src/cpu/x86/vm/x86_32.ad

Wed, 15 Feb 2012 21:37:49 -0800

author
kvn
date
Wed, 15 Feb 2012 21:37:49 -0800
changeset 3574
fd8114661503
parent 3406
e9a5e0a812c8
child 3577
9b8ce46870df
permissions
-rw-r--r--

7125136: SIGILL on linux amd64 in gc/ArrayJuggle/Juggle29
Summary: For C2 moved saving EBP after ESP adjustment. For C1 generated 5 byte nop instruction first if needed.
Reviewed-by: never, twisti, azeemj

     1 //
     2 // Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return 2;  // op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_CC()
   357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   358   unsigned char c = (unsigned char)( f1 | f2 );
   359   cbuf.insts()->emit_int8(c);
   360 }
   362 // EMIT_OPCODE()
   363 void emit_opcode(CodeBuffer &cbuf, int code) {
   364   cbuf.insts()->emit_int8((unsigned char) code);
   365 }
   367 // EMIT_OPCODE() w/ relocation information
   368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   370   emit_opcode(cbuf, code);
   371 }
   373 // EMIT_D8()
   374 void emit_d8(CodeBuffer &cbuf, int d8) {
   375   cbuf.insts()->emit_int8((unsigned char) d8);
   376 }
   378 // EMIT_D16()
   379 void emit_d16(CodeBuffer &cbuf, int d16) {
   380   cbuf.insts()->emit_int16(d16);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   cbuf.insts()->emit_int32(d32);
   386 }
   388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   390         int format) {
   391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   392   cbuf.insts()->emit_int32(d32);
   393 }
   395 // emit 32 bit value and construct relocation entry from RelocationHolder
   396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   397         int format) {
   398 #ifdef ASSERT
   399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   401   }
   402 #endif
   403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   404   cbuf.insts()->emit_int32(d32);
   405 }
   407 // Access stack slot for load or store
   408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   410   if( -128 <= disp && disp <= 127 ) {
   411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   414   } else {
   415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   418   }
   419 }
   421    // eRegI ereg, memory mem) %{    // emit_reg_mem
   422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   423   // There is no index & no scale, use form without SIB byte
   424   if ((index == 0x4) &&
   425       (scale == 0) && (base != ESP_enc)) {
   426     // If no displacement, mode is 0x0; unless base is [EBP]
   427     if ( (displace == 0) && (base != EBP_enc) ) {
   428       emit_rm(cbuf, 0x0, reg_encoding, base);
   429     }
   430     else {                    // If 8-bit displacement, mode 0x1
   431       if ((displace >= -128) && (displace <= 127)
   432           && !(displace_is_oop) ) {
   433         emit_rm(cbuf, 0x1, reg_encoding, base);
   434         emit_d8(cbuf, displace);
   435       }
   436       else {                  // If 32-bit displacement
   437         if (base == -1) { // Special flag for absolute address
   438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   439           // (manual lies; no SIB needed here)
   440           if ( displace_is_oop ) {
   441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   442           } else {
   443             emit_d32      (cbuf, displace);
   444           }
   445         }
   446         else {                // Normal base + offset
   447           emit_rm(cbuf, 0x2, reg_encoding, base);
   448           if ( displace_is_oop ) {
   449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   450           } else {
   451             emit_d32      (cbuf, displace);
   452           }
   453         }
   454       }
   455     }
   456   }
   457   else {                      // Else, encode with the SIB byte
   458     // If no displacement, mode is 0x0; unless base is [EBP]
   459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   461       emit_rm(cbuf, scale, index, base);
   462     }
   463     else {                    // If 8-bit displacement, mode 0x1
   464       if ((displace >= -128) && (displace <= 127)
   465           && !(displace_is_oop) ) {
   466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   467         emit_rm(cbuf, scale, index, base);
   468         emit_d8(cbuf, displace);
   469       }
   470       else {                  // If 32-bit displacement
   471         if (base == 0x04 ) {
   472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   473           emit_rm(cbuf, scale, index, 0x04);
   474         } else {
   475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   476           emit_rm(cbuf, scale, index, base);
   477         }
   478         if ( displace_is_oop ) {
   479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   480         } else {
   481           emit_d32      (cbuf, displace);
   482         }
   483       }
   484     }
   485   }
   486 }
   489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   490   if( dst_encoding == src_encoding ) {
   491     // reg-reg copy, use an empty encoding
   492   } else {
   493     emit_opcode( cbuf, 0x8B );
   494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   495   }
   496 }
   498 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   499   Label exit;
   500   __ jccb(Assembler::noParity, exit);
   501   __ pushf();
   502   //
   503   // comiss/ucomiss instructions set ZF,PF,CF flags and
   504   // zero OF,AF,SF for NaN values.
   505   // Fixup flags by zeroing ZF,PF so that compare of NaN
   506   // values returns 'less than' result (CF is set).
   507   // Leave the rest of flags unchanged.
   508   //
   509   //    7 6 5 4 3 2 1 0
   510   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   511   //    0 0 1 0 1 0 1 1   (0x2B)
   512   //
   513   __ andl(Address(rsp, 0), 0xffffff2b);
   514   __ popf();
   515   __ bind(exit);
   516 }
   518 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   519   Label done;
   520   __ movl(dst, -1);
   521   __ jcc(Assembler::parity, done);
   522   __ jcc(Assembler::below, done);
   523   __ setb(Assembler::notEqual, dst);
   524   __ movzbl(dst, dst);
   525   __ bind(done);
   526 }
   529 //=============================================================================
   530 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   532 int Compile::ConstantTable::calculate_table_base_offset() const {
   533   return 0;  // absolute addressing, no offset
   534 }
   536 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   537   // Empty encoding
   538 }
   540 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   541   return 0;
   542 }
   544 #ifndef PRODUCT
   545 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   546   st->print("# MachConstantBaseNode (empty encoding)");
   547 }
   548 #endif
   551 //=============================================================================
   552 #ifndef PRODUCT
   553 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   554   Compile* C = ra_->C;
   556   int framesize = C->frame_slots() << LogBytesPerInt;
   557   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   558   // Remove wordSize for return addr which is already pushed.
   559   framesize -= wordSize;
   561   if (C->need_stack_bang(framesize)) {
   562     framesize -= wordSize;
   563     st->print("# stack bang");
   564     st->print("\n\t");
   565     st->print("PUSH   EBP\t# Save EBP");
   566     if (framesize) {
   567       st->print("\n\t");
   568       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   569     }
   570   } else {
   571     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   572     st->print("\n\t");
   573     framesize -= wordSize;
   574     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   575   }
   577   if (VerifyStackAtCalls) {
   578     st->print("\n\t");
   579     framesize -= wordSize;
   580     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   581   }
   583   if( C->in_24_bit_fp_mode() ) {
   584     st->print("\n\t");
   585     st->print("FLDCW  \t# load 24 bit fpu control word");
   586   }
   587   if (UseSSE >= 2 && VerifyFPU) {
   588     st->print("\n\t");
   589     st->print("# verify FPU stack (must be clean on entry)");
   590   }
   592 #ifdef ASSERT
   593   if (VerifyStackAtCalls) {
   594     st->print("\n\t");
   595     st->print("# stack alignment check");
   596   }
   597 #endif
   598   st->cr();
   599 }
   600 #endif
   603 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   604   Compile* C = ra_->C;
   605   MacroAssembler _masm(&cbuf);
   607   int framesize = C->frame_slots() << LogBytesPerInt;
   609   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   611   C->set_frame_complete(cbuf.insts_size());
   613   if (C->has_mach_constant_base_node()) {
   614     // NOTE: We set the table base offset here because users might be
   615     // emitted before MachConstantBaseNode.
   616     Compile::ConstantTable& constant_table = C->constant_table();
   617     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   618   }
   619 }
   621 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   622   return MachNode::size(ra_); // too many variables; just compute it the hard way
   623 }
   625 int MachPrologNode::reloc() const {
   626   return 0; // a large enough number
   627 }
   629 //=============================================================================
   630 #ifndef PRODUCT
   631 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   632   Compile *C = ra_->C;
   633   int framesize = C->frame_slots() << LogBytesPerInt;
   634   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   635   // Remove two words for return addr and rbp,
   636   framesize -= 2*wordSize;
   638   if( C->in_24_bit_fp_mode() ) {
   639     st->print("FLDCW  standard control word");
   640     st->cr(); st->print("\t");
   641   }
   642   if( framesize ) {
   643     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   644     st->cr(); st->print("\t");
   645   }
   646   st->print_cr("POPL   EBP"); st->print("\t");
   647   if( do_polling() && C->is_method_compilation() ) {
   648     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   649     st->cr(); st->print("\t");
   650   }
   651 }
   652 #endif
   654 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   655   Compile *C = ra_->C;
   657   // If method set FPU control word, restore to standard control word
   658   if( C->in_24_bit_fp_mode() ) {
   659     MacroAssembler masm(&cbuf);
   660     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   661   }
   663   int framesize = C->frame_slots() << LogBytesPerInt;
   664   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   665   // Remove two words for return addr and rbp,
   666   framesize -= 2*wordSize;
   668   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   670   if( framesize >= 128 ) {
   671     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   672     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   673     emit_d32(cbuf, framesize);
   674   }
   675   else if( framesize ) {
   676     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   677     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   678     emit_d8(cbuf, framesize);
   679   }
   681   emit_opcode(cbuf, 0x58 | EBP_enc);
   683   if( do_polling() && C->is_method_compilation() ) {
   684     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   685     emit_opcode(cbuf,0x85);
   686     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   687     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   688   }
   689 }
   691 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   692   Compile *C = ra_->C;
   693   // If method set FPU control word, restore to standard control word
   694   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   695   if( do_polling() && C->is_method_compilation() ) size += 6;
   697   int framesize = C->frame_slots() << LogBytesPerInt;
   698   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   699   // Remove two words for return addr and rbp,
   700   framesize -= 2*wordSize;
   702   size++; // popl rbp,
   704   if( framesize >= 128 ) {
   705     size += 6;
   706   } else {
   707     size += framesize ? 3 : 0;
   708   }
   709   return size;
   710 }
   712 int MachEpilogNode::reloc() const {
   713   return 0; // a large enough number
   714 }
   716 const Pipeline * MachEpilogNode::pipeline() const {
   717   return MachNode::pipeline_class();
   718 }
   720 int MachEpilogNode::safepoint_offset() const { return 0; }
   722 //=============================================================================
   724 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   725 static enum RC rc_class( OptoReg::Name reg ) {
   727   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   728   if (OptoReg::is_stack(reg)) return rc_stack;
   730   VMReg r = OptoReg::as_VMReg(reg);
   731   if (r->is_Register()) return rc_int;
   732   if (r->is_FloatRegister()) {
   733     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   734     return rc_float;
   735   }
   736   assert(r->is_XMMRegister(), "must be");
   737   return rc_xmm;
   738 }
   740 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   741                         int opcode, const char *op_str, int size, outputStream* st ) {
   742   if( cbuf ) {
   743     emit_opcode  (*cbuf, opcode );
   744     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   745 #ifndef PRODUCT
   746   } else if( !do_size ) {
   747     if( size != 0 ) st->print("\n\t");
   748     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   749       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   750       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   751     } else { // FLD, FST, PUSH, POP
   752       st->print("%s [ESP + #%d]",op_str,offset);
   753     }
   754 #endif
   755   }
   756   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   757   return size+3+offset_size;
   758 }
   760 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   761 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   762                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   763   if (cbuf) {
   764     MacroAssembler _masm(cbuf);
   765     if (reg_lo+1 == reg_hi) { // double move?
   766       if (is_load) {
   767         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   768       } else {
   769         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   770       }
   771     } else {
   772       if (is_load) {
   773         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   774       } else {
   775         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   776       }
   777     }
   778 #ifndef PRODUCT
   779   } else if (!do_size) {
   780     if (size != 0) st->print("\n\t");
   781     if (reg_lo+1 == reg_hi) { // double move?
   782       if (is_load) st->print("%s %s,[ESP + #%d]",
   783                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   784                               Matcher::regName[reg_lo], offset);
   785       else         st->print("MOVSD  [ESP + #%d],%s",
   786                               offset, Matcher::regName[reg_lo]);
   787     } else {
   788       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   789                               Matcher::regName[reg_lo], offset);
   790       else         st->print("MOVSS  [ESP + #%d],%s",
   791                               offset, Matcher::regName[reg_lo]);
   792     }
   793 #endif
   794   }
   795   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   796   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes.
   797   return size+5+offset_size;
   798 }
   801 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   802                             int src_hi, int dst_hi, int size, outputStream* st ) {
   803   if (cbuf) {
   804     MacroAssembler _masm(cbuf);
   805     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   806       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   807                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   808     } else {
   809       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   810                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   811     }
   812 #ifndef PRODUCT
   813   } else if (!do_size) {
   814     if (size != 0) st->print("\n\t");
   815     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   816       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   817         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   818       } else {
   819         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   820       }
   821     } else {
   822       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   823         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   824       } else {
   825         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   826       }
   827     }
   828 #endif
   829   }
   830   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes.
   831   // Only MOVAPS SSE prefix uses 1 byte.
   832   int sz = 4;
   833   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   834       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   835   return size + sz;
   836 }
   838 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   839                             int src_hi, int dst_hi, int size, outputStream* st ) {
   840   // 32-bit
   841   if (cbuf) {
   842     MacroAssembler _masm(cbuf);
   843     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   844              as_Register(Matcher::_regEncode[src_lo]));
   845 #ifndef PRODUCT
   846   } else if (!do_size) {
   847     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   848 #endif
   849   }
   850   return 4;
   851 }
   854 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   855                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   856   // 32-bit
   857   if (cbuf) {
   858     MacroAssembler _masm(cbuf);
   859     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   860              as_XMMRegister(Matcher::_regEncode[src_lo]));
   861 #ifndef PRODUCT
   862   } else if (!do_size) {
   863     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   864 #endif
   865   }
   866   return 4;
   867 }
   869 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   870   if( cbuf ) {
   871     emit_opcode(*cbuf, 0x8B );
   872     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   873 #ifndef PRODUCT
   874   } else if( !do_size ) {
   875     if( size != 0 ) st->print("\n\t");
   876     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   877 #endif
   878   }
   879   return size+2;
   880 }
   882 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   883                                  int offset, int size, outputStream* st ) {
   884   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   885     if( cbuf ) {
   886       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   887       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   888 #ifndef PRODUCT
   889     } else if( !do_size ) {
   890       if( size != 0 ) st->print("\n\t");
   891       st->print("FLD    %s",Matcher::regName[src_lo]);
   892 #endif
   893     }
   894     size += 2;
   895   }
   897   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   898   const char *op_str;
   899   int op;
   900   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   901     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   902     op = 0xDD;
   903   } else {                   // 32-bit store
   904     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   905     op = 0xD9;
   906     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   907   }
   909   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   910 }
   912 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   913   // Get registers to move
   914   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   915   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   916   OptoReg::Name dst_second = ra_->get_reg_second(this );
   917   OptoReg::Name dst_first = ra_->get_reg_first(this );
   919   enum RC src_second_rc = rc_class(src_second);
   920   enum RC src_first_rc = rc_class(src_first);
   921   enum RC dst_second_rc = rc_class(dst_second);
   922   enum RC dst_first_rc = rc_class(dst_first);
   924   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   926   // Generate spill code!
   927   int size = 0;
   929   if( src_first == dst_first && src_second == dst_second )
   930     return size;            // Self copy, no move
   932   // --------------------------------------
   933   // Check for mem-mem move.  push/pop to move.
   934   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   935     if( src_second == dst_first ) { // overlapping stack copy ranges
   936       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   937       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   938       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   939       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   940     }
   941     // move low bits
   942     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   943     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   944     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   945       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   946       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   947     }
   948     return size;
   949   }
   951   // --------------------------------------
   952   // Check for integer reg-reg copy
   953   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   954     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   956   // Check for integer store
   957   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   958     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   960   // Check for integer load
   961   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   962     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   964   // Check for integer reg-xmm reg copy
   965   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   966     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   967             "no 64 bit integer-float reg moves" );
   968     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   969   }
   970   // --------------------------------------
   971   // Check for float reg-reg copy
   972   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   973     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   974             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   975     if( cbuf ) {
   977       // Note the mucking with the register encode to compensate for the 0/1
   978       // indexing issue mentioned in a comment in the reg_def sections
   979       // for FPR registers many lines above here.
   981       if( src_first != FPR1L_num ) {
   982         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   983         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   984         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   985         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   986      } else {
   987         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   988         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   989      }
   990 #ifndef PRODUCT
   991     } else if( !do_size ) {
   992       if( size != 0 ) st->print("\n\t");
   993       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   994       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   995 #endif
   996     }
   997     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   998   }
  1000   // Check for float store
  1001   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1002     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1005   // Check for float load
  1006   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1007     int offset = ra_->reg2offset(src_first);
  1008     const char *op_str;
  1009     int op;
  1010     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1011       op_str = "FLD_D";
  1012       op = 0xDD;
  1013     } else {                   // 32-bit load
  1014       op_str = "FLD_S";
  1015       op = 0xD9;
  1016       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1018     if( cbuf ) {
  1019       emit_opcode  (*cbuf, op );
  1020       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1021       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1022       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1023 #ifndef PRODUCT
  1024     } else if( !do_size ) {
  1025       if( size != 0 ) st->print("\n\t");
  1026       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1027 #endif
  1029     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1030     return size + 3+offset_size+2;
  1033   // Check for xmm reg-reg copy
  1034   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1035     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1036             (src_first+1 == src_second && dst_first+1 == dst_second),
  1037             "no non-adjacent float-moves" );
  1038     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1041   // Check for xmm reg-integer reg copy
  1042   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1043     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1044             "no 64 bit float-integer reg moves" );
  1045     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1048   // Check for xmm store
  1049   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1050     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1053   // Check for float xmm load
  1054   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1055     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1058   // Copy from float reg to xmm reg
  1059   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1060     // copy to the top of stack from floating point reg
  1061     // and use LEA to preserve flags
  1062     if( cbuf ) {
  1063       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1064       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1065       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1066       emit_d8(*cbuf,0xF8);
  1067 #ifndef PRODUCT
  1068     } else if( !do_size ) {
  1069       if( size != 0 ) st->print("\n\t");
  1070       st->print("LEA    ESP,[ESP-8]");
  1071 #endif
  1073     size += 4;
  1075     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1077     // Copy from the temp memory to the xmm reg.
  1078     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1080     if( cbuf ) {
  1081       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1082       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1083       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1084       emit_d8(*cbuf,0x08);
  1085 #ifndef PRODUCT
  1086     } else if( !do_size ) {
  1087       if( size != 0 ) st->print("\n\t");
  1088       st->print("LEA    ESP,[ESP+8]");
  1089 #endif
  1091     size += 4;
  1092     return size;
  1095   assert( size > 0, "missed a case" );
  1097   // --------------------------------------------------------------------
  1098   // Check for second bits still needing moving.
  1099   if( src_second == dst_second )
  1100     return size;               // Self copy; no move
  1101   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1103   // Check for second word int-int move
  1104   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1105     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1107   // Check for second word integer store
  1108   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1109     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1111   // Check for second word integer load
  1112   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1113     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1116   Unimplemented();
  1119 #ifndef PRODUCT
  1120 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1121   implementation( NULL, ra_, false, st );
  1123 #endif
  1125 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1126   implementation( &cbuf, ra_, false, NULL );
  1129 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1130   return implementation( NULL, ra_, true, NULL );
  1133 //=============================================================================
  1134 #ifndef PRODUCT
  1135 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1136   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1138 #endif
  1140 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1141   MacroAssembler _masm(&cbuf);
  1142   __ nop(_count);
  1145 uint MachNopNode::size(PhaseRegAlloc *) const {
  1146   return _count;
  1150 //=============================================================================
  1151 #ifndef PRODUCT
  1152 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1153   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1154   int reg = ra_->get_reg_first(this);
  1155   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1157 #endif
  1159 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1160   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1161   int reg = ra_->get_encode(this);
  1162   if( offset >= 128 ) {
  1163     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1164     emit_rm(cbuf, 0x2, reg, 0x04);
  1165     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1166     emit_d32(cbuf, offset);
  1168   else {
  1169     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1170     emit_rm(cbuf, 0x1, reg, 0x04);
  1171     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1172     emit_d8(cbuf, offset);
  1176 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1177   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1178   if( offset >= 128 ) {
  1179     return 7;
  1181   else {
  1182     return 4;
  1186 //=============================================================================
  1188 // emit call stub, compiled java to interpreter
  1189 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1190   // Stub is fixed up when the corresponding call is converted from calling
  1191   // compiled code to calling interpreted code.
  1192   // mov rbx,0
  1193   // jmp -1
  1195   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1197   // Note that the code buffer's insts_mark is always relative to insts.
  1198   // That's why we must use the macroassembler to generate a stub.
  1199   MacroAssembler _masm(&cbuf);
  1201   address base =
  1202   __ start_a_stub(Compile::MAX_stubs_size);
  1203   if (base == NULL)  return;  // CodeBuffer::expand failed
  1204   // static stub relocation stores the instruction address of the call
  1205   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1206   // static stub relocation also tags the methodOop in the code-stream.
  1207   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1208   // This is recognized as unresolved by relocs/nativeInst/ic code
  1209   __ jump(RuntimeAddress(__ pc()));
  1211   __ end_a_stub();
  1212   // Update current stubs pointer and restore insts_end.
  1214 // size of call stub, compiled java to interpretor
  1215 uint size_java_to_interp() {
  1216   return 10;  // movl; jmp
  1218 // relocation entries for call stub, compiled java to interpretor
  1219 uint reloc_java_to_interp() {
  1220   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1223 //=============================================================================
  1224 #ifndef PRODUCT
  1225 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1226   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1227   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1228   st->print_cr("\tNOP");
  1229   st->print_cr("\tNOP");
  1230   if( !OptoBreakpoint )
  1231     st->print_cr("\tNOP");
  1233 #endif
  1235 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1236   MacroAssembler masm(&cbuf);
  1237 #ifdef ASSERT
  1238   uint insts_size = cbuf.insts_size();
  1239 #endif
  1240   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1241   masm.jump_cc(Assembler::notEqual,
  1242                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1243   /* WARNING these NOPs are critical so that verified entry point is properly
  1244      aligned for patching by NativeJump::patch_verified_entry() */
  1245   int nops_cnt = 2;
  1246   if( !OptoBreakpoint ) // Leave space for int3
  1247      nops_cnt += 1;
  1248   masm.nop(nops_cnt);
  1250   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1253 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1254   return OptoBreakpoint ? 11 : 12;
  1258 //=============================================================================
  1259 uint size_exception_handler() {
  1260   // NativeCall instruction size is the same as NativeJump.
  1261   // exception handler starts out as jump and can be patched to
  1262   // a call be deoptimization.  (4932387)
  1263   // Note that this value is also credited (in output.cpp) to
  1264   // the size of the code section.
  1265   return NativeJump::instruction_size;
  1268 // Emit exception handler code.  Stuff framesize into a register
  1269 // and call a VM stub routine.
  1270 int emit_exception_handler(CodeBuffer& cbuf) {
  1272   // Note that the code buffer's insts_mark is always relative to insts.
  1273   // That's why we must use the macroassembler to generate a handler.
  1274   MacroAssembler _masm(&cbuf);
  1275   address base =
  1276   __ start_a_stub(size_exception_handler());
  1277   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1278   int offset = __ offset();
  1279   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1280   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1281   __ end_a_stub();
  1282   return offset;
  1285 uint size_deopt_handler() {
  1286   // NativeCall instruction size is the same as NativeJump.
  1287   // exception handler starts out as jump and can be patched to
  1288   // a call be deoptimization.  (4932387)
  1289   // Note that this value is also credited (in output.cpp) to
  1290   // the size of the code section.
  1291   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1294 // Emit deopt handler code.
  1295 int emit_deopt_handler(CodeBuffer& cbuf) {
  1297   // Note that the code buffer's insts_mark is always relative to insts.
  1298   // That's why we must use the macroassembler to generate a handler.
  1299   MacroAssembler _masm(&cbuf);
  1300   address base =
  1301   __ start_a_stub(size_exception_handler());
  1302   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1303   int offset = __ offset();
  1304   InternalAddress here(__ pc());
  1305   __ pushptr(here.addr());
  1307   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1308   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1309   __ end_a_stub();
  1310   return offset;
  1314 const bool Matcher::match_rule_supported(int opcode) {
  1315   if (!has_match_rule(opcode))
  1316     return false;
  1318   return true;  // Per default match rules are supported.
  1321 int Matcher::regnum_to_fpu_offset(int regnum) {
  1322   return regnum - 32; // The FP registers are in the second chunk
  1325 // This is UltraSparc specific, true just means we have fast l2f conversion
  1326 const bool Matcher::convL2FSupported(void) {
  1327   return true;
  1330 // Vector width in bytes
  1331 const uint Matcher::vector_width_in_bytes(void) {
  1332   return UseSSE >= 2 ? 8 : 0;
  1335 // Vector ideal reg
  1336 const uint Matcher::vector_ideal_reg(void) {
  1337   return Op_RegD;
  1340 // Is this branch offset short enough that a short branch can be used?
