j);
  1945       int op_id = op->id();
  1947       if (op_id != -1 && has_info(op_id)) {
  1948         // visit operation to collect all operands
  1949         visitor.visit(op);
  1950         assert(visitor.info_count() > 0, "should not visit otherwise");
  1952         XHandlers* xhandlers = visitor.all_xhandler();
  1953         int n = xhandlers->length();
  1954         for (int k = 0; k < n; k++) {
  1955           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  1958 #ifdef ASSERT
  1959       } else {
  1960         visitor.visit(op);
  1961         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  1962 #endif
  1969 // ********** Phase 7: assign register numbers back to LIR
  1970 // (includes computation of debug information and oop maps)
  1972 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  1973   VMReg reg = interval->cached_vm_reg();
  1974   if (!reg->is_valid() ) {
  1975     reg = vm_reg_for_operand(operand_for_interval(interval));
  1976     interval->set_cached_vm_reg(reg);
  1978   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  1979   return reg;
  1982 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  1983   assert(opr->is_oop(), "currently only implemented for oop operands");
  1984   return frame_map()->regname(opr);
  1988 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  1989   LIR_Opr opr = interval->cached_opr();
  1990   if (opr->is_illegal()) {
  1991     opr = calc_operand_for_interval(interval);
  1992     interval->set_cached_opr(opr);
  1995   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  1996   return opr;
  1999 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  2000   int assigned_reg = interval->assigned_reg();
  2001   BasicType type = interval->type();
  2003   if (assigned_reg >= nof_regs) {
  2004     // stack slot
  2005     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2006     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2008   } else {
  2009     // register
  2010     switch (type) {
  2011       case T_OBJECT: {
  2012         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2013         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2014         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2017       case T_INT: {
  2018         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2019         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2020         return LIR_OprFact::single_cpu(assigned_reg);
  2023       case T_LONG: {
  2024         int assigned_regHi = interval->assigned_regHi();
  2025         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2026         assert(num_physical_regs(T_LONG) == 1 ||
  2027                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2029         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2030         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2031                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2032         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2033         if (requires_adjacent_regs(T_LONG)) {
  2034           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2037 #ifdef _LP64
  2038         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2039 #else
  2040 #ifdef SPARC
  2041         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2042 #else
  2043         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2044 #endif // SPARC
  2045 #endif // LP64
  2048       case T_FLOAT: {
  2049 #ifdef X86
  2050         if (UseSSE >= 1) {
  2051           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2052           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2053           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2055 #endif
  2057         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2058         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2059         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2062       case T_DOUBLE: {
  2063 #ifdef X86
  2064         if (UseSSE >= 2) {
  2065           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2066           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2067           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2069 #endif
  2071 #ifdef SPARC
  2072         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2073         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2074         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2075         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2076 #else
  2077         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2078         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2079         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2080 #endif
  2081         return result;
  2084       default: {
  2085         ShouldNotReachHere();
  2086         return LIR_OprFact::illegalOpr;
  2092 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2093   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2094   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2097 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2098   assert(opr->is_virtual(), "should not call this otherwise");
  2100   Interval* interval = interval_at(opr->vreg_number());
  2101   assert(interval != NULL, "interval must exist");
  2103   if (op_id != -1) {
  2104 #ifdef ASSERT
  2105     BlockBegin* block = block_of_op_with_id(op_id);
  2106     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2107       // check if spill moves could have been appended at the end of this block, but
  2108       // before the branch instruction. So the split child information for this branch would
  2109       // be incorrect.
  2110       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2111       if (branch != NULL) {
  2112         if (block->live_out().at(opr->vreg_number())) {
  2113           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2114           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2118 #endif
  2120     // operands are not changed when an interval is split during allocation,
  2121     // so search the right interval here
  2122     interval = split_child_at_op_id(interval, op_id, mode);
  2125   LIR_Opr res = operand_for_interval(interval);
  2127 #ifdef X86
  2128   // new semantic for is_last_use: not only set on definite end of interval,
  2129   // but also before hole
  2130   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2131   // last use information is completely correct
  2132   // information is only needed for fpu stack allocation
  2133   if (res->is_fpu_register()) {
  2134     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2135       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2136       res = res->make_last_use();
  2139 #endif
  2141   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2143   return res;
  2147 #ifdef ASSERT
  2148 // some methods used to check correctness of debug information
  2150 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2151   if (values == NULL) {
  2152     return;
  2155   for (int i = 0; i < values->length(); i++) {
  2156     ScopeValue* value = values->at(i);
  2158     if (value->is_location()) {
  2159       Location location = ((LocationValue*)value)->location();
  2160       assert(location.where() == Location::on_stack, "value is in register");
  2165 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2166   if (values == NULL) {
  2167     return;
  2170   for (int i = 0; i < values->length(); i++) {
  2171     MonitorValue* value = values->at(i);
  2173     if (value->owner()->is_location()) {
  2174       Location location = ((LocationValue*)value->owner())->location();
  2175       assert(location.where() == Location::on_stack, "owner is in register");
  2177     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2181 void assert_equal(Location l1, Location l2) {
  2182   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2185 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2186   if (v1->is_location()) {
  2187     assert(v2->is_location(), "");
  2188     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2189   } else if (v1->is_constant_int()) {
  2190     assert(v2->is_constant_int(), "");
  2191     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2192   } else if (v1->is_constant_double()) {
  2193     assert(v2->is_constant_double(), "");
  2194     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2195   } else if (v1->is_constant_long()) {
  2196     assert(v2->is_constant_long(), "");
  2197     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2198   } else if (v1->is_constant_oop()) {
  2199     assert(v2->is_constant_oop(), "");
  2200     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2201   } else {
  2202     ShouldNotReachHere();
  2206 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2207   assert_equal(m1->owner(), m2->owner());
  2208   assert_equal(m1->basic_lock(), m2->basic_lock());
  2211 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2212   assert(d1->scope() == d2->scope(), "not equal");
  2213   assert(d1->bci() == d2->bci(), "not equal");
  2215   if (d1->locals() != NULL) {
  2216     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2217     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2218     for (int i = 0; i < d1->locals()->length(); i++) {
  2219       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2221   } else {
  2222     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2225   if (d1->expressions() != NULL) {
  2226     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2227     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2228     for (int i = 0; i < d1->expressions()->length(); i++) {
  2229       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2231   } else {
  2232     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2235   if (d1->monitors() != NULL) {
  2236     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2237     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2238     for (int i = 0; i < d1->monitors()->length(); i++) {
  2239       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2241   } else {
  2242     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2245   if (d1->caller() != NULL) {
  2246     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2247     assert_equal(d1->caller(), d2->caller());
  2248   } else {
  2249     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2253 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2254   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2255     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
  2256     switch (code) {
  2257       case Bytecodes::_ifnull    : // fall through
  2258       case Bytecodes::_ifnonnull : // fall through
  2259       case Bytecodes::_ifeq      : // fall through
  2260       case Bytecodes::_ifne      : // fall through
  2261       case Bytecodes::_iflt      : // fall through
  2262       case Bytecodes::_ifge      : // fall through
  2263       case Bytecodes::_ifgt      : // fall through
  2264       case Bytecodes::_ifle      : // fall through
  2265       case Bytecodes::_if_icmpeq : // fall through
  2266       case Bytecodes::_if_icmpne : // fall through
  2267       case Bytecodes::_if_icmplt : // fall through
  2268       case Bytecodes::_if_icmpge : // fall through
  2269       case Bytecodes::_if_icmpgt : // fall through
  2270       case Bytecodes::_if_icmple : // fall through
  2271       case Bytecodes::_if_acmpeq : // fall through
  2272       case Bytecodes::_if_acmpne :
  2273         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2274         break;
  2279 #endif // ASSERT
  2282 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2283   // setup lists of potential oops for walking
  2284   Interval* oop_intervals;
  2285   Interval* non_oop_intervals;
  2287   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2289   // intervals that have no oops inside need not to be processed
  2290   // to ensure a walking until the last instruction id, add a dummy interval
  2291   // with a high operation id
  2292   non_oop_intervals = new Interval(any_reg);
  2293   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2295   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2299 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2300   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2302   // walk before the current operation -> intervals that start at
  2303   // the operation (= output operands of the operation) are not
  2304   // included in the oop map
  2305   iw->walk_before(op->id());
  2307   int frame_size = frame_map()->framesize();
  2308   int arg_count = frame_map()->oop_map_arg_count();
  2309   OopMap* map = new OopMap(frame_size, arg_count);
  2311   // Check if this is a patch site.
  2312   bool is_patch_info = false;
  2313   if (op->code() == lir_move) {
  2314     assert(!is_call_site, "move must not be a call site");
  2315     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2316     LIR_Op1* move = (LIR_Op1*)op;
  2318     is_patch_info = move->patch_code() != lir_patch_none;
  2321   // Iterate through active intervals
  2322   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2323     int assigned_reg = interval->assigned_reg();
  2325     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2326     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2327     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2329     // Check if this range covers the instruction. Intervals that
  2330     // start or end at the current operation are not included in the
  2331     // oop map, except in the case of patching moves.  For patching
  2332     // moves, any intervals which end at this instruction are included
  2333     // in the oop map since we may safepoint while doing the patch
  2334     // before we've consumed the inputs.
  2335     if (is_patch_info || op->id() < interval->current_to()) {
  2337       // caller-save registers must not be included into oop-maps at calls
  2338       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2340       VMReg name = vm_reg_for_interval(interval);
  2341       map->set_oop(name);
  2343       // Spill optimization: when the stack value is guaranteed to be always correct,
  2344       // then it must be added to the oop map even if the interval is currently in a register
  2345       if (interval->always_in_memory() &&
  2346           op->id() > interval->spill_definition_pos() &&
  2347           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2348         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2349         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2350         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2352         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2357   // add oops from lock stack
  2358   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2359   int locks_count = info->stack()->locks_size();
  2360   for (int i = 0; i < locks_count; i++) {
  2361     map->set_oop(frame_map()->monitor_object_regname(i));
  2364   return map;
  2368 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2369   assert(visitor.info_count() > 0, "no oop map needed");
  2371   // compute oop_map only for first CodeEmitInfo
  2372   // because it is (in most cases) equal for all other infos of the same operation
  2373   CodeEmitInfo* first_info = visitor.info_at(0);
  2374   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2376   for (int i = 0; i < visitor.info_count(); i++) {
  2377     CodeEmitInfo* info = visitor.info_at(i);
  2378     OopMap* oop_map = first_oop_map;
  2380     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2381       // this info has a different number of locks then the precomputed oop map
  2382       // (possible for lock and unlock instructions) -> compute oop map with
  2383       // correct lock information
  2384       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2387     if (info->_oop_map == NULL) {
  2388       info->_oop_map = oop_map;
  2389     } else {
  2390       // a CodeEmitInfo can not be shared between different LIR-instructions
  2391       // because interval splitting can occur anywhere between two instructions
  2392       // and so the oop maps must be different
  2393       // -> check if the already set oop_map is exactly the one calculated for this operation
  2394       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2400 // frequently used constants
  2401 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
  2402 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
  2403 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
  2404 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
  2405 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
  2406 LocationValue         _illegal_value = LocationValue(Location());
  2408 void LinearScan::init_compute_debug_info() {
  2409   // cache for frequently used scope values
  2410   // (cpu registers and stack slots)
  2411   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2414 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2415   Location loc;
  2416   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2417     bailout("too large frame");
  2419   ScopeValue* object_scope_value = new LocationValue(loc);
  2421   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2422     bailout("too large frame");
  2424   return new MonitorValue(object_scope_value, loc);
  2427 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2428   Location loc;
  2429   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2430     bailout("too large frame");
  2432   return new LocationValue(loc);
  2436 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2437   assert(opr->is_constant(), "should not be called otherwise");
  2439   LIR_Const* c = opr->as_constant_ptr();
  2440   BasicType t = c->type();
  2441   switch (t) {
  2442     case T_OBJECT: {
  2443       jobject value = c->as_jobject();
  2444       if (value == NULL) {
  2445         scope_values->append(&_oop_null_scope_value);
  2446       } else {
  2447         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2449       return 1;
  2452     case T_INT: // fall through
  2453     case T_FLOAT: {
  2454       int value = c->as_jint_bits();
  2455       switch (value) {
  2456         case -1: scope_values->append(&_int_m1_scope_value); break;
  2457         case 0:  scope_values->append(&_int_0_scope_value); break;
  2458         case 1:  scope_values->append(&_int_1_scope_value); break;
  2459         case 2:  scope_values->append(&_int_2_scope_value); break;
  2460         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2462       return 1;
  2465     case T_LONG: // fall through
  2466     case T_DOUBLE: {
  2467       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2468         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2469         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2470       } else {
  2471         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2472         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2475       return 2;
  2478     default:
  2479       ShouldNotReachHere();
  2480       return -1;
  2484 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2485   if (opr->is_single_stack()) {
  2486     int stack_idx = opr->single_stack_ix();
  2487     bool is_oop = opr->is_oop_register();
  2488     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2490     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2491     if (sv == NULL) {
  2492       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2493       sv = location_for_name(stack_idx, loc_type);
  2494       _scope_value_cache.at_put(cache_idx, sv);
  2497     // check if cached value is correct
  2498     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2500     scope_values->append(sv);
  2501     return 1;
  2503   } else if (opr->is_single_cpu()) {
  2504     bool is_oop = opr->is_oop_register();
  2505     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2507     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2508     if (sv == NULL) {
  2509       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2510       VMReg rname = frame_map()->regname(opr);
  2511       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2512       _scope_value_cache.at_put(cache_idx, sv);
  2515     // check if cached value is correct
  2516     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : Location::normal, frame_map()->regname(opr)))));
  2518     scope_values->append(sv);
  2519     return 1;
  2521 #ifdef X86
  2522   } else if (opr->is_single_xmm()) {
  2523     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2524     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2526     scope_values->append(sv);
  2527     return 1;
  2528 #endif
  2530   } else if (opr->is_single_fpu()) {
  2531 #ifdef X86
  2532     // the exact location of fpu stack values is only known
  2533     // during fpu stack allocation, so the stack allocator object
  2534     // must be present
  2535     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2536     assert(_fpu_stack_allocator != NULL, "must be present");
  2537     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2538 #endif
  2540     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2541     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2542     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2544     scope_values->append(sv);
  2545     return 1;
  2547   } else {
  2548     // double-size operands
  2550     ScopeValue* first;
  2551     ScopeValue* second;
  2553     if (opr->is_double_stack()) {
  2554 #ifdef _LP64
  2555       Location loc1;
  2556       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
  2557       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
  2558         bailout("too large frame");
  2560       // Does this reverse on x86 vs. sparc?
  2561       first =  new LocationValue(loc1);
  2562       second = &_int_0_scope_value;
  2563 #else
  2564       Location loc1, loc2;
  2565       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2566         bailout("too large frame");
  2568       first =  new LocationValue(loc1);
  2569       second = new LocationValue(loc2);
  2570 #endif // _LP64
  2572     } else if (opr->is_double_cpu()) {
  2573 #ifdef _LP64
  2574       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2575       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2576       second = &_int_0_scope_value;
  2577 #else
  2578       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2579       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2581       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2582         // lo/hi and swapped relative to first and second, so swap them
  2583         VMReg tmp = rname_first;
  2584         rname_first = rname_second;
  2585         rname_second = tmp;
  2588       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2589       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2590 #endif //_LP64
  2593 #ifdef X86
  2594     } else if (opr->is_double_xmm()) {
  2595       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2596       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2597       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2598       // %%% This is probably a waste but we'll keep things as they were for now
  2599       if (true) {
  2600         VMReg rname_second = rname_first->next();
  2601         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2603 #endif
  2605     } else if (opr->is_double_fpu()) {
  2606       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2607       // the double as float registers in the native ordering. On X86,
  2608       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2609       // the low-order word of the double and fpu_regnrLo + 1 is the
  2610       // name for the other half.  *first and *second must represent the
  2611       // least and most significant words, respectively.
  2613 #ifdef X86
  2614       // the exact location of fpu stack values is only known
  2615       // during fpu stack allocation, so the stack allocator object
  2616       // must be present
  2617       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2618       assert(_fpu_stack_allocator != NULL, "must be present");
  2619       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2621       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2622 #endif
  2623 #ifdef SPARC
  2624       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2625 #endif
  2627       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2629       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2630       // %%% This is probably a waste but we'll keep things as they were for now
  2631       if (true) {
  2632         VMReg rname_second = rname_first->next();
  2633         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2636     } else {
  2637       ShouldNotReachHere();
  2638       first = NULL;
  2639       second = NULL;
  2642     assert(first != NULL && second != NULL, "must be set");
  2643     // The convention the interpreter uses is that the second local
  2644     // holds the first raw word of the native double representation.
  2645     // This is actually reasonable, since locals and stack arrays
  2646     // grow downwards in all implementations.
  2647     // (If, on some machine, the interpreter's Java locals or stack
  2648     // were to grow upwards, the embedded doubles would be word-swapped.)
  2649     scope_values->append(second);
  2650     scope_values->append(first);
  2651     return 2;
  2656 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2657   if (value != NULL) {
  2658     LIR_Opr opr = value->operand();
  2659     Constant* con = value->as_Constant();
  2661     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2662     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2664     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2665       // Unpinned constants may have a virtual operand for a part of the lifetime
  2666       // or may be illegal when it was optimized away,
  2667       // so always use a constant operand
  2668       opr = LIR_OprFact::value_type(con->type());
  2670     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2672     if (opr->is_virtual()) {
  2673       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2675       BlockBegin* block = block_of_op_with_id(op_id);
  2676       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2677         // generating debug information for the last instruction of a block.
  2678         // if this instruction is a branch, spill moves are inserted before this branch
  2679         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2680         // considered in the live ranges of intervals)
  2681         // Solution: use the first op_id of the branch target block instead.
  2682         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2683           if (block->live_out().at(opr->vreg_number())) {
  2684             op_id = block->sux_at(0)->first_lir_instruction_id();
  2685             mode = LIR_OpVisitState::outputMode;
  2690       // Get current location of operand
  2691       // The operand must be live because debug information is considered when building the intervals
  2692       // if the interval is not live, color_lir_opr will cause an assertion failure
  2693       opr = color_lir_opr(opr, op_id, mode);
  2694       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2696       // Append to ScopeValue array
  2697       return append_scope_value_for_operand(opr, scope_values);
  2699     } else {
  2700       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2701       assert(opr->is_constant(), "operand must be constant");
  2703       return append_scope_value_for_constant(opr, scope_values);
  2705   } else {
  2706     // append a dummy value because real value not needed
  2707     scope_values->append(&_illegal_value);
  2708     return 1;
  2713 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
  2714   IRScopeDebugInfo* caller_debug_info = NULL;
  2715   int stack_begin, locks_begin;
  2717   ValueStack* caller_state = cur_scope->caller_state();
  2718   if (caller_state != NULL) {
  2719     // process recursively to compute outermost scope first
  2720     stack_begin = caller_state->stack_size();
  2721     locks_begin = caller_state->locks_size();
  2722     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
  2723   } else {
  2724     stack_begin = 0;
  2725     locks_begin = 0;
  2728   // initialize these to null.
  2729   // If we don't need deopt info or there are no locals, expressions or monitors,
  2730   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2731   GrowableArray<ScopeValue*>*   locals      = NULL;
  2732   GrowableArray<ScopeValue*>*   expressions = NULL;
  2733   GrowableArray<MonitorValue*>* monitors    = NULL;
  2735   // describe local variable values
  2736   int nof_locals = cur_scope->method()->max_locals();
  2737   if (nof_locals > 0) {
  2738     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2740     int pos = 0;
  2741     while (pos < nof_locals) {
  2742       assert(pos < cur_state->locals_size(), "why not?");
  2744       Value local = cur_state->local_at(pos);
  2745       pos += append_scope_value(op_id, local, locals);
  2747       assert(locals->length() == pos, "must match");
  2749     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2750     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2754   // describe expression stack
  2755   //
  2756   // When we inline methods containing exception handlers, the
  2757   // "lock_stacks" are changed to preserve expression stack values
  2758   // in caller scopes when exception handlers are present. This
  2759   // can cause callee stacks to be smaller than caller stacks.
  2760   if (stack_end > innermost_state->stack_size()) {
  2761     stack_end = innermost_state->stack_size();
  2766   int nof_stack = stack_end - stack_begin;
  2767   if (nof_stack > 0) {
  2768     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2770     int pos = stack_begin;
  2771     while (pos < stack_end) {
  2772       Value expression = innermost_state->stack_at_inc(pos);
  2773       append_scope_value(op_id, expression, expressions);
  2775       assert(expressions->length() + stack_begin == pos, "must match");
  2779   // describe monitors
  2780   assert(locks_begin <= locks_end, "error in scope iteration");
  2781   int nof_locks = locks_end - locks_begin;
  2782   if (nof_locks > 0) {
  2783     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2784     for (int i = locks_begin; i < locks_end; i++) {
  2785       monitors->append(location_for_monitor_index(i));
  2789   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
  2793 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2794   if (!compilation()->needs_debug_information()) {
  2795     return;
  2797   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2799   IRScope* innermost_scope = info->scope();
  2800   ValueStack* innermost_state = info->stack();
  2802   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2804   int stack_end = innermost_state->stack_size();
  2805   int locks_end = innermost_state->locks_size();
  2807   DEBUG_ONLY(check_stack_depth(info, stack_end));
  2809   if (info->_scope_debug_info == NULL) {
  2810     // compute debug information
  2811     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
  2812   } else {
  2813     // debug information already set. Check that it is correct from the current point of view
  2814     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
  2819 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2820   LIR_OpVisitState visitor;
  2821   int num_inst = instructions->length();
  2822   bool has_dead = false;
  2824   for (int j = 0; j < num_inst; j++) {
  2825     LIR_Op* op = instructions->at(j);
  2826     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2827       has_dead = true;
  2828       continue;
  2830     int op_id = op->id();
  2832     // visit instruction to get list of operands
  2833     visitor.visit(op);
  2835     // iterate all modes of the visitor and process all virtual operands
  2836     for_each_visitor_mode(mode) {
  2837       int n = visitor.opr_count(mode);
  2838       for (int k = 0; k < n; k++) {
  2839         LIR_Opr opr = visitor.opr_at(mode, k);
  2840         if (opr->is_virtual_register()) {
  2841           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2846     if (visitor.info_count() > 0) {
  2847       // exception handling
  2848       if (compilation()->has_exception_handlers()) {
  2849         XHandlers* xhandlers = visitor.all_xhandler();
  2850         int n = xhandlers->length();
  2851         for (int k = 0; k < n; k++) {
  2852           XHandler* handler = xhandlers->handler_at(k);
  2853           if (handler->entry_code() != NULL) {
  2854             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2857       } else {
  2858         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2861       // compute oop map
  2862       assert(iw != NULL, "needed for compute_oop_map");
  2863       compute_oop_map(iw, visitor, op);
  2865       // compute debug information
  2866       if (!use_fpu_stack_allocation()) {
  2867         // compute debug information if fpu stack allocation is not needed.
  2868         // when fpu stack allocation is needed, the debug information can not
  2869         // be computed here because the exact location of fpu operands is not known
  2870         // -> debug information is created inside the fpu stack allocator
  2871         int n = visitor.info_count();
  2872         for (int k = 0; k < n; k++) {
  2873           compute_debug_info(visitor.info_at(k), op_id);
  2878 #ifdef ASSERT
  2879     // make sure we haven't made the op invalid.
  2880     op->verify();
  2881 #endif
  2883     // remove useless moves
  2884     if (op->code() == lir_move) {
  2885       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2886       LIR_Op1* move = (LIR_Op1*)op;
  2887       LIR_Opr src = move->in_opr();
  2888       LIR_Opr dst = move->result_opr();
  2889       if (dst == src ||
  2890           !dst->is_pointer() && !src->is_pointer() &&
  2891           src->is_same_register(dst)) {
  2892         instructions->at_put(j, NULL);
  2893         has_dead = true;
  2898   if (has_dead) {
  2899     // iterate all instructions of the block and remove all null-values.
  2900     int insert_point = 0;
  2901     for (int j = 0; j < num_inst; j++) {
  2902       LIR_Op* op = instructions->at(j);
  2903       if (op != NULL) {
  2904         if (insert_point != j) {
  2905           instructions->at_put(insert_point, op);
  2907         insert_point++;
  2910     instructions->truncate(insert_point);
  2914 void LinearScan::assign_reg_num() {
  2915   TIME_LINEAR_SCAN(timer_assign_reg_num);
  2917   init_compute_debug_info();
  2918   IntervalWalker* iw = init_compute_oop_maps();
  2920   int num_blocks = block_count();
  2921   for (int i = 0; i < num_blocks; i++) {
  2922     BlockBegin* block = block_at(i);
  2923     assign_reg_num(block->lir()->instructions_list(), iw);
  2928 void LinearScan::do_linear_scan() {
  2929   NOT_PRODUCT(_total_timer.begin_method());
  2931   number_instructions();
  2933   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  2935   compute_local_live_sets();
  2936   compute_global_live_sets();
  2937   CHECK_BAILOUT();
  2939   build_intervals();
  2940   CHECK_BAILOUT();
  2941   sort_intervals_before_allocation();
  2943   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  2944   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  2946   allocate_registers();
  2947   CHECK_BAILOUT();
  2949   resolve_data_flow();
  2950   if (compilation()->has_exception_handlers()) {
  2951     resolve_exception_handlers();
  2953   // fill in number of spill slots into frame_map
  2954   propagate_spill_slots();
  2955   CHECK_BAILOUT();
  2957   NOT_PRODUCT(print_intervals("After Register Allocation"));
  2958   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  2960   sort_intervals_after_allocation();
  2962   DEBUG_ONLY(verify());
  2964   eliminate_spill_moves();
  2965   assign_reg_num();
  2966   CHECK_BAILOUT();
  2968   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  2969   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  2971   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  2973     if (use_fpu_stack_allocation()) {
  2974       allocate_fpu_stack(); // Only has effect on Intel
  2975       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  2979   { TIME_LINEAR_SCAN(timer_optimize_lir);
  2981     EdgeMoveOptimizer::optimize(ir()->code());
  2982     ControlFlowOptimizer::optimize(ir()->code());
  2983     // check that cfg is still correct after optimizations
  2984     ir()->verify();
  2987   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  2988   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  2989   NOT_PRODUCT(_total_timer.end_method(this));
  2993 // ********** Printing functions
  2995 #ifndef PRODUCT
  2997 void LinearScan::print_timers(double total) {
  2998   _total_timer.print(total);
  3001 void LinearScan::print_statistics() {
  3002   _stat_before_alloc.print("before allocation");
  3003   _stat_after_asign.print("after assignment of register");
  3004   _stat_final.print("after optimization");
  3007 void LinearScan::print_bitmap(BitMap& b) {
  3008   for (unsigned int i = 0; i < b.size(); i++) {
  3009     if (b.at(i)) tty->print("%d ", i);
  3011   tty->cr();
  3014 void LinearScan::print_intervals(const char* label) {
  3015   if (TraceLinearScanLevel >= 1) {
  3016     int i;
  3017     tty->cr();
  3018     tty->print_cr("%s", label);
  3020     for (i = 0; i < interval_count(); i++) {
  3021       Interval* interval = interval_at(i);
  3022       if (interval != NULL) {
  3023         interval->print();
  3027     tty->cr();
  3028     tty->print_cr("--- Basic Blocks ---");
  3029     for (i = 0; i < block_count(); i++) {
  3030       BlockBegin* block = block_at(i);
  3031       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3033     tty->cr();
  3034     tty->cr();
  3037   if (PrintCFGToFile) {
  3038     CFGPrinter::print_intervals(&_intervals, label);
  3042 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3043   if (TraceLinearScanLevel >= level) {
  3044     tty->cr();
  3045     tty->print_cr("%s", label);
  3046     print_LIR(ir()->linear_scan_order());
  3047     tty->cr();
  3050   if (level == 1 && PrintCFGToFile) {
  3051     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3055 #endif //PRODUCT
  3058 // ********** verification functions for allocation
  3059 // (check that all intervals have a correct register and that no registers are overwritten)
  3060 #ifdef ASSERT
  3062 void LinearScan::verify() {
  3063   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3064   verify_intervals();
  3066   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3067   verify_no_oops_in_fixed_intervals();
  3069   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3070   verify_constants();
  3072   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3073   verify_registers();
  3075   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3078 void LinearScan::verify_intervals() {
  3079   int len = interval_count();
  3080   bool has_error = false;
  3082   for (int i = 0; i < len; i++) {
  3083     Interval* i1 = interval_at(i);
  3084     if (i1 == NULL) continue;
  3086     i1->check_split_children();
  3088     if (i1->reg_num() != i) {
  3089       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3090       has_error = true;
  3093     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3094       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3095       has_error = true;
  3098     if (i1->assigned_reg() == any_reg) {
  3099       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3100       has_error = true;
  3103     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3104       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3105       has_error = true;
  3108     if (!is_processed_reg_num(i1->assigned_reg())) {
  3109       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3110       has_error = true;
  3113     if (i1->first() == Range::end()) {
  3114       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3115       has_error = true;
  3118     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3119       if (r->from() >= r->to()) {
  3120         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3121         has_error = true;
  3125     for (int j = i + 1; j < len; j++) {
  3126       Interval* i2 = interval_at(j);
  3127       if (i2 == NULL) continue;
  3129       // special intervals that are created in MoveResolver
  3130       // -> ignore them because the range information has no meaning there
  3131       if (i1->from() == 1 && i1->to() == 2) continue;
  3132       if (i2->from() == 1 && i2->to() == 2) continue;
  3134       int r1 = i1->assigned_reg();
  3135       int r1Hi = i1->assigned_regHi();
  3136       int r2 = i2->assigned_reg();
  3137       int r2Hi = i2->assigned_regHi();
  3138       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3139         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3140         i1->print(); tty->cr();
  3141         i2->print(); tty->cr();
  3142         has_error = true;
  3147   assert(has_error == false, "register allocation invalid");
  3151 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3152   Interval* fixed_intervals;
  3153   Interval* other_intervals;
  3154   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
  3156   // to ensure a walking until the last instruction id, add a dummy interval
  3157   // with a high operation id
  3158   other_intervals = new Interval(any_reg);
  3159   other_intervals->add_range(max_jint - 2, max_jint - 1);
  3160   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
  3162   LIR_OpVisitState visitor;
  3163   for (int i = 0; i < block_count(); i++) {
  3164     BlockBegin* block = block_at(i);
  3166     LIR_OpList* instructions = block->lir()->instructions_list();
  3168     for (int j = 0; j < instructions->length(); j++) {
  3169       LIR_Op* op = instructions->at(j);
  3170       int op_id = op->id();
  3172       visitor.visit(op);
  3174       if (visitor.info_count() > 0) {
  3175         iw->walk_before(op->id());
  3176         bool check_live = true;
  3177         if (op->code() == lir_move) {
  3178           LIR_Op1* move = (LIR_Op1*)op;
  3179           check_live = (move->patch_code() == lir_patch_none);
  3181         LIR_OpBranch* branch = op->as_OpBranch();
  3182         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
  3183           // Don't bother checking the stub in this case since the
  3184           // exception stub will never return to normal control flow.