  1341 //
  1342 // NOTE: If the platform does not provide any short branch variants, then
  1343 //       this method should return false for offset 0.
  1344 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1345   // The passed offset is relative to address of the branch.
  1346   // On 86 a branch displacement is calculated relative to address
  1347   // of a next instruction.
  1348   offset -= br_size;
  1350   // the short version of jmpConUCF2 contains multiple branches,
  1351   // making the reach slightly less
  1352   if (rule == jmpConUCF2_rule)
  1353     return (-126 <= offset && offset <= 125);
  1354   return (-128 <= offset && offset <= 127);
  1357 const bool Matcher::isSimpleConstant64(jlong value) {
  1358   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1359   return false;
  1362 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1363 const bool Matcher::init_array_count_is_in_bytes = false;
  1365 // Threshold size for cleararray.
  1366 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1368 // Needs 2 CMOV's for longs.
  1369 const int Matcher::long_cmove_cost() { return 1; }
  1371 // No CMOVF/CMOVD with SSE/SSE2
  1372 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1374 // Should the Matcher clone shifts on addressing modes, expecting them to
  1375 // be subsumed into complex addressing expressions or compute them into
  1376 // registers?  True for Intel but false for most RISCs
  1377 const bool Matcher::clone_shift_expressions = true;
  1379 // Do we need to mask the count passed to shift instructions or does
  1380 // the cpu only look at the lower 5/6 bits anyway?
  1381 const bool Matcher::need_masked_shift_count = false;
  1383 bool Matcher::narrow_oop_use_complex_address() {
  1384   ShouldNotCallThis();
  1385   return true;
  1389 // Is it better to copy float constants, or load them directly from memory?
  1390 // Intel can load a float constant from a direct address, requiring no
  1391 // extra registers.  Most RISCs will have to materialize an address into a
  1392 // register first, so they would do better to copy the constant from stack.
  1393 const bool Matcher::rematerialize_float_constants = true;
  1395 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1396 // needed.  Else we split the double into 2 integer pieces and move it
  1397 // piece-by-piece.  Only happens when passing doubles into C code as the
  1398 // Java calling convention forces doubles to be aligned.
  1399 const bool Matcher::misaligned_doubles_ok = true;
  1402 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1403   // Get the memory operand from the node
  1404   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1405   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1406   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1407   uint opcnt     = 1;                 // First operand
  1408   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1409   while( idx >= skipped+num_edges ) {
  1410     skipped += num_edges;
  1411     opcnt++;                          // Bump operand count
  1412     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1413     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1416   MachOper *memory = node->_opnds[opcnt];
  1417   MachOper *new_memory = NULL;
  1418   switch (memory->opcode()) {
  1419   case DIRECT:
  1420   case INDOFFSET32X:
  1421     // No transformation necessary.
  1422     return;
  1423   case INDIRECT:
  1424     new_memory = new (C) indirect_win95_safeOper( );
  1425     break;
  1426   case INDOFFSET8:
  1427     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1428     break;
  1429   case INDOFFSET32:
  1430     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1431     break;
  1432   case INDINDEXOFFSET:
  1433     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1434     break;
  1435   case INDINDEXSCALE:
  1436     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1437     break;
  1438   case INDINDEXSCALEOFFSET:
  1439     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1440     break;
  1441   case LOAD_LONG_INDIRECT:
  1442   case LOAD_LONG_INDOFFSET32:
  1443     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1444     return;
  1445   default:
  1446     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1447     return;
  1449   node->_opnds[opcnt] = new_memory;
  1452 // Advertise here if the CPU requires explicit rounding operations
  1453 // to implement the UseStrictFP mode.
  1454 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1456 // Are floats conerted to double when stored to stack during deoptimization?
  1457 // On x32 it is stored with convertion only when FPU is used for floats.
  1458 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1460 // Do ints take an entire long register or just half?
  1461 const bool Matcher::int_in_long = false;
  1463 // Return whether or not this register is ever used as an argument.  This
  1464 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1465 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1466 // arguments in those registers not be available to the callee.
  1467 bool Matcher::can_be_java_arg( int reg ) {
  1468   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1469   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1470   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1471   return false;
  1474 bool Matcher::is_spillable_arg( int reg ) {
  1475   return can_be_java_arg(reg);
  1478 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1479   // Use hardware integer DIV instruction when
  1480   // it is faster than a code which use multiply.
  1481   // Only when constant divisor fits into 32 bit
  1482   // (min_jint is excluded to get only correct
  1483   // positive 32 bit values from negative).
  1484   return VM_Version::has_fast_idiv() &&
  1485          (divisor == (int)divisor && divisor != min_jint);
  1488 // Register for DIVI projection of divmodI
  1489 RegMask Matcher::divI_proj_mask() {
  1490   return EAX_REG_mask();
  1493 // Register for MODI projection of divmodI
  1494 RegMask Matcher::modI_proj_mask() {
  1495   return EDX_REG_mask();
  1498 // Register for DIVL projection of divmodL
  1499 RegMask Matcher::divL_proj_mask() {
  1500   ShouldNotReachHere();
  1501   return RegMask();
  1504 // Register for MODL projection of divmodL
  1505 RegMask Matcher::modL_proj_mask() {
  1506   ShouldNotReachHere();
  1507   return RegMask();
  1510 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1511   return EBP_REG_mask();
  1514 // Returns true if the high 32 bits of the value is known to be zero.
  1515 bool is_operand_hi32_zero(Node* n) {
  1516   int opc = n->Opcode();
  1517   if (opc == Op_LoadUI2L) {
  1518     return true;
  1520   if (opc == Op_AndL) {
  1521     Node* o2 = n->in(2);
  1522     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1523       return true;
  1526   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1527     return true;
  1529   return false;
  1532 %}
  1534 //----------ENCODING BLOCK-----------------------------------------------------
  1535 // This block specifies the encoding classes used by the compiler to output
  1536 // byte streams.  Encoding classes generate functions which are called by
  1537 // Machine Instruction Nodes in order to generate the bit encoding of the
  1538 // instruction.  Operands specify their base encoding interface with the
  1539 // interface keyword.  There are currently supported four interfaces,
  1540 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1541 // operand to generate a function which returns its register number when
  1542 // queried.   CONST_INTER causes an operand to generate a function which
  1543 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1544 // operand to generate four functions which return the Base Register, the
  1545 // Index Register, the Scale Value, and the Offset Value of the operand when
  1546 // queried.  COND_INTER causes an operand to generate six functions which
  1547 // return the encoding code (ie - encoding bits for the instruction)
  1548 // associated with each basic boolean condition for a conditional instruction.
  1549 // Instructions specify two basic values for encoding.  They use the
  1550 // ins_encode keyword to specify their encoding class (which must be one of
  1551 // the class names specified in the encoding block), and they use the
  1552 // opcode keyword to specify, in order, their primary, secondary, and
  1553 // tertiary opcode.  Only the opcode sections which a particular instruction
  1554 // needs for encoding need to be specified.
  1555 encode %{
  1556   // Build emit functions for each basic byte or larger field in the intel
  1557   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1558   // code in the enc_class source block.  Emit functions will live in the
  1559   // main source block for now.  In future, we can generalize this by
  1560   // adding a syntax that specifies the sizes of fields in an order,
  1561   // so that the adlc can build the emit functions automagically
  1563   // Emit primary opcode
  1564   enc_class OpcP %{
  1565     emit_opcode(cbuf, $primary);
  1566   %}
  1568   // Emit secondary opcode
  1569   enc_class OpcS %{
  1570     emit_opcode(cbuf, $secondary);
  1571   %}
  1573   // Emit opcode directly
  1574   enc_class Opcode(immI d8) %{
  1575     emit_opcode(cbuf, $d8$$constant);
  1576   %}
  1578   enc_class SizePrefix %{
  1579     emit_opcode(cbuf,0x66);
  1580   %}
  1582   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1583     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1584   %}
  1586   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1587     emit_opcode(cbuf,$opcode$$constant);
  1588     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1589   %}
  1591   enc_class mov_r32_imm0( eRegI dst ) %{
  1592     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1593     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1594   %}
  1596   enc_class cdq_enc %{
  1597     // Full implementation of Java idiv and irem; checks for
  1598     // special case as described in JVM spec., p.243 & p.271.
  1599     //
  1600     //         normal case                           special case
  1601     //
  1602     // input : rax,: dividend                         min_int
  1603     //         reg: divisor                          -1
  1604     //
  1605     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1606     //         rdx: remainder (= rax, irem reg)       0
  1607     //
  1608     //  Code sequnce:
  1609     //
  1610     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1611     //  0F 85 0B 00 00 00    jne         normal_case
  1612     //  33 D2                xor         rdx,edx
  1613     //  83 F9 FF             cmp         rcx,0FFh
  1614     //  0F 84 03 00 00 00    je          done
  1615     //                  normal_case:
  1616     //  99                   cdq
  1617     //  F7 F9                idiv        rax,ecx
  1618     //                  done:
  1619     //
  1620     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1621     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1622     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1623     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1624     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1625     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1626     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1627     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1628     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1629     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1630     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1631     // normal_case:
  1632     emit_opcode(cbuf,0x99);                                         // cdq
  1633     // idiv (note: must be emitted by the user of this rule)
  1634     // normal:
  1635   %}
  1637   // Dense encoding for older common ops
  1638   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1639     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1640   %}
  1643   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1644   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1645     // Check for 8-bit immediate, and set sign extend bit in opcode
  1646     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1647       emit_opcode(cbuf, $primary | 0x02);
  1649     else {                          // If 32-bit immediate
  1650       emit_opcode(cbuf, $primary);
  1652   %}
  1654   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1655     // Emit primary opcode and set sign-extend bit
  1656     // Check for 8-bit immediate, and set sign extend bit in opcode
  1657     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1658       emit_opcode(cbuf, $primary | 0x02);    }
  1659     else {                          // If 32-bit immediate
  1660       emit_opcode(cbuf, $primary);
  1662     // Emit r/m byte with secondary opcode, after primary opcode.
  1663     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1664   %}
  1666   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1667     // Check for 8-bit immediate, and set sign extend bit in opcode
  1668     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1669       $$$emit8$imm$$constant;
  1671     else {                          // If 32-bit immediate
  1672       // Output immediate
  1673       $$$emit32$imm$$constant;
  1675   %}
  1677   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1678     // Emit primary opcode and set sign-extend bit
  1679     // Check for 8-bit immediate, and set sign extend bit in opcode
  1680     int con = (int)$imm$$constant; // Throw away top bits
  1681     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1682     // Emit r/m byte with secondary opcode, after primary opcode.
  1683     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1684     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1685     else                               emit_d32(cbuf,con);
  1686   %}
  1688   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1689     // Emit primary opcode and set sign-extend bit
  1690     // Check for 8-bit immediate, and set sign extend bit in opcode
  1691     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1692     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1693     // Emit r/m byte with tertiary opcode, after primary opcode.
  1694     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1695     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1696     else                               emit_d32(cbuf,con);
  1697   %}
  1699   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1700     emit_cc(cbuf, $secondary, $dst$$reg );
  1701   %}
  1703   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1704     int destlo = $dst$$reg;
  1705     int desthi = HIGH_FROM_LOW(destlo);
  1706     // bswap lo
  1707     emit_opcode(cbuf, 0x0F);
  1708     emit_cc(cbuf, 0xC8, destlo);
  1709     // bswap hi
  1710     emit_opcode(cbuf, 0x0F);
  1711     emit_cc(cbuf, 0xC8, desthi);
  1712     // xchg lo and hi
  1713     emit_opcode(cbuf, 0x87);
  1714     emit_rm(cbuf, 0x3, destlo, desthi);
  1715   %}
  1717   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1718     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1719   %}
  1721   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1722     $$$emit8$primary;
  1723     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1724   %}
  1726   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1727     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1728     emit_d8(cbuf, op >> 8 );
  1729     emit_d8(cbuf, op & 255);
  1730   %}
  1732   // emulate a CMOV with a conditional branch around a MOV
  1733   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1734     // Invert sense of branch from sense of CMOV
  1735     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1736     emit_d8( cbuf, $brOffs$$constant );
  1737   %}
  1739   enc_class enc_PartialSubtypeCheck( ) %{
  1740     Register Redi = as_Register(EDI_enc); // result register
  1741     Register Reax = as_Register(EAX_enc); // super class
  1742     Register Recx = as_Register(ECX_enc); // killed
  1743     Register Resi = as_Register(ESI_enc); // sub class
  1744     Label miss;
  1746     MacroAssembler _masm(&cbuf);
  1747     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1748                                      NULL, &miss,
  1749                                      /*set_cond_codes:*/ true);
  1750     if ($primary) {
  1751       __ xorptr(Redi, Redi);
  1753     __ bind(miss);
  1754   %}
  1756   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1757     MacroAssembler masm(&cbuf);
  1758     int start = masm.offset();
  1759     if (UseSSE >= 2) {
  1760       if (VerifyFPU) {
  1761         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1763     } else {
  1764       // External c_calling_convention expects the FPU stack to be 'clean'.
  1765       // Compiled code leaves it dirty.  Do cleanup now.
  1766       masm.empty_FPU_stack();
  1768     if (sizeof_FFree_Float_Stack_All == -1) {
  1769       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1770     } else {
  1771       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1773   %}
  1775   enc_class Verify_FPU_For_Leaf %{
  1776     if( VerifyFPU ) {
  1777       MacroAssembler masm(&cbuf);
  1778       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1780   %}
  1782   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1783     // This is the instruction starting address for relocation info.
  1784     cbuf.set_insts_mark();
  1785     $$$emit8$primary;
  1786     // CALL directly to the runtime
  1787     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1788                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1790     if (UseSSE >= 2) {
  1791       MacroAssembler _masm(&cbuf);
  1792       BasicType rt = tf()->return_type();
  1794       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1795         // A C runtime call where the return value is unused.  In SSE2+
  1796         // mode the result needs to be removed from the FPU stack.  It's
  1797         // likely that this function call could be removed by the
  1798         // optimizer if the C function is a pure function.
  1799         __ ffree(0);
  1800       } else if (rt == T_FLOAT) {
  1801         __ lea(rsp, Address(rsp, -4));
  1802         __ fstp_s(Address(rsp, 0));
  1803         __ movflt(xmm0, Address(rsp, 0));
  1804         __ lea(rsp, Address(rsp,  4));
  1805       } else if (rt == T_DOUBLE) {
  1806         __ lea(rsp, Address(rsp, -8));
  1807         __ fstp_d(Address(rsp, 0));
  1808         __ movdbl(xmm0, Address(rsp, 0));
  1809         __ lea(rsp, Address(rsp,  8));
  1812   %}
  1815   enc_class pre_call_FPU %{
  1816     // If method sets FPU control word restore it here
  1817     debug_only(int off0 = cbuf.insts_size());
  1818     if( Compile::current()->in_24_bit_fp_mode() ) {
  1819       MacroAssembler masm(&cbuf);
  1820       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1822     debug_only(int off1 = cbuf.insts_size());
  1823     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1824   %}
  1826   enc_class post_call_FPU %{
  1827     // If method sets FPU control word do it here also
  1828     if( Compile::current()->in_24_bit_fp_mode() ) {
  1829       MacroAssembler masm(&cbuf);
  1830       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1832   %}
  1834   enc_class preserve_SP %{
  1835     debug_only(int off0 = cbuf.insts_size());
  1836     MacroAssembler _masm(&cbuf);
  1837     // RBP is preserved across all calls, even compiled calls.
  1838     // Use it to preserve RSP in places where the callee might change the SP.
  1839     __ movptr(rbp_mh_SP_save, rsp);
  1840     debug_only(int off1 = cbuf.insts_size());
  1841     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1842   %}
  1844   enc_class restore_SP %{
  1845     MacroAssembler _masm(&cbuf);
  1846     __ movptr(rsp, rbp_mh_SP_save);
  1847   %}
  1849   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1850     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1851     // who we intended to call.
  1852     cbuf.set_insts_mark();
  1853     $$$emit8$primary;
  1854     if ( !_method ) {
  1855       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1856                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1857     } else if(_optimized_virtual) {
  1858       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1859                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1860     } else {
  1861       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1862                      static_call_Relocation::spec(), RELOC_IMM32 );
  1864     if( _method ) {  // Emit stub for static call
  1865       emit_java_to_interp(cbuf);
  1867   %}
  1869   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1870     // !!!!!
  1871     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1872     // emit_call_dynamic_prologue( cbuf );
  1873     cbuf.set_insts_mark();
  1874     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1875     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1876     address  virtual_call_oop_addr = cbuf.insts_mark();
  1877     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1878     // who we intended to call.
  1879     cbuf.set_insts_mark();
  1880     $$$emit8$primary;
  1881     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1882                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1883   %}
  1885   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1886     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1887     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1889     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1890     cbuf.set_insts_mark();
  1891     $$$emit8$primary;
  1892     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1893     emit_d8(cbuf, disp);             // Displacement
  1895   %}
  1897 //   Following encoding is no longer used, but may be restored if calling
  1898 //   convention changes significantly.
  1899 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1900 //
  1901 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1902 //     // int ic_reg     = Matcher::inline_cache_reg();
  1903 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1904 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1905 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1906 //
  1907 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1908 //     // // so we load it immediately before the call
  1909 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1910 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1911 //
  1912 //     // xor rbp,ebp
  1913 //     emit_opcode(cbuf, 0x33);
  1914 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1915 //
  1916 //     // CALL to interpreter.
  1917 //     cbuf.set_insts_mark();
  1918 //     $$$emit8$primary;
  1919 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1920 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1921 //   %}
  1923   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1924     $$$emit8$primary;
  1925     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1926     $$$emit8$shift$$constant;
  1927   %}
  1929   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1930     // Load immediate does not have a zero or sign extended version
  1931     // for 8-bit immediates
  1932     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1933     $$$emit32$src$$constant;
  1934   %}
  1936   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1937     // Load immediate does not have a zero or sign extended version
  1938     // for 8-bit immediates
  1939     emit_opcode(cbuf, $primary + $dst$$reg);
  1940     $$$emit32$src$$constant;
  1941   %}
  1943   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1944     // Load immediate does not have a zero or sign extended version
  1945     // for 8-bit immediates
  1946     int dst_enc = $dst$$reg;
  1947     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1948     if (src_con == 0) {
  1949       // xor dst, dst
  1950       emit_opcode(cbuf, 0x33);
  1951       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1952     } else {
  1953       emit_opcode(cbuf, $primary + dst_enc);
  1954       emit_d32(cbuf, src_con);
  1956   %}
  1958   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1959     // Load immediate does not have a zero or sign extended version
  1960     // for 8-bit immediates
  1961     int dst_enc = $dst$$reg + 2;
  1962     int src_con = ((julong)($src$$constant)) >> 32;
  1963     if (src_con == 0) {
  1964       // xor dst, dst
  1965       emit_opcode(cbuf, 0x33);
  1966       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1967     } else {
  1968       emit_opcode(cbuf, $primary + dst_enc);
  1969       emit_d32(cbuf, src_con);
  1971   %}
  1974   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1975   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  1976     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1977   %}
  1979   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  1980     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1981   %}
  1983   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1985   %}
  1987   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1988     $$$emit8$primary;
  1989     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1990   %}
  1992   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1993     $$$emit8$secondary;
  1994     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1995   %}
  1997   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1998     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1999   %}
  2001   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2002     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2003   %}
  2005   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2006     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2007   %}
  2009   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2010     // Output immediate
  2011     $$$emit32$src$$constant;
  2012   %}
  2014   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2015     // Output Float immediate bits
  2016     jfloat jf = $src$$constant;
  2017     int    jf_as_bits = jint_cast( jf );
  2018     emit_d32(cbuf, jf_as_bits);
  2019   %}
  2021   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2022     // Output Float immediate bits
  2023     jfloat jf = $src$$constant;
  2024     int    jf_as_bits = jint_cast( jf );
  2025     emit_d32(cbuf, jf_as_bits);
  2026   %}
  2028   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2029     // Output immediate
  2030     $$$emit16$src$$constant;
  2031   %}
  2033   enc_class Con_d32(immI src) %{
  2034     emit_d32(cbuf,$src$$constant);
  2035   %}
  2037   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2038     // Output immediate memory reference
  2039     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2040     emit_d32(cbuf, 0x00);
  2041   %}
  2043   enc_class lock_prefix( ) %{
  2044     if( os::is_MP() )
  2045       emit_opcode(cbuf,0xF0);         // [Lock]
  2046   %}
  2048   // Cmp-xchg long value.
  2049   // Note: we need to swap rbx, and rcx before and after the
  2050   //       cmpxchg8 instruction because the instruction uses
  2051   //       rcx as the high order word of the new value to store but
  2052   //       our register encoding uses rbx,.
  2053   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2055     // XCHG  rbx,ecx
  2056     emit_opcode(cbuf,0x87);
  2057     emit_opcode(cbuf,0xD9);
  2058     // [Lock]
  2059     if( os::is_MP() )
  2060       emit_opcode(cbuf,0xF0);
  2061     // CMPXCHG8 [Eptr]
  2062     emit_opcode(cbuf,0x0F);
  2063     emit_opcode(cbuf,0xC7);
  2064     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2065     // XCHG  rbx,ecx
  2066     emit_opcode(cbuf,0x87);
  2067     emit_opcode(cbuf,0xD9);
  2068   %}
  2070   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2071     // [Lock]
  2072     if( os::is_MP() )
  2073       emit_opcode(cbuf,0xF0);
  2075     // CMPXCHG [Eptr]
  2076     emit_opcode(cbuf,0x0F);
  2077     emit_opcode(cbuf,0xB1);
  2078     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2079   %}
  2081   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2082     int res_encoding = $res$$reg;
  2084     // MOV  res,0
  2085     emit_opcode( cbuf, 0xB8 + res_encoding);
  2086     emit_d32( cbuf, 0 );
  2087     // JNE,s  fail
  2088     emit_opcode(cbuf,0x75);
  2089     emit_d8(cbuf, 5 );
  2090     // MOV  res,1
  2091     emit_opcode( cbuf, 0xB8 + res_encoding);
  2092     emit_d32( cbuf, 1 );
  2093     // fail:
  2094   %}
  2096   enc_class set_instruction_start( ) %{
  2097     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2098   %}
  2100   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2101     int reg_encoding = $ereg$$reg;
  2102     int base  = $mem$$base;
  2103     int index = $mem$$index;
  2104     int scale = $mem$$scale;
  2105     int displace = $mem$$disp;
  2106     bool disp_is_oop = $mem->disp_is_oop();
  2107     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2108   %}
  2110   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2111     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2112     int base  = $mem$$base;
  2113     int index = $mem$$index;
  2114     int scale = $mem$$scale;
  2115     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2116     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2117     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2118   %}
  2120   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2121     int r1, r2;
  2122     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2123     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2124     emit_opcode(cbuf,0x0F);
  2125     emit_opcode(cbuf,$tertiary);
  2126     emit_rm(cbuf, 0x3, r1, r2);
  2127     emit_d8(cbuf,$cnt$$constant);
  2128     emit_d8(cbuf,$primary);
  2129     emit_rm(cbuf, 0x3, $secondary, r1);
  2130     emit_d8(cbuf,$cnt$$constant);
  2131   %}
  2133   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2134     emit_opcode( cbuf, 0x8B ); // Move
  2135     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2136     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2137       emit_d8(cbuf,$primary);
  2138       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2139       emit_d8(cbuf,$cnt$$constant-32);
  2141     emit_d8(cbuf,$primary);
  2142     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2143     emit_d8(cbuf,31);
  2144   %}
  2146   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2147     int r1, r2;
  2148     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2149     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2151     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2152     emit_rm(cbuf, 0x3, r1, r2);
  2153     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2154       emit_opcode(cbuf,$primary);
  2155       emit_rm(cbuf, 0x3, $secondary, r1);
  2156       emit_d8(cbuf,$cnt$$constant-32);
  2158     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2159     emit_rm(cbuf, 0x3, r2, r2);
  2160   %}
  2162   // Clone of RegMem but accepts an extra parameter to access each
  2163   // half of a double in memory; it never needs relocation info.
  2164   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2165     emit_opcode(cbuf,$opcode$$constant);
  2166     int reg_encoding = $rm_reg$$reg;
  2167     int base     = $mem$$base;
  2168     int index    = $mem$$index;
  2169     int scale    = $mem$$scale;
  2170     int displace = $mem$$disp + $disp_for_half$$constant;
  2171     bool disp_is_oop = false;
  2172     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2173   %}
  2175   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2176   //
  2177   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2178   // and it never needs relocation information.
  2179   // Frequently used to move data between FPU's Stack Top and memory.