  3185           check_live = false;
  3188         // Make sure none of the fixed registers is live across an
  3189         // oopmap since we can't handle that correctly.
  3190         if (check_live) {
  3191           for (Interval* interval = iw->active_first(fixedKind);
  3192                interval != Interval::end();
  3193                interval = interval->next()) {
  3194             if (interval->current_to() > op->id() + 1) {
  3195               // This interval is live out of this op so make sure
  3196               // that this interval represents some value that's
  3197               // referenced by this op either as an input or output.
  3198               bool ok = false;
  3199               for_each_visitor_mode(mode) {
  3200                 int n = visitor.opr_count(mode);
  3201                 for (int k = 0; k < n; k++) {
  3202                   LIR_Opr opr = visitor.opr_at(mode, k);
  3203                   if (opr->is_fixed_cpu()) {
  3204                     if (interval_at(reg_num(opr)) == interval) {
  3205                       ok = true;
  3206                       break;
  3208                     int hi = reg_numHi(opr);
  3209                     if (hi != -1 && interval_at(hi) == interval) {
  3210                       ok = true;
  3211                       break;
  3216               assert(ok, "fixed intervals should never be live across an oopmap point");
  3222       // oop-maps at calls do not contain registers, so check is not needed
  3223       if (!visitor.has_call()) {
  3225         for_each_visitor_mode(mode) {
  3226           int n = visitor.opr_count(mode);
  3227           for (int k = 0; k < n; k++) {
  3228             LIR_Opr opr = visitor.opr_at(mode, k);
  3230             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3231               // operand is a non-virtual cpu register and contains an oop
  3232               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3234               Interval* interval = interval_at(reg_num(opr));
  3235               assert(interval != NULL, "no interval");
  3237               if (mode == LIR_OpVisitState::inputMode) {
  3238                 if (interval->to() >= op_id + 1) {
  3239                   assert(interval->to() < op_id + 2 ||
  3240                          interval->has_hole_between(op_id, op_id + 2),
  3241                          "oop input operand live after instruction");
  3243               } else if (mode == LIR_OpVisitState::outputMode) {
  3244                 if (interval->from() <= op_id - 1) {
  3245                   assert(interval->has_hole_between(op_id - 1, op_id),
  3246                          "oop input operand live after instruction");
  3258 void LinearScan::verify_constants() {
  3259   int num_regs = num_virtual_regs();
  3260   int size = live_set_size();
  3261   int num_blocks = block_count();
  3263   for (int i = 0; i < num_blocks; i++) {
  3264     BlockBegin* block = block_at(i);
  3265     BitMap live_at_edge = block->live_in();
  3267     // visit all registers where the live_at_edge bit is set
  3268     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  3269       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3271       Value value = gen()->instruction_for_vreg(r);
  3273       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3274       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3275       assert(value->operand()->vreg_number() == r, "register number must match");
  3276       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3282 class RegisterVerifier: public StackObj {
  3283  private:
  3284   LinearScan*   _allocator;
  3285   BlockList     _work_list;      // all blocks that must be processed
  3286   IntervalsList _saved_states;   // saved information of previous check
  3288   // simplified access to methods of LinearScan
  3289   Compilation*  compilation() const              { return _allocator->compilation(); }
  3290   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3291   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3293   // currently, only registers are processed
  3294   int           state_size()                     { return LinearScan::nof_regs; }
  3296   // accessors
  3297   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3298   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3299   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3301   // helper functions
  3302   IntervalList* copy(IntervalList* input_state);
  3303   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3304   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3306   void process_block(BlockBegin* block);
  3307   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3308   void process_successor(BlockBegin* block, IntervalList* input_state);
  3309   void process_operations(LIR_List* ops, IntervalList* input_state);
  3311  public:
  3312   RegisterVerifier(LinearScan* allocator)
  3313     : _allocator(allocator)
  3314     , _work_list(16)
  3315     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3316   { }
  3318   void verify(BlockBegin* start);
  3319 };
  3322 // entry function from LinearScan that starts the verification
  3323 void LinearScan::verify_registers() {
  3324   RegisterVerifier verifier(this);
  3325   verifier.verify(block_at(0));
  3329 void RegisterVerifier::verify(BlockBegin* start) {
  3330   // setup input registers (method arguments) for first block
  3331   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3332   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3333   for (int n = 0; n < args->length(); n++) {
  3334     LIR_Opr opr = args->at(n);
  3335     if (opr->is_register()) {
  3336       Interval* interval = interval_at(reg_num(opr));
  3338       if (interval->assigned_reg() < state_size()) {
  3339         input_state->at_put(interval->assigned_reg(), interval);
  3341       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3342         input_state->at_put(interval->assigned_regHi(), interval);
  3347   set_state_for_block(start, input_state);
  3348   add_to_work_list(start);
  3350   // main loop for verification
  3351   do {
  3352     BlockBegin* block = _work_list.at(0);
  3353     _work_list.remove_at(0);
  3355     process_block(block);
  3356   } while (!_work_list.is_empty());
  3359 void RegisterVerifier::process_block(BlockBegin* block) {
  3360   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3362   // must copy state because it is modified
  3363   IntervalList* input_state = copy(state_for_block(block));
  3365   if (TraceLinearScanLevel >= 4) {
  3366     tty->print_cr("Input-State of intervals:");
  3367     tty->print("    ");
  3368     for (int i = 0; i < state_size(); i++) {
  3369       if (input_state->at(i) != NULL) {
  3370         tty->print(" %4d", input_state->at(i)->reg_num());
  3371       } else {
  3372         tty->print("   __");
  3375     tty->cr();
  3376     tty->cr();
  3379   // process all operations of the block
  3380   process_operations(block->lir(), input_state);
  3382   // iterate all successors
  3383   for (int i = 0; i < block->number_of_sux(); i++) {
  3384     process_successor(block->sux_at(i), input_state);
  3388 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3389   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3391   // must copy state because it is modified
  3392   input_state = copy(input_state);
  3394   if (xhandler->entry_code() != NULL) {
  3395     process_operations(xhandler->entry_code(), input_state);
  3397   process_successor(xhandler->entry_block(), input_state);
  3400 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3401   IntervalList* saved_state = state_for_block(block);
  3403   if (saved_state != NULL) {
  3404     // this block was already processed before.
  3405     // check if new input_state is consistent with saved_state
  3407     bool saved_state_correct = true;
  3408     for (int i = 0; i < state_size(); i++) {
  3409       if (input_state->at(i) != saved_state->at(i)) {
  3410         // current input_state and previous saved_state assume a different
  3411         // interval in this register -> assume that this register is invalid
  3412         if (saved_state->at(i) != NULL) {
  3413           // invalidate old calculation only if it assumed that
  3414           // register was valid. when the register was already invalid,
  3415           // then the old calculation was correct.
  3416           saved_state_correct = false;
  3417           saved_state->at_put(i, NULL);
  3419           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3424     if (saved_state_correct) {
  3425       // already processed block with correct input_state
  3426       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3427     } else {
  3428       // must re-visit this block
  3429       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3430       add_to_work_list(block);
  3433   } else {
  3434     // block was not processed before, so set initial input_state
  3435     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3437     set_state_for_block(block, copy(input_state));
  3438     add_to_work_list(block);
  3443 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3444   IntervalList* copy_state = new IntervalList(input_state->length());
  3445   copy_state->push_all(input_state);
  3446   return copy_state;
  3449 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3450   if (reg != LinearScan::any_reg && reg < state_size()) {
  3451     if (interval != NULL) {
  3452       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3453     } else if (input_state->at(reg) != NULL) {
  3454       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3457     input_state->at_put(reg, interval);
  3461 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3462   if (reg != LinearScan::any_reg && reg < state_size()) {
  3463     if (input_state->at(reg) != interval) {
  3464       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3465       return true;
  3468   return false;
  3471 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3472   // visit all instructions of the block
  3473   LIR_OpVisitState visitor;
  3474   bool has_error = false;
  3476   for (int i = 0; i < ops->length(); i++) {
  3477     LIR_Op* op = ops->at(i);
  3478     visitor.visit(op);
  3480     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3482     // check if input operands are correct
  3483     int j;
  3484     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3485     for (j = 0; j < n; j++) {
  3486       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3487       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3488         Interval* interval = interval_at(reg_num(opr));
  3489         if (op->id() != -1) {
  3490           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3493         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3494         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3496         // When an operand is marked with is_last_use, then the fpu stack allocator
  3497         // removes the register from the fpu stack -> the register contains no value
  3498         if (opr->is_last_use()) {
  3499           state_put(input_state, interval->assigned_reg(),   NULL);
  3500           state_put(input_state, interval->assigned_regHi(), NULL);
  3505     // invalidate all caller save registers at calls
  3506     if (visitor.has_call()) {
  3507       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
  3508         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3510       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3511         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3514 #ifdef X86
  3515       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3516         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3518 #endif
  3521     // process xhandler before output and temp operands
  3522     XHandlers* xhandlers = visitor.all_xhandler();
  3523     n = xhandlers->length();
  3524     for (int k = 0; k < n; k++) {
  3525       process_xhandler(xhandlers->handler_at(k), input_state);
  3528     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3529     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3530     for (j = 0; j < n; j++) {
  3531       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3532       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3533         Interval* interval = interval_at(reg_num(opr));
  3534         if (op->id() != -1) {
  3535           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3538         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3539         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3543     // set output operands
  3544     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3545     for (j = 0; j < n; j++) {
  3546       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3547       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3548         Interval* interval = interval_at(reg_num(opr));
  3549         if (op->id() != -1) {
  3550           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3553         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3554         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3558   assert(has_error == false, "Error in register allocation");
  3561 #endif // ASSERT
  3565 // **** Implementation of MoveResolver ******************************
  3567 MoveResolver::MoveResolver(LinearScan* allocator) :
  3568   _allocator(allocator),
  3569   _multiple_reads_allowed(false),
  3570   _mapping_from(8),
  3571   _mapping_from_opr(8),
  3572   _mapping_to(8),
  3573   _insert_list(NULL),
  3574   _insert_idx(-1),
  3575   _insertion_buffer()
  3577   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3578     _register_blocked[i] = 0;
  3580   DEBUG_ONLY(check_empty());
  3584 #ifdef ASSERT
  3586 void MoveResolver::check_empty() {
  3587   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3588   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3589     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3591   assert(_multiple_reads_allowed == false, "must have default value");
  3594 void MoveResolver::verify_before_resolve() {
  3595   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3596   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3597   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3599   int i, j;
  3600   if (!_multiple_reads_allowed) {
  3601     for (i = 0; i < _mapping_from.length(); i++) {
  3602       for (j = i + 1; j < _mapping_from.length(); j++) {
  3603         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3608   for (i = 0; i < _mapping_to.length(); i++) {
  3609     for (j = i + 1; j < _mapping_to.length(); j++) {
  3610       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3615   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3616   used_regs.clear();
  3617   if (!_multiple_reads_allowed) {
  3618     for (i = 0; i < _mapping_from.length(); i++) {
  3619       Interval* it = _mapping_from.at(i);
  3620       if (it != NULL) {
  3621         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3622         used_regs.set_bit(it->assigned_reg());
  3624         if (it->assigned_regHi() != LinearScan::any_reg) {
  3625           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3626           used_regs.set_bit(it->assigned_regHi());
  3632   used_regs.clear();
  3633   for (i = 0; i < _mapping_to.length(); i++) {
  3634     Interval* it = _mapping_to.at(i);
  3635     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3636     used_regs.set_bit(it->assigned_reg());
  3638     if (it->assigned_regHi() != LinearScan::any_reg) {
  3639       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3640       used_regs.set_bit(it->assigned_regHi());
  3644   used_regs.clear();
  3645   for (i = 0; i < _mapping_from.length(); i++) {
  3646     Interval* it = _mapping_from.at(i);
  3647     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3648       used_regs.set_bit(it->assigned_reg());
  3651   for (i = 0; i < _mapping_to.length(); i++) {
  3652     Interval* it = _mapping_to.at(i);
  3653     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3657 #endif // ASSERT
  3660 // mark assigned_reg and assigned_regHi of the interval as blocked
  3661 void MoveResolver::block_registers(Interval* it) {
  3662   int reg = it->assigned_reg();
  3663   if (reg < LinearScan::nof_regs) {
  3664     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3665     set_register_blocked(reg, 1);
  3667   reg = it->assigned_regHi();
  3668   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3669     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3670     set_register_blocked(reg, 1);
  3674 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3675 void MoveResolver::unblock_registers(Interval* it) {
  3676   int reg = it->assigned_reg();
  3677   if (reg < LinearScan::nof_regs) {
  3678     assert(register_blocked(reg) > 0, "register already marked as unused");
  3679     set_register_blocked(reg, -1);
  3681   reg = it->assigned_regHi();
  3682   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3683     assert(register_blocked(reg) > 0, "register already marked as unused");
  3684     set_register_blocked(reg, -1);
  3688 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3689 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3690   int from_reg = -1;
  3691   int from_regHi = -1;
  3692   if (from != NULL) {
  3693     from_reg = from->assigned_reg();
  3694     from_regHi = from->assigned_regHi();
  3697   int reg = to->assigned_reg();
  3698   if (reg < LinearScan::nof_regs) {
  3699     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3700       return false;
  3703   reg = to->assigned_regHi();
  3704   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3705     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3706       return false;
  3710   return true;
  3714 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3715   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3716   _insertion_buffer.init(list);
  3719 void MoveResolver::append_insertion_buffer() {
  3720   if (_insertion_buffer.initialized()) {
  3721     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3723   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3725   _insert_list = NULL;
  3726   _insert_idx = -1;
  3729 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3730   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3731   assert(from_interval->type() == to_interval->type(), "move between different types");
  3732   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3733   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3735   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3736   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3738   if (!_multiple_reads_allowed) {
  3739     // the last_use flag is an optimization for FPU stack allocation. When the same
  3740     // input interval is used in more than one move, then it is too difficult to determine
  3741     // if this move is really the last use.
  3742     from_opr = from_opr->make_last_use();
  3744   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3746   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3749 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3750   assert(from_opr->type() == to_interval->type(), "move between different types");
  3751   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3752   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3754   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3755   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3757   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3761 void MoveResolver::resolve_mappings() {
  3762   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3763   DEBUG_ONLY(verify_before_resolve());
  3765   // Block all registers that are used as input operands of a move.
  3766   // When a register is blocked, no move to this register is emitted.
  3767   // This is necessary for detecting cycles in moves.
  3768   int i;
  3769   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3770     Interval* from_interval = _mapping_from.at(i);
  3771     if (from_interval != NULL) {
  3772       block_registers(from_interval);
  3776   int spill_candidate = -1;
  3777   while (_mapping_from.length() > 0) {
  3778     bool processed_interval = false;
  3780     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3781       Interval* from_interval = _mapping_from.at(i);
  3782       Interval* to_interval = _mapping_to.at(i);
  3784       if (save_to_process_move(from_interval, to_interval)) {
  3785         // this inverval can be processed because target is free
  3786         if (from_interval != NULL) {
  3787           insert_move(from_interval, to_interval);
  3788           unblock_registers(from_interval);
  3789         } else {
  3790           insert_move(_mapping_from_opr.at(i), to_interval);
  3792         _mapping_from.remove_at(i);
  3793         _mapping_from_opr.remove_at(i);
  3794         _mapping_to.remove_at(i);
  3796         processed_interval = true;
  3797       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3798         // this interval cannot be processed now because target is not free
  3799         // it starts in a register, so it is a possible candidate for spilling
  3800         spill_candidate = i;
  3804     if (!processed_interval) {
  3805       // no move could be processed because there is a cycle in the move list
  3806       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3807       assert(spill_candidate != -1, "no interval in register for spilling found");
  3809       // create a new spill interval and assign a stack slot to it
  3810       Interval* from_interval = _mapping_from.at(spill_candidate);
  3811       Interval* spill_interval = new Interval(-1);
  3812       spill_interval->set_type(from_interval->type());
  3814       // add a dummy range because real position is difficult to calculate
  3815       // Note: this range is a special case when the integrity of the allocation is checked
  3816       spill_interval->add_range(1, 2);
  3818       //       do not allocate a new spill slot for temporary interval, but
  3819       //       use spill slot assigned to from_interval. Otherwise moves from
  3820       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3821       int spill_slot = from_interval->canonical_spill_slot();
  3822       if (spill_slot < 0) {
  3823         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3824         from_interval->set_canonical_spill_slot(spill_slot);
  3826       spill_interval->assign_reg(spill_slot);
  3827       allocator()->append_interval(spill_interval);
  3829       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3831       // insert a move from register to stack and update the mapping
  3832       insert_move(from_interval, spill_interval);
  3833       _mapping_from.at_put(spill_candidate, spill_interval);
  3834       unblock_registers(from_interval);
  3838   // reset to default value
  3839   _multiple_reads_allowed = false;
  3841   // check that all intervals have been processed
  3842   DEBUG_ONLY(check_empty());
  3846 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3847   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3848   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3850   create_insertion_buffer(insert_list);
  3851   _insert_list = insert_list;
  3852   _insert_idx = insert_idx;
  3855 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3856   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3858   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3859     // insert position changed -> resolve current mappings
  3860     resolve_mappings();
  3863   if (insert_list != _insert_list) {
  3864     // block changed -> append insertion_buffer because it is
  3865     // bound to a specific block and create a new insertion_buffer
  3866     append_insertion_buffer();
  3867     create_insertion_buffer(insert_list);
  3870   _insert_list = insert_list;
  3871   _insert_idx = insert_idx;
  3874 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3875   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3877   _mapping_from.append(from_interval);
  3878   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3879   _mapping_to.append(to_interval);
  3883 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3884   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3885   assert(from_opr->is_constant(), "only for constants");
  3887   _mapping_from.append(NULL);
  3888   _mapping_from_opr.append(from_opr);
  3889   _mapping_to.append(to_interval);
  3892 void MoveResolver::resolve_and_append_moves() {
  3893   if (has_mappings()) {
  3894     resolve_mappings();
  3896   append_insertion_buffer();
  3901 // **** Implementation of Range *************************************
  3903 Range::Range(int from, int to, Range* next) :
  3904   _from(from),
  3905   _to(to),
  3906   _next(next)
  3910 // initialize sentinel
  3911 Range* Range::_end = NULL;
  3912 void Range::initialize() {
  3913   _end = new Range(max_jint, max_jint, NULL);
  3916 int Range::intersects_at(Range* r2) const {
  3917   const Range* r1 = this;
  3919   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  3920   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  3922   do {
  3923     if (r1->from() < r2->from()) {
  3924       if (r1->to() <= r2->from()) {
  3925         r1 = r1->next(); if (r1 == _end) return -1;
  3926       } else {
  3927         return r2->from();
  3929     } else if (r2->from() < r1->from()) {
  3930       if (r2->to() <= r1->from()) {
  3931         r2 = r2->next(); if (r2 == _end) return -1;
  3932       } else {
  3933         return r1->from();
  3935     } else { // r1->from() == r2->from()
  3936       if (r1->from() == r1->to()) {
  3937         r1 = r1->next(); if (r1 == _end) return -1;
  3938       } else if (r2->from() == r2->to()) {
  3939         r2 = r2->next(); if (r2 == _end) return -1;
  3940       } else {
  3941         return r1->from();
  3944   } while (true);
  3947 #ifndef PRODUCT
  3948 void Range::print(outputStream* out) const {
  3949   out->print("[%d, %d[ ", _from, _to);
  3951 #endif
  3955 // **** Implementation of Interval **********************************
  3957 // initialize sentinel
  3958 Interval* Interval::_end = NULL;
  3959 void Interval::initialize() {
  3960   Range::initialize();
  3961   _end = new Interval(-1);
  3964 Interval::Interval(int reg_num) :
  3965   _reg_num(reg_num),
  3966   _type(T_ILLEGAL),
  3967   _first(Range::end()),
  3968   _use_pos_and_kinds(12),
  3969   _current(Range::end()),
  3970   _next(_end),
  3971   _state(invalidState),
  3972   _assigned_reg(LinearScan::any_reg),
  3973   _assigned_regHi(LinearScan::any_reg),
  3974   _cached_to(-1),
  3975   _cached_opr(LIR_OprFact::illegalOpr),
  3976   _cached_vm_reg(VMRegImpl::Bad()),
  3977   _split_children(0),
  3978   _canonical_spill_slot(-1),
  3979   _insert_move_when_activated(false),
  3980   _register_hint(NULL),
  3981   _spill_state(noDefinitionFound),
  3982   _spill_definition_pos(-1)
  3984   _split_parent = this;
  3985   _current_split_child = this;
  3988 int Interval::calc_to() {
  3989   assert(_first != Range::end(), "interval has no range");
  3991   Range* r = _first;
  3992   while (r->next() != Range::end()) {
  3993     r = r->next();
  3995   return r->to();
  3999 #ifdef ASSERT
  4000 // consistency check of split-children
  4001 void Interval::check_split_children() {
  4002   if (_split_children.length() > 0) {
  4003     assert(is_split_parent(), "only split parents can have children");
  4005     for (int i = 0; i < _split_children.length(); i++) {
  4006       Interval* i1 = _split_children.at(i);
  4008       assert(i1->split_parent() == this, "not a split child of this interval");
  4009       assert(i1->type() == type(), "must be equal for all split children");
  4010       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  4012       for (int j = i + 1; j < _split_children.length(); j++) {
  4013         Interval* i2 = _split_children.at(j);
  4015         assert(i1->reg_num() != i2->reg_num(), "same register number");
  4017         if (i1->from() < i2->from()) {
  4018           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  4019         } else {
  4020           assert(i2->from() < i1->from(), "intervals start at same op_id");
  4021           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  4027 #endif // ASSERT
  4029 Interval* Interval::register_hint(bool search_split_child) const {
  4030   if (!search_split_child) {
  4031     return _register_hint;
  4034   if (_register_hint != NULL) {
  4035     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  4037     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  4038       return _register_hint;
  4040     } else if (_register_hint->_split_children.length() > 0) {
  4041       // search the first split child that has a register assigned
  4042       int len = _register_hint->_split_children.length();
  4043       for (int i = 0; i < len; i++) {
  4044         Interval* cur = _register_hint->_split_children.at(i);
  4046         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  4047           return cur;
  4053   // no hint interval found that has a register assigned
  4054   return NULL;
  4058 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  4059   assert(is_split_parent(), "can only be called for split parents");
  4060   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4062   Interval* result;
  4063   if (_split_children.length() == 0) {
  4064     result = this;
  4065   } else {
  4066     result = NULL;
  4067     int len = _split_children.length();
  4069     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  4070     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  4072     int i;
  4073     for (i = 0; i < len; i++) {
  4074       Interval* cur = _split_children.at(i);
  4075       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4076         if (i > 0) {
  4077           // exchange current split child to start of list (faster access for next call)
  4078           _split_children.at_put(i, _split_children.at(0));
  4079           _split_children.at_put(0, cur);
  4082         // interval found
  4083         result = cur;
  4084         break;
  4088 #ifdef ASSERT
  4089     for (i = 0; i < len; i++) {
  4090       Interval* tmp = _split_children.at(i);
  4091       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4092         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4093         result->print();
  4094         tmp->print();
  4095         assert(false, "two valid result intervals found");
  4098 #endif
  4101   assert(result != NULL, "no matching interval found");
  4102   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4104   return result;
  4108 // returns the last split child that ends before the given op_id
  4109 Interval* Interval::split_child_before_op_id(int op_id) {
  4110   assert(op_id >= 0, "invalid op_id");
  4112   Interval* parent = split_parent();
  4113   Interval* result = NULL;
  4115   int len = parent->_split_children.length();
  4116   assert(len > 0, "no split children available");
  4118   for (int i = len - 1; i >= 0; i--) {
  4119     Interval* cur = parent->_split_children.at(i);
  4120     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4121       result = cur;
  4125   assert(result != NULL, "no split child found");
  4126   return result;
  4130 // checks if op_id is covered by any split child
  4131 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4132   assert(is_split_parent(), "can only be called for split parents");
  4133   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4135   if (_split_children.length() == 0) {
  4136     // simple case if interval was not split
  4137     return covers(op_id, mode);
  4139   } else {
  4140     // extended case: check all split children
  4141     int len = _split_children.length();
  4142     for (int i = 0; i < len; i++) {
  4143       Interval* cur = _split_children.at(i);
  4144       if (cur->covers(op_id, mode)) {
  4145         return true;
  4148     return false;
  4153 // Note: use positions are sorted descending -> first use has highest index
  4154 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4155   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4157   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4158     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4159       return _use_pos_and_kinds.at(i);
  4162   return max_jint;
  4165 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4166   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4168   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4169     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4170       return _use_pos_and_kinds.at(i);
  4173   return max_jint;
  4176 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4177   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4179   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4180     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4181       return _use_pos_and_kinds.at(i);
  4184   return max_jint;
  4187 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4188   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4190   int prev = 0;
  4191   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4192     if (_use_pos_and_kinds.at(i) > from) {
  4193       return prev;
  4195     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4196       prev = _use_pos_and_kinds.at(i);
  4199   return prev;
  4202 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4203   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4205   // do not add use positions for precolored intervals because
  4206   // they are never used
  4207   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4208 #ifdef ASSERT
  4209     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4210     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4211       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4212       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4213       if (i > 0) {
  4214         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4217 #endif
  4219     // Note: add_use is called in descending order, so list gets sorted
  4220     //       automatically by just appending new use positions
  4221     int len = _use_pos_and_kinds.length();
  4222     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4223       _use_pos_and_kinds.append(pos);
  4224       _use_pos_and_kinds.append(use_kind);
  4225     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4226       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4227       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4232 void Interval::add_range(int from, int to) {
  4233   assert(from < to, "invalid range");
  4234   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4235   assert(from <= first()->to(), "not inserting at begin of interval");
  4237   if (first()->from() <= to) {
  4238     // join intersecting ranges
  4239     first()->set_from(MIN2(from, first()->from()));
  4240     first()->set_to  (MAX2(to,   first()->to()));
  4241   } else {
  4242     // insert new range
  4243     _first = new Range(from, to, first());
  4247 Interval* Interval::new_split_child() {
  4248   // allocate new interval
  4249   Interval* result = new Interval(-1);
  4250   result->set_type(type());
  4252   Interval* parent = split_parent();
  4253   result->_split_parent = parent;
  4254   result->set_register_hint(parent);
  4256   // insert new interval in children-list of parent
  4257   if (parent->_split_children.length() == 0) {
  4258     assert(is_split_parent(), "list must be initialized at first split");
  4260     parent->_split_children = IntervalList(4);
  4261     parent->_split_children.append(this);
  4263   parent->_split_children.append(result);
  4265   return result;
  4268 // split this interval at the specified position and return
  4269 // the remainder as a new interval.