  2180   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2181     int rm_byte_opcode = $rm_opcode$$constant;
  2182     int base     = $mem$$base;
  2183     int index    = $mem$$index;
  2184     int scale    = $mem$$scale;
  2185     int displace = $mem$$disp;
  2186     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2187     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2188   %}
  2190   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2191     int rm_byte_opcode = $rm_opcode$$constant;
  2192     int base     = $mem$$base;
  2193     int index    = $mem$$index;
  2194     int scale    = $mem$$scale;
  2195     int displace = $mem$$disp;
  2196     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2197     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2198   %}
  2200   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2201     int reg_encoding = $dst$$reg;
  2202     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2203     int index        = 0x04;            // 0x04 indicates no index
  2204     int scale        = 0x00;            // 0x00 indicates no scale
  2205     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2206     bool disp_is_oop = false;
  2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2208   %}
  2210   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2211     // Compare dst,src
  2212     emit_opcode(cbuf,0x3B);
  2213     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2214     // jmp dst < src around move
  2215     emit_opcode(cbuf,0x7C);
  2216     emit_d8(cbuf,2);
  2217     // move dst,src
  2218     emit_opcode(cbuf,0x8B);
  2219     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2220   %}
  2222   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2223     // Compare dst,src
  2224     emit_opcode(cbuf,0x3B);
  2225     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2226     // jmp dst > src around move
  2227     emit_opcode(cbuf,0x7F);
  2228     emit_d8(cbuf,2);
  2229     // move dst,src
  2230     emit_opcode(cbuf,0x8B);
  2231     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2232   %}
  2234   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2235     // If src is FPR1, we can just FST to store it.
  2236     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2237     int reg_encoding = 0x2; // Just store
  2238     int base  = $mem$$base;
  2239     int index = $mem$$index;
  2240     int scale = $mem$$scale;
  2241     int displace = $mem$$disp;
  2242     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2243     if( $src$$reg != FPR1L_enc ) {
  2244       reg_encoding = 0x3;  // Store & pop
  2245       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2246       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2248     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2249     emit_opcode(cbuf,$primary);
  2250     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2251   %}
  2253   enc_class neg_reg(eRegI dst) %{
  2254     // NEG $dst
  2255     emit_opcode(cbuf,0xF7);
  2256     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2257   %}
  2259   enc_class setLT_reg(eCXRegI dst) %{
  2260     // SETLT $dst
  2261     emit_opcode(cbuf,0x0F);
  2262     emit_opcode(cbuf,0x9C);
  2263     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2264   %}
  2266   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2267     int tmpReg = $tmp$$reg;
  2269     // SUB $p,$q
  2270     emit_opcode(cbuf,0x2B);
  2271     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2272     // SBB $tmp,$tmp
  2273     emit_opcode(cbuf,0x1B);
  2274     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2275     // AND $tmp,$y
  2276     emit_opcode(cbuf,0x23);
  2277     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2278     // ADD $p,$tmp
  2279     emit_opcode(cbuf,0x03);
  2280     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2281   %}
  2283   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2284     int tmpReg = $tmp$$reg;
  2286     // SUB $p,$q
  2287     emit_opcode(cbuf,0x2B);
  2288     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2289     // SBB $tmp,$tmp
  2290     emit_opcode(cbuf,0x1B);
  2291     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2292     // AND $tmp,$y
  2293     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2294     emit_opcode(cbuf,0x23);
  2295     int reg_encoding = tmpReg;
  2296     int base  = $mem$$base;
  2297     int index = $mem$$index;
  2298     int scale = $mem$$scale;
  2299     int displace = $mem$$disp;
  2300     bool disp_is_oop = $mem->disp_is_oop();
  2301     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2302     // ADD $p,$tmp
  2303     emit_opcode(cbuf,0x03);
  2304     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2305   %}
  2307   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2308     // TEST shift,32
  2309     emit_opcode(cbuf,0xF7);
  2310     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2311     emit_d32(cbuf,0x20);
  2312     // JEQ,s small
  2313     emit_opcode(cbuf, 0x74);
  2314     emit_d8(cbuf, 0x04);
  2315     // MOV    $dst.hi,$dst.lo
  2316     emit_opcode( cbuf, 0x8B );
  2317     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2318     // CLR    $dst.lo
  2319     emit_opcode(cbuf, 0x33);
  2320     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2321 // small:
  2322     // SHLD   $dst.hi,$dst.lo,$shift
  2323     emit_opcode(cbuf,0x0F);
  2324     emit_opcode(cbuf,0xA5);
  2325     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2326     // SHL    $dst.lo,$shift"
  2327     emit_opcode(cbuf,0xD3);
  2328     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2329   %}
  2331   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2332     // TEST shift,32
  2333     emit_opcode(cbuf,0xF7);
  2334     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2335     emit_d32(cbuf,0x20);
  2336     // JEQ,s small
  2337     emit_opcode(cbuf, 0x74);
  2338     emit_d8(cbuf, 0x04);
  2339     // MOV    $dst.lo,$dst.hi
  2340     emit_opcode( cbuf, 0x8B );
  2341     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2342     // CLR    $dst.hi
  2343     emit_opcode(cbuf, 0x33);
  2344     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2345 // small:
  2346     // SHRD   $dst.lo,$dst.hi,$shift
  2347     emit_opcode(cbuf,0x0F);
  2348     emit_opcode(cbuf,0xAD);
  2349     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2350     // SHR    $dst.hi,$shift"
  2351     emit_opcode(cbuf,0xD3);
  2352     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2353   %}
  2355   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2356     // TEST shift,32
  2357     emit_opcode(cbuf,0xF7);
  2358     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2359     emit_d32(cbuf,0x20);
  2360     // JEQ,s small
  2361     emit_opcode(cbuf, 0x74);
  2362     emit_d8(cbuf, 0x05);
  2363     // MOV    $dst.lo,$dst.hi
  2364     emit_opcode( cbuf, 0x8B );
  2365     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2366     // SAR    $dst.hi,31
  2367     emit_opcode(cbuf, 0xC1);
  2368     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2369     emit_d8(cbuf, 0x1F );
  2370 // small:
  2371     // SHRD   $dst.lo,$dst.hi,$shift
  2372     emit_opcode(cbuf,0x0F);
  2373     emit_opcode(cbuf,0xAD);
  2374     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2375     // SAR    $dst.hi,$shift"
  2376     emit_opcode(cbuf,0xD3);
  2377     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2378   %}
  2381   // ----------------- Encodings for floating point unit -----------------
  2382   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2383   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2384     $$$emit8$primary;
  2385     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2386   %}
  2388   // Pop argument in FPR0 with FSTP ST(0)
  2389   enc_class PopFPU() %{
  2390     emit_opcode( cbuf, 0xDD );
  2391     emit_d8( cbuf, 0xD8 );
  2392   %}
  2394   // !!!!! equivalent to Pop_Reg_F
  2395   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2396     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2397     emit_d8( cbuf, 0xD8+$dst$$reg );
  2398   %}
  2400   enc_class Push_Reg_DPR( regDPR dst ) %{
  2401     emit_opcode( cbuf, 0xD9 );
  2402     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2403   %}
  2405   enc_class strictfp_bias1( regDPR dst ) %{
  2406     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2407     emit_opcode( cbuf, 0x2D );
  2408     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2409     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2410     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2411   %}
  2413   enc_class strictfp_bias2( regDPR dst ) %{
  2414     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2415     emit_opcode( cbuf, 0x2D );
  2416     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2417     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2418     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2419   %}
  2421   // Special case for moving an integer register to a stack slot.
  2422   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2423     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2424   %}
  2426   // Special case for moving a register to a stack slot.
  2427   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2428     // Opcode already emitted
  2429     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2430     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2431     emit_d32(cbuf, $dst$$disp);   // Displacement
  2432   %}
  2434   // Push the integer in stackSlot 'src' onto FP-stack
  2435   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2436     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2437   %}
  2439   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2440   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2441     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2442   %}
  2444   // Same as Pop_Mem_F except for opcode
  2445   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2446   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2447     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2448   %}
  2450   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2451     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2452     emit_d8( cbuf, 0xD8+$dst$$reg );
  2453   %}
  2455   enc_class Push_Reg_FPR( regFPR dst ) %{
  2456     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2457     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2458   %}
  2460   // Push FPU's float to a stack-slot, and pop FPU-stack
  2461   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2462     int pop = 0x02;
  2463     if ($src$$reg != FPR1L_enc) {
  2464       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2465       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2466       pop = 0x03;
  2468     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2469   %}
  2471   // Push FPU's double to a stack-slot, and pop FPU-stack
  2472   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2473     int pop = 0x02;
  2474     if ($src$$reg != FPR1L_enc) {
  2475       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2476       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2477       pop = 0x03;
  2479     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2480   %}
  2482   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2483   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2484     int pop = 0xD0 - 1; // -1 since we skip FLD
  2485     if ($src$$reg != FPR1L_enc) {
  2486       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2487       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2488       pop = 0xD8;
  2490     emit_opcode( cbuf, 0xDD );
  2491     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2492   %}
  2495   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2496     // load dst in FPR0
  2497     emit_opcode( cbuf, 0xD9 );
  2498     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2499     if ($src$$reg != FPR1L_enc) {
  2500       // fincstp
  2501       emit_opcode (cbuf, 0xD9);
  2502       emit_opcode (cbuf, 0xF7);
  2503       // swap src with FPR1:
  2504       // FXCH FPR1 with src
  2505       emit_opcode(cbuf, 0xD9);
  2506       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2507       // fdecstp
  2508       emit_opcode (cbuf, 0xD9);
  2509       emit_opcode (cbuf, 0xF6);
  2511   %}
  2513   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2514     MacroAssembler _masm(&cbuf);
  2515     __ subptr(rsp, 8);
  2516     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2517     __ fld_d(Address(rsp, 0));
  2518     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2519     __ fld_d(Address(rsp, 0));
  2520   %}
  2522   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2523     MacroAssembler _masm(&cbuf);
  2524     __ subptr(rsp, 4);
  2525     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2526     __ fld_s(Address(rsp, 0));
  2527     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2528     __ fld_s(Address(rsp, 0));
  2529   %}
  2531   enc_class Push_ResultD(regD dst) %{
  2532     MacroAssembler _masm(&cbuf);
  2533     __ fstp_d(Address(rsp, 0));
  2534     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2535     __ addptr(rsp, 8);
  2536   %}
  2538   enc_class Push_ResultF(regF dst, immI d8) %{
  2539     MacroAssembler _masm(&cbuf);
  2540     __ fstp_s(Address(rsp, 0));
  2541     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2542     __ addptr(rsp, $d8$$constant);
  2543   %}
  2545   enc_class Push_SrcD(regD src) %{
  2546     MacroAssembler _masm(&cbuf);
  2547     __ subptr(rsp, 8);
  2548     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2549     __ fld_d(Address(rsp, 0));
  2550   %}
  2552   enc_class push_stack_temp_qword() %{
  2553     MacroAssembler _masm(&cbuf);
  2554     __ subptr(rsp, 8);
  2555   %}
  2557   enc_class pop_stack_temp_qword() %{
  2558     MacroAssembler _masm(&cbuf);
  2559     __ addptr(rsp, 8);
  2560   %}
  2562   enc_class push_xmm_to_fpr1(regD src) %{
  2563     MacroAssembler _masm(&cbuf);
  2564     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2565     __ fld_d(Address(rsp, 0));
  2566   %}
  2568   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2569   // Otherwise return a NaN.
  2570   enc_class pow_exp_core_encoding %{
  2571     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2572     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2573     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2574     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2575     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2576     emit_opcode(cbuf,0x1C);
  2577     emit_d8(cbuf,0x24);
  2578     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2579     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2580     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2581     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2582     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2583     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2584     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2585     emit_d32(cbuf,0xFFFFF800);
  2586     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2587     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2588     emit_d32(cbuf,1023);
  2589     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2590     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2591     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2592     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2593     emit_d8(cbuf,20);
  2594     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2595     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2596     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2597     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2598     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2599     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2600     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2601     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2602     emit_d32(cbuf,0);
  2603     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2604     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2605   %}
  2607   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2608     if ($src$$reg != FPR1L_enc) {
  2609       // fincstp
  2610       emit_opcode (cbuf, 0xD9);
  2611       emit_opcode (cbuf, 0xF7);
  2612       // FXCH FPR1 with src
  2613       emit_opcode(cbuf, 0xD9);
  2614       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2615       // fdecstp
  2616       emit_opcode (cbuf, 0xD9);
  2617       emit_opcode (cbuf, 0xF6);
  2619     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2620     // // FSTP   FPR$dst$$reg
  2621     // emit_opcode( cbuf, 0xDD );
  2622     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2623   %}
  2625   enc_class fnstsw_sahf_skip_parity() %{
  2626     // fnstsw ax
  2627     emit_opcode( cbuf, 0xDF );
  2628     emit_opcode( cbuf, 0xE0 );
  2629     // sahf
  2630     emit_opcode( cbuf, 0x9E );
  2631     // jnp  ::skip
  2632     emit_opcode( cbuf, 0x7B );
  2633     emit_opcode( cbuf, 0x05 );
  2634   %}
  2636   enc_class emitModDPR() %{
  2637     // fprem must be iterative
  2638     // :: loop
  2639     // fprem
  2640     emit_opcode( cbuf, 0xD9 );
  2641     emit_opcode( cbuf, 0xF8 );
  2642     // wait
  2643     emit_opcode( cbuf, 0x9b );
  2644     // fnstsw ax
  2645     emit_opcode( cbuf, 0xDF );
  2646     emit_opcode( cbuf, 0xE0 );
  2647     // sahf
  2648     emit_opcode( cbuf, 0x9E );
  2649     // jp  ::loop
  2650     emit_opcode( cbuf, 0x0F );
  2651     emit_opcode( cbuf, 0x8A );
  2652     emit_opcode( cbuf, 0xF4 );
  2653     emit_opcode( cbuf, 0xFF );
  2654     emit_opcode( cbuf, 0xFF );
  2655     emit_opcode( cbuf, 0xFF );
  2656   %}
  2658   enc_class fpu_flags() %{
  2659     // fnstsw_ax
  2660     emit_opcode( cbuf, 0xDF);
  2661     emit_opcode( cbuf, 0xE0);
  2662     // test ax,0x0400
  2663     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2664     emit_opcode( cbuf, 0xA9 );
  2665     emit_d16   ( cbuf, 0x0400 );
  2666     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2667     // // test rax,0x0400
  2668     // emit_opcode( cbuf, 0xA9 );
  2669     // emit_d32   ( cbuf, 0x00000400 );
  2670     //
  2671     // jz exit (no unordered comparison)
  2672     emit_opcode( cbuf, 0x74 );
  2673     emit_d8    ( cbuf, 0x02 );
  2674     // mov ah,1 - treat as LT case (set carry flag)
  2675     emit_opcode( cbuf, 0xB4 );
  2676     emit_d8    ( cbuf, 0x01 );
  2677     // sahf
  2678     emit_opcode( cbuf, 0x9E);
  2679   %}
  2681   enc_class cmpF_P6_fixup() %{
  2682     // Fixup the integer flags in case comparison involved a NaN
  2683     //
  2684     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2685     emit_opcode( cbuf, 0x7B );
  2686     emit_d8    ( cbuf, 0x03 );
  2687     // MOV AH,1 - treat as LT case (set carry flag)
  2688     emit_opcode( cbuf, 0xB4 );
  2689     emit_d8    ( cbuf, 0x01 );
  2690     // SAHF
  2691     emit_opcode( cbuf, 0x9E);
  2692     // NOP     // target for branch to avoid branch to branch
  2693     emit_opcode( cbuf, 0x90);
  2694   %}
  2696 //     fnstsw_ax();
  2697 //     sahf();
  2698 //     movl(dst, nan_result);
  2699 //     jcc(Assembler::parity, exit);
  2700 //     movl(dst, less_result);
  2701 //     jcc(Assembler::below, exit);
  2702 //     movl(dst, equal_result);
  2703 //     jcc(Assembler::equal, exit);
  2704 //     movl(dst, greater_result);
  2706 // less_result     =  1;
  2707 // greater_result  = -1;
  2708 // equal_result    = 0;
  2709 // nan_result      = -1;
  2711   enc_class CmpF_Result(eRegI dst) %{
  2712     // fnstsw_ax();
  2713     emit_opcode( cbuf, 0xDF);
  2714     emit_opcode( cbuf, 0xE0);
  2715     // sahf
  2716     emit_opcode( cbuf, 0x9E);
  2717     // movl(dst, nan_result);
  2718     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2719     emit_d32( cbuf, -1 );
  2720     // jcc(Assembler::parity, exit);
  2721     emit_opcode( cbuf, 0x7A );
  2722     emit_d8    ( cbuf, 0x13 );
  2723     // movl(dst, less_result);
  2724     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2725     emit_d32( cbuf, -1 );
  2726     // jcc(Assembler::below, exit);
  2727     emit_opcode( cbuf, 0x72 );
  2728     emit_d8    ( cbuf, 0x0C );
  2729     // movl(dst, equal_result);
  2730     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2731     emit_d32( cbuf, 0 );
  2732     // jcc(Assembler::equal, exit);
  2733     emit_opcode( cbuf, 0x74 );
  2734     emit_d8    ( cbuf, 0x05 );
  2735     // movl(dst, greater_result);
  2736     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2737     emit_d32( cbuf, 1 );
  2738   %}
  2741   // Compare the longs and set flags
  2742   // BROKEN!  Do Not use as-is
  2743   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2744     // CMP    $src1.hi,$src2.hi
  2745     emit_opcode( cbuf, 0x3B );
  2746     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2747     // JNE,s  done
  2748     emit_opcode(cbuf,0x75);
  2749     emit_d8(cbuf, 2 );
  2750     // CMP    $src1.lo,$src2.lo
  2751     emit_opcode( cbuf, 0x3B );
  2752     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2753 // done:
  2754   %}
  2756   enc_class convert_int_long( regL dst, eRegI src ) %{
  2757     // mov $dst.lo,$src
  2758     int dst_encoding = $dst$$reg;
  2759     int src_encoding = $src$$reg;
  2760     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2761     // mov $dst.hi,$src
  2762     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2763     // sar $dst.hi,31
  2764     emit_opcode( cbuf, 0xC1 );
  2765     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2766     emit_d8(cbuf, 0x1F );
  2767   %}
  2769   enc_class convert_long_double( eRegL src ) %{
  2770     // push $src.hi
  2771     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2772     // push $src.lo
  2773     emit_opcode(cbuf, 0x50+$src$$reg  );
  2774     // fild 64-bits at [SP]
  2775     emit_opcode(cbuf,0xdf);
  2776     emit_d8(cbuf, 0x6C);
  2777     emit_d8(cbuf, 0x24);
  2778     emit_d8(cbuf, 0x00);
  2779     // pop stack
  2780     emit_opcode(cbuf, 0x83); // add  SP, #8
  2781     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2782     emit_d8(cbuf, 0x8);
  2783   %}
  2785   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2786     // IMUL   EDX:EAX,$src1
  2787     emit_opcode( cbuf, 0xF7 );
  2788     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2789     // SAR    EDX,$cnt-32
  2790     int shift_count = ((int)$cnt$$constant) - 32;
  2791     if (shift_count > 0) {
  2792       emit_opcode(cbuf, 0xC1);
  2793       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2794       emit_d8(cbuf, shift_count);
  2796   %}
  2798   // this version doesn't have add sp, 8
  2799   enc_class convert_long_double2( eRegL src ) %{
  2800     // push $src.hi
  2801     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2802     // push $src.lo
  2803     emit_opcode(cbuf, 0x50+$src$$reg  );
  2804     // fild 64-bits at [SP]
  2805     emit_opcode(cbuf,0xdf);
  2806     emit_d8(cbuf, 0x6C);
  2807     emit_d8(cbuf, 0x24);
  2808     emit_d8(cbuf, 0x00);
  2809   %}
  2811   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2812     // Basic idea: long = (long)int * (long)int
  2813     // IMUL EDX:EAX, src
  2814     emit_opcode( cbuf, 0xF7 );
  2815     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2816   %}
  2818   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2819     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2820     // MUL EDX:EAX, src
  2821     emit_opcode( cbuf, 0xF7 );
  2822     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2823   %}
  2825   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  2826     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2827     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2828     // MOV    $tmp,$src.lo
  2829     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2830     // IMUL   $tmp,EDX
  2831     emit_opcode( cbuf, 0x0F );
  2832     emit_opcode( cbuf, 0xAF );
  2833     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2834     // MOV    EDX,$src.hi
  2835     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2836     // IMUL   EDX,EAX
  2837     emit_opcode( cbuf, 0x0F );
  2838     emit_opcode( cbuf, 0xAF );
  2839     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2840     // ADD    $tmp,EDX
  2841     emit_opcode( cbuf, 0x03 );
  2842     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2843     // MUL   EDX:EAX,$src.lo
  2844     emit_opcode( cbuf, 0xF7 );
  2845     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2846     // ADD    EDX,ESI
  2847     emit_opcode( cbuf, 0x03 );
  2848     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2849   %}
  2851   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  2852     // Basic idea: lo(result) = lo(src * y_lo)
  2853     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2854     // IMUL   $tmp,EDX,$src
  2855     emit_opcode( cbuf, 0x6B );
  2856     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2857     emit_d8( cbuf, (int)$src$$constant );
  2858     // MOV    EDX,$src
  2859     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2860     emit_d32( cbuf, (int)$src$$constant );
  2861     // MUL   EDX:EAX,EDX
  2862     emit_opcode( cbuf, 0xF7 );
  2863     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2864     // ADD    EDX,ESI
  2865     emit_opcode( cbuf, 0x03 );
  2866     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2867   %}
  2869   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2870     // PUSH src1.hi
  2871     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2872     // PUSH src1.lo
  2873     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2874     // PUSH src2.hi
  2875     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2876     // PUSH src2.lo
  2877     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2878     // CALL directly to the runtime
  2879     cbuf.set_insts_mark();
  2880     emit_opcode(cbuf,0xE8);       // Call into runtime
  2881     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2882     // Restore stack
  2883     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2884     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2885     emit_d8(cbuf, 4*4);
  2886   %}
  2888   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2889     // PUSH src1.hi
  2890     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2891     // PUSH src1.lo
  2892     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2893     // PUSH src2.hi
  2894     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2895     // PUSH src2.lo
  2896     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2897     // CALL directly to the runtime
  2898     cbuf.set_insts_mark();
  2899     emit_opcode(cbuf,0xE8);       // Call into runtime
  2900     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2901     // Restore stack
  2902     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2903     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2904     emit_d8(cbuf, 4*4);
  2905   %}
  2907   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  2908     // MOV   $tmp,$src.lo
  2909     emit_opcode(cbuf, 0x8B);
  2910     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2911     // OR    $tmp,$src.hi
  2912     emit_opcode(cbuf, 0x0B);
  2913     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2914   %}
  2916   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2917     // CMP    $src1.lo,$src2.lo
  2918     emit_opcode( cbuf, 0x3B );
  2919     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2920     // JNE,s  skip
  2921     emit_cc(cbuf, 0x70, 0x5);
  2922     emit_d8(cbuf,2);
  2923     // CMP    $src1.hi,$src2.hi
  2924     emit_opcode( cbuf, 0x3B );
  2925     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2926   %}
  2928   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  2929     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2930     emit_opcode( cbuf, 0x3B );
  2931     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2932     // MOV    $tmp,$src1.hi
  2933     emit_opcode( cbuf, 0x8B );
  2934     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2935     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2936     emit_opcode( cbuf, 0x1B );
  2937     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2938   %}
  2940   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  2941     // XOR    $tmp,$tmp
  2942     emit_opcode(cbuf,0x33);  // XOR
  2943     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2944     // CMP    $tmp,$src.lo
  2945     emit_opcode( cbuf, 0x3B );
  2946     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2947     // SBB    $tmp,$src.hi
  2948     emit_opcode( cbuf, 0x1B );
  2949     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2950   %}
  2952  // Sniff, sniff... smells like Gnu Superoptimizer
  2953   enc_class neg_long( eRegL dst ) %{
  2954     emit_opcode(cbuf,0xF7);    // NEG hi
  2955     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2956     emit_opcode(cbuf,0xF7);    // NEG lo
  2957     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2958     emit_opcode(cbuf,0x83);    // SBB hi,0
  2959     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2960     emit_d8    (cbuf,0 );
  2961   %}
  2964   // Because the transitions from emitted code to the runtime
  2965   // monitorenter/exit helper stubs are so slow it's critical that
  2966   // we inline both the stack-locking fast-path and the inflated fast path.
  2967   //
  2968   // See also: cmpFastLock and cmpFastUnlock.
  2969   //
  2970   // What follows is a specialized inline transliteration of the code
  2971   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2972   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2973   // at startup-time.  These methods would accept arguments as
  2974   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2975   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2976   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2977   // In practice, however, the # of lock sites is bounded and is usually small.
  2978   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2979   // if the processor uses simple bimodal branch predictors keyed by EIP
  2980   // Since the helper routines would be called from multiple synchronization
  2981   // sites.
  2982   //
  2983   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2984   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2985   // to those specialized methods.  That'd give us a mostly platform-independent
  2986   // implementation that the JITs could optimize and inline at their pleasure.
  2987   // Done correctly, the only time we'd need to cross to native could would be
  2988   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2989   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2990   // (b) explicit barriers or fence operations.
  2991   //
  2992   // TODO:
  2993   //
  2994   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2995   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2996   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2997   //    the lock operators would typically be faster than reifying Self.
  2998   //
  2999   // *  Ideally I'd define the primitives as:
  3000   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3001   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3002   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3003   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3004   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3005   //    sub-optimal code near the synchronization site.
  3006   //
  3007   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3008   //    Alternately, use a better sp-proximity test.
  3009   //
  3010   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3011   //    Either one is sufficient to uniquely identify a thread.
  3012   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3013   //
  3014   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3015   //    object is locked by the calling thread but the waitlist is empty.
  3016   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3017   //
  3018   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3019   //    But beware of excessive branch density on AMD Opterons.
  3020   //
  3021   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3022   //    or failure of the fast-path.  If the fast-path fails then we pass
  3023   //    control to the slow-path, typically in C.  In Fast_Lock and
  3024   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3025   //    will emit a conditional branch immediately after the node.
  3026   //    So we have branches to branches and lots of ICC.ZF games.
  3027   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3028   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3029   //    will drop through the node.  ICC.ZF is undefined at exit.
  3030   //    In the case of failure, the node will branch directly to the
  3031   //    FailureLabel
  3034   // obj: object to lock
  3035   // box: on-stack box address (displaced header location) - KILLED
  3036   // rax,: tmp -- KILLED
  3037   // scr: tmp -- KILLED
  3038   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3040     Register objReg = as_Register($obj$$reg);
  3041     Register boxReg = as_Register($box$$reg);
  3042     Register tmpReg = as_Register($tmp$$reg);
  3043     Register scrReg = as_Register($scr$$reg);
  3045     // Ensure the register assignents are disjoint
  3046     guarantee (objReg != boxReg, "") ;
  3047     guarantee (objReg != tmpReg, "") ;
  3048     guarantee (objReg != scrReg, "") ;
  3049     guarantee (boxReg != tmpReg, "") ;
  3050     guarantee (boxReg != scrReg, "") ;
  3051     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3053     MacroAssembler masm(&cbuf);
  3055     if (_counters != NULL) {
  3056       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3058     if (EmitSync & 1) {
  3059         // set box->dhw = unused_mark (3)
  3060         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3061         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3062         masm.cmpptr (rsp, (int32_t)0) ;                        
  3063     } else 
  3064     if (EmitSync & 2) { 
  3065         Label DONE_LABEL ;           
  3066         if (UseBiasedLocking) {
  3067            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3068            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3071         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3072         masm.orptr (tmpReg, 0x1);
  3073         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3074         if (os::is_MP()) { masm.lock();  }
  3075         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3076         masm.jcc(Assembler::equal, DONE_LABEL);
  3077         // Recursive locking
  3078         masm.subptr(tmpReg, rsp);
  3079         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3080         masm.movptr(Address(boxReg, 0), tmpReg);
  3081         masm.bind(DONE_LABEL) ; 
  3082     } else {  
  3083       // Possible cases that we'll encounter in fast_lock 
  3084       // ------------------------------------------------
  3085       // * Inflated
  3086       //    -- unlocked
  3087       //    -- Locked
  3088       //       = by self
  3089       //       = by other
  3090       // * biased
  3091       //    -- by Self
  3092       //    -- by other
  3093       // * neutral
  3094       // * stack-locked
  3095       //    -- by self
  3096       //       = sp-proximity test hits
  3097       //       = sp-proximity test generates false-negative
  3098       //    -- by other
  3099       //
  3101       Label IsInflated, DONE_LABEL, PopDone ;
  3103       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3104       // order to reduce the number of conditional branches in the most common cases.
  3105       // Beware -- there's a subtle invariant that fetch of the markword
  3106       // at [FETCH], below, will never observe a biased encoding (*101b).
  3107       // If this invariant is not held we risk exclusion (safety) failure.
  3108       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3109         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3112       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3113       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3114       masm.jccb  (Assembler::notZero, IsInflated) ;
  3116       // Attempt stack-locking ...
  3117       masm.orptr (tmpReg, 0x1);
  3118       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3119       if (os::is_MP()) { masm.lock();  }
  3120       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3121       if (_counters != NULL) {
  3122         masm.cond_inc32(Assembler::equal,
  3123                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3125       masm.jccb (Assembler::equal, DONE_LABEL);
  3127       // Recursive locking
  3128       masm.subptr(tmpReg, rsp);
  3129       masm.andptr(tmpReg, 0xFFFFF003 );
  3130       masm.movptr(Address(boxReg, 0), tmpReg);
  3131       if (_counters != NULL) {
  3132         masm.cond_inc32(Assembler::equal,
  3133                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3135       masm.jmp  (DONE_LABEL) ;
  3137       masm.bind (IsInflated) ;
  3139       // The object is inflated.
  3140       //
  3141       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3142       //   Use markOopDesc::monitor_value instead of "2".
  3143       //   use markOop::unused_mark() instead of "3".
  3144       // The tmpReg value is an objectMonitor reference ORed with
  3145       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3146       // objectmonitor pointer by masking off the "2" bit or we can just
  3147       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3148       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3149       //
  3150       // I use the latter as it avoids AGI stalls.
  3151       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3152       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3153       //
  3154       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3156       // boxReg refers to the on-stack BasicLock in the current frame.
  3157       // We'd like to write:
  3158       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3159       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3160       // additional latency as we have another ST in the store buffer that must drain.
  3162       if (EmitSync & 8192) { 
  3163          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3164          masm.get_thread (scrReg) ; 
  3165          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3166          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3167          if (os::is_MP()) { masm.lock(); } 
  3168          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3169       } else 
  3170       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3171          masm.movptr(scrReg, boxReg) ; 
  3172          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3174          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3175          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3176             // prefetchw [eax + Offset(_owner)-2]
  3177             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3180          if ((EmitSync & 64) == 0) {
  3181            // Optimistic form: consider XORL tmpReg,tmpReg
  3182            masm.movptr(tmpReg, NULL_WORD) ; 
  3183          } else { 
  3184            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3185            // Test-And-CAS instead of CAS
  3186            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3187            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3188            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3191          // Appears unlocked - try to swing _owner from null to non-null.
  3192          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3193          // to CAS the register containing Self into m->Owner.
  3194          // But we don't have enough registers, so instead we can either try to CAS
  3195          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3196          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3197          // (rsp or the address of the box) into  m->owner is harmless.
  3198          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3199          if (os::is_MP()) { masm.lock();  }
  3200          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3201          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3202          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3203          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3204          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3205          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3207          // If the CAS fails we can either retry or pass control to the slow-path.  
  3208          // We use the latter tactic.  
  3209          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3210          // If the CAS was successful ...
  3211          //   Self has acquired the lock
  3212          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3213          // Intentional fall-through into DONE_LABEL ...
  3214       } else {
  3215          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3216          masm.movptr(boxReg, tmpReg) ; 
  3218          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3219          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3220             // prefetchw [eax + Offset(_owner)-2]
  3221             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3224          if ((EmitSync & 64) == 0) {
  3225            // Optimistic form
  3226            masm.xorptr  (tmpReg, tmpReg) ; 
  3227          } else { 
  3228            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3229            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3230            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3231            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3234          // Appears unlocked - try to swing _owner from null to non-null.
  3235          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3236          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3237          masm.get_thread (scrReg) ;
  3238          if (os::is_MP()) { masm.lock(); }
  3239          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3241          // If the CAS fails we can either retry or pass control to the slow-path.
  3242          // We use the latter tactic.
  3243          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3244          // If the CAS was successful ...
  3245          //   Self has acquired the lock
  3246          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3247          // Intentional fall-through into DONE_LABEL ...
  3250       // DONE_LABEL is a hot target - we'd really like to place it at the
  3251       // start of cache line by padding with NOPs.
  3252       // See the AMD and Intel software optimization manuals for the
  3253       // most efficient "long" NOP encodings.
  3254       // Unfortunately none of our alignment mechanisms suffice.
  3255       masm.bind(DONE_LABEL);
  3257       // Avoid branch-to-branch on AMD processors
  3258       // This appears to be superstition.
  3259       if (EmitSync & 32) masm.nop() ;
  3262       // At DONE_LABEL the icc ZFlag is set as follows ...
  3263       // Fast_Unlock uses the same protocol.
  3264       // ZFlag == 1 -> Success
  3265       // ZFlag == 0 -> Failure - force control through the slow-path
  3267   %}
  3269   // obj: object to unlock
  3270   // box: box address (displaced header location), killed.  Must be EAX.
  3271   // rbx,: killed tmp; cannot be obj nor box.
  3272   //
  3273   // Some commentary on balanced locking:
  3274   //
  3275   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3276   // Methods that don't have provably balanced locking are forced to run in the
  3277   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3278   // The interpreter provides two properties:
  3279   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3280   //      objects acquired the current activation (frame).  Recall that the
  3281   //      interpreter maintains an on-stack list of locks currently held by
  3282   //      a frame.
  3283   // I2:  If a method attempts to unlock an object that is not held by the
  3284   //      the frame the interpreter throws IMSX.
  3285   //
  3286   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3287   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3288   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3289   // is still locked by A().
  3290   //
  3291   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3292   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3293   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3294   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3296   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3298     Register objReg = as_Register($obj$$reg);
  3299     Register boxReg = as_Register($box$$reg);
  3300     Register tmpReg = as_Register($tmp$$reg);
  3302     guarantee (objReg != boxReg, "") ;
  3303     guarantee (objReg != tmpReg, "") ;
  3304     guarantee (boxReg != tmpReg, "") ;
  3305     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3306     MacroAssembler masm(&cbuf);
  3308     if (EmitSync & 4) {
  3309       // Disable - inhibit all inlining.  Force control through the slow-path
  3310       masm.cmpptr (rsp, 0) ; 
  3311     } else 
  3312     if (EmitSync & 8) {
  3313       Label DONE_LABEL ;
  3314       if (UseBiasedLocking) {
  3315          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3317       // classic stack-locking code ...
  3318       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3319       masm.testptr(tmpReg, tmpReg) ;
  3320       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3321       if (os::is_MP()) { masm.lock(); }
  3322       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3323       masm.bind(DONE_LABEL);
  3324     } else {
  3325       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3327       // Critically, the biased locking test must have precedence over
  3328       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3329       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3330          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3333       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3334       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3335       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3337       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3338       masm.jccb  (Assembler::zero, Stacked) ;
  3340       masm.bind  (Inflated) ;
  3341       // It's inflated.
  3342       // Despite our balanced locking property we still check that m->_owner == Self
  3343       // as java routines or native JNI code called by this thread might
  3344       // have released the lock.
  3345       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3346       // state in _succ so we can avoid fetching EntryList|cxq.
  3347       //
  3348       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3349       // such as recursive enter and exit -- but we have to be wary of
  3350       // I$ bloat, T$ effects and BP$ effects.
  3351       //
  3352       // If there's no contention try a 1-0 exit.  That is, exit without
  3353       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3354       // we detect and recover from the race that the 1-0 exit admits.
  3355       //
  3356       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3357       // before it STs null into _owner, releasing the lock.  Updates
  3358       // to data protected by the critical section must be visible before
  3359       // we drop the lock (and thus before any other thread could acquire
  3360       // the lock and observe the fields protected by the lock).
  3361       // IA32's memory-model is SPO, so STs are ordered with respect to
  3362       // each other and there's no need for an explicit barrier (fence).
  3363       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3365       masm.get_thread (boxReg) ;
  3366       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3367         // prefetchw [ebx + Offset(_owner)-2]
  3368         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3371       // Note that we could employ various encoding schemes to reduce
  3372       // the number of loads below (currently 4) to just 2 or 3.
  3373       // Refer to the comments in synchronizer.cpp.
  3374       // In practice the chain of fetches doesn't seem to impact performance, however.
  3375       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3376          // Attempt to reduce branch density - AMD's branch predictor.
  3377          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3378          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3379          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3380          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3381          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3382          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3383          masm.jmpb  (DONE_LABEL) ; 
  3384       } else { 
  3385          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3386          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3387          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3388          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3389          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3390          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3391          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3392          masm.jmpb  (DONE_LABEL) ; 
  3395       // The Following code fragment (EmitSync & 65536) improves the performance of
  3396       // contended applications and contended synchronization microbenchmarks.
  3397       // Unfortunately the emission of the code - even though not executed - causes regressions
  3398       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3399       // with an equal number of never-executed NOPs results in the same regression.
  3400       // We leave it off by default.
  3402       if ((EmitSync & 65536) != 0) {
  3403          Label LSuccess, LGoSlowPath ;
  3405          masm.bind  (CheckSucc) ;
  3407          // Optional pre-test ... it's safe to elide this
  3408          if ((EmitSync & 16) == 0) { 
  3409             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3410             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3413          // We have a classic Dekker-style idiom:
  3414          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3415          // There are a number of ways to implement the barrier:
  3416          // (1) lock:andl &m->_owner, 0
  3417          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3418          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3419          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3420          // (2) If supported, an explicit MFENCE is appealing.
  3421          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3422          //     particularly if the write-buffer is full as might be the case if
  3423          //     if stores closely precede the fence or fence-equivalent instruction.
  3424          //     In more modern implementations MFENCE appears faster, however.
  3425          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3426          //     The $lines underlying the top-of-stack should be in M-state.
  3427          //     The locked add instruction is serializing, of course.
  3428          // (4) Use xchg, which is serializing
  3429          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3430          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3431          //     The integer condition codes will tell us if succ was 0.
  3432          //     Since _succ and _owner should reside in the same $line and
  3433          //     we just stored into _owner, it's likely that the $line
  3434          //     remains in M-state for the lock:orl.
  3435          //
  3436          // We currently use (3), although it's likely that switching to (2)
  3437          // is correct for the future.
  3439          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3440          if (os::is_MP()) { 
  3441             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3442               masm.mfence();
  3443             } else { 
  3444               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3447          // Ratify _succ remains non-null
  3448          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3449          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3451          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3452          if (os::is_MP()) { masm.lock(); }
  3453          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3454          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3455          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3456          // Now install Self over rsp.  This is safe as we're transitioning from
  3457          // non-null to non=null
  3458          masm.get_thread (boxReg) ;
  3459          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3460          // Intentional fall-through into LGoSlowPath ...
  3462          masm.bind  (LGoSlowPath) ; 
  3463          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3464          masm.jmpb  (DONE_LABEL) ; 
  3466          masm.bind  (LSuccess) ; 
  3467          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3468          masm.jmpb  (DONE_LABEL) ; 
  3471       masm.bind (Stacked) ;
  3472       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3473       // It must be stack-locked.
  3474       // Try to reset the header to displaced header.
  3475       // The "box" value on the stack is stable, so we can reload
  3476       // and be assured we observe the same value as above.
  3477       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3478       if (os::is_MP()) {   masm.lock();    }
  3479       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3480       // Intention fall-thru into DONE_LABEL
  3483       // DONE_LABEL is a hot target - we'd really like to place it at the
  3484       // start of cache line by padding with NOPs.
  3485       // See the AMD and Intel software optimization manuals for the
  3486       // most efficient "long" NOP encodings.
  3487       // Unfortunately none of our alignment mechanisms suffice.
  3488       if ((EmitSync & 65536) == 0) {
  3489          masm.bind (CheckSucc) ;
  3491       masm.bind(DONE_LABEL);
  3493       // Avoid branch to branch on AMD processors
  3494       if (EmitSync & 32768) { masm.nop() ; }
  3496   %}
  3499   enc_class enc_pop_rdx() %{
  3500     emit_opcode(cbuf,0x5A);
  3501   %}
  3503   enc_class enc_rethrow() %{
  3504     cbuf.set_insts_mark();
  3505     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3506     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3507                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3508   %}
  3511   // Convert a double to an int.  Java semantics require we do complex
  3512   // manglelations in the corner cases.  So we set the rounding mode to
  3513   // 'zero', store the darned double down as an int, and reset the
  3514   // rounding mode to 'nearest'.  The hardware throws an exception which
  3515   // patches up the correct value directly to the stack.
  3516   enc_class DPR2I_encoding( regDPR src ) %{
  3517     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3518     // exceptions here, so that a NAN or other corner-case value will
  3519     // thrown an exception (but normal values get converted at full speed).
  3520     // However, I2C adapters and other float-stack manglers leave pending
  3521     // invalid-op exceptions hanging.  We would have to clear them before
  3522     // enabling them and that is more expensive than just testing for the
  3523     // invalid value Intel stores down in the corner cases.
  3524     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3525     emit_opcode(cbuf,0x2D);
  3526     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3527     // Allocate a word
  3528     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3529     emit_opcode(cbuf,0xEC);
  3530     emit_d8(cbuf,0x04);
  3531     // Encoding assumes a double has been pushed into FPR0.
  3532     // Store down the double as an int, popping the FPU stack
  3533     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3534     emit_opcode(cbuf,0x1C);
  3535     emit_d8(cbuf,0x24);
  3536     // Restore the rounding mode; mask the exception
  3537     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3538     emit_opcode(cbuf,0x2D);
  3539     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3540         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3541         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3543     // Load the converted int; adjust CPU stack
  3544     emit_opcode(cbuf,0x58);       // POP EAX
  3545     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3546     emit_d32   (cbuf,0x80000000); //         0x80000000
  3547     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3548     emit_d8    (cbuf,0x07);       // Size of slow_call
  3549     // Push src onto stack slow-path
  3550     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3551     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3552     // CALL directly to the runtime
  3553     cbuf.set_insts_mark();
  3554     emit_opcode(cbuf,0xE8);       // Call into runtime
  3555     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3556     // Carry on here...
  3557   %}
  3559   enc_class DPR2L_encoding( regDPR src ) %{
  3560     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3561     emit_opcode(cbuf,0x2D);
  3562     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3563     // Allocate a word
  3564     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3565     emit_opcode(cbuf,0xEC);
  3566     emit_d8(cbuf,0x08);
  3567     // Encoding assumes a double has been pushed into FPR0.
  3568     // Store down the double as a long, popping the FPU stack
  3569     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3570     emit_opcode(cbuf,0x3C);
  3571     emit_d8(cbuf,0x24);
  3572     // Restore the rounding mode; mask the exception
  3573     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3574     emit_opcode(cbuf,0x2D);
  3575     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3576         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3577         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3579     // Load the converted int; adjust CPU stack
  3580     emit_opcode(cbuf,0x58);       // POP EAX
  3581     emit_opcode(cbuf,0x5A);       // POP EDX
  3582     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3583     emit_d8    (cbuf,0xFA);       // rdx
  3584     emit_d32   (cbuf,0x80000000); //         0x80000000
  3585     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3586     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3587     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3588     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3589     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3590     emit_d8    (cbuf,0x07);       // Size of slow_call
  3591     // Push src onto stack slow-path
  3592     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3593     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3594     // CALL directly to the runtime
  3595     cbuf.set_insts_mark();
  3596     emit_opcode(cbuf,0xE8);       // Call into runtime
  3597     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3598     // Carry on here...
  3599   %}
  3601   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3602     // Operand was loaded from memory into fp ST (stack top)
  3603     // FMUL   ST,$src  /* D8 C8+i */
  3604     emit_opcode(cbuf, 0xD8);
  3605     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3606   %}
  3608   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3609     // FADDP  ST,src2  /* D8 C0+i */
  3610     emit_opcode(cbuf, 0xD8);
  3611     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3612     //could use FADDP  src2,fpST  /* DE C0+i */
  3613   %}
  3615   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3616     // FADDP  src2,ST  /* DE C0+i */
  3617     emit_opcode(cbuf, 0xDE);
  3618     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3619   %}
  3621   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3622     // Operand has been loaded into fp ST (stack top)
  3623       // FSUB   ST,$src1
  3624       emit_opcode(cbuf, 0xD8);
  3625       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3627       // FDIV
  3628       emit_opcode(cbuf, 0xD8);
  3629       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3630   %}
  3632   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3633     // Operand was loaded from memory into fp ST (stack top)
  3634     // FADD   ST,$src  /* D8 C0+i */
  3635     emit_opcode(cbuf, 0xD8);
  3636     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3638     // FMUL  ST,src2  /* D8 C*+i */
  3639     emit_opcode(cbuf, 0xD8);
  3640     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3641   %}
  3644   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3645     // Operand was loaded from memory into fp ST (stack top)
  3646     // FADD   ST,$src  /* D8 C0+i */
  3647     emit_opcode(cbuf, 0xD8);
  3648     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3650     // FMULP  src2,ST  /* DE C8+i */
  3651     emit_opcode(cbuf, 0xDE);
  3652     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3653   %}
  3655   // Atomically load the volatile long
  3656   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3657     emit_opcode(cbuf,0xDF);
  3658     int rm_byte_opcode = 0x05;
  3659     int base     = $mem$$base;
  3660     int index    = $mem$$index;
  3661     int scale    = $mem$$scale;
  3662     int displace = $mem$$disp;
  3663     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3664     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3665     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3666   %}
  3668   // Volatile Store Long.  Must be atomic, so move it into
  3669   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3670   // target address before the store (for null-ptr checks)
  3671   // so the memory operand is used twice in the encoding.
  3672   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3673     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3674     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3675     emit_opcode(cbuf,0xDF);
  3676     int rm_byte_opcode = 0x07;
  3677     int base     = $mem$$base;
  3678     int index    = $mem$$index;
  3679     int scale    = $mem$$scale;
  3680     int displace = $mem$$disp;
  3681     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3682     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3683   %}
  3685   // Safepoint Poll.  This polls the safepoint page, and causes an
  3686   // exception if it is not readable. Unfortunately, it kills the condition code
  3687   // in the process
  3688   // We current use TESTL [spp],EDI
  3689   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3691   enc_class Safepoint_Poll() %{
  3692     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3693     emit_opcode(cbuf,0x85);
  3694     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3695     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3696   %}
  3697 %}
  3700 //----------FRAME--------------------------------------------------------------
  3701 // Definition of frame structure and management information.
  3702 //
  3703 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3704 //                             |   (to get allocators register number
  3705 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3706 //  r   CALLER     |        |
  3707 //  o     |        +--------+      pad to even-align allocators stack-slot
  3708 //  w     V        |  pad0  |        numbers; owned by CALLER
  3709 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3710 //  h     ^        |   in   |  5
  3711 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3712 //  |     |        |        |  3
  3713 //  |     |        +--------+
  3714 //  V     |        | old out|      Empty on Intel, window on Sparc
  3715 //        |    old |preserve|      Must be even aligned.
  3716 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3717 //        |        |   in   |  3   area for Intel ret address
  3718 //     Owned by    |preserve|      Empty on Sparc.
  3719 //       SELF      +--------+
  3720 //        |        |  pad2  |  2   pad to align old SP
  3721 //        |        +--------+  1
  3722 //        |        | locks  |  0
  3723 //        |        +--------+----> OptoReg::stack0(), even aligned
  3724 //        |        |  pad1  | 11   pad to align new SP
  3725 //        |        +--------+
  3726 //        |        |        | 10
  3727 //        |        | spills |  9   spills
  3728 //        V        |        |  8   (pad0 slot for callee)
  3729 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3730 //        ^        |  out   |  7
  3731 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3732 //     Owned by    +--------+
  3733 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3734 //        |    new |preserve|      Must be even-aligned.
  3735 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3736 //        |        |        |
  3737 //
  3738 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3739 //         known from SELF's arguments and the Java calling convention.
  3740 //         Region 6-7 is determined per call site.
  3741 // Note 2: If the calling convention leaves holes in the incoming argument
  3742 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3743 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3744 //         incoming area, as the Java calling convention is completely under
  3745 //         the control of the AD file.  Doubles can be sorted and packed to
  3746 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3747 //         varargs C calling conventions.
  3748 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3749 //         even aligned with pad0 as needed.
  3750 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3751 //         region 6-11 is even aligned; it may be padded out more so that
  3752 //         the region from SP to FP meets the minimum stack alignment.
  3754 frame %{
  3755   // What direction does stack grow in (assumed to be same for C & Java)
  3756   stack_direction(TOWARDS_LOW);
  3758   // These three registers define part of the calling convention
  3759   // between compiled code and the interpreter.
  3760   inline_cache_reg(EAX);                // Inline Cache Register
  3761   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3763   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3764   cisc_spilling_operand_name(indOffset32);
  3766   // Number of stack slots consumed by locking an object
  3767   sync_stack_slots(1);
  3769   // Compiled code's Frame Pointer
  3770   frame_pointer(ESP);
  3771   // Interpreter stores its frame pointer in a register which is
  3772   // stored to the stack by I2CAdaptors.
  3773   // I2CAdaptors convert from interpreted java to compiled java.
  3774   interpreter_frame_pointer(EBP);
  3776   // Stack alignment requirement
  3777   // Alignment size in bytes (128-bit -> 16 bytes)
  3778   stack_alignment(StackAlignmentInBytes);
  3780   // Number of stack slots between incoming argument block and the start of
  3781   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3782   // EPILOG must remove this many slots.  Intel needs one slot for
  3783   // return address and one for rbp, (must save rbp)
  3784   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3786   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3787   // for calls to C.  Supports the var-args backing area for register parms.
  3788   varargs_C_out_slots_killed(0);
  3790   // The after-PROLOG location of the return address.  Location of
  3791   // return address specifies a type (REG or STACK) and a number
  3792   // representing the register number (i.e. - use a register name) or
  3793   // stack slot.