  4270 //
  4271 // when an interval is split, a bi-directional link is established between the original interval
  4272 // (the split parent) and the intervals that are split off this interval (the split children)
  4273 // When a split child is split again, the new created interval is also a direct child
  4274 // of the original parent (there is no tree of split children stored, but a flat list)
  4275 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4276 //
  4277 // Note: The new interval has no valid reg_num
  4278 Interval* Interval::split(int split_pos) {
  4279   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4281   // allocate new interval
  4282   Interval* result = new_split_child();
  4284   // split the ranges
  4285   Range* prev = NULL;
  4286   Range* cur = _first;
  4287   while (cur != Range::end() && cur->to() <= split_pos) {
  4288     prev = cur;
  4289     cur = cur->next();
  4291   assert(cur != Range::end(), "split interval after end of last range");
  4293   if (cur->from() < split_pos) {
  4294     result->_first = new Range(split_pos, cur->to(), cur->next());
  4295     cur->set_to(split_pos);
  4296     cur->set_next(Range::end());
  4298   } else {
  4299     assert(prev != NULL, "split before start of first range");
  4300     result->_first = cur;
  4301     prev->set_next(Range::end());
  4303   result->_current = result->_first;
  4304   _cached_to = -1; // clear cached value
  4306   // split list of use positions
  4307   int total_len = _use_pos_and_kinds.length();
  4308   int start_idx = total_len - 2;
  4309   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4310     start_idx -= 2;
  4313   intStack new_use_pos_and_kinds(total_len - start_idx);
  4314   int i;
  4315   for (i = start_idx + 2; i < total_len; i++) {
  4316     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4319   _use_pos_and_kinds.truncate(start_idx + 2);
  4320   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4321   _use_pos_and_kinds = new_use_pos_and_kinds;
  4323 #ifdef ASSERT
  4324   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4325   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4326   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4328   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4329     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4330     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4332   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4333     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4334     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4336 #endif
  4338   return result;
  4341 // split this interval at the specified position and return
  4342 // the head as a new interval (the original interval is the tail)
  4343 //
  4344 // Currently, only the first range can be split, and the new interval
  4345 // must not have split positions
  4346 Interval* Interval::split_from_start(int split_pos) {
  4347   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4348   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4349   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4350   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4352   // allocate new interval
  4353   Interval* result = new_split_child();
  4355   // the new created interval has only one range (checked by assertion above),
  4356   // so the splitting of the ranges is very simple
  4357   result->add_range(_first->from(), split_pos);
  4359   if (split_pos == _first->to()) {
  4360     assert(_first->next() != Range::end(), "must not be at end");
  4361     _first = _first->next();
  4362   } else {
  4363     _first->set_from(split_pos);
  4366   return result;
  4370 // returns true if the op_id is inside the interval
  4371 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4372   Range* cur  = _first;
  4374   while (cur != Range::end() && cur->to() < op_id) {
  4375     cur = cur->next();
  4377   if (cur != Range::end()) {
  4378     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4380     if (mode == LIR_OpVisitState::outputMode) {
  4381       return cur->from() <= op_id && op_id < cur->to();
  4382     } else {
  4383       return cur->from() <= op_id && op_id <= cur->to();
  4386   return false;
  4389 // returns true if the interval has any hole between hole_from and hole_to
  4390 // (even if the hole has only the length 1)
  4391 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4392   assert(hole_from < hole_to, "check");
  4393   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4395   Range* cur  = _first;
  4396   while (cur != Range::end()) {
  4397     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4399     // hole-range starts before this range -> hole
  4400     if (hole_from < cur->from()) {
  4401       return true;
  4403     // hole-range completely inside this range -> no hole
  4404     } else if (hole_to <= cur->to()) {
  4405       return false;
  4407     // overlapping of hole-range with this range -> hole
  4408     } else if (hole_from <= cur->to()) {
  4409       return true;
  4412     cur = cur->next();
  4415   return false;
  4419 #ifndef PRODUCT
  4420 void Interval::print(outputStream* out) const {
  4421   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4422   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4424   const char* type_name;
  4425   LIR_Opr opr = LIR_OprFact::illegal();
  4426   if (reg_num() < LIR_OprDesc::vreg_base) {
  4427     type_name = "fixed";
  4428     // need a temporary operand for fixed intervals because type() cannot be called
  4429     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4430       opr = LIR_OprFact::single_cpu(assigned_reg());
  4431     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4432       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4433 #ifdef X86
  4434     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4435       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4436 #endif
  4437     } else {
  4438       ShouldNotReachHere();
  4440   } else {
  4441     type_name = type2name(type());
  4442     if (assigned_reg() != -1) {
  4443       opr = LinearScan::calc_operand_for_interval(this);
  4447   out->print("%d %s ", reg_num(), type_name);
  4448   if (opr->is_valid()) {
  4449     out->print("\"");
  4450     opr->print(out);
  4451     out->print("\" ");
  4453   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4455   // print ranges
  4456   Range* cur = _first;
  4457   while (cur != Range::end()) {
  4458     cur->print(out);
  4459     cur = cur->next();
  4460     assert(cur != NULL, "range list not closed with range sentinel");
  4463   // print use positions
  4464   int prev = 0;
  4465   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4466   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4467     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4468     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4470     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4471     prev = _use_pos_and_kinds.at(i);
  4474   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4475   out->cr();
  4477 #endif
  4481 // **** Implementation of IntervalWalker ****************************
  4483 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4484  : _compilation(allocator->compilation())
  4485  , _allocator(allocator)
  4487   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4488   _unhandled_first[anyKind]   = unhandled_any_first;
  4489   _active_first[fixedKind]    = Interval::end();
  4490   _inactive_first[fixedKind]  = Interval::end();
  4491   _active_first[anyKind]      = Interval::end();
  4492   _inactive_first[anyKind]    = Interval::end();
  4493   _current_position = -1;
  4494   _current = NULL;
  4495   next_interval();
  4499 // append interval at top of list
  4500 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4501   interval->set_next(*list); *list = interval;
  4505 // append interval in order of current range from()
  4506 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4507   Interval* prev = NULL;
  4508   Interval* cur  = *list;
  4509   while (cur->current_from() < interval->current_from()) {
  4510     prev = cur; cur = cur->next();
  4512   if (prev == NULL) {
  4513     *list = interval;
  4514   } else {
  4515     prev->set_next(interval);
  4517   interval->set_next(cur);
  4520 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4521   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4523   Interval* prev = NULL;
  4524   Interval* cur  = *list;
  4525   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4526     prev = cur; cur = cur->next();
  4528   if (prev == NULL) {
  4529     *list = interval;
  4530   } else {
  4531     prev->set_next(interval);
  4533   interval->set_next(cur);
  4537 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4538   while (*list != Interval::end() && *list != i) {
  4539     list = (*list)->next_addr();
  4541   if (*list != Interval::end()) {
  4542     assert(*list == i, "check");
  4543     *list = (*list)->next();
  4544     return true;
  4545   } else {
  4546     return false;
  4550 void IntervalWalker::remove_from_list(Interval* i) {
  4551   bool deleted;
  4553   if (i->state() == activeState) {
  4554     deleted = remove_from_list(active_first_addr(anyKind), i);
  4555   } else {
  4556     assert(i->state() == inactiveState, "invalid state");
  4557     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4560   assert(deleted, "interval has not been found in list");
  4564 void IntervalWalker::walk_to(IntervalState state, int from) {
  4565   assert (state == activeState || state == inactiveState, "wrong state");
  4566   for_each_interval_kind(kind) {
  4567     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4568     Interval* next   = *prev;
  4569     while (next->current_from() <= from) {
  4570       Interval* cur = next;
  4571       next = cur->next();
  4573       bool range_has_changed = false;
  4574       while (cur->current_to() <= from) {
  4575         cur->next_range();
  4576         range_has_changed = true;
  4579       // also handle move from inactive list to active list
  4580       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4582       if (range_has_changed) {
  4583         // remove cur from list
  4584         *prev = next;
  4585         if (cur->current_at_end()) {
  4586           // move to handled state (not maintained as a list)
  4587           cur->set_state(handledState);
  4588           interval_moved(cur, kind, state, handledState);
  4589         } else if (cur->current_from() <= from){
  4590           // sort into active list
  4591           append_sorted(active_first_addr(kind), cur);
  4592           cur->set_state(activeState);
  4593           if (*prev == cur) {
  4594             assert(state == activeState, "check");
  4595             prev = cur->next_addr();
  4597           interval_moved(cur, kind, state, activeState);
  4598         } else {
  4599           // sort into inactive list
  4600           append_sorted(inactive_first_addr(kind), cur);
  4601           cur->set_state(inactiveState);
  4602           if (*prev == cur) {
  4603             assert(state == inactiveState, "check");
  4604             prev = cur->next_addr();
  4606           interval_moved(cur, kind, state, inactiveState);
  4608       } else {
  4609         prev = cur->next_addr();
  4610         continue;
  4617 void IntervalWalker::next_interval() {
  4618   IntervalKind kind;
  4619   Interval* any   = _unhandled_first[anyKind];
  4620   Interval* fixed = _unhandled_first[fixedKind];
  4622   if (any != Interval::end()) {
  4623     // intervals may start at same position -> prefer fixed interval
  4624     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4626     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4627             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4628     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4630   } else if (fixed != Interval::end()) {
  4631     kind = fixedKind;
  4632   } else {
  4633     _current = NULL; return;
  4635   _current_kind = kind;
  4636   _current = _unhandled_first[kind];
  4637   _unhandled_first[kind] = _current->next();
  4638   _current->set_next(Interval::end());
  4639   _current->rewind_range();
  4643 void IntervalWalker::walk_to(int lir_op_id) {
  4644   assert(_current_position <= lir_op_id, "can not walk backwards");
  4645   while (current() != NULL) {
  4646     bool is_active = current()->from() <= lir_op_id;
  4647     int id = is_active ? current()->from() : lir_op_id;
  4649     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4651     // set _current_position prior to call of walk_to
  4652     _current_position = id;
  4654     // call walk_to even if _current_position == id
  4655     walk_to(activeState, id);
  4656     walk_to(inactiveState, id);
  4658     if (is_active) {
  4659       current()->set_state(activeState);
  4660       if (activate_current()) {
  4661         append_sorted(active_first_addr(current_kind()), current());
  4662         interval_moved(current(), current_kind(), unhandledState, activeState);
  4665       next_interval();
  4666     } else {
  4667       return;
  4672 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4673 #ifndef PRODUCT
  4674   if (TraceLinearScanLevel >= 4) {
  4675     #define print_state(state) \
  4676     switch(state) {\
  4677       case unhandledState: tty->print("unhandled"); break;\
  4678       case activeState: tty->print("active"); break;\
  4679       case inactiveState: tty->print("inactive"); break;\
  4680       case handledState: tty->print("handled"); break;\
  4681       default: ShouldNotReachHere(); \
  4684     print_state(from); tty->print(" to "); print_state(to);
  4685     tty->fill_to(23);
  4686     interval->print();
  4688     #undef print_state
  4690 #endif
  4695 // **** Implementation of LinearScanWalker **************************
  4697 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4698   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4699   , _move_resolver(allocator)
  4701   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4702     _spill_intervals[i] = new IntervalList(2);
  4707 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4708   for (int i = _first_reg; i <= _last_reg; i++) {
  4709     _use_pos[i] = max_jint;
  4711     if (!only_process_use_pos) {
  4712       _block_pos[i] = max_jint;
  4713       _spill_intervals[i]->clear();
  4718 inline void LinearScanWalker::exclude_from_use(int reg) {
  4719   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4720   if (reg >= _first_reg && reg <= _last_reg) {
  4721     _use_pos[reg] = 0;
  4724 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4725   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4727   exclude_from_use(i->assigned_reg());
  4728   exclude_from_use(i->assigned_regHi());
  4731 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4732   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4734   if (reg >= _first_reg && reg <= _last_reg) {
  4735     if (_use_pos[reg] > use_pos) {
  4736       _use_pos[reg] = use_pos;
  4738     if (!only_process_use_pos) {
  4739       _spill_intervals[reg]->append(i);
  4743 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4744   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4745   if (use_pos != -1) {
  4746     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4747     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4751 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4752   if (reg >= _first_reg && reg <= _last_reg) {
  4753     if (_block_pos[reg] > block_pos) {
  4754       _block_pos[reg] = block_pos;
  4756     if (_use_pos[reg] > block_pos) {
  4757       _use_pos[reg] = block_pos;
  4761 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4762   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4763   if (block_pos != -1) {
  4764     set_block_pos(i->assigned_reg(), i, block_pos);
  4765     set_block_pos(i->assigned_regHi(), i, block_pos);
  4770 void LinearScanWalker::free_exclude_active_fixed() {
  4771   Interval* list = active_first(fixedKind);
  4772   while (list != Interval::end()) {
  4773     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4774     exclude_from_use(list);
  4775     list = list->next();
  4779 void LinearScanWalker::free_exclude_active_any() {
  4780   Interval* list = active_first(anyKind);
  4781   while (list != Interval::end()) {
  4782     exclude_from_use(list);
  4783     list = list->next();
  4787 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4788   Interval* list = inactive_first(fixedKind);
  4789   while (list != Interval::end()) {
  4790     if (cur->to() <= list->current_from()) {
  4791       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4792       set_use_pos(list, list->current_from(), true);
  4793     } else {
  4794       set_use_pos(list, list->current_intersects_at(cur), true);
  4796     list = list->next();
  4800 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4801   Interval* list = inactive_first(anyKind);
  4802   while (list != Interval::end()) {
  4803     set_use_pos(list, list->current_intersects_at(cur), true);
  4804     list = list->next();
  4808 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4809   Interval* list = unhandled_first(kind);
  4810   while (list != Interval::end()) {
  4811     set_use_pos(list, list->intersects_at(cur), true);
  4812     if (kind == fixedKind && cur->to() <= list->from()) {
  4813       set_use_pos(list, list->from(), true);
  4815     list = list->next();
  4819 void LinearScanWalker::spill_exclude_active_fixed() {
  4820   Interval* list = active_first(fixedKind);
  4821   while (list != Interval::end()) {
  4822     exclude_from_use(list);
  4823     list = list->next();
  4827 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4828   Interval* list = unhandled_first(fixedKind);
  4829   while (list != Interval::end()) {
  4830     set_block_pos(list, list->intersects_at(cur));
  4831     list = list->next();
  4835 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4836   Interval* list = inactive_first(fixedKind);
  4837   while (list != Interval::end()) {
  4838     if (cur->to() > list->current_from()) {
  4839       set_block_pos(list, list->current_intersects_at(cur));
  4840     } else {
  4841       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4844     list = list->next();
  4848 void LinearScanWalker::spill_collect_active_any() {
  4849   Interval* list = active_first(anyKind);
  4850   while (list != Interval::end()) {
  4851     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4852     list = list->next();
  4856 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4857   Interval* list = inactive_first(anyKind);
  4858   while (list != Interval::end()) {
  4859     if (list->current_intersects(cur)) {
  4860       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4862     list = list->next();
  4867 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4868   // output all moves here. When source and target are equal, the move is
  4869   // optimized away later in assign_reg_nums
  4871   op_id = (op_id + 1) & ~1;
  4872   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4873   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4875   // calculate index of instruction inside instruction list of current block
  4876   // the minimal index (for a block with no spill moves) can be calculated because the
  4877   // numbering of instructions is known.
  4878   // When the block already contains spill moves, the index must be increased until the
  4879   // correct index is reached.