  3794   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3795   // Otherwise, it is above the locks and verification slot and alignment word
  3796   return_addr(STACK - 1 +
  3797               round_to(1+VerifyStackAtCalls+
  3798               Compile::current()->fixed_slots(),
  3799               (StackAlignmentInBytes/wordSize)));
  3801   // Body of function which returns an integer array locating
  3802   // arguments either in registers or in stack slots.  Passed an array
  3803   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3804   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3805   // arguments for a CALLEE.  Incoming stack arguments are
  3806   // automatically biased by the preserve_stack_slots field above.
  3807   calling_convention %{
  3808     // No difference between ingoing/outgoing just pass false
  3809     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3810   %}
  3813   // Body of function which returns an integer array locating
  3814   // arguments either in registers or in stack slots.  Passed an array
  3815   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3816   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3817   // arguments for a CALLEE.  Incoming stack arguments are
  3818   // automatically biased by the preserve_stack_slots field above.
  3819   c_calling_convention %{
  3820     // This is obviously always outgoing
  3821     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3822   %}
  3824   // Location of C & interpreter return values
  3825   c_return_value %{
  3826     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3827     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3828     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3830     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3831     // that C functions return float and double results in XMM0.
  3832     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3833       return OptoRegPair(XMM0b_num,XMM0a_num);
  3834     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3835       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3837     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3838   %}
  3840   // Location of return values
  3841   return_value %{
  3842     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3843     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3844     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3845     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3846       return OptoRegPair(XMM0b_num,XMM0a_num);
  3847     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3848       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3849     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3850   %}
  3852 %}
  3854 //----------ATTRIBUTES---------------------------------------------------------
  3855 //----------Operand Attributes-------------------------------------------------
  3856 op_attrib op_cost(0);        // Required cost attribute
  3858 //----------Instruction Attributes---------------------------------------------
  3859 ins_attrib ins_cost(100);       // Required cost attribute
  3860 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3861 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3862                                 // non-matching short branch variant of some
  3863                                                             // long branch?
  3864 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3865                                 // specifies the alignment that some part of the instruction (not
  3866                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3867                                 // function must be provided for the instruction
  3869 //----------OPERANDS-----------------------------------------------------------
  3870 // Operand definitions must precede instruction definitions for correct parsing
  3871 // in the ADLC because operands constitute user defined types which are used in
  3872 // instruction definitions.
  3874 //----------Simple Operands----------------------------------------------------
  3875 // Immediate Operands
  3876 // Integer Immediate
  3877 operand immI() %{
  3878   match(ConI);
  3880   op_cost(10);
  3881   format %{ %}
  3882   interface(CONST_INTER);
  3883 %}
  3885 // Constant for test vs zero
  3886 operand immI0() %{
  3887   predicate(n->get_int() == 0);
  3888   match(ConI);
  3890   op_cost(0);
  3891   format %{ %}
  3892   interface(CONST_INTER);
  3893 %}
  3895 // Constant for increment
  3896 operand immI1() %{
  3897   predicate(n->get_int() == 1);
  3898   match(ConI);
  3900   op_cost(0);
  3901   format %{ %}
  3902   interface(CONST_INTER);
  3903 %}
  3905 // Constant for decrement
  3906 operand immI_M1() %{
  3907   predicate(n->get_int() == -1);
  3908   match(ConI);
  3910   op_cost(0);
  3911   format %{ %}
  3912   interface(CONST_INTER);
  3913 %}
  3915 // Valid scale values for addressing modes
  3916 operand immI2() %{
  3917   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3918   match(ConI);
  3920   format %{ %}
  3921   interface(CONST_INTER);
  3922 %}
  3924 operand immI8() %{
  3925   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3926   match(ConI);
  3928   op_cost(5);
  3929   format %{ %}
  3930   interface(CONST_INTER);
  3931 %}
  3933 operand immI16() %{
  3934   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3935   match(ConI);
  3937   op_cost(10);
  3938   format %{ %}
  3939   interface(CONST_INTER);
  3940 %}
  3942 // Constant for long shifts
  3943 operand immI_32() %{
  3944   predicate( n->get_int() == 32 );
  3945   match(ConI);
  3947   op_cost(0);
  3948   format %{ %}
  3949   interface(CONST_INTER);
  3950 %}
  3952 operand immI_1_31() %{
  3953   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3954   match(ConI);
  3956   op_cost(0);
  3957   format %{ %}
  3958   interface(CONST_INTER);
  3959 %}
  3961 operand immI_32_63() %{
  3962   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3963   match(ConI);
  3964   op_cost(0);
  3966   format %{ %}
  3967   interface(CONST_INTER);
  3968 %}
  3970 operand immI_1() %{
  3971   predicate( n->get_int() == 1 );
  3972   match(ConI);
  3974   op_cost(0);
  3975   format %{ %}
  3976   interface(CONST_INTER);
  3977 %}
  3979 operand immI_2() %{
  3980   predicate( n->get_int() == 2 );
  3981   match(ConI);
  3983   op_cost(0);
  3984   format %{ %}
  3985   interface(CONST_INTER);
  3986 %}
  3988 operand immI_3() %{
  3989   predicate( n->get_int() == 3 );
  3990   match(ConI);
  3992   op_cost(0);
  3993   format %{ %}
  3994   interface(CONST_INTER);
  3995 %}
  3997 // Pointer Immediate
  3998 operand immP() %{
  3999   match(ConP);
  4001   op_cost(10);
  4002   format %{ %}
  4003   interface(CONST_INTER);
  4004 %}
  4006 // NULL Pointer Immediate
  4007 operand immP0() %{
  4008   predicate( n->get_ptr() == 0 );
  4009   match(ConP);
  4010   op_cost(0);
  4012   format %{ %}
  4013   interface(CONST_INTER);
  4014 %}
  4016 // Long Immediate
  4017 operand immL() %{
  4018   match(ConL);
  4020   op_cost(20);
  4021   format %{ %}
  4022   interface(CONST_INTER);
  4023 %}
  4025 // Long Immediate zero
  4026 operand immL0() %{
  4027   predicate( n->get_long() == 0L );
  4028   match(ConL);
  4029   op_cost(0);
  4031   format %{ %}
  4032   interface(CONST_INTER);
  4033 %}
  4035 // Long Immediate zero
  4036 operand immL_M1() %{
  4037   predicate( n->get_long() == -1L );
  4038   match(ConL);
  4039   op_cost(0);
  4041   format %{ %}
  4042   interface(CONST_INTER);
  4043 %}
  4045 // Long immediate from 0 to 127.
  4046 // Used for a shorter form of long mul by 10.
  4047 operand immL_127() %{
  4048   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4049   match(ConL);
  4050   op_cost(0);
  4052   format %{ %}
  4053   interface(CONST_INTER);
  4054 %}
  4056 // Long Immediate: low 32-bit mask
  4057 operand immL_32bits() %{
  4058   predicate(n->get_long() == 0xFFFFFFFFL);
  4059   match(ConL);
  4060   op_cost(0);
  4062   format %{ %}
  4063   interface(CONST_INTER);
  4064 %}
  4066 // Long Immediate: low 32-bit mask
  4067 operand immL32() %{
  4068   predicate(n->get_long() == (int)(n->get_long()));
  4069   match(ConL);
  4070   op_cost(20);
  4072   format %{ %}
  4073   interface(CONST_INTER);
  4074 %}
  4076 //Double Immediate zero
  4077 operand immDPR0() %{
  4078   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4079   // bug that generates code such that NaNs compare equal to 0.0
  4080   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4081   match(ConD);
  4083   op_cost(5);
  4084   format %{ %}
  4085   interface(CONST_INTER);
  4086 %}
  4088 // Double Immediate one
  4089 operand immDPR1() %{
  4090   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4091   match(ConD);
  4093   op_cost(5);
  4094   format %{ %}
  4095   interface(CONST_INTER);
  4096 %}
  4098 // Double Immediate
  4099 operand immDPR() %{
  4100   predicate(UseSSE<=1);
  4101   match(ConD);
  4103   op_cost(5);
  4104   format %{ %}
  4105   interface(CONST_INTER);
  4106 %}
  4108 operand immD() %{
  4109   predicate(UseSSE>=2);
  4110   match(ConD);
  4112   op_cost(5);
  4113   format %{ %}
  4114   interface(CONST_INTER);
  4115 %}
  4117 // Double Immediate zero
  4118 operand immD0() %{
  4119   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4120   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4121   // compare equal to -0.0.
  4122   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4123   match(ConD);
  4125   format %{ %}
  4126   interface(CONST_INTER);
  4127 %}
  4129 // Float Immediate zero
  4130 operand immFPR0() %{
  4131   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4132   match(ConF);
  4134   op_cost(5);
  4135   format %{ %}
  4136   interface(CONST_INTER);
  4137 %}
  4139 // Float Immediate one
  4140 operand immFPR1() %{
  4141   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4142   match(ConF);
  4144   op_cost(5);
  4145   format %{ %}
  4146   interface(CONST_INTER);
  4147 %}
  4149 // Float Immediate
  4150 operand immFPR() %{
  4151   predicate( UseSSE == 0 );
  4152   match(ConF);
  4154   op_cost(5);
  4155   format %{ %}
  4156   interface(CONST_INTER);
  4157 %}
  4159 // Float Immediate
  4160 operand immF() %{
  4161   predicate(UseSSE >= 1);
  4162   match(ConF);
  4164   op_cost(5);
  4165   format %{ %}
  4166   interface(CONST_INTER);
  4167 %}
  4169 // Float Immediate zero.  Zero and not -0.0
  4170 operand immF0() %{
  4171   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4172   match(ConF);
  4174   op_cost(5);
  4175   format %{ %}
  4176   interface(CONST_INTER);
  4177 %}
  4179 // Immediates for special shifts (sign extend)
  4181 // Constants for increment
  4182 operand immI_16() %{
  4183   predicate( n->get_int() == 16 );
  4184   match(ConI);
  4186   format %{ %}
  4187   interface(CONST_INTER);
  4188 %}
  4190 operand immI_24() %{
  4191   predicate( n->get_int() == 24 );
  4192   match(ConI);
  4194   format %{ %}
  4195   interface(CONST_INTER);
  4196 %}
  4198 // Constant for byte-wide masking
  4199 operand immI_255() %{
  4200   predicate( n->get_int() == 255 );
  4201   match(ConI);
  4203   format %{ %}
  4204   interface(CONST_INTER);
  4205 %}
  4207 // Constant for short-wide masking
  4208 operand immI_65535() %{
  4209   predicate(n->get_int() == 65535);
  4210   match(ConI);
  4212   format %{ %}
  4213   interface(CONST_INTER);
  4214 %}
  4216 // Register Operands
  4217 // Integer Register
  4218 operand eRegI() %{
  4219   constraint(ALLOC_IN_RC(e_reg));
  4220   match(RegI);
  4221   match(xRegI);
  4222   match(eAXRegI);
  4223   match(eBXRegI);
  4224   match(eCXRegI);
  4225   match(eDXRegI);
  4226   match(eDIRegI);
  4227   match(eSIRegI);
  4229   format %{ %}
  4230   interface(REG_INTER);
  4231 %}
  4233 // Subset of Integer Register
  4234 operand xRegI(eRegI reg) %{
  4235   constraint(ALLOC_IN_RC(x_reg));
  4236   match(reg);
  4237   match(eAXRegI);
  4238   match(eBXRegI);
  4239   match(eCXRegI);
  4240   match(eDXRegI);
  4242   format %{ %}
  4243   interface(REG_INTER);
  4244 %}
  4246 // Special Registers
  4247 operand eAXRegI(xRegI reg) %{
  4248   constraint(ALLOC_IN_RC(eax_reg));
  4249   match(reg);
  4250   match(eRegI);
  4252   format %{ "EAX" %}
  4253   interface(REG_INTER);
  4254 %}
  4256 // Special Registers
  4257 operand eBXRegI(xRegI reg) %{
  4258   constraint(ALLOC_IN_RC(ebx_reg));
  4259   match(reg);
  4260   match(eRegI);
  4262   format %{ "EBX" %}
  4263   interface(REG_INTER);
  4264 %}
  4266 operand eCXRegI(xRegI reg) %{
  4267   constraint(ALLOC_IN_RC(ecx_reg));
  4268   match(reg);
  4269   match(eRegI);
  4271   format %{ "ECX" %}
  4272   interface(REG_INTER);
  4273 %}
  4275 operand eDXRegI(xRegI reg) %{
  4276   constraint(ALLOC_IN_RC(edx_reg));
  4277   match(reg);
  4278   match(eRegI);
  4280   format %{ "EDX" %}
  4281   interface(REG_INTER);
  4282 %}
  4284 operand eDIRegI(xRegI reg) %{
  4285   constraint(ALLOC_IN_RC(edi_reg));
  4286   match(reg);
  4287   match(eRegI);
  4289   format %{ "EDI" %}
  4290   interface(REG_INTER);
  4291 %}
  4293 operand naxRegI() %{
  4294   constraint(ALLOC_IN_RC(nax_reg));
  4295   match(RegI);
  4296   match(eCXRegI);
  4297   match(eDXRegI);
  4298   match(eSIRegI);
  4299   match(eDIRegI);
  4301   format %{ %}
  4302   interface(REG_INTER);
  4303 %}
  4305 operand nadxRegI() %{
  4306   constraint(ALLOC_IN_RC(nadx_reg));
  4307   match(RegI);
  4308   match(eBXRegI);
  4309   match(eCXRegI);
  4310   match(eSIRegI);
  4311   match(eDIRegI);
  4313   format %{ %}
  4314   interface(REG_INTER);
  4315 %}
  4317 operand ncxRegI() %{
  4318   constraint(ALLOC_IN_RC(ncx_reg));
  4319   match(RegI);
  4320   match(eAXRegI);
  4321   match(eDXRegI);
  4322   match(eSIRegI);
  4323   match(eDIRegI);
  4325   format %{ %}
  4326   interface(REG_INTER);
  4327 %}
  4329 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4330 // //
  4331 operand eSIRegI(xRegI reg) %{
  4332    constraint(ALLOC_IN_RC(esi_reg));
  4333    match(reg);
  4334    match(eRegI);
  4336    format %{ "ESI" %}
  4337    interface(REG_INTER);
  4338 %}
  4340 // Pointer Register
  4341 operand anyRegP() %{
  4342   constraint(ALLOC_IN_RC(any_reg));
  4343   match(RegP);
  4344   match(eAXRegP);
  4345   match(eBXRegP);
  4346   match(eCXRegP);
  4347   match(eDIRegP);
  4348   match(eRegP);
  4350   format %{ %}
  4351   interface(REG_INTER);
  4352 %}
  4354 operand eRegP() %{
  4355   constraint(ALLOC_IN_RC(e_reg));
  4356   match(RegP);
  4357   match(eAXRegP);
  4358   match(eBXRegP);
  4359   match(eCXRegP);
  4360   match(eDIRegP);
  4362   format %{ %}
  4363   interface(REG_INTER);
  4364 %}
  4366 // On windows95, EBP is not safe to use for implicit null tests.
  4367 operand eRegP_no_EBP() %{
  4368   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  4369   match(RegP);
  4370   match(eAXRegP);
  4371   match(eBXRegP);
  4372   match(eCXRegP);
  4373   match(eDIRegP);
  4375   op_cost(100);
  4376   format %{ %}
  4377   interface(REG_INTER);
  4378 %}
  4380 operand naxRegP() %{
  4381   constraint(ALLOC_IN_RC(nax_reg));
  4382   match(RegP);
  4383   match(eBXRegP);
  4384   match(eDXRegP);
  4385   match(eCXRegP);
  4386   match(eSIRegP);
  4387   match(eDIRegP);
  4389   format %{ %}
  4390   interface(REG_INTER);
  4391 %}
  4393 operand nabxRegP() %{
  4394   constraint(ALLOC_IN_RC(nabx_reg));
  4395   match(RegP);
  4396   match(eCXRegP);
  4397   match(eDXRegP);
  4398   match(eSIRegP);
  4399   match(eDIRegP);
  4401   format %{ %}
  4402   interface(REG_INTER);
  4403 %}
  4405 operand pRegP() %{
  4406   constraint(ALLOC_IN_RC(p_reg));
  4407   match(RegP);
  4408   match(eBXRegP);
  4409   match(eDXRegP);
  4410   match(eSIRegP);
  4411   match(eDIRegP);
  4413   format %{ %}
  4414   interface(REG_INTER);
  4415 %}
  4417 // Special Registers
  4418 // Return a pointer value
  4419 operand eAXRegP(eRegP reg) %{
  4420   constraint(ALLOC_IN_RC(eax_reg));
  4421   match(reg);
  4422   format %{ "EAX" %}
  4423   interface(REG_INTER);
  4424 %}
  4426 // Used in AtomicAdd
  4427 operand eBXRegP(eRegP reg) %{
  4428   constraint(ALLOC_IN_RC(ebx_reg));
  4429   match(reg);
  4430   format %{ "EBX" %}
  4431   interface(REG_INTER);
  4432 %}
  4434 // Tail-call (interprocedural jump) to interpreter
  4435 operand eCXRegP(eRegP reg) %{
  4436   constraint(ALLOC_IN_RC(ecx_reg));
  4437   match(reg);
  4438   format %{ "ECX" %}
  4439   interface(REG_INTER);
  4440 %}
  4442 operand eSIRegP(eRegP reg) %{
  4443   constraint(ALLOC_IN_RC(esi_reg));
  4444   match(reg);
  4445   format %{ "ESI" %}
  4446   interface(REG_INTER);
  4447 %}
  4449 // Used in rep stosw
  4450 operand eDIRegP(eRegP reg) %{
  4451   constraint(ALLOC_IN_RC(edi_reg));
  4452   match(reg);
  4453   format %{ "EDI" %}
  4454   interface(REG_INTER);
  4455 %}
  4457 operand eBPRegP() %{
  4458   constraint(ALLOC_IN_RC(ebp_reg));
  4459   match(RegP);
  4460   format %{ "EBP" %}
  4461   interface(REG_INTER);
  4462 %}
  4464 operand eRegL() %{
  4465   constraint(ALLOC_IN_RC(long_reg));
  4466   match(RegL);
  4467   match(eADXRegL);
  4469   format %{ %}
  4470   interface(REG_INTER);
  4471 %}
  4473 operand eADXRegL( eRegL reg ) %{
  4474   constraint(ALLOC_IN_RC(eadx_reg));
  4475   match(reg);
  4477   format %{ "EDX:EAX" %}
  4478   interface(REG_INTER);
  4479 %}
  4481 operand eBCXRegL( eRegL reg ) %{
  4482   constraint(ALLOC_IN_RC(ebcx_reg));
  4483   match(reg);
  4485   format %{ "EBX:ECX" %}
  4486   interface(REG_INTER);
  4487 %}
  4489 // Special case for integer high multiply
  4490 operand eADXRegL_low_only() %{
  4491   constraint(ALLOC_IN_RC(eadx_reg));
  4492   match(RegL);
  4494   format %{ "EAX" %}
  4495   interface(REG_INTER);
  4496 %}
  4498 // Flags register, used as output of compare instructions
  4499 operand eFlagsReg() %{
  4500   constraint(ALLOC_IN_RC(int_flags));
  4501   match(RegFlags);
  4503   format %{ "EFLAGS" %}
  4504   interface(REG_INTER);
  4505 %}
  4507 // Flags register, used as output of FLOATING POINT compare instructions
  4508 operand eFlagsRegU() %{
  4509   constraint(ALLOC_IN_RC(int_flags));
  4510   match(RegFlags);
  4512   format %{ "EFLAGS_U" %}
  4513   interface(REG_INTER);
  4514 %}
  4516 operand eFlagsRegUCF() %{
  4517   constraint(ALLOC_IN_RC(int_flags));
  4518   match(RegFlags);
  4519   predicate(false);
  4521   format %{ "EFLAGS_U_CF" %}
  4522   interface(REG_INTER);
  4523 %}
  4525 // Condition Code Register used by long compare
  4526 operand flagsReg_long_LTGE() %{
  4527   constraint(ALLOC_IN_RC(int_flags));
  4528   match(RegFlags);
  4529   format %{ "FLAGS_LTGE" %}
  4530   interface(REG_INTER);
  4531 %}
  4532 operand flagsReg_long_EQNE() %{
  4533   constraint(ALLOC_IN_RC(int_flags));
  4534   match(RegFlags);
  4535   format %{ "FLAGS_EQNE" %}
  4536   interface(REG_INTER);
  4537 %}
  4538 operand flagsReg_long_LEGT() %{
  4539   constraint(ALLOC_IN_RC(int_flags));
  4540   match(RegFlags);
  4541   format %{ "FLAGS_LEGT" %}
  4542   interface(REG_INTER);
  4543 %}
  4545 // Float register operands
  4546 operand regDPR() %{
  4547   predicate( UseSSE < 2 );
  4548   constraint(ALLOC_IN_RC(dbl_reg));
  4549   match(RegD);
  4550   match(regDPR1);
  4551   match(regDPR2);
  4552   format %{ %}
  4553   interface(REG_INTER);
  4554 %}
  4556 operand regDPR1(regDPR reg) %{
  4557   predicate( UseSSE < 2 );
  4558   constraint(ALLOC_IN_RC(dbl_reg0));
  4559   match(reg);
  4560   format %{ "FPR1" %}
  4561   interface(REG_INTER);
  4562 %}
  4564 operand regDPR2(regDPR reg) %{
  4565   predicate( UseSSE < 2 );
  4566   constraint(ALLOC_IN_RC(dbl_reg1));
  4567   match(reg);
  4568   format %{ "FPR2" %}
  4569   interface(REG_INTER);
  4570 %}
  4572 operand regnotDPR1(regDPR reg) %{
  4573   predicate( UseSSE < 2 );
  4574   constraint(ALLOC_IN_RC(dbl_notreg0));
  4575   match(reg);
  4576   format %{ %}
  4577   interface(REG_INTER);
  4578 %}
  4580 // XMM Double register operands
  4581 operand regD() %{
  4582   predicate( UseSSE>=2 );
  4583   constraint(ALLOC_IN_RC(xdb_reg));
  4584   match(RegD);
  4585   match(regD6);
  4586   match(regD7);
  4587   format %{ %}
  4588   interface(REG_INTER);
  4589 %}
  4591 // XMM6 double register operands
  4592 operand regD6(regD reg) %{
  4593   predicate( UseSSE>=2 );
  4594   constraint(ALLOC_IN_RC(xdb_reg6));
  4595   match(reg);
  4596   format %{ "XMM6" %}
  4597   interface(REG_INTER);
  4598 %}
  4600 // XMM7 double register operands
  4601 operand regD7(regD reg) %{
  4602   predicate( UseSSE>=2 );
  4603   constraint(ALLOC_IN_RC(xdb_reg7));
  4604   match(reg);
  4605   format %{ "XMM7" %}
  4606   interface(REG_INTER);
  4607 %}
  4609 // Float register operands
  4610 operand regFPR() %{
  4611   predicate( UseSSE < 2 );
  4612   constraint(ALLOC_IN_RC(flt_reg));
  4613   match(RegF);
  4614   match(regFPR1);
  4615   format %{ %}
  4616   interface(REG_INTER);
  4617 %}
  4619 // Float register operands
  4620 operand regFPR1(regFPR reg) %{
  4621   predicate( UseSSE < 2 );
  4622   constraint(ALLOC_IN_RC(flt_reg0));
  4623   match(reg);
  4624   format %{ "FPR1" %}
  4625   interface(REG_INTER);
  4626 %}
  4628 // XMM register operands
  4629 operand regF() %{
  4630   predicate( UseSSE>=1 );
  4631   constraint(ALLOC_IN_RC(xmm_reg));
  4632   match(RegF);
  4633   format %{ %}
  4634   interface(REG_INTER);
  4635 %}
  4638 //----------Memory Operands----------------------------------------------------
  4639 // Direct Memory Operand
  4640 operand direct(immP addr) %{
  4641   match(addr);
  4643   format %{ "[$addr]" %}
  4644   interface(MEMORY_INTER) %{
  4645     base(0xFFFFFFFF);
  4646     index(0x4);
  4647     scale(0x0);
  4648     disp($addr);
  4649   %}
  4650 %}
  4652 // Indirect Memory Operand
  4653 operand indirect(eRegP reg) %{
  4654   constraint(ALLOC_IN_RC(e_reg));
  4655   match(reg);
  4657   format %{ "[$reg]" %}
  4658   interface(MEMORY_INTER) %{
  4659     base($reg);
  4660     index(0x4);
  4661     scale(0x0);
  4662     disp(0x0);
  4663   %}
  4664 %}
  4666 // Indirect Memory Plus Short Offset Operand
  4667 operand indOffset8(eRegP reg, immI8 off) %{
  4668   match(AddP reg off);
  4670   format %{ "[$reg + $off]" %}
  4671   interface(MEMORY_INTER) %{
  4672     base($reg);
  4673     index(0x4);
  4674     scale(0x0);
  4675     disp($off);
  4676   %}
  4677 %}
  4679 // Indirect Memory Plus Long Offset Operand
  4680 operand indOffset32(eRegP reg, immI off) %{
  4681   match(AddP reg off);
  4683   format %{ "[$reg + $off]" %}
  4684   interface(MEMORY_INTER) %{
  4685     base($reg);
  4686     index(0x4);
  4687     scale(0x0);
  4688     disp($off);
  4689   %}
  4690 %}
  4692 // Indirect Memory Plus Long Offset Operand
  4693 operand indOffset32X(eRegI reg, immP off) %{
  4694   match(AddP off reg);
  4696   format %{ "[$reg + $off]" %}
  4697   interface(MEMORY_INTER) %{
  4698     base($reg);
  4699     index(0x4);
  4700     scale(0x0);
  4701     disp($off);
  4702   %}
  4703 %}
  4705 // Indirect Memory Plus Index Register Plus Offset Operand
  4706 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  4707   match(AddP (AddP reg ireg) off);
  4709   op_cost(10);
  4710   format %{"[$reg + $off + $ireg]" %}
  4711   interface(MEMORY_INTER) %{
  4712     base($reg);
  4713     index($ireg);
  4714     scale(0x0);
  4715     disp($off);
  4716   %}
  4717 %}
  4719 // Indirect Memory Plus Index Register Plus Offset Operand
  4720 operand indIndex(eRegP reg, eRegI ireg) %{
  4721   match(AddP reg ireg);
  4723   op_cost(10);
  4724   format %{"[$reg + $ireg]" %}
  4725   interface(MEMORY_INTER) %{
  4726     base($reg);
  4727     index($ireg);
  4728     scale(0x0);
  4729     disp(0x0);
  4730   %}
  4731 %}
  4733 // // -------------------------------------------------------------------------
  4734 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4735 // // -------------------------------------------------------------------------
  4736 // // Scaled Memory Operands
  4737 // // Indirect Memory Times Scale Plus Offset Operand
  4738 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  4739 //   match(AddP off (LShiftI ireg scale));
  4740 //
  4741 //   op_cost(10);
  4742 //   format %{"[$off + $ireg << $scale]" %}
  4743 //   interface(MEMORY_INTER) %{
  4744 //     base(0x4);
  4745 //     index($ireg);
  4746 //     scale($scale);
  4747 //     disp($off);
  4748 //   %}
  4749 // %}
  4751 // Indirect Memory Times Scale Plus Index Register
  4752 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  4753   match(AddP reg (LShiftI ireg scale));
  4755   op_cost(10);
  4756   format %{"[$reg + $ireg << $scale]" %}
  4757   interface(MEMORY_INTER) %{
  4758     base($reg);
  4759     index($ireg);
  4760     scale($scale);
  4761     disp(0x0);
  4762   %}
  4763 %}
  4765 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4766 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  4767   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4769   op_cost(10);
  4770   format %{"[$reg + $off + $ireg << $scale]" %}
  4771   interface(MEMORY_INTER) %{
  4772     base($reg);
  4773     index($ireg);
  4774     scale($scale);
  4775     disp($off);
  4776   %}
  4777 %}
  4779 //----------Load Long Memory Operands------------------------------------------
  4780 // The load-long idiom will use it's address expression again after loading
  4781 // the first word of the long.  If the load-long destination overlaps with
  4782 // registers used in the addressing expression, the 2nd half will be loaded
  4783 // from a clobbered address.  Fix this by requiring that load-long use
  4784 // address registers that do not overlap with the load-long target.
  4786 // load-long support
  4787 operand load_long_RegP() %{
  4788   constraint(ALLOC_IN_RC(esi_reg));
  4789   match(RegP);
  4790   match(eSIRegP);
  4791   op_cost(100);
  4792   format %{  %}
  4793   interface(REG_INTER);
  4794 %}
  4796 // Indirect Memory Operand Long
  4797 operand load_long_indirect(load_long_RegP reg) %{
  4798   constraint(ALLOC_IN_RC(esi_reg));
  4799   match(reg);
  4801   format %{ "[$reg]" %}
  4802   interface(MEMORY_INTER) %{
  4803     base($reg);
  4804     index(0x4);
  4805     scale(0x0);
  4806     disp(0x0);
  4807   %}
  4808 %}
  4810 // Indirect Memory Plus Long Offset Operand
  4811 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4812   match(AddP reg off);
  4814   format %{ "[$reg + $off]" %}
  4815   interface(MEMORY_INTER) %{
  4816     base($reg);
  4817     index(0x4);
  4818     scale(0x0);
  4819     disp($off);
  4820   %}
  4821 %}
  4823 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4826 //----------Special Memory Operands--------------------------------------------
  4827 // Stack Slot Operand - This operand is used for loading and storing temporary
  4828 //                      values on the stack where a match requires a value to
  4829 //                      flow through memory.
  4830 operand stackSlotP(sRegP reg) %{
  4831   constraint(ALLOC_IN_RC(stack_slots));
  4832   // No match rule because this operand is only generated in matching
  4833   format %{ "[$reg]" %}
  4834   interface(MEMORY_INTER) %{
  4835     base(0x4);   // ESP
  4836     index(0x4);  // No Index
  4837     scale(0x0);  // No Scale
  4838     disp($reg);  // Stack Offset
  4839   %}
  4840 %}
  4842 operand stackSlotI(sRegI reg) %{
  4843   constraint(ALLOC_IN_RC(stack_slots));
  4844   // No match rule because this operand is only generated in matching
  4845   format %{ "[$reg]" %}
  4846   interface(MEMORY_INTER) %{
  4847     base(0x4);   // ESP
  4848     index(0x4);  // No Index
  4849     scale(0x0);  // No Scale
  4850     disp($reg);  // Stack Offset
  4851   %}
  4852 %}
  4854 operand stackSlotF(sRegF reg) %{
  4855   constraint(ALLOC_IN_RC(stack_slots));
  4856   // No match rule because this operand is only generated in matching
  4857   format %{ "[$reg]" %}
  4858   interface(MEMORY_INTER) %{
  4859     base(0x4);   // ESP
  4860     index(0x4);  // No Index
  4861     scale(0x0);  // No Scale
  4862     disp($reg);  // Stack Offset
  4863   %}
  4864 %}
  4866 operand stackSlotD(sRegD reg) %{
  4867   constraint(ALLOC_IN_RC(stack_slots));
  4868   // No match rule because this operand is only generated in matching
  4869   format %{ "[$reg]" %}
  4870   interface(MEMORY_INTER) %{
  4871     base(0x4);   // ESP
  4872     index(0x4);  // No Index
  4873     scale(0x0);  // No Scale
  4874     disp($reg);  // Stack Offset
  4875   %}
  4876 %}
  4878 operand stackSlotL(sRegL reg) %{
  4879   constraint(ALLOC_IN_RC(stack_slots));
  4880   // No match rule because this operand is only generated in matching
  4881   format %{ "[$reg]" %}
  4882   interface(MEMORY_INTER) %{
  4883     base(0x4);   // ESP
  4884     index(0x4);  // No Index
  4885     scale(0x0);  // No Scale
  4886     disp($reg);  // Stack Offset
  4887   %}
  4888 %}
  4890 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4891 // Indirect Memory Operand
  4892 operand indirect_win95_safe(eRegP_no_EBP reg)
  4893 %{
  4894   constraint(ALLOC_IN_RC(e_reg));
  4895   match(reg);
  4897   op_cost(100);
  4898   format %{ "[$reg]" %}
  4899   interface(MEMORY_INTER) %{
  4900     base($reg);
  4901     index(0x4);
  4902     scale(0x0);
  4903     disp(0x0);
  4904   %}
  4905 %}
  4907 // Indirect Memory Plus Short Offset Operand
  4908 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4909 %{
  4910   match(AddP reg off);
  4912   op_cost(100);
  4913   format %{ "[$reg + $off]" %}
  4914   interface(MEMORY_INTER) %{
  4915     base($reg);
  4916     index(0x4);
  4917     scale(0x0);
  4918     disp($off);
  4919   %}
  4920 %}
  4922 // Indirect Memory Plus Long Offset Operand
  4923 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4924 %{
  4925   match(AddP reg off);
  4927   op_cost(100);
  4928   format %{ "[$reg + $off]" %}
  4929   interface(MEMORY_INTER) %{
  4930     base($reg);
  4931     index(0x4);
  4932     scale(0x0);
  4933     disp($off);
  4934   %}
  4935 %}
  4937 // Indirect Memory Plus Index Register Plus Offset Operand
  4938 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  4939 %{
  4940   match(AddP (AddP reg ireg) off);
  4942   op_cost(100);
  4943   format %{"[$reg + $off + $ireg]" %}
  4944   interface(MEMORY_INTER) %{
  4945     base($reg);
  4946     index($ireg);
  4947     scale(0x0);
  4948     disp($off);
  4949   %}
  4950 %}
  4952 // Indirect Memory Times Scale Plus Index Register
  4953 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  4954 %{
  4955   match(AddP reg (LShiftI ireg scale));
  4957   op_cost(100);
  4958   format %{"[$reg + $ireg << $scale]" %}
  4959   interface(MEMORY_INTER) %{
  4960     base($reg);
  4961     index($ireg);
  4962     scale($scale);
  4963     disp(0x0);
  4964   %}
  4965 %}
  4967 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4968 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  4969 %{
  4970   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4972   op_cost(100);
  4973   format %{"[$reg + $off + $ireg << $scale]" %}
  4974   interface(MEMORY_INTER) %{
  4975     base($reg);
  4976     index($ireg);
  4977     scale($scale);
  4978     disp($off);
  4979   %}
  4980 %}
  4982 //----------Conditional Branch Operands----------------------------------------
  4983 // Comparison Op  - This is the operation of the comparison, and is limited to
  4984 //                  the following set of codes:
  4985 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4986 //
  4987 // Other attributes of the comparison, such as unsignedness, are specified
  4988 // by the comparison instruction that sets a condition code flags register.
  4989 // That result is represented by a flags operand whose subtype is appropriate
  4990 // to the unsignedness (etc.) of the comparison.
  4991 //
  4992 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4993 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4994 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4996 // Comparision Code
  4997 operand cmpOp() %{
  4998   match(Bool);
  5000   format %{ "" %}
  5001   interface(COND_INTER) %{
  5002     equal(0x4, "e");
  5003     not_equal(0x5, "ne");
  5004     less(0xC, "l");
  5005     greater_equal(0xD, "ge");
  5006     less_equal(0xE, "le");
  5007     greater(0xF, "g");
  5008   %}
  5009 %}
  5011 // Comparison Code, unsigned compare.  Used by FP also, with
  5012 // C2 (unordered) turned into GT or LT already.  The other bits
  5013 // C0 and C3 are turned into Carry & Zero flags.
  5014 operand cmpOpU() %{
  5015   match(Bool);
  5017   format %{ "" %}
  5018   interface(COND_INTER) %{
  5019     equal(0x4, "e");
  5020     not_equal(0x5, "ne");
  5021     less(0x2, "b");
  5022     greater_equal(0x3, "nb");
  5023     less_equal(0x6, "be");
  5024     greater(0x7, "nbe");
  5025   %}
  5026 %}
  5028 // Floating comparisons that don't require any fixup for the unordered case
  5029 operand cmpOpUCF() %{
  5030   match(Bool);
  5031   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5032             n->as_Bool()->_test._test == BoolTest::ge ||
  5033             n->as_Bool()->_test._test == BoolTest::le ||
  5034             n->as_Bool()->_test._test == BoolTest::gt);
  5035   format %{ "" %}
  5036   interface(COND_INTER) %{
  5037     equal(0x4, "e");
  5038     not_equal(0x5, "ne");
  5039     less(0x2, "b");
  5040     greater_equal(0x3, "nb");
  5041     less_equal(0x6, "be");
  5042     greater(0x7, "nbe");
  5043   %}
  5044 %}
  5047 // Floating comparisons that can be fixed up with extra conditional jumps
  5048 operand cmpOpUCF2() %{
  5049   match(Bool);
  5050   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5051             n->as_Bool()->_test._test == BoolTest::eq);
  5052   format %{ "" %}
  5053   interface(COND_INTER) %{
  5054     equal(0x4, "e");
  5055     not_equal(0x5, "ne");
  5056     less(0x2, "b");
  5057     greater_equal(0x3, "nb");
  5058     less_equal(0x6, "be");
  5059     greater(0x7, "nbe");
  5060   %}
  5061 %}
  5063 // Comparison Code for FP conditional move
  5064 operand cmpOp_fcmov() %{
  5065   match(Bool);
  5067   format %{ "" %}
  5068   interface(COND_INTER) %{
  5069     equal        (0x0C8);
  5070     not_equal    (0x1C8);
  5071     less         (0x0C0);
  5072     greater_equal(0x1C0);
  5073     less_equal   (0x0D0);
  5074     greater      (0x1D0);
  5075   %}
  5076 %}
  5078 // Comparision Code used in long compares
  5079 operand cmpOp_commute() %{
  5080   match(Bool);
  5082   format %{ "" %}
  5083   interface(COND_INTER) %{
  5084     equal(0x4, "e");
  5085     not_equal(0x5, "ne");
  5086     less(0xF, "g");
  5087     greater_equal(0xE, "le");
  5088     less_equal(0xD, "ge");
  5089     greater(0xC, "l");
  5090   %}
  5091 %}
  5093 //----------OPERAND CLASSES----------------------------------------------------
  5094 // Operand Classes are groups of operands that are used as to simplify
  5095 // instruction definitions by not requiring the AD writer to specify separate
  5096 // instructions for every form of operand when the instruction accepts
  5097 // multiple operand types with the same basic encoding and format.  The classic
  5098 // case of this is memory operands.
  5100 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5101                indIndex, indIndexScale, indIndexScaleOffset);
  5103 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5104 // This means some kind of offset is always required and you cannot use
  5105 // an oop as the offset (done when working on static globals).
  5106 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5107                     indIndex, indIndexScale, indIndexScaleOffset);
  5110 //----------PIPELINE-----------------------------------------------------------
  5111 // Rules which define the behavior of the target architectures pipeline.
  5112 pipeline %{
  5114 //----------ATTRIBUTES---------------------------------------------------------
  5115 attributes %{
  5116   variable_size_instructions;        // Fixed size instructions
  5117   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5118   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5119   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5120   instruction_fetch_units = 1;       // of 16 bytes
  5122   // List of nop instructions
  5123   nops( MachNop );
  5124 %}
  5126 //----------RESOURCES----------------------------------------------------------
  5127 // Resources are the functional units available to the machine
  5129 // Generic P2/P3 pipeline
  5130 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5131 // 3 instructions decoded per cycle.
  5132 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5133 // 2 ALU op, only ALU0 handles mul/div instructions.
  5134 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5135            MS0, MS1, MEM = MS0 | MS1,
  5136            BR, FPU,
  5137            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5139 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5140 // Pipeline Description specifies the stages in the machine's pipeline
  5142 // Generic P2/P3 pipeline
  5143 pipe_desc(S0, S1, S2, S3, S4, S5);
  5145 //----------PIPELINE CLASSES---------------------------------------------------
  5146 // Pipeline Classes describe the stages in which input and output are
  5147 // referenced by the hardware pipeline.
  5149 // Naming convention: ialu or fpu
  5150 // Then: _reg
  5151 // Then: _reg if there is a 2nd register
  5152 // Then: _long if it's a pair of instructions implementing a long
  5153 // Then: _fat if it requires the big decoder
  5154 //   Or: _mem if it requires the big decoder and a memory unit.
  5156 // Integer ALU reg operation
  5157 pipe_class ialu_reg(eRegI dst) %{
  5158     single_instruction;
  5159     dst    : S4(write);
  5160     dst    : S3(read);
  5161     DECODE : S0;        // any decoder
  5162     ALU    : S3;        // any alu
  5163 %}
  5165 // Long ALU reg operation
  5166 pipe_class ialu_reg_long(eRegL dst) %{
  5167     instruction_count(2);
  5168     dst    : S4(write);
  5169     dst    : S3(read);
  5170     DECODE : S0(2);     // any 2 decoders
  5171     ALU    : S3(2);     // both alus
  5172 %}
  5174 // Integer ALU reg operation using big decoder
  5175 pipe_class ialu_reg_fat(eRegI dst) %{
  5176     single_instruction;
  5177     dst    : S4(write);
  5178     dst    : S3(read);
  5179     D0     : S0;        // big decoder only
  5180     ALU    : S3;        // any alu
  5181 %}
  5183 // Long ALU reg operation using big decoder
  5184 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5185     instruction_count(2);
  5186     dst    : S4(write);
  5187     dst    : S3(read);
  5188     D0     : S0(2);     // big decoder only; twice
  5189     ALU    : S3(2);     // any 2 alus
  5190 %}
  5192 // Integer ALU reg-reg operation
  5193 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5194     single_instruction;
  5195     dst    : S4(write);
  5196     src    : S3(read);
  5197     DECODE : S0;        // any decoder
  5198     ALU    : S3;        // any alu
  5199 %}
  5201 // Long ALU reg-reg operation
  5202 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5203     instruction_count(2);
  5204     dst    : S4(write);
  5205     src    : S3(read);
  5206     DECODE : S0(2);     // any 2 decoders
  5207     ALU    : S3(2);     // both alus
  5208 %}
  5210 // Integer ALU reg-reg operation
  5211 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5212     single_instruction;
  5213     dst    : S4(write);
  5214     src    : S3(read);
  5215     D0     : S0;        // big decoder only
  5216     ALU    : S3;        // any alu
  5217 %}
  5219 // Long ALU reg-reg operation
  5220 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5221     instruction_count(2);
  5222     dst    : S4(write);
  5223     src    : S3(read);
  5224     D0     : S0(2);     // big decoder only; twice
  5225     ALU    : S3(2);     // both alus
  5226 %}
  5228 // Integer ALU reg-mem operation
  5229 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5230     single_instruction;
  5231     dst    : S5(write);
  5232     mem    : S3(read);
  5233     D0     : S0;        // big decoder only
  5234     ALU    : S4;        // any alu
  5235     MEM    : S3;        // any mem
  5236 %}
  5238 // Long ALU reg-mem operation
  5239 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5240     instruction_count(2);
  5241     dst    : S5(write);
  5242     mem    : S3(read);
  5243     D0     : S0(2);     // big decoder only; twice
  5244     ALU    : S4(2);     // any 2 alus
  5245     MEM    : S3(2);     // both mems
  5246 %}
  5248 // Integer mem operation (prefetch)
  5249 pipe_class ialu_mem(memory mem)
  5250 %{
  5251     single_instruction;
  5252     mem    : S3(read);
  5253     D0     : S0;        // big decoder only
  5254     MEM    : S3;        // any mem
  5255 %}
  5257 // Integer Store to Memory
  5258 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5259     single_instruction;
  5260     mem    : S3(read);
  5261     src    : S5(read);
  5262     D0     : S0;        // big decoder only
  5263     ALU    : S4;        // any alu
  5264     MEM    : S3;
  5265 %}
  5267 // Long Store to Memory
  5268 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5269     instruction_count(2);
  5270     mem    : S3(read);
  5271     src    : S5(read);
  5272     D0     : S0(2);     // big decoder only; twice
  5273     ALU    : S4(2);     // any 2 alus
  5274     MEM    : S3(2);     // Both mems
  5275 %}
  5277 // Integer Store to Memory
  5278 pipe_class ialu_mem_imm(memory mem) %{
  5279     single_instruction;
  5280     mem    : S3(read);
  5281     D0     : S0;        // big decoder only
  5282     ALU    : S4;        // any alu
  5283     MEM    : S3;
  5284 %}
  5286 // Integer ALU0 reg-reg operation
  5287 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5288     single_instruction;
  5289     dst    : S4(write);
  5290     src    : S3(read);
  5291     D0     : S0;        // Big decoder only
  5292     ALU0   : S3;        // only alu0
  5293 %}
  5295 // Integer ALU0 reg-mem operation
  5296 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5297     single_instruction;
  5298     dst    : S5(write);
  5299     mem    : S3(read);
  5300     D0     : S0;        // big decoder only
  5301     ALU0   : S4;        // ALU0 only
  5302     MEM    : S3;        // any mem
  5303 %}
  5305 // Integer ALU reg-reg operation
  5306 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5307     single_instruction;
  5308     cr     : S4(write);
  5309     src1   : S3(read);
  5310     src2   : S3(read);
  5311     DECODE : S0;        // any decoder
  5312     ALU    : S3;        // any alu
  5313 %}
  5315 // Integer ALU reg-imm operation
  5316 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5317     single_instruction;
  5318     cr     : S4(write);
  5319     src1   : S3(read);
  5320     DECODE : S0;        // any decoder
  5321     ALU    : S3;        // any alu
  5322 %}
  5324 // Integer ALU reg-mem operation
  5325 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5326     single_instruction;
  5327     cr     : S4(write);
  5328     src1   : S3(read);
  5329     src2   : S3(read);
  5330     D0     : S0;        // big decoder only
  5331     ALU    : S4;        // any alu
  5332     MEM    : S3;
  5333 %}
  5335 // Conditional move reg-reg
  5336 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5337     instruction_count(4);
  5338     y      : S4(read);
  5339     q      : S3(read);
  5340     p      : S3(read);
  5341     DECODE : S0(4);     // any decoder
  5342 %}
  5344 // Conditional move reg-reg
  5345 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5346     single_instruction;
  5347     dst    : S4(write);
  5348     src    : S3(read);
  5349     cr     : S3(read);
  5350     DECODE : S0;        // any decoder
  5351 %}
  5353 // Conditional move reg-mem
  5354 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5355     single_instruction;
  5356     dst    : S4(write);
  5357     src    : S3(read);
  5358     cr     : S3(read);
  5359     DECODE : S0;        // any decoder
  5360     MEM    : S3;
  5361 %}
  5363 // Conditional move reg-reg long
  5364 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5365     single_instruction;
  5366     dst    : S4(write);
  5367     src    : S3(read);
  5368     cr     : S3(read);
  5369     DECODE : S0(2);     // any 2 decoders
  5370 %}
  5372 // Conditional move double reg-reg
  5373 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5374     single_instruction;
  5375     dst    : S4(write);
  5376     src    : S3(read);
  5377     cr     : S3(read);
  5378     DECODE : S0;        // any decoder
  5379 %}
  5381 // Float reg-reg operation
  5382 pipe_class fpu_reg(regDPR dst) %{
  5383     instruction_count(2);
  5384     dst    : S3(read);
  5385     DECODE : S0(2);     // any 2 decoders
  5386     FPU    : S3;
  5387 %}
  5389 // Float reg-reg operation
  5390 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5391     instruction_count(2);
  5392     dst    : S4(write);
  5393     src    : S3(read);
  5394     DECODE : S0(2);     // any 2 decoders
  5395     FPU    : S3;
  5396 %}
  5398 // Float reg-reg operation
  5399 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5400     instruction_count(3);
  5401     dst    : S4(write);
  5402     src1   : S3(read);
  5403     src2   : S3(read);
  5404     DECODE : S0(3);     // any 3 decoders
  5405     FPU    : S3(2);
  5406 %}
  5408 // Float reg-reg operation
  5409 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5410     instruction_count(4);
  5411     dst    : S4(write);
  5412     src1   : S3(read);
  5413     src2   : S3(read);
  5414     src3   : S3(read);
  5415     DECODE : S0(4);     // any 3 decoders
  5416     FPU    : S3(2);
  5417 %}
  5419 // Float reg-reg operation
  5420 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5421     instruction_count(4);
  5422     dst    : S4(write);
  5423     src1   : S3(read);
  5424     src2   : S3(read);
  5425     src3   : S3(read);
  5426     DECODE : S1(3);     // any 3 decoders
  5427     D0     : S0;        // Big decoder only
  5428     FPU    : S3(2);
  5429     MEM    : S3;
  5430 %}
  5432 // Float reg-mem operation
  5433 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5434     instruction_count(2);
  5435     dst    : S5(write);
  5436     mem    : S3(read);
  5437     D0     : S0;        // big decoder only
  5438     DECODE : S1;        // any decoder for FPU POP
  5439     FPU    : S4;
  5440     MEM    : S3;        // any mem
  5441 %}
  5443 // Float reg-mem operation
  5444 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5445     instruction_count(3);
  5446     dst    : S5(write);
  5447     src1   : S3(read);
  5448     mem    : S3(read);
  5449     D0     : S0;        // big decoder only
  5450     DECODE : S1(2);     // any decoder for FPU POP
  5451     FPU    : S4;
  5452     MEM    : S3;        // any mem
  5453 %}
  5455 // Float mem-reg operation
  5456 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5457     instruction_count(2);
  5458     src    : S5(read);
  5459     mem    : S3(read);
  5460     DECODE : S0;        // any decoder for FPU PUSH
  5461     D0     : S1;        // big decoder only
  5462     FPU    : S4;
  5463     MEM    : S3;        // any mem
  5464 %}
  5466 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5467     instruction_count(3);
  5468     src1   : S3(read);
  5469     src2   : S3(read);
  5470     mem    : S3(read);
  5471     DECODE : S0(2);     // any decoder for FPU PUSH
  5472     D0     : S1;        // big decoder only
  5473     FPU    : S4;
  5474     MEM    : S3;        // any mem
  5475 %}
  5477 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5478     instruction_count(3);
  5479     src1   : S3(read);
  5480     src2   : S3(read);
  5481     mem    : S4(read);
  5482     DECODE : S0;        // any decoder for FPU PUSH
  5483     D0     : S0(2);     // big decoder only
  5484     FPU    : S4;
  5485     MEM    : S3(2);     // any mem
  5486 %}
  5488 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5489     instruction_count(2);
  5490     src1   : S3(read);
  5491     dst    : S4(read);
  5492     D0     : S0(2);     // big decoder only
  5493     MEM    : S3(2);     // any mem
  5494 %}
  5496 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5497     instruction_count(3);
  5498     src1   : S3(read);
  5499     src2   : S3(read);
  5500     dst    : S4(read);
  5501     D0     : S0(3);     // big decoder only
  5502     FPU    : S4;
  5503     MEM    : S3(3);     // any mem
  5504 %}
  5506 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5507     instruction_count(3);
  5508     src1   : S4(read);
  5509     mem    : S4(read);
  5510     DECODE : S0;        // any decoder for FPU PUSH
  5511     D0     : S0(2);     // big decoder only
  5512     FPU    : S4;
  5513     MEM    : S3(2);     // any mem
  5514 %}
  5516 // Float load constant
  5517 pipe_class fpu_reg_con(regDPR dst) %{
  5518     instruction_count(2);
  5519     dst    : S5(write);
  5520     D0     : S0;        // big decoder only for the load
  5521     DECODE : S1;        // any decoder for FPU POP
  5522     FPU    : S4;
  5523     MEM    : S3;        // any mem
  5524 %}
  5526 // Float load constant
  5527 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5528     instruction_count(3);
  5529     dst    : S5(write);
  5530     src    : S3(read);
  5531     D0     : S0;        // big decoder only for the load
  5532     DECODE : S1(2);     // any decoder for FPU POP
  5533     FPU    : S4;
  5534     MEM    : S3;        // any mem
  5535 %}
  5537 // UnConditional branch
  5538 pipe_class pipe_jmp( label labl ) %{
  5539     single_instruction;
  5540     BR   : S3;
  5541 %}
  5543 // Conditional branch
  5544 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5545     single_instruction;
  5546     cr    : S1(read);
  5547     BR    : S3;
  5548 %}
  5550 // Allocation idiom
  5551 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5552     instruction_count(1); force_serialization;
  5553     fixed_latency(6);
  5554     heap_ptr : S3(read);
  5555     DECODE   : S0(3);
  5556     D0       : S2;
  5557     MEM      : S3;
  5558     ALU      : S3(2);
  5559     dst      : S5(write);
  5560     BR       : S5;
  5561 %}
  5563 // Generic big/slow expanded idiom
  5564 pipe_class pipe_slow(  ) %{
  5565     instruction_count(10); multiple_bundles; force_serialization;
  5566     fixed_latency(100);
  5567     D0  : S0(2);
  5568     MEM : S3(2);
  5569 %}
  5571 // The real do-nothing guy
  5572 pipe_class empty( ) %{
  5573     instruction_count(0);
  5574 %}
  5576 // Define the class for the Nop node
  5577 define %{
  5578    MachNop = empty;
  5579 %}
  5581 %}
  5583 //----------INSTRUCTIONS-------------------------------------------------------
  5584 //
  5585 // match      -- States which machine-independent subtree may be replaced
  5586 //               by this instruction.