  4880   LIR_OpList* list = op_block->lir()->instructions_list();
  4881   int index = (op_id - list->at(0)->id()) / 2;
  4882   assert(list->at(index)->id() <= op_id, "error in calculation");
  4884   while (list->at(index)->id() != op_id) {
  4885     index++;
  4886     assert(0 <= index && index < list->length(), "index out of bounds");
  4888   assert(1 <= index && index < list->length(), "index out of bounds");
  4889   assert(list->at(index)->id() == op_id, "error in calculation");
  4891   // insert new instruction before instruction at position index
  4892   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  4893   _move_resolver.add_mapping(src_it, dst_it);
  4897 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  4898   int from_block_nr = min_block->linear_scan_number();
  4899   int to_block_nr = max_block->linear_scan_number();
  4901   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  4902   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  4903   assert(from_block_nr < to_block_nr, "must cross block boundary");
  4905   // Try to split at end of max_block. If this would be after
  4906   // max_split_pos, then use the begin of max_block
  4907   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  4908   if (optimal_split_pos > max_split_pos) {
  4909     optimal_split_pos = max_block->first_lir_instruction_id();
  4912   int min_loop_depth = max_block->loop_depth();
  4913   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  4914     BlockBegin* cur = block_at(i);
  4916     if (cur->loop_depth() < min_loop_depth) {
  4917       // block with lower loop-depth found -> split at the end of this block
  4918       min_loop_depth = cur->loop_depth();
  4919       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  4922   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  4924   return optimal_split_pos;
  4928 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  4929   int optimal_split_pos = -1;
  4930   if (min_split_pos == max_split_pos) {
  4931     // trivial case, no optimization of split position possible
  4932     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  4933     optimal_split_pos = min_split_pos;
  4935   } else {
  4936     assert(min_split_pos < max_split_pos, "must be true then");
  4937     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  4939     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  4940     // beginning of a block, then min_split_pos is also a possible split position.
  4941     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  4942     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  4944     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  4945     // when an interval ends at the end of the last block of the method
  4946     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  4947     // block at this op_id)
  4948     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  4950     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  4951     if (min_block == max_block) {
  4952       // split position cannot be moved to block boundary, so split as late as possible
  4953       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  4954       optimal_split_pos = max_split_pos;
  4956     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  4957       // Do not move split position if the interval has a hole before max_split_pos.
  4958       // Intervals resulting from Phi-Functions have more than one definition (marked
  4959       // as mustHaveRegister) with a hole before each definition. When the register is needed
  4960       // for the second definition, an earlier reloading is unnecessary.
  4961       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  4962       optimal_split_pos = max_split_pos;
  4964     } else {
  4965       // seach optimal block boundary between min_split_pos and max_split_pos
  4966       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  4968       if (do_loop_optimization) {
  4969         // Loop optimization: if a loop-end marker is found between min- and max-position,
  4970         // then split before this loop
  4971         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  4972         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  4974         assert(loop_end_pos > min_split_pos, "invalid order");
  4975         if (loop_end_pos < max_split_pos) {
  4976           // loop-end marker found between min- and max-position
  4977           // if it is not the end marker for the same loop as the min-position, then move
  4978           // the max-position to this loop block.
  4979           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  4980           // of the interval (normally, only mustHaveRegister causes a reloading)
  4981           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  4983           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  4984           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  4986           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  4987           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  4988             optimal_split_pos = -1;
  4989             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  4990           } else {
  4991             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  4996       if (optimal_split_pos == -1) {
  4997         // not calculated by loop optimization
  4998         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  5002   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  5004   return optimal_split_pos;
  5008 /*
  5009   split an interval at the optimal position between min_split_pos and
  5010   max_split_pos in two parts:
  5011   1) the left part has already a location assigned
  5012   2) the right part is sorted into to the unhandled-list
  5013 */
  5014 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  5015   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  5016   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5018   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  5019   assert(current_position() < min_split_pos, "cannot split before current position");
  5020   assert(min_split_pos <= max_split_pos,     "invalid order");
  5021   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  5023   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  5025   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5026   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  5027   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  5029   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  5030     // the split position would be just before the end of the interval
  5031     // -> no split at all necessary
  5032     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  5033     return;
  5036   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  5037   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  5039   if (!allocator()->is_block_begin(optimal_split_pos)) {
  5040     // move position before actual instruction (odd op_id)
  5041     optimal_split_pos = (optimal_split_pos - 1) | 1;
  5044   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5045   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5046   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5048   Interval* split_part = it->split(optimal_split_pos);
  5050   allocator()->append_interval(split_part);
  5051   allocator()->copy_register_flags(it, split_part);
  5052   split_part->set_insert_move_when_activated(move_necessary);
  5053   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  5055   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  5056   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5057   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  5060 /*
  5061   split an interval at the optimal position between min_split_pos and
  5062   max_split_pos in two parts:
  5063   1) the left part has already a location assigned
  5064   2) the right part is always on the stack and therefore ignored in further processing
  5065 */
  5066 void LinearScanWalker::split_for_spilling(Interval* it) {
  5067   // calculate allowed range of splitting position
  5068   int max_split_pos = current_position();
  5069   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  5071   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  5072   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5074   assert(it->state() == activeState,     "why spill interval that is not active?");
  5075   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5076   assert(min_split_pos <= max_split_pos, "invalid order");
  5077   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5078   assert(current_position() < it->to(),  "interval must not end before current position");
  5080   if (min_split_pos == it->from()) {
  5081     // the whole interval is never used, so spill it entirely to memory
  5082     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5083     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5085     allocator()->assign_spill_slot(it);
  5086     allocator()->change_spill_state(it, min_split_pos);
  5088     // Also kick parent intervals out of register to memory when they have no use
  5089     // position. This avoids short interval in register surrounded by intervals in
  5090     // memory -> avoid useless moves from memory to register and back
  5091     Interval* parent = it;
  5092     while (parent != NULL && parent->is_split_child()) {
  5093       parent = parent->split_child_before_op_id(parent->from());
  5095       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5096         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5097           // parent is never used, so kick it out of its assigned register
  5098           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5099           allocator()->assign_spill_slot(parent);
  5100         } else {
  5101           // do not go further back because the register is actually used by the interval
  5102           parent = NULL;
  5107   } else {
  5108     // search optimal split pos, split interval and spill only the right hand part
  5109     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5111     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5112     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5113     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5115     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5116       // move position before actual instruction (odd op_id)
  5117       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5120     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5121     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5122     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5124     Interval* spilled_part = it->split(optimal_split_pos);
  5125     allocator()->append_interval(spilled_part);
  5126     allocator()->assign_spill_slot(spilled_part);
  5127     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5129     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5130       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5131       insert_move(optimal_split_pos, it, spilled_part);
  5134     // the current_split_child is needed later when moves are inserted for reloading
  5135     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5136     spilled_part->make_current_split_child();
  5138     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5139     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5140     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5145 void LinearScanWalker::split_stack_interval(Interval* it) {
  5146   int min_split_pos = current_position() + 1;
  5147   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5149   split_before_usage(it, min_split_pos, max_split_pos);
  5152 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5153   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5154   int max_split_pos = register_available_until;
  5156   split_before_usage(it, min_split_pos, max_split_pos);
  5159 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5160   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5162   int current_pos = current_position();
  5163   if (it->state() == inactiveState) {
  5164     // the interval is currently inactive, so no spill slot is needed for now.
  5165     // when the split part is activated, the interval has a new chance to get a register,
  5166     // so in the best case no stack slot is necessary
  5167     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5168     split_before_usage(it, current_pos + 1, current_pos + 1);
  5170   } else {
  5171     // search the position where the interval must have a register and split
  5172     // at the optimal position before.
  5173     // The new created part is added to the unhandled list and will get a register
  5174     // when it is activated
  5175     int min_split_pos = current_pos + 1;
  5176     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5178     split_before_usage(it, min_split_pos, max_split_pos);
  5180     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5181     split_for_spilling(it);
  5186 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5187   int min_full_reg = any_reg;
  5188   int max_partial_reg = any_reg;
  5190   for (int i = _first_reg; i <= _last_reg; i++) {
  5191     if (i == ignore_reg) {
  5192       // this register must be ignored
  5194     } else if (_use_pos[i] >= interval_to) {
  5195       // this register is free for the full interval
  5196       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5197         min_full_reg = i;
  5199     } else if (_use_pos[i] > reg_needed_until) {
  5200       // this register is at least free until reg_needed_until
  5201       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5202         max_partial_reg = i;
  5207   if (min_full_reg != any_reg) {
  5208     return min_full_reg;
  5209   } else if (max_partial_reg != any_reg) {
  5210     *need_split = true;
  5211     return max_partial_reg;
  5212   } else {
  5213     return any_reg;
  5217 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5218   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5220   int min_full_reg = any_reg;
  5221   int max_partial_reg = any_reg;
  5223   for (int i = _first_reg; i < _last_reg; i+=2) {
  5224     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5225       // this register is free for the full interval
  5226       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5227         min_full_reg = i;
  5229     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5230       // this register is at least free until reg_needed_until
  5231       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5232         max_partial_reg = i;
  5237   if (min_full_reg != any_reg) {
  5238     return min_full_reg;
  5239   } else if (max_partial_reg != any_reg) {
  5240     *need_split = true;
  5241     return max_partial_reg;
  5242   } else {
  5243     return any_reg;
  5248 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5249   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5251   init_use_lists(true);
  5252   free_exclude_active_fixed();
  5253   free_exclude_active_any();
  5254   free_collect_inactive_fixed(cur);
  5255   free_collect_inactive_any(cur);
  5256 //  free_collect_unhandled(fixedKind, cur);
  5257   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5259   // _use_pos contains the start of the next interval that has this register assigned
  5260   // (either as a fixed register or a normal allocated register in the past)
  5261   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5262   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5263   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5265   int hint_reg, hint_regHi;
  5266   Interval* register_hint = cur->register_hint();
  5267   if (register_hint != NULL) {
  5268     hint_reg = register_hint->assigned_reg();
  5269     hint_regHi = register_hint->assigned_regHi();
  5271     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5272       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5273       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5275     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5277   } else {
  5278     hint_reg = any_reg;
  5279     hint_regHi = any_reg;
  5281   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5282   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5284   // the register must be free at least until this position
  5285   int reg_needed_until = cur->from() + 1;
  5286   int interval_to = cur->to();
  5288   bool need_split = false;
  5289   int split_pos = -1;
  5290   int reg = any_reg;
  5291   int regHi = any_reg;
  5293   if (_adjacent_regs) {
  5294     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5295     regHi = reg + 1;
  5296     if (reg == any_reg) {
  5297       return false;
  5299     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5301   } else {
  5302     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5303     if (reg == any_reg) {
  5304       return false;
  5306     split_pos = _use_pos[reg];
  5308     if (_num_phys_regs == 2) {
  5309       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5311       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5312         // do not split interval if only one register can be assigned until the split pos
  5313         // (when one register is found for the whole interval, split&spill is only
  5314         // performed for the hi register)
  5315         return false;
  5317       } else if (regHi != any_reg) {
  5318         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5320         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5321         if (reg > regHi) {
  5322           int temp = reg;
  5323           reg = regHi;
  5324           regHi = temp;
  5330   cur->assign_reg(reg, regHi);
  5331   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5333   assert(split_pos > 0, "invalid split_pos");
  5334   if (need_split) {
  5335     // register not available for full interval, so split it
  5336     split_when_partial_register_available(cur, split_pos);
  5339   // only return true if interval is completely assigned
  5340   return _num_phys_regs == 1 || regHi != any_reg;
  5344 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5345   int max_reg = any_reg;
  5347   for (int i = _first_reg; i <= _last_reg; i++) {
  5348     if (i == ignore_reg) {
  5349       // this register must be ignored
  5351     } else if (_use_pos[i] > reg_needed_until) {
  5352       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5353         max_reg = i;
  5358   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5359     *need_split = true;
  5362   return max_reg;
  5365 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5366   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5368   int max_reg = any_reg;
  5370   for (int i = _first_reg; i < _last_reg; i+=2) {
  5371     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5372       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5373         max_reg = i;
  5378   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5379     *need_split = true;
  5382   return max_reg;
  5385 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5386   assert(reg != any_reg, "no register assigned");
  5388   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5389     Interval* it = _spill_intervals[reg]->at(i);
  5390     remove_from_list(it);
  5391     split_and_spill_interval(it);
  5394   if (regHi != any_reg) {
  5395     IntervalList* processed = _spill_intervals[reg];
  5396     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5397       Interval* it = _spill_intervals[regHi]->at(i);
  5398       if (processed->index_of(it) == -1) {
  5399         remove_from_list(it);
  5400         split_and_spill_interval(it);
  5407 // Split an Interval and spill it to memory so that cur can be placed in a register
  5408 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5409   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5411   // collect current usage of registers
  5412   init_use_lists(false);
  5413   spill_exclude_active_fixed();
  5414 //  spill_block_unhandled_fixed(cur);
  5415   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5416   spill_block_inactive_fixed(cur);
  5417   spill_collect_active_any();
  5418   spill_collect_inactive_any(cur);
  5420 #ifndef PRODUCT
  5421   if (TraceLinearScanLevel >= 4) {
  5422     tty->print_cr("      state of registers:");
  5423     for (int i = _first_reg; i <= _last_reg; i++) {
  5424       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5425       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5426         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5428       tty->cr();
  5431 #endif
  5433   // the register must be free at least until this position
  5434   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5435   int interval_to = cur->to();
  5436   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5438   int split_pos = 0;
  5439   int use_pos = 0;
  5440   bool need_split = false;
  5441   int reg, regHi;
  5443   if (_adjacent_regs) {
  5444     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5445     regHi = reg + 1;
  5447     if (reg != any_reg) {
  5448       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5449       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5451   } else {
  5452     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5453     regHi = any_reg;
  5455     if (reg != any_reg) {
  5456       use_pos = _use_pos[reg];
  5457       split_pos = _block_pos[reg];
  5459       if (_num_phys_regs == 2) {
  5460         if (cur->assigned_reg() != any_reg) {
  5461           regHi = reg;
  5462           reg = cur->assigned_reg();
  5463         } else {
  5464           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5465           if (regHi != any_reg) {
  5466             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5467             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5471         if (regHi != any_reg && reg > regHi) {
  5472           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5473           int temp = reg;
  5474           reg = regHi;
  5475           regHi = temp;
  5481   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5482     // the first use of cur is later than the spilling position -> spill cur
  5483     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5485     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5486       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5487       // assign a reasonable register and do a bailout in product mode to avoid errors
  5488       allocator()->assign_spill_slot(cur);
  5489       BAILOUT("LinearScan: no register found");
  5492     split_and_spill_interval(cur);
  5493   } else {
  5494     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5495     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5496     assert(split_pos > 0, "invalid split_pos");
  5497     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5499     cur->assign_reg(reg, regHi);
  5500     if (need_split) {
  5501       // register not available for full interval, so split it
  5502       split_when_partial_register_available(cur, split_pos);
  5505     // perform splitting and spilling for all affected intervalls
  5506     split_and_spill_intersecting_intervals(reg, regHi);
  5510 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5511 #ifdef X86
  5512   // fast calculation of intervals that can never get a register because the
  5513   // the next instruction is a call that blocks all registers
  5514   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5516   // check if this interval is the result of a split operation
  5517   // (an interval got a register until this position)
  5518   int pos = cur->from();
  5519   if ((pos & 1) == 1) {
  5520     // the current instruction is a call that blocks all registers
  5521     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5522       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5524       // safety check that there is really no register available
  5525       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5526       return true;
  5530 #endif
  5531   return false;
  5534 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5535   BasicType type = cur->type();
  5536   _num_phys_regs = LinearScan::num_physical_regs(type);
  5537   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5539   if (pd_init_regs_for_alloc(cur)) {
  5540     // the appropriate register range was selected.
  5541   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5542     _first_reg = pd_first_fpu_reg;
  5543     _last_reg = pd_last_fpu_reg;
  5544   } else {
  5545     _first_reg = pd_first_cpu_reg;
  5546     _last_reg = pd_last_cpu_reg;
  5549   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5550   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5554 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5555   if (op->code() != lir_move) {
  5556     return false;
  5558   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5560   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5561   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5562   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5565 // optimization (especially for phi functions of nested loops):
  5566 // assign same spill slot to non-intersecting intervals
  5567 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5568   if (cur->is_split_child()) {
  5569     // optimization is only suitable for split parents
  5570     return;
  5573   Interval* register_hint = cur->register_hint(false);
  5574   if (register_hint == NULL) {
  5575     // cur is not the target of a move, otherwise register_hint would be set
  5576     return;
  5578   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5580   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5581     // combining the stack slots for intervals where spill move optimization is applied
  5582     // is not benefitial and would cause problems
  5583     return;
  5586   int begin_pos = cur->from();
  5587   int end_pos = cur->to();
  5588   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5589     // safety check that lir_op_with_id is allowed
  5590     return;
  5593   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5594     // cur and register_hint are not connected with two moves
  5595     return;
  5598   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5599   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5600   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5601     // register_hint must be split, otherwise the re-writing of use positions does not work
  5602     return;
  5605   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5606   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5607   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5608   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5610   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5611     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5612     return;
  5614   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5616   // modify intervals such that cur gets the same stack slot as register_hint
  5617   // delete use positions to prevent the intervals to get a register at beginning
  5618   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5619   cur->remove_first_use_pos();
  5620   end_hint->remove_first_use_pos();
  5624 // allocate a physical register or memory location to an interval
  5625 bool LinearScanWalker::activate_current() {
  5626   Interval* cur = current();
  5627   bool result = true;
  5629   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5630   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5632   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5633     // activating an interval that has a stack slot assigned -> split it at first use position
  5634     // used for method parameters
  5635     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5637     split_stack_interval(cur);
  5638     result = false;
  5640   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5641     // activating an interval that must start in a stack slot, but may get a register later
  5642     // used for lir_roundfp: rounding is done by store to stack and reload later
  5643     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5644     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5646     allocator()->assign_spill_slot(cur);
  5647     split_stack_interval(cur);
  5648     result = false;
  5650   } else if (cur->assigned_reg() == any_reg) {
  5651     // interval has not assigned register -> normal allocation
  5652     // (this is the normal case for most intervals)
  5653     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5655     // assign same spill slot to non-intersecting intervals
  5656     combine_spilled_intervals(cur);
  5658     init_vars_for_alloc(cur);
  5659     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5660       // no empty register available.
  5661       // split and spill another interval so that this interval gets a register
  5662       alloc_locked_reg(cur);
  5665     // spilled intervals need not be move to active-list
  5666     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5667       result = false;
  5671   // load spilled values that become active from stack slot to register
  5672   if (cur->insert_move_when_activated()) {
  5673     assert(cur->is_split_child(), "must be");
  5674     assert(cur->current_split_child() != NULL, "must be");
  5675     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5676     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5678     insert_move(cur->from(), cur->current_split_child(), cur);
  5680   cur->make_current_split_child();
  5682   return result; // true = interval is moved to active list
  5686 // Implementation of EdgeMoveOptimizer
  5688 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5689   _edge_instructions(4),
  5690   _edge_instructions_idx(4)
  5694 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5695   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5697   // ignore the first block in the list (index 0 is not processed)
  5698   for (int i = code->length() - 1; i >= 1; i--) {
  5699     BlockBegin* block = code->at(i);
  5701     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5702       optimizer.optimize_moves_at_block_end(block);
  5704     if (block->number_of_sux() == 2) {
  5705       optimizer.optimize_moves_at_block_begin(block);
  5711 // clear all internal data structures
  5712 void EdgeMoveOptimizer::init_instructions() {
  5713   _edge_instructions.clear();
  5714   _edge_instructions_idx.clear();
  5717 // append a lir-instruction-list and the index of the current operation in to the list
  5718 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5719   _edge_instructions.append(instructions);
  5720   _edge_instructions_idx.append(instructions_idx);
  5723 // return the current operation of the given edge (predecessor or successor)
  5724 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5725   LIR_OpList* instructions = _edge_instructions.at(edge);
  5726   int idx = _edge_instructions_idx.at(edge);
  5728   if (idx < instructions->length()) {
  5729     return instructions->at(idx);
  5730   } else {
  5731     return NULL;
  5735 // removes the current operation of the given edge (predecessor or successor)
  5736 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5737   LIR_OpList* instructions = _edge_instructions.at(edge);
  5738   int idx = _edge_instructions_idx.at(edge);
  5739   instructions->remove_at(idx);
  5741   if (decrement_index) {
  5742     _edge_instructions_idx.at_put(edge, idx - 1);
  5747 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5748   if (op1 == NULL || op2 == NULL) {
  5749     // at least one block is already empty -> no optimization possible
  5750     return true;
  5753   if (op1->code() == lir_move && op2->code() == lir_move) {
  5754     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5755     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5756     LIR_Op1* move1 = (LIR_Op1*)op1;
  5757     LIR_Op1* move2 = (LIR_Op1*)op2;
  5758     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5759       // these moves are exactly equal and can be optimized
  5760       return false;
  5763   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5764     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5765     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5766     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5767     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5768     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5769       // equal FPU stack operations can be optimized
  5770       return false;
  5773   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5774     // equal FPU stack operations can be optimized
  5775     return false;
  5778   // no optimization possible
  5779   return true;
  5782 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5783   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5785   if (block->is_predecessor(block)) {
  5786     // currently we can't handle this correctly.
  5787     return;
  5790   init_instructions();
  5791   int num_preds = block->number_of_preds();
  5792   assert(num_preds > 1, "do not call otherwise");
  5793   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5795   // setup a list with the lir-instructions of all predecessors
  5796   int i;
  5797   for (i = 0; i < num_preds; i++) {
  5798     BlockBegin* pred = block->pred_at(i);
  5799     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5801     if (pred->number_of_sux() != 1) {
  5802       // this can happen with switch-statements where multiple edges are between
  5803       // the same blocks.
  5804       return;
  5807     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5808     assert(pred->sux_at(0) == block, "invalid control flow");
  5809     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5810     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5811     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5813     if (pred_instructions->last()->info() != NULL) {
  5814       // can not optimize instructions when debug info is needed
  5815       return;
  5818     // ignore the unconditional branch at the end of the block
  5819     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5823   // process lir-instructions while all predecessors end with the same instruction
  5824   while (true) {
  5825     LIR_Op* op = instruction_at(0);
  5826     for (i = 1; i < num_preds; i++) {
  5827       if (operations_different(op, instruction_at(i))) {
  5828         // these instructions are different and cannot be optimized ->
  5829         // no further optimization possible
  5830         return;
  5834     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5836     // insert the instruction at the beginning of the current block
  5837     block->lir()->insert_before(1, op);
  5839     // delete the instruction at the end of all predecessors
  5840     for (i = 0; i < num_preds; i++) {
  5841       remove_cur_instruction(i, true);
  5847 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5848   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5850   init_instructions();
  5851   int num_sux = block->number_of_sux();
  5853   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5855   assert(num_sux == 2, "method should not be called otherwise");
  5856   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5857   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5858   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5860   if (cur_instructions->last()->info() != NULL) {
  5861     // can no optimize instructions when debug info is needed
  5862     return;
  5865   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5866   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5867     // not a valid case for optimization
  5868     // currently, only blocks that end with two branches (conditional branch followed
  5869     // by unconditional branch) are optimized
  5870     return;
  5873   // now it is guaranteed that the block ends with two branch instructions.
  5874   // the instructions are inserted at the end of the block before these two branches
  5875   int insert_idx = cur_instructions->length() - 2;
  5877   int i;
  5878 #ifdef ASSERT
  5879   for (i = insert_idx - 1; i >= 0; i--) {
  5880     LIR_Op* op = cur_instructions->at(i);
  5881     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5882       assert(false, "block with two successors can have only two branch instructions");
  5885 #endif
  5887   // setup a list with the lir-instructions of all successors
  5888   for (i = 0; i < num_sux; i++) {
  5889     BlockBegin* sux = block->sux_at(i);
  5890     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  5892     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  5894     if (sux->number_of_preds() != 1) {
  5895       // this can happen with switch-statements where multiple edges are between
  5896       // the same blocks.
  5897       return;
  5899     assert(sux->pred_at(0) == block, "invalid control flow");
  5900     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5902     // ignore the label at the beginning of the block
  5903     append_instructions(sux_instructions, 1);
  5906   // process lir-instructions while all successors begin with the same instruction
  5907   while (true) {
  5908     LIR_Op* op = instruction_at(0);
  5909     for (i = 1; i < num_sux; i++) {
  5910       if (operations_different(op, instruction_at(i))) {
  5911         // these instructions are different and cannot be optimized ->
  5912         // no further optimization possible
  5913         return;
  5917     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  5919     // insert instruction at end of current block
  5920     block->lir()->insert_before(insert_idx, op);
  5921     insert_idx++;
  5923     // delete the instructions at the beginning of all successors
  5924     for (i = 0; i < num_sux; i++) {
  5925       remove_cur_instruction(i, false);
  5931 // Implementation of ControlFlowOptimizer
  5933 ControlFlowOptimizer::ControlFlowOptimizer() :
  5934   _original_preds(4)
  5938 void ControlFlowOptimizer::optimize(BlockList* code) {
  5939   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  5941   // push the OSR entry block to the end so that we're not jumping over it.
  5942   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  5943   if (osr_entry) {
  5944     int index = osr_entry->linear_scan_number();
  5945     assert(code->at(index) == osr_entry, "wrong index");
  5946     code->remove_at(index);
  5947     code->append(osr_entry);
  5950   optimizer.reorder_short_loops(code);
  5951   optimizer.delete_empty_blocks(code);
  5952   optimizer.delete_unnecessary_jumps(code);
  5953   optimizer.delete_jumps_to_return(code);
  5956 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  5957   int i = header_idx + 1;
  5958   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  5959   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  5960     i++;
  5963   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  5964     int end_idx = i - 1;
  5965     BlockBegin* end_block = code->at(end_idx);
  5967     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  5968       // short loop from header_idx to end_idx found -> reorder blocks such that
  5969       // the header_block is the last block instead of the first block of the loop
  5970       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  5971                                          end_idx - header_idx + 1,
  5972                                          header_block->block_id(), end_block->block_id()));
  5974       for (int j = header_idx; j < end_idx; j++) {
  5975         code->at_put(j, code->at(j + 1));
  5977       code->at_put(end_idx, header_block);
  5979       // correct the flags so that any loop alignment occurs in the right place.