  5587 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5588 //               selection to identify a minimum cost tree of machine
  5589 //               instructions that matches a tree of machine-independent
  5590 //               instructions.
  5591 // format     -- A string providing the disassembly for this instruction.
  5592 //               The value of an instruction's operand may be inserted
  5593 //               by referring to it with a '$' prefix.
  5594 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5595 //               to within an encode class as $primary, $secondary, and $tertiary
  5596 //               respectively.  The primary opcode is commonly used to
  5597 //               indicate the type of machine instruction, while secondary
  5598 //               and tertiary are often used for prefix options or addressing
  5599 //               modes.
  5600 // ins_encode -- A list of encode classes with parameters. The encode class
  5601 //               name must have been defined in an 'enc_class' specification
  5602 //               in the encode section of the architecture description.
  5604 //----------BSWAP-Instruction--------------------------------------------------
  5605 instruct bytes_reverse_int(eRegI dst) %{
  5606   match(Set dst (ReverseBytesI dst));
  5608   format %{ "BSWAP  $dst" %}
  5609   opcode(0x0F, 0xC8);
  5610   ins_encode( OpcP, OpcSReg(dst) );
  5611   ins_pipe( ialu_reg );
  5612 %}
  5614 instruct bytes_reverse_long(eRegL dst) %{
  5615   match(Set dst (ReverseBytesL dst));
  5617   format %{ "BSWAP  $dst.lo\n\t"
  5618             "BSWAP  $dst.hi\n\t"
  5619             "XCHG   $dst.lo $dst.hi" %}
  5621   ins_cost(125);
  5622   ins_encode( bswap_long_bytes(dst) );
  5623   ins_pipe( ialu_reg_reg);
  5624 %}
  5626 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  5627   match(Set dst (ReverseBytesUS dst));
  5629   format %{ "BSWAP  $dst\n\t" 
  5630             "SHR    $dst,16\n\t" %}
  5631   ins_encode %{
  5632     __ bswapl($dst$$Register);
  5633     __ shrl($dst$$Register, 16); 
  5634   %}
  5635   ins_pipe( ialu_reg );
  5636 %}
  5638 instruct bytes_reverse_short(eRegI dst) %{
  5639   match(Set dst (ReverseBytesS dst));
  5641   format %{ "BSWAP  $dst\n\t" 
  5642             "SAR    $dst,16\n\t" %}
  5643   ins_encode %{
  5644     __ bswapl($dst$$Register);
  5645     __ sarl($dst$$Register, 16); 
  5646   %}
  5647   ins_pipe( ialu_reg );
  5648 %}
  5651 //---------- Zeros Count Instructions ------------------------------------------
  5653 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5654   predicate(UseCountLeadingZerosInstruction);
  5655   match(Set dst (CountLeadingZerosI src));
  5656   effect(KILL cr);
  5658   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5659   ins_encode %{
  5660     __ lzcntl($dst$$Register, $src$$Register);
  5661   %}
  5662   ins_pipe(ialu_reg);
  5663 %}
  5665 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  5666   predicate(!UseCountLeadingZerosInstruction);
  5667   match(Set dst (CountLeadingZerosI src));
  5668   effect(KILL cr);
  5670   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5671             "JNZ    skip\n\t"
  5672             "MOV    $dst, -1\n"
  5673       "skip:\n\t"
  5674             "NEG    $dst\n\t"
  5675             "ADD    $dst, 31" %}
  5676   ins_encode %{
  5677     Register Rdst = $dst$$Register;
  5678     Register Rsrc = $src$$Register;
  5679     Label skip;
  5680     __ bsrl(Rdst, Rsrc);
  5681     __ jccb(Assembler::notZero, skip);
  5682     __ movl(Rdst, -1);
  5683     __ bind(skip);
  5684     __ negl(Rdst);
  5685     __ addl(Rdst, BitsPerInt - 1);
  5686   %}
  5687   ins_pipe(ialu_reg);
  5688 %}
  5690 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5691   predicate(UseCountLeadingZerosInstruction);
  5692   match(Set dst (CountLeadingZerosL src));
  5693   effect(TEMP dst, KILL cr);
  5695   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5696             "JNC    done\n\t"
  5697             "LZCNT  $dst, $src.lo\n\t"
  5698             "ADD    $dst, 32\n"
  5699       "done:" %}
  5700   ins_encode %{
  5701     Register Rdst = $dst$$Register;
  5702     Register Rsrc = $src$$Register;
  5703     Label done;
  5704     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5705     __ jccb(Assembler::carryClear, done);
  5706     __ lzcntl(Rdst, Rsrc);
  5707     __ addl(Rdst, BitsPerInt);
  5708     __ bind(done);
  5709   %}
  5710   ins_pipe(ialu_reg);
  5711 %}
  5713 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  5714   predicate(!UseCountLeadingZerosInstruction);
  5715   match(Set dst (CountLeadingZerosL src));
  5716   effect(TEMP dst, KILL cr);
  5718   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5719             "JZ     msw_is_zero\n\t"
  5720             "ADD    $dst, 32\n\t"
  5721             "JMP    not_zero\n"
  5722       "msw_is_zero:\n\t"
  5723             "BSR    $dst, $src.lo\n\t"
  5724             "JNZ    not_zero\n\t"
  5725             "MOV    $dst, -1\n"
  5726       "not_zero:\n\t"
  5727             "NEG    $dst\n\t"
  5728             "ADD    $dst, 63\n" %}
  5729  ins_encode %{
  5730     Register Rdst = $dst$$Register;
  5731     Register Rsrc = $src$$Register;
  5732     Label msw_is_zero;
  5733     Label not_zero;
  5734     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5735     __ jccb(Assembler::zero, msw_is_zero);
  5736     __ addl(Rdst, BitsPerInt);
  5737     __ jmpb(not_zero);
  5738     __ bind(msw_is_zero);
  5739     __ bsrl(Rdst, Rsrc);
  5740     __ jccb(Assembler::notZero, not_zero);
  5741     __ movl(Rdst, -1);
  5742     __ bind(not_zero);
  5743     __ negl(Rdst);
  5744     __ addl(Rdst, BitsPerLong - 1);
  5745   %}
  5746   ins_pipe(ialu_reg);
  5747 %}
  5749 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5750   match(Set dst (CountTrailingZerosI src));
  5751   effect(KILL cr);
  5753   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5754             "JNZ    done\n\t"
  5755             "MOV    $dst, 32\n"
  5756       "done:" %}
  5757   ins_encode %{
  5758     Register Rdst = $dst$$Register;
  5759     Label done;
  5760     __ bsfl(Rdst, $src$$Register);
  5761     __ jccb(Assembler::notZero, done);
  5762     __ movl(Rdst, BitsPerInt);
  5763     __ bind(done);
  5764   %}
  5765   ins_pipe(ialu_reg);
  5766 %}
  5768 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5769   match(Set dst (CountTrailingZerosL src));
  5770   effect(TEMP dst, KILL cr);
  5772   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5773             "JNZ    done\n\t"
  5774             "BSF    $dst, $src.hi\n\t"
  5775             "JNZ    msw_not_zero\n\t"
  5776             "MOV    $dst, 32\n"
  5777       "msw_not_zero:\n\t"
  5778             "ADD    $dst, 32\n"
  5779       "done:" %}
  5780   ins_encode %{
  5781     Register Rdst = $dst$$Register;
  5782     Register Rsrc = $src$$Register;
  5783     Label msw_not_zero;
  5784     Label done;
  5785     __ bsfl(Rdst, Rsrc);
  5786     __ jccb(Assembler::notZero, done);
  5787     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5788     __ jccb(Assembler::notZero, msw_not_zero);
  5789     __ movl(Rdst, BitsPerInt);
  5790     __ bind(msw_not_zero);
  5791     __ addl(Rdst, BitsPerInt);
  5792     __ bind(done);
  5793   %}
  5794   ins_pipe(ialu_reg);
  5795 %}
  5798 //---------- Population Count Instructions -------------------------------------
  5800 instruct popCountI(eRegI dst, eRegI src) %{
  5801   predicate(UsePopCountInstruction);
  5802   match(Set dst (PopCountI src));
  5804   format %{ "POPCNT $dst, $src" %}
  5805   ins_encode %{
  5806     __ popcntl($dst$$Register, $src$$Register);
  5807   %}
  5808   ins_pipe(ialu_reg);
  5809 %}
  5811 instruct popCountI_mem(eRegI dst, memory mem) %{
  5812   predicate(UsePopCountInstruction);
  5813   match(Set dst (PopCountI (LoadI mem)));
  5815   format %{ "POPCNT $dst, $mem" %}
  5816   ins_encode %{
  5817     __ popcntl($dst$$Register, $mem$$Address);
  5818   %}
  5819   ins_pipe(ialu_reg);
  5820 %}
  5822 // Note: Long.bitCount(long) returns an int.
  5823 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  5824   predicate(UsePopCountInstruction);
  5825   match(Set dst (PopCountL src));
  5826   effect(KILL cr, TEMP tmp, TEMP dst);
  5828   format %{ "POPCNT $dst, $src.lo\n\t"
  5829             "POPCNT $tmp, $src.hi\n\t"
  5830             "ADD    $dst, $tmp" %}
  5831   ins_encode %{
  5832     __ popcntl($dst$$Register, $src$$Register);
  5833     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5834     __ addl($dst$$Register, $tmp$$Register);
  5835   %}
  5836   ins_pipe(ialu_reg);
  5837 %}
  5839 // Note: Long.bitCount(long) returns an int.
  5840 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  5841   predicate(UsePopCountInstruction);
  5842   match(Set dst (PopCountL (LoadL mem)));
  5843   effect(KILL cr, TEMP tmp, TEMP dst);
  5845   format %{ "POPCNT $dst, $mem\n\t"
  5846             "POPCNT $tmp, $mem+4\n\t"
  5847             "ADD    $dst, $tmp" %}
  5848   ins_encode %{
  5849     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5850     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5851     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  5852     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  5853     __ addl($dst$$Register, $tmp$$Register);
  5854   %}
  5855   ins_pipe(ialu_reg);
  5856 %}
  5859 //----------Load/Store/Move Instructions---------------------------------------
  5860 //----------Load Instructions--------------------------------------------------
  5861 // Load Byte (8bit signed)
  5862 instruct loadB(xRegI dst, memory mem) %{
  5863   match(Set dst (LoadB mem));
  5865   ins_cost(125);
  5866   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5868   ins_encode %{
  5869     __ movsbl($dst$$Register, $mem$$Address);
  5870   %}
  5872   ins_pipe(ialu_reg_mem);
  5873 %}
  5875 // Load Byte (8bit signed) into Long Register
  5876 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5877   match(Set dst (ConvI2L (LoadB mem)));
  5878   effect(KILL cr);
  5880   ins_cost(375);
  5881   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5882             "MOV    $dst.hi,$dst.lo\n\t"
  5883             "SAR    $dst.hi,7" %}
  5885   ins_encode %{
  5886     __ movsbl($dst$$Register, $mem$$Address);
  5887     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5888     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5889   %}
  5891   ins_pipe(ialu_reg_mem);
  5892 %}
  5894 // Load Unsigned Byte (8bit UNsigned)
  5895 instruct loadUB(xRegI dst, memory mem) %{
  5896   match(Set dst (LoadUB mem));
  5898   ins_cost(125);
  5899   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5901   ins_encode %{
  5902     __ movzbl($dst$$Register, $mem$$Address);
  5903   %}
  5905   ins_pipe(ialu_reg_mem);
  5906 %}
  5908 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5909 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5910   match(Set dst (ConvI2L (LoadUB mem)));
  5911   effect(KILL cr);
  5913   ins_cost(250);
  5914   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5915             "XOR    $dst.hi,$dst.hi" %}
  5917   ins_encode %{
  5918     Register Rdst = $dst$$Register;
  5919     __ movzbl(Rdst, $mem$$Address);
  5920     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5921   %}
  5923   ins_pipe(ialu_reg_mem);
  5924 %}
  5926 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5927 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5928   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5929   effect(KILL cr);
  5931   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5932             "XOR    $dst.hi,$dst.hi\n\t"
  5933             "AND    $dst.lo,$mask" %}
  5934   ins_encode %{
  5935     Register Rdst = $dst$$Register;
  5936     __ movzbl(Rdst, $mem$$Address);
  5937     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5938     __ andl(Rdst, $mask$$constant);
  5939   %}
  5940   ins_pipe(ialu_reg_mem);
  5941 %}
  5943 // Load Short (16bit signed)
  5944 instruct loadS(eRegI dst, memory mem) %{
  5945   match(Set dst (LoadS mem));
  5947   ins_cost(125);
  5948   format %{ "MOVSX  $dst,$mem\t# short" %}
  5950   ins_encode %{
  5951     __ movswl($dst$$Register, $mem$$Address);
  5952   %}
  5954   ins_pipe(ialu_reg_mem);
  5955 %}
  5957 // Load Short (16 bit signed) to Byte (8 bit signed)
  5958 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  5959   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5961   ins_cost(125);
  5962   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5963   ins_encode %{
  5964     __ movsbl($dst$$Register, $mem$$Address);
  5965   %}
  5966   ins_pipe(ialu_reg_mem);
  5967 %}
  5969 // Load Short (16bit signed) into Long Register
  5970 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5971   match(Set dst (ConvI2L (LoadS mem)));
  5972   effect(KILL cr);
  5974   ins_cost(375);
  5975   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5976             "MOV    $dst.hi,$dst.lo\n\t"
  5977             "SAR    $dst.hi,15" %}
  5979   ins_encode %{
  5980     __ movswl($dst$$Register, $mem$$Address);
  5981     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5982     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5983   %}
  5985   ins_pipe(ialu_reg_mem);
  5986 %}
  5988 // Load Unsigned Short/Char (16bit unsigned)
  5989 instruct loadUS(eRegI dst, memory mem) %{
  5990   match(Set dst (LoadUS mem));
  5992   ins_cost(125);
  5993   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5995   ins_encode %{
  5996     __ movzwl($dst$$Register, $mem$$Address);
  5997   %}
  5999   ins_pipe(ialu_reg_mem);
  6000 %}
  6002 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6003 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6004   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6006   ins_cost(125);
  6007   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6008   ins_encode %{
  6009     __ movsbl($dst$$Register, $mem$$Address);
  6010   %}
  6011   ins_pipe(ialu_reg_mem);
  6012 %}
  6014 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6015 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6016   match(Set dst (ConvI2L (LoadUS mem)));
  6017   effect(KILL cr);
  6019   ins_cost(250);
  6020   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6021             "XOR    $dst.hi,$dst.hi" %}
  6023   ins_encode %{
  6024     __ movzwl($dst$$Register, $mem$$Address);
  6025     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6026   %}
  6028   ins_pipe(ialu_reg_mem);
  6029 %}
  6031 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6032 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6033   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6034   effect(KILL cr);
  6036   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6037             "XOR    $dst.hi,$dst.hi" %}
  6038   ins_encode %{
  6039     Register Rdst = $dst$$Register;
  6040     __ movzbl(Rdst, $mem$$Address);
  6041     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6042   %}
  6043   ins_pipe(ialu_reg_mem);
  6044 %}
  6046 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6047 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6048   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6049   effect(KILL cr);
  6051   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6052             "XOR    $dst.hi,$dst.hi\n\t"
  6053             "AND    $dst.lo,$mask" %}
  6054   ins_encode %{
  6055     Register Rdst = $dst$$Register;
  6056     __ movzwl(Rdst, $mem$$Address);
  6057     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6058     __ andl(Rdst, $mask$$constant);
  6059   %}
  6060   ins_pipe(ialu_reg_mem);
  6061 %}
  6063 // Load Integer
  6064 instruct loadI(eRegI dst, memory mem) %{
  6065   match(Set dst (LoadI mem));
  6067   ins_cost(125);
  6068   format %{ "MOV    $dst,$mem\t# int" %}
  6070   ins_encode %{
  6071     __ movl($dst$$Register, $mem$$Address);
  6072   %}
  6074   ins_pipe(ialu_reg_mem);
  6075 %}
  6077 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6078 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6079   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6081   ins_cost(125);
  6082   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6083   ins_encode %{
  6084     __ movsbl($dst$$Register, $mem$$Address);
  6085   %}
  6086   ins_pipe(ialu_reg_mem);
  6087 %}
  6089 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6090 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6091   match(Set dst (AndI (LoadI mem) mask));
  6093   ins_cost(125);
  6094   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6095   ins_encode %{
  6096     __ movzbl($dst$$Register, $mem$$Address);
  6097   %}
  6098   ins_pipe(ialu_reg_mem);
  6099 %}
  6101 // Load Integer (32 bit signed) to Short (16 bit signed)
  6102 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6103   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6105   ins_cost(125);
  6106   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6107   ins_encode %{
  6108     __ movswl($dst$$Register, $mem$$Address);
  6109   %}
  6110   ins_pipe(ialu_reg_mem);
  6111 %}
  6113 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6114 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6115   match(Set dst (AndI (LoadI mem) mask));
  6117   ins_cost(125);
  6118   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6119   ins_encode %{
  6120     __ movzwl($dst$$Register, $mem$$Address);
  6121   %}
  6122   ins_pipe(ialu_reg_mem);
  6123 %}
  6125 // Load Integer into Long Register
  6126 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6127   match(Set dst (ConvI2L (LoadI mem)));
  6128   effect(KILL cr);
  6130   ins_cost(375);
  6131   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6132             "MOV    $dst.hi,$dst.lo\n\t"
  6133             "SAR    $dst.hi,31" %}
  6135   ins_encode %{
  6136     __ movl($dst$$Register, $mem$$Address);
  6137     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6138     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6139   %}
  6141   ins_pipe(ialu_reg_mem);
  6142 %}
  6144 // Load Integer with mask 0xFF into Long Register
  6145 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6146   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6147   effect(KILL cr);
  6149   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6150             "XOR    $dst.hi,$dst.hi" %}
  6151   ins_encode %{
  6152     Register Rdst = $dst$$Register;
  6153     __ movzbl(Rdst, $mem$$Address);
  6154     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6155   %}
  6156   ins_pipe(ialu_reg_mem);
  6157 %}
  6159 // Load Integer with mask 0xFFFF into Long Register
  6160 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6161   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6162   effect(KILL cr);
  6164   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6165             "XOR    $dst.hi,$dst.hi" %}
  6166   ins_encode %{
  6167     Register Rdst = $dst$$Register;
  6168     __ movzwl(Rdst, $mem$$Address);
  6169     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6170   %}
  6171   ins_pipe(ialu_reg_mem);
  6172 %}
  6174 // Load Integer with 32-bit mask into Long Register
  6175 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6176   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6177   effect(KILL cr);
  6179   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6180             "XOR    $dst.hi,$dst.hi\n\t"
  6181             "AND    $dst.lo,$mask" %}
  6182   ins_encode %{
  6183     Register Rdst = $dst$$Register;
  6184     __ movl(Rdst, $mem$$Address);
  6185     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6186     __ andl(Rdst, $mask$$constant);
  6187   %}
  6188   ins_pipe(ialu_reg_mem);
  6189 %}
  6191 // Load Unsigned Integer into Long Register
  6192 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6193   match(Set dst (LoadUI2L mem));
  6194   effect(KILL cr);
  6196   ins_cost(250);
  6197   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6198             "XOR    $dst.hi,$dst.hi" %}
  6200   ins_encode %{
  6201     __ movl($dst$$Register, $mem$$Address);
  6202     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6203   %}
  6205   ins_pipe(ialu_reg_mem);
  6206 %}
  6208 // Load Long.  Cannot clobber address while loading, so restrict address
  6209 // register to ESI
  6210 instruct loadL(eRegL dst, load_long_memory mem) %{
  6211   predicate(!((LoadLNode*)n)->require_atomic_access());
  6212   match(Set dst (LoadL mem));
  6214   ins_cost(250);
  6215   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6216             "MOV    $dst.hi,$mem+4" %}
  6218   ins_encode %{
  6219     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6220     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6221     __ movl($dst$$Register, Amemlo);
  6222     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6223   %}
  6225   ins_pipe(ialu_reg_long_mem);
  6226 %}
  6228 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6229 // then store it down to the stack and reload on the int
  6230 // side.