  5980       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  5981       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  5982       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  5987 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  5988   for (int i = code->length() - 1; i >= 0; i--) {
  5989     BlockBegin* block = code->at(i);
  5991     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  5992       reorder_short_loop(code, block, i);
  5996   DEBUG_ONLY(verify(code));
  5999 // only blocks with exactly one successor can be deleted. Such blocks
  6000 // must always end with an unconditional branch to this successor
  6001 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  6002   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  6003     return false;
  6006   LIR_OpList* instructions = block->lir()->instructions_list();
  6008   assert(instructions->length() >= 2, "block must have label and branch");
  6009   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6010   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  6011   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  6012   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  6014   // block must have exactly one successor
  6016   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  6017     return true;
  6019   return false;
  6022 // substitute branch targets in all branch-instructions of this blocks
  6023 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  6024   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  6026   LIR_OpList* instructions = block->lir()->instructions_list();
  6028   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6029   for (int i = instructions->length() - 1; i >= 1; i--) {
  6030     LIR_Op* op = instructions->at(i);
  6032     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  6033       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6034       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  6036       if (branch->block() == target_from) {
  6037         branch->change_block(target_to);
  6039       if (branch->ublock() == target_from) {
  6040         branch->change_ublock(target_to);
  6046 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  6047   int old_pos = 0;
  6048   int new_pos = 0;
  6049   int num_blocks = code->length();
  6051   while (old_pos < num_blocks) {
  6052     BlockBegin* block = code->at(old_pos);
  6054     if (can_delete_block(block)) {
  6055       BlockBegin* new_target = block->sux_at(0);
  6057       // propagate backward branch target flag for correct code alignment
  6058       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  6059         new_target->set(BlockBegin::backward_branch_target_flag);
  6062       // collect a list with all predecessors that contains each predecessor only once
  6063       // the predecessors of cur are changed during the substitution, so a copy of the
  6064       // predecessor list is necessary
  6065       int j;
  6066       _original_preds.clear();
  6067       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  6068         BlockBegin* pred = block->pred_at(j);
  6069         if (_original_preds.index_of(pred) == -1) {
  6070           _original_preds.append(pred);
  6074       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6075         BlockBegin* pred = _original_preds.at(j);
  6076         substitute_branch_target(pred, block, new_target);
  6077         pred->substitute_sux(block, new_target);
  6079     } else {
  6080       // adjust position of this block in the block list if blocks before
  6081       // have been deleted
  6082       if (new_pos != old_pos) {
  6083         code->at_put(new_pos, code->at(old_pos));
  6085       new_pos++;
  6087     old_pos++;
  6089   code->truncate(new_pos);
  6091   DEBUG_ONLY(verify(code));
  6094 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6095   // skip the last block because there a branch is always necessary
  6096   for (int i = code->length() - 2; i >= 0; i--) {
  6097     BlockBegin* block = code->at(i);
  6098     LIR_OpList* instructions = block->lir()->instructions_list();
  6100     LIR_Op* last_op = instructions->last();
  6101     if (last_op->code() == lir_branch) {
  6102       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6103       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6105       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6106       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6108       if (last_branch->info() == NULL) {
  6109         if (last_branch->block() == code->at(i + 1)) {
  6111           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6113           // delete last branch instruction
  6114           instructions->truncate(instructions->length() - 1);
  6116         } else {
  6117           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6118           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6119             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6120             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6122             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6124               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6126               // eliminate a conditional branch to the immediate successor
  6127               prev_branch->change_block(last_branch->block());
  6128               prev_branch->negate_cond();
  6129               instructions->truncate(instructions->length() - 1);
  6137   DEBUG_ONLY(verify(code));
  6140 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6141 #ifdef ASSERT
  6142   BitMap return_converted(BlockBegin::number_of_blocks());
  6143   return_converted.clear();
  6144 #endif
  6146   for (int i = code->length() - 1; i >= 0; i--) {
  6147     BlockBegin* block = code->at(i);
  6148     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6149     LIR_Op*     cur_last_op = cur_instructions->last();
  6151     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6152     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6153       // the block contains only a label and a return
  6154       // if a predecessor ends with an unconditional jump to this block, then the jump
  6155       // can be replaced with a return instruction
  6156       //
  6157       // Note: the original block with only a return statement cannot be deleted completely
  6158       //       because the predecessors might have other (conditional) jumps to this block
  6159       //       -> this may lead to unnecesary return instructions in the final code
  6161       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6162       assert(block->number_of_sux() == 0 ||
  6163              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6164              "blocks that end with return must not have successors");
  6166       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6167       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6169       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6170         BlockBegin* pred = block->pred_at(j);
  6171         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6172         LIR_Op*     pred_last_op = pred_instructions->last();
  6174         if (pred_last_op->code() == lir_branch) {
  6175           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6176           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6178           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6179             // replace the jump to a return with a direct return
  6180             // Note: currently the edge between the blocks is not deleted
  6181             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6182 #ifdef ASSERT
  6183             return_converted.set_bit(pred->block_id());
  6184 #endif
  6193 #ifdef ASSERT
  6194 void ControlFlowOptimizer::verify(BlockList* code) {
  6195   for (int i = 0; i < code->length(); i++) {
  6196     BlockBegin* block = code->at(i);
  6197     LIR_OpList* instructions = block->lir()->instructions_list();
  6199     int j;
  6200     for (j = 0; j < instructions->length(); j++) {
  6201       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6203       if (op_branch != NULL) {
  6204         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6205         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6209     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6210       BlockBegin* sux = block->sux_at(j);
  6211       assert(code->index_of(sux) != -1, "successor not valid");
  6214     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6215       BlockBegin* pred = block->pred_at(j);
  6216       assert(code->index_of(pred) != -1, "successor not valid");
  6220 #endif
  6223 #ifndef PRODUCT
  6225 // Implementation of LinearStatistic
  6227 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6228   switch (counter_idx) {
  6229     case counter_method:          return "compiled methods";
  6230     case counter_fpu_method:      return "methods using fpu";
  6231     case counter_loop_method:     return "methods with loops";
  6232     case counter_exception_method:return "methods with xhandler";
  6234     case counter_loop:            return "loops";
  6235     case counter_block:           return "blocks";
  6236     case counter_loop_block:      return "blocks inside loop";
  6237     case counter_exception_block: return "exception handler entries";
  6238     case counter_interval:        return "intervals";
  6239     case counter_fixed_interval:  return "fixed intervals";
  6240     case counter_range:           return "ranges";
  6241     case counter_fixed_range:     return "fixed ranges";
  6242     case counter_use_pos:         return "use positions";
  6243     case counter_fixed_use_pos:   return "fixed use positions";
  6244     case counter_spill_slots:     return "spill slots";
  6246     // counter for classes of lir instructions
  6247     case counter_instruction:     return "total instructions";
  6248     case counter_label:           return "labels";
  6249     case counter_entry:           return "method entries";
  6250     case counter_return:          return "method returns";
  6251     case counter_call:            return "method calls";
  6252     case counter_move:            return "moves";
  6253     case counter_cmp:             return "compare";
  6254     case counter_cond_branch:     return "conditional branches";
  6255     case counter_uncond_branch:   return "unconditional branches";
  6256     case counter_stub_branch:     return "branches to stub";
  6257     case counter_alu:             return "artithmetic + logic";
  6258     case counter_alloc:           return "allocations";
  6259     case counter_sync:            return "synchronisation";
  6260     case counter_throw:           return "throw";
  6261     case counter_unwind:          return "unwind";
  6262     case counter_typecheck:       return "type+null-checks";
  6263     case counter_fpu_stack:       return "fpu-stack";
  6264     case counter_misc_inst:       return "other instructions";
  6265     case counter_other_inst:      return "misc. instructions";
  6267     // counter for different types of moves
  6268     case counter_move_total:      return "total moves";
  6269     case counter_move_reg_reg:    return "register->register";
  6270     case counter_move_reg_stack:  return "register->stack";
  6271     case counter_move_stack_reg:  return "stack->register";
  6272     case counter_move_stack_stack:return "stack->stack";
  6273     case counter_move_reg_mem:    return "register->memory";
  6274     case counter_move_mem_reg:    return "memory->register";
  6275     case counter_move_const_any:  return "constant->any";
  6277     case blank_line_1:            return "";
  6278     case blank_line_2:            return "";
  6280     default: ShouldNotReachHere(); return "";
  6284 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6285   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6286     return counter_method;
  6287   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6288     return counter_block;
  6289   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6290     return counter_instruction;
  6291   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6292     return counter_move_total;
  6294   return invalid_counter;
  6297 LinearScanStatistic::LinearScanStatistic() {
  6298   for (int i = 0; i < number_of_counters; i++) {
  6299     _counters_sum[i] = 0;
  6300     _counters_max[i] = -1;
  6305 // add the method-local numbers to the total sum
  6306 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6307   for (int i = 0; i < number_of_counters; i++) {
  6308     _counters_sum[i] += method_statistic._counters_sum[i];
  6309     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6313 void LinearScanStatistic::print(const char* title) {
  6314   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6315     tty->cr();
  6316     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6318     for (int i = 0; i < number_of_counters; i++) {
  6319       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6320         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6322         if (base_counter(i) != invalid_counter) {
  6323           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6324         } else {
  6325           tty->print("           ");
  6328         if (_counters_max[i] >= 0) {
  6329           tty->print("%8d", _counters_max[i]);
  6332       tty->cr();
  6337 void LinearScanStatistic::collect(LinearScan* allocator) {
  6338   inc_counter(counter_method);
  6339   if (allocator->has_fpu_registers()) {
  6340     inc_counter(counter_fpu_method);
  6342   if (allocator->num_loops() > 0) {
  6343     inc_counter(counter_loop_method);
  6345   inc_counter(counter_loop, allocator->num_loops());
  6346   inc_counter(counter_spill_slots, allocator->max_spills());
  6348   int i;
  6349   for (i = 0; i < allocator->interval_count(); i++) {
  6350     Interval* cur = allocator->interval_at(i);
  6352     if (cur != NULL) {
  6353       inc_counter(counter_interval);
  6354       inc_counter(counter_use_pos, cur->num_use_positions());
  6355       if (LinearScan::is_precolored_interval(cur)) {
  6356         inc_counter(counter_fixed_interval);
  6357         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6360       Range* range = cur->first();
  6361       while (range != Range::end()) {
  6362         inc_counter(counter_range);
  6363         if (LinearScan::is_precolored_interval(cur)) {
  6364           inc_counter(counter_fixed_range);
  6366         range = range->next();
  6371   bool has_xhandlers = false;
  6372   // Note: only count blocks that are in code-emit order
  6373   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6374     BlockBegin* cur = allocator->ir()->code()->at(i);
  6376     inc_counter(counter_block);
  6377     if (cur->loop_depth() > 0) {
  6378       inc_counter(counter_loop_block);
  6380     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6381       inc_counter(counter_exception_block);
  6382       has_xhandlers = true;
  6385     LIR_OpList* instructions = cur->lir()->instructions_list();
  6386     for (int j = 0; j < instructions->length(); j++) {
  6387       LIR_Op* op = instructions->at(j);
  6389       inc_counter(counter_instruction);
  6391       switch (op->code()) {
  6392         case lir_label:           inc_counter(counter_label); break;
  6393         case lir_std_entry:
  6394         case lir_osr_entry:       inc_counter(counter_entry); break;
  6395         case lir_return:          inc_counter(counter_return); break;
  6397         case lir_rtcall:
  6398         case lir_static_call:
  6399         case lir_optvirtual_call:
  6400         case lir_virtual_call:    inc_counter(counter_call); break;
  6402         case lir_move: {
  6403           inc_counter(counter_move);
  6404           inc_counter(counter_move_total);
  6406           LIR_Opr in = op->as_Op1()->in_opr();
  6407           LIR_Opr res = op->as_Op1()->result_opr();
  6408           if (in->is_register()) {
  6409             if (res->is_register()) {
  6410               inc_counter(counter_move_reg_reg);
  6411             } else if (res->is_stack()) {
  6412               inc_counter(counter_move_reg_stack);
  6413             } else if (res->is_address()) {
  6414               inc_counter(counter_move_reg_mem);
  6415             } else {
  6416               ShouldNotReachHere();
  6418           } else if (in->is_stack()) {
  6419             if (res->is_register()) {
  6420               inc_counter(counter_move_stack_reg);
  6421             } else {
  6422               inc_counter(counter_move_stack_stack);
  6424           } else if (in->is_address()) {
  6425             assert(res->is_register(), "must be");
  6426             inc_counter(counter_move_mem_reg);
  6427           } else if (in->is_constant()) {
  6428             inc_counter(counter_move_const_any);
  6429           } else {
  6430             ShouldNotReachHere();
  6432           break;
  6435         case lir_cmp:             inc_counter(counter_cmp); break;
  6437         case lir_branch:
  6438         case lir_cond_float_branch: {
  6439           LIR_OpBranch* branch = op->as_OpBranch();
  6440           if (branch->block() == NULL) {
  6441             inc_counter(counter_stub_branch);
  6442           } else if (branch->cond() == lir_cond_always) {
  6443             inc_counter(counter_uncond_branch);
  6444           } else {
  6445             inc_counter(counter_cond_branch);
  6447           break;
  6450         case lir_neg:
  6451         case lir_add:
  6452         case lir_sub:
  6453         case lir_mul:
  6454         case lir_mul_strictfp:
  6455         case lir_div:
  6456         case lir_div_strictfp:
  6457         case lir_rem:
  6458         case lir_sqrt:
  6459         case lir_sin:
  6460         case lir_cos:
  6461         case lir_abs:
  6462         case lir_log10:
  6463         case lir_log:
  6464         case lir_logic_and:
  6465         case lir_logic_or:
  6466         case lir_logic_xor:
  6467         case lir_shl:
  6468         case lir_shr:
  6469         case lir_ushr:            inc_counter(counter_alu); break;
  6471         case lir_alloc_object:
  6472         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6474         case lir_monaddr:
  6475         case lir_lock:
  6476         case lir_unlock:          inc_counter(counter_sync); break;
  6478         case lir_throw:           inc_counter(counter_throw); break;
  6480         case lir_unwind:          inc_counter(counter_unwind); break;
  6482         case lir_null_check:
  6483         case lir_leal:
  6484         case lir_instanceof:
  6485         case lir_checkcast:
  6486         case lir_store_check:     inc_counter(counter_typecheck); break;
  6488         case lir_fpop_raw:
  6489         case lir_fxch:
  6490         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6492         case lir_nop:
  6493         case lir_push:
  6494         case lir_pop:
  6495         case lir_convert:
  6496         case lir_roundfp:
  6497         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6499         default:                  inc_counter(counter_other_inst); break;
  6504   if (has_xhandlers) {
  6505     inc_counter(counter_exception_method);
  6509 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6510   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6512     LinearScanStatistic local_statistic = LinearScanStatistic();
  6514     local_statistic.collect(allocator);
  6515     global_statistic.sum_up(local_statistic);
  6517     if (TraceLinearScanLevel > 2) {
  6518       local_statistic.print("current local statistic");
  6524 // Implementation of LinearTimers
  6526 LinearScanTimers::LinearScanTimers() {
  6527   for (int i = 0; i < number_of_timers; i++) {
  6528     timer(i)->reset();
  6532 const char* LinearScanTimers::timer_name(int idx) {
  6533   switch (idx) {
  6534     case timer_do_nothing:               return "Nothing (Time Check)";
  6535     case timer_number_instructions:      return "Number Instructions";
  6536     case timer_compute_local_live_sets:  return "Local Live Sets";
  6537     case timer_compute_global_live_sets: return "Global Live Sets";
  6538     case timer_build_intervals:          return "Build Intervals";
  6539     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6540     case timer_allocate_registers:       return "Allocate Registers";
  6541     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6542     case timer_sort_intervals_after:     return "Sort Intervals After";
  6543     case timer_eliminate_spill_moves:    return "Spill optimization";
  6544     case timer_assign_reg_num:           return "Assign Reg Num";
  6545     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6546     case timer_optimize_lir:             return "Optimize LIR";
  6547     default: ShouldNotReachHere();       return "";
  6551 void LinearScanTimers::begin_method() {
  6552   if (TimeEachLinearScan) {
  6553     // reset all timers to measure only current method
  6554     for (int i = 0; i < number_of_timers; i++) {
  6555       timer(i)->reset();
  6560 void LinearScanTimers::end_method(LinearScan* allocator) {
  6561   if (TimeEachLinearScan) {
  6563     double c = timer(timer_do_nothing)->seconds();
  6564     double total = 0;
  6565     for (int i = 1; i < number_of_timers; i++) {
  6566       total += timer(i)->seconds() - c;
  6569     if (total >= 0.0005) {
  6570       // print all information in one line for automatic processing
  6571       tty->print("@"); allocator->compilation()->method()->print_name();
  6573       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6574       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6575       tty->print("@ %d ", allocator->block_count());
  6576       tty->print("@ %d ", allocator->num_virtual_regs());
  6577       tty->print("@ %d ", allocator->interval_count());
  6578       tty->print("@ %d ", allocator->_num_calls);
  6579       tty->print("@ %d ", allocator->num_loops());
  6581       tty->print("@ %6.6f ", total);
  6582       for (int i = 1; i < number_of_timers; i++) {
  6583         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6585       tty->cr();
  6590 void LinearScanTimers::print(double total_time) {
  6591   if (TimeLinearScan) {
  6592     // correction value: sum of dummy-timer that only measures the time that
  6593     // is necesary to start and stop itself
  6594     double c = timer(timer_do_nothing)->seconds();
  6596     for (int i = 0; i < number_of_timers; i++) {
  6597       double t = timer(i)->seconds();
  6598       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6603 #endif // #ifndef PRODUCT

mercurial