  6231 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6232   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6233   match(Set dst (LoadL mem));
  6235   ins_cost(200);
  6236   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6237             "FISTp  $dst" %}
  6238   ins_encode(enc_loadL_volatile(mem,dst));
  6239   ins_pipe( fpu_reg_mem );
  6240 %}
  6242 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6243   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6244   match(Set dst (LoadL mem));
  6245   effect(TEMP tmp);
  6246   ins_cost(180);
  6247   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6248             "MOVSD  $dst,$tmp" %}
  6249   ins_encode %{
  6250     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6251     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6252   %}
  6253   ins_pipe( pipe_slow );
  6254 %}
  6256 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6257   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6258   match(Set dst (LoadL mem));
  6259   effect(TEMP tmp);
  6260   ins_cost(160);
  6261   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6262             "MOVD   $dst.lo,$tmp\n\t"
  6263             "PSRLQ  $tmp,32\n\t"
  6264             "MOVD   $dst.hi,$tmp" %}
  6265   ins_encode %{
  6266     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6267     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6268     __ psrlq($tmp$$XMMRegister, 32);
  6269     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6270   %}
  6271   ins_pipe( pipe_slow );
  6272 %}
  6274 // Load Range
  6275 instruct loadRange(eRegI dst, memory mem) %{
  6276   match(Set dst (LoadRange mem));
  6278   ins_cost(125);
  6279   format %{ "MOV    $dst,$mem" %}
  6280   opcode(0x8B);
  6281   ins_encode( OpcP, RegMem(dst,mem));
  6282   ins_pipe( ialu_reg_mem );
  6283 %}
  6286 // Load Pointer
  6287 instruct loadP(eRegP dst, memory mem) %{
  6288   match(Set dst (LoadP mem));
  6290   ins_cost(125);
  6291   format %{ "MOV    $dst,$mem" %}
  6292   opcode(0x8B);
  6293   ins_encode( OpcP, RegMem(dst,mem));
  6294   ins_pipe( ialu_reg_mem );
  6295 %}
  6297 // Load Klass Pointer
  6298 instruct loadKlass(eRegP dst, memory mem) %{
  6299   match(Set dst (LoadKlass mem));
  6301   ins_cost(125);
  6302   format %{ "MOV    $dst,$mem" %}
  6303   opcode(0x8B);
  6304   ins_encode( OpcP, RegMem(dst,mem));
  6305   ins_pipe( ialu_reg_mem );
  6306 %}
  6308 // Load Double
  6309 instruct loadDPR(regDPR dst, memory mem) %{
  6310   predicate(UseSSE<=1);
  6311   match(Set dst (LoadD mem));
  6313   ins_cost(150);
  6314   format %{ "FLD_D  ST,$mem\n\t"
  6315             "FSTP   $dst" %}
  6316   opcode(0xDD);               /* DD /0 */
  6317   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6318               Pop_Reg_DPR(dst) );
  6319   ins_pipe( fpu_reg_mem );
  6320 %}
  6322 // Load Double to XMM
  6323 instruct loadD(regD dst, memory mem) %{
  6324   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6325   match(Set dst (LoadD mem));
  6326   ins_cost(145);
  6327   format %{ "MOVSD  $dst,$mem" %}
  6328   ins_encode %{
  6329     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6330   %}
  6331   ins_pipe( pipe_slow );
  6332 %}
  6334 instruct loadD_partial(regD dst, memory mem) %{
  6335   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6336   match(Set dst (LoadD mem));
  6337   ins_cost(145);
  6338   format %{ "MOVLPD $dst,$mem" %}
  6339   ins_encode %{
  6340     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6341   %}
  6342   ins_pipe( pipe_slow );
  6343 %}
  6345 // Load to XMM register (single-precision floating point)
  6346 // MOVSS instruction
  6347 instruct loadF(regF dst, memory mem) %{
  6348   predicate(UseSSE>=1);
  6349   match(Set dst (LoadF mem));
  6350   ins_cost(145);
  6351   format %{ "MOVSS  $dst,$mem" %}
  6352   ins_encode %{
  6353     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6354   %}
  6355   ins_pipe( pipe_slow );
  6356 %}
  6358 // Load Float
  6359 instruct loadFPR(regFPR dst, memory mem) %{
  6360   predicate(UseSSE==0);
  6361   match(Set dst (LoadF mem));
  6363   ins_cost(150);
  6364   format %{ "FLD_S  ST,$mem\n\t"
  6365             "FSTP   $dst" %}
  6366   opcode(0xD9);               /* D9 /0 */
  6367   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6368               Pop_Reg_FPR(dst) );
  6369   ins_pipe( fpu_reg_mem );
  6370 %}
  6372 // Load Aligned Packed Byte to XMM register
  6373 instruct loadA8B(regD dst, memory mem) %{
  6374   predicate(UseSSE>=1);
  6375   match(Set dst (Load8B mem));
  6376   ins_cost(125);
  6377   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6378   ins_encode %{
  6379     __ movq($dst$$XMMRegister, $mem$$Address);
  6380   %}
  6381   ins_pipe( pipe_slow );
  6382 %}
  6384 // Load Aligned Packed Short to XMM register
  6385 instruct loadA4S(regD dst, memory mem) %{
  6386   predicate(UseSSE>=1);
  6387   match(Set dst (Load4S mem));
  6388   ins_cost(125);
  6389   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6390   ins_encode %{
  6391     __ movq($dst$$XMMRegister, $mem$$Address);
  6392   %}
  6393   ins_pipe( pipe_slow );
  6394 %}
  6396 // Load Aligned Packed Char to XMM register
  6397 instruct loadA4C(regD dst, memory mem) %{
  6398   predicate(UseSSE>=1);
  6399   match(Set dst (Load4C mem));
  6400   ins_cost(125);
  6401   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6402   ins_encode %{
  6403     __ movq($dst$$XMMRegister, $mem$$Address);
  6404   %}
  6405   ins_pipe( pipe_slow );
  6406 %}
  6408 // Load Aligned Packed Integer to XMM register
  6409 instruct load2IU(regD dst, memory mem) %{
  6410   predicate(UseSSE>=1);
  6411   match(Set dst (Load2I mem));
  6412   ins_cost(125);
  6413   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6414   ins_encode %{
  6415     __ movq($dst$$XMMRegister, $mem$$Address);
  6416   %}
  6417   ins_pipe( pipe_slow );
  6418 %}
  6420 // Load Aligned Packed Single to XMM
  6421 instruct loadA2F(regD dst, memory mem) %{
  6422   predicate(UseSSE>=1);
  6423   match(Set dst (Load2F mem));
  6424   ins_cost(145);
  6425   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6426   ins_encode %{
  6427     __ movq($dst$$XMMRegister, $mem$$Address);
  6428   %}
  6429   ins_pipe( pipe_slow );
  6430 %}
  6432 // Load Effective Address
  6433 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6434   match(Set dst mem);
  6436   ins_cost(110);
  6437   format %{ "LEA    $dst,$mem" %}
  6438   opcode(0x8D);
  6439   ins_encode( OpcP, RegMem(dst,mem));
  6440   ins_pipe( ialu_reg_reg_fat );
  6441 %}
  6443 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6444   match(Set dst mem);
  6446   ins_cost(110);
  6447   format %{ "LEA    $dst,$mem" %}
  6448   opcode(0x8D);
  6449   ins_encode( OpcP, RegMem(dst,mem));
  6450   ins_pipe( ialu_reg_reg_fat );
  6451 %}
  6453 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6454   match(Set dst mem);
  6456   ins_cost(110);
  6457   format %{ "LEA    $dst,$mem" %}
  6458   opcode(0x8D);
  6459   ins_encode( OpcP, RegMem(dst,mem));
  6460   ins_pipe( ialu_reg_reg_fat );
  6461 %}
  6463 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6464   match(Set dst mem);
  6466   ins_cost(110);
  6467   format %{ "LEA    $dst,$mem" %}
  6468   opcode(0x8D);
  6469   ins_encode( OpcP, RegMem(dst,mem));
  6470   ins_pipe( ialu_reg_reg_fat );
  6471 %}
  6473 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6474   match(Set dst mem);
  6476   ins_cost(110);
  6477   format %{ "LEA    $dst,$mem" %}
  6478   opcode(0x8D);
  6479   ins_encode( OpcP, RegMem(dst,mem));
  6480   ins_pipe( ialu_reg_reg_fat );
  6481 %}
  6483 // Load Constant
  6484 instruct loadConI(eRegI dst, immI src) %{
  6485   match(Set dst src);
  6487   format %{ "MOV    $dst,$src" %}
  6488   ins_encode( LdImmI(dst, src) );
  6489   ins_pipe( ialu_reg_fat );
  6490 %}
  6492 // Load Constant zero
  6493 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  6494   match(Set dst src);
  6495   effect(KILL cr);
  6497   ins_cost(50);
  6498   format %{ "XOR    $dst,$dst" %}
  6499   opcode(0x33);  /* + rd */
  6500   ins_encode( OpcP, RegReg( dst, dst ) );
  6501   ins_pipe( ialu_reg );
  6502 %}
  6504 instruct loadConP(eRegP dst, immP src) %{
  6505   match(Set dst src);
  6507   format %{ "MOV    $dst,$src" %}
  6508   opcode(0xB8);  /* + rd */
  6509   ins_encode( LdImmP(dst, src) );
  6510   ins_pipe( ialu_reg_fat );
  6511 %}
  6513 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6514   match(Set dst src);
  6515   effect(KILL cr);
  6516   ins_cost(200);
  6517   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6518             "MOV    $dst.hi,$src.hi" %}
  6519   opcode(0xB8);
  6520   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6521   ins_pipe( ialu_reg_long_fat );
  6522 %}
  6524 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6525   match(Set dst src);
  6526   effect(KILL cr);
  6527   ins_cost(150);
  6528   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6529             "XOR    $dst.hi,$dst.hi" %}
  6530   opcode(0x33,0x33);
  6531   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6532   ins_pipe( ialu_reg_long );
  6533 %}
  6535 // The instruction usage is guarded by predicate in operand immFPR().
  6536 instruct loadConFPR(regFPR dst, immFPR con) %{
  6537   match(Set dst con);
  6538   ins_cost(125);
  6539   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6540             "FSTP   $dst" %}
  6541   ins_encode %{
  6542     __ fld_s($constantaddress($con));
  6543     __ fstp_d($dst$$reg);
  6544   %}
  6545   ins_pipe(fpu_reg_con);
  6546 %}
  6548 // The instruction usage is guarded by predicate in operand immFPR0().
  6549 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6550   match(Set dst con);
  6551   ins_cost(125);
  6552   format %{ "FLDZ   ST\n\t"
  6553             "FSTP   $dst" %}
  6554   ins_encode %{
  6555     __ fldz();
  6556     __ fstp_d($dst$$reg);
  6557   %}
  6558   ins_pipe(fpu_reg_con);
  6559 %}
  6561 // The instruction usage is guarded by predicate in operand immFPR1().
  6562 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6563   match(Set dst con);
  6564   ins_cost(125);
  6565   format %{ "FLD1   ST\n\t"
  6566             "FSTP   $dst" %}
  6567   ins_encode %{
  6568     __ fld1();
  6569     __ fstp_d($dst$$reg);
  6570   %}
  6571   ins_pipe(fpu_reg_con);
  6572 %}
  6574 // The instruction usage is guarded by predicate in operand immF().
  6575 instruct loadConF(regF dst, immF con) %{
  6576   match(Set dst con);
  6577   ins_cost(125);
  6578   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6579   ins_encode %{
  6580     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6581   %}
  6582   ins_pipe(pipe_slow);
  6583 %}
  6585 // The instruction usage is guarded by predicate in operand immF0().
  6586 instruct loadConF0(regF dst, immF0 src) %{
  6587   match(Set dst src);
  6588   ins_cost(100);
  6589   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6590   ins_encode %{
  6591     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6592   %}
  6593   ins_pipe(pipe_slow);
  6594 %}
  6596 // The instruction usage is guarded by predicate in operand immDPR().
  6597 instruct loadConDPR(regDPR dst, immDPR con) %{
  6598   match(Set dst con);
  6599   ins_cost(125);
  6601   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6602             "FSTP   $dst" %}
  6603   ins_encode %{
  6604     __ fld_d($constantaddress($con));
  6605     __ fstp_d($dst$$reg);
  6606   %}
  6607   ins_pipe(fpu_reg_con);
  6608 %}
  6610 // The instruction usage is guarded by predicate in operand immDPR0().
  6611 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6612   match(Set dst con);
  6613   ins_cost(125);
  6615   format %{ "FLDZ   ST\n\t"
  6616             "FSTP   $dst" %}
  6617   ins_encode %{
  6618     __ fldz();
  6619     __ fstp_d($dst$$reg);
  6620   %}
  6621   ins_pipe(fpu_reg_con);
  6622 %}
  6624 // The instruction usage is guarded by predicate in operand immDPR1().
  6625 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6626   match(Set dst con);
  6627   ins_cost(125);
  6629   format %{ "FLD1   ST\n\t"
  6630             "FSTP   $dst" %}
  6631   ins_encode %{
  6632     __ fld1();
  6633     __ fstp_d($dst$$reg);
  6634   %}
  6635   ins_pipe(fpu_reg_con);
  6636 %}
  6638 // The instruction usage is guarded by predicate in operand immD().
  6639 instruct loadConD(regD dst, immD con) %{
  6640   match(Set dst con);
  6641   ins_cost(125);
  6642   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6643   ins_encode %{
  6644     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6645   %}
  6646   ins_pipe(pipe_slow);
  6647 %}
  6649 // The instruction usage is guarded by predicate in operand immD0().
  6650 instruct loadConD0(regD dst, immD0 src) %{
  6651   match(Set dst src);
  6652   ins_cost(100);
  6653   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6654   ins_encode %{
  6655     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6656   %}
  6657   ins_pipe( pipe_slow );
  6658 %}
  6660 // Load Stack Slot
  6661 instruct loadSSI(eRegI dst, stackSlotI src) %{
  6662   match(Set dst src);
  6663   ins_cost(125);
  6665   format %{ "MOV    $dst,$src" %}
  6666   opcode(0x8B);
  6667   ins_encode( OpcP, RegMem(dst,src));
  6668   ins_pipe( ialu_reg_mem );
  6669 %}
  6671 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6672   match(Set dst src);
  6674   ins_cost(200);
  6675   format %{ "MOV    $dst,$src.lo\n\t"
  6676             "MOV    $dst+4,$src.hi" %}
  6677   opcode(0x8B, 0x8B);
  6678   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6679   ins_pipe( ialu_mem_long_reg );
  6680 %}
  6682 // Load Stack Slot
  6683 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6684   match(Set dst src);
  6685   ins_cost(125);
  6687   format %{ "MOV    $dst,$src" %}
  6688   opcode(0x8B);
  6689   ins_encode( OpcP, RegMem(dst,src));
  6690   ins_pipe( ialu_reg_mem );
  6691 %}
  6693 // Load Stack Slot
  6694 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6695   match(Set dst src);
  6696   ins_cost(125);
  6698   format %{ "FLD_S  $src\n\t"
  6699             "FSTP   $dst" %}
  6700   opcode(0xD9);               /* D9 /0, FLD m32real */
  6701   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6702               Pop_Reg_FPR(dst) );
  6703   ins_pipe( fpu_reg_mem );
  6704 %}
  6706 // Load Stack Slot
  6707 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6708   match(Set dst src);
  6709   ins_cost(125);
  6711   format %{ "FLD_D  $src\n\t"
  6712             "FSTP   $dst" %}
  6713   opcode(0xDD);               /* DD /0, FLD m64real */
  6714   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6715               Pop_Reg_DPR(dst) );
  6716   ins_pipe( fpu_reg_mem );
  6717 %}
  6719 // Prefetch instructions.
  6720 // Must be safe to execute with invalid address (cannot fault).
  6722 instruct prefetchr0( memory mem ) %{
  6723   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6724   match(PrefetchRead mem);
  6725   ins_cost(0);
  6726   size(0);
  6727   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6728   ins_encode();
  6729   ins_pipe(empty);
  6730 %}
  6732 instruct prefetchr( memory mem ) %{
  6733   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6734   match(PrefetchRead mem);
  6735   ins_cost(100);
  6737   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6738   ins_encode %{
  6739     __ prefetchr($mem$$Address);
  6740   %}
  6741   ins_pipe(ialu_mem);
  6742 %}
  6744 instruct prefetchrNTA( memory mem ) %{
  6745   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6746   match(PrefetchRead mem);
  6747   ins_cost(100);
  6749   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6750   ins_encode %{
  6751     __ prefetchnta($mem$$Address);
  6752   %}
  6753   ins_pipe(ialu_mem);
  6754 %}
  6756 instruct prefetchrT0( memory mem ) %{
  6757   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6758   match(PrefetchRead mem);
  6759   ins_cost(100);
  6761   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6762   ins_encode %{
  6763     __ prefetcht0($mem$$Address);
  6764   %}
  6765   ins_pipe(ialu_mem);
  6766 %}
  6768 instruct prefetchrT2( memory mem ) %{
  6769   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6770   match(PrefetchRead mem);
  6771   ins_cost(100);
  6773   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6774   ins_encode %{
  6775     __ prefetcht2($mem$$Address);
  6776   %}
  6777   ins_pipe(ialu_mem);
  6778 %}
  6780 instruct prefetchw0( memory mem ) %{
  6781   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6782   match(PrefetchWrite mem);
  6783   ins_cost(0);
  6784   size(0);
  6785   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6786   ins_encode();
  6787   ins_pipe(empty);
  6788 %}
  6790 instruct prefetchw( memory mem ) %{
  6791   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6792   match( PrefetchWrite mem );
  6793   ins_cost(100);
  6795   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6796   ins_encode %{
  6797     __ prefetchw($mem$$Address);
  6798   %}
  6799   ins_pipe(ialu_mem);
  6800 %}
  6802 instruct prefetchwNTA( memory mem ) %{
  6803   predicate(UseSSE>=1);
  6804   match(PrefetchWrite mem);
  6805   ins_cost(100);
  6807   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6808   ins_encode %{
  6809     __ prefetchnta($mem$$Address);
  6810   %}
  6811   ins_pipe(ialu_mem);
  6812 %}
  6814 // Prefetch instructions for allocation.
  6816 instruct prefetchAlloc0( memory mem ) %{
  6817   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6818   match(PrefetchAllocation mem);
  6819   ins_cost(0);
  6820   size(0);
  6821   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6822   ins_encode();
  6823   ins_pipe(empty);
  6824 %}
  6826 instruct prefetchAlloc( memory mem ) %{
  6827   predicate(AllocatePrefetchInstr==3);
  6828   match( PrefetchAllocation mem );
  6829   ins_cost(100);
  6831   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6832   ins_encode %{
  6833     __ prefetchw($mem$$Address);
  6834   %}
  6835   ins_pipe(ialu_mem);
  6836 %}
  6838 instruct prefetchAllocNTA( memory mem ) %{
  6839   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6840   match(PrefetchAllocation mem);
  6841   ins_cost(100);
  6843   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6844   ins_encode %{
  6845     __ prefetchnta($mem$$Address);
  6846   %}
  6847   ins_pipe(ialu_mem);
  6848 %}
  6850 instruct prefetchAllocT0( memory mem ) %{
  6851   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6852   match(PrefetchAllocation mem);
  6853   ins_cost(100);
  6855   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6856   ins_encode %{
  6857     __ prefetcht0($mem$$Address);
  6858   %}
  6859   ins_pipe(ialu_mem);
  6860 %}
  6862 instruct prefetchAllocT2( memory mem ) %{
  6863   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6864   match(PrefetchAllocation mem);
  6865   ins_cost(100);
  6867   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6868   ins_encode %{
  6869     __ prefetcht2($mem$$Address);
  6870   %}
  6871   ins_pipe(ialu_mem);
  6872 %}
  6874 //----------Store Instructions-------------------------------------------------
  6876 // Store Byte
  6877 instruct storeB(memory mem, xRegI src) %{
  6878   match(Set mem (StoreB mem src));
  6880   ins_cost(125);
  6881   format %{ "MOV8   $mem,$src" %}
  6882   opcode(0x88);
  6883   ins_encode( OpcP, RegMem( src, mem ) );
  6884   ins_pipe( ialu_mem_reg );
  6885 %}
  6887 // Store Char/Short
  6888 instruct storeC(memory mem, eRegI src) %{
  6889   match(Set mem (StoreC mem src));
  6891   ins_cost(125);
  6892   format %{ "MOV16  $mem,$src" %}
  6893   opcode(0x89, 0x66);
  6894   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6895   ins_pipe( ialu_mem_reg );
  6896 %}
  6898 // Store Integer
  6899 instruct storeI(memory mem, eRegI src) %{
  6900   match(Set mem (StoreI mem src));
  6902   ins_cost(125);
  6903   format %{ "MOV    $mem,$src" %}
  6904   opcode(0x89);
  6905   ins_encode( OpcP, RegMem( src, mem ) );
  6906   ins_pipe( ialu_mem_reg );
  6907 %}
  6909 // Store Long
  6910 instruct storeL(long_memory mem, eRegL src) %{
  6911   predicate(!((StoreLNode*)n)->require_atomic_access());
  6912   match(Set mem (StoreL mem src));
  6914   ins_cost(200);
  6915   format %{ "MOV    $mem,$src.lo\n\t"
  6916             "MOV    $mem+4,$src.hi" %}
  6917   opcode(0x89, 0x89);
  6918   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6919   ins_pipe( ialu_mem_long_reg );
  6920 %}
  6922 // Store Long to Integer
  6923 instruct storeL2I(memory mem, eRegL src) %{
  6924   match(Set mem (StoreI mem (ConvL2I src)));
  6926   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6927   ins_encode %{
  6928     __ movl($mem$$Address, $src$$Register);
  6929   %}
  6930   ins_pipe(ialu_mem_reg);
  6931 %}
  6933 // Volatile Store Long.  Must be atomic, so move it into
  6934 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6935 // target address before the store (for null-ptr checks)
  6936 // so the memory operand is used twice in the encoding.
  6937 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6938   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6939   match(Set mem (StoreL mem src));
  6940   effect( KILL cr );
  6941   ins_cost(400);
  6942   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6943             "FILD   $src\n\t"
  6944             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6945   opcode(0x3B);
  6946   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6947   ins_pipe( fpu_reg_mem );
  6948 %}
  6950 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6951   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6952   match(Set mem (StoreL mem src));
  6953   effect( TEMP tmp, KILL cr );
  6954   ins_cost(380);
  6955   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6956             "MOVSD  $tmp,$src\n\t"
  6957             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6958   ins_encode %{
  6959     __ cmpl(rax, $mem$$Address);
  6960     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6961     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6962   %}
  6963   ins_pipe( pipe_slow );
  6964 %}
  6966 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6967   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6968   match(Set mem (StoreL mem src));
  6969   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6970   ins_cost(360);
  6971   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6972             "MOVD   $tmp,$src.lo\n\t"
  6973             "MOVD   $tmp2,$src.hi\n\t"
  6974             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6975             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6976   ins_encode %{
  6977     __ cmpl(rax, $mem$$Address);
  6978     __ movdl($tmp$$XMMRegister, $src$$Register);
  6979     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6980     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6981     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6982   %}
  6983   ins_pipe( pipe_slow );
  6984 %}
  6986 // Store Pointer; for storing unknown oops and raw pointers
  6987 instruct storeP(memory mem, anyRegP src) %{
  6988   match(Set mem (StoreP mem src));
  6990   ins_cost(125);
  6991   format %{ "MOV    $mem,$src" %}
  6992   opcode(0x89);
  6993   ins_encode( OpcP, RegMem( src, mem ) );
  6994   ins_pipe( ialu_mem_reg );
  6995 %}
  6997 // Store Integer Immediate
  6998 instruct storeImmI(memory mem, immI src) %{
  6999   match(Set mem (StoreI mem src));
  7001   ins_cost(150);
  7002   format %{ "MOV    $mem,$src" %}
  7003   opcode(0xC7);               /* C7 /0 */
  7004   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7005   ins_pipe( ialu_mem_imm );
  7006 %}
  7008 // Store Short/Char Immediate
  7009 instruct storeImmI16(memory mem, immI16 src) %{
  7010   predicate(UseStoreImmI16);
  7011   match(Set mem (StoreC mem src));
  7013   ins_cost(150);
  7014   format %{ "MOV16  $mem,$src" %}
  7015   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7016   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7017   ins_pipe( ialu_mem_imm );
  7018 %}
  7020 // Store Pointer Immediate; null pointers or constant oops that do not
  7021 // need card-mark barriers.
  7022 instruct storeImmP(memory mem, immP src) %{
  7023   match(Set mem (StoreP mem src));
  7025   ins_cost(150);
  7026   format %{ "MOV    $mem,$src" %}
  7027   opcode(0xC7);               /* C7 /0 */
  7028   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7029   ins_pipe( ialu_mem_imm );
  7030 %}
  7032 // Store Byte Immediate
  7033 instruct storeImmB(memory mem, immI8 src) %{
  7034   match(Set mem (StoreB mem src));
  7036   ins_cost(150);
  7037   format %{ "MOV8   $mem,$src" %}
  7038   opcode(0xC6);               /* C6 /0 */
  7039   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7040   ins_pipe( ialu_mem_imm );
  7041 %}
  7043 // Store Aligned Packed Byte XMM register to memory
  7044 instruct storeA8B(memory mem, regD src) %{
  7045   predicate(UseSSE>=1);
  7046   match(Set mem (Store8B mem src));
  7047   ins_cost(145);
  7048   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7049   ins_encode %{
  7050     __ movq($mem$$Address, $src$$XMMRegister);
  7051   %}
  7052   ins_pipe( pipe_slow );
  7053 %}
  7055 // Store Aligned Packed Char/Short XMM register to memory
  7056 instruct storeA4C(memory mem, regD src) %{
  7057   predicate(UseSSE>=1);
  7058   match(Set mem (Store4C mem src));
  7059   ins_cost(145);
  7060   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7061   ins_encode %{
  7062     __ movq($mem$$Address, $src$$XMMRegister);
  7063   %}
  7064   ins_pipe( pipe_slow );
  7065 %}
  7067 // Store Aligned Packed Integer XMM register to memory
  7068 instruct storeA2I(memory mem, regD src) %{
  7069   predicate(UseSSE>=1);
  7070   match(Set mem (Store2I mem src));
  7071   ins_cost(145);
  7072   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7073   ins_encode %{
  7074     __ movq($mem$$Address, $src$$XMMRegister);
  7075   %}
  7076   ins_pipe( pipe_slow );
  7077 %}
  7079 // Store CMS card-mark Immediate
  7080 instruct storeImmCM(memory mem, immI8 src) %{
  7081   match(Set mem (StoreCM mem src));
  7083   ins_cost(150);
  7084   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7085   opcode(0xC6);               /* C6 /0 */
  7086   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7087   ins_pipe( ialu_mem_imm );
  7088 %}
  7090 // Store Double
  7091 instruct storeDPR( memory mem, regDPR1 src) %{
  7092   predicate(UseSSE<=1);
  7093   match(Set mem (StoreD mem src));
  7095   ins_cost(100);
  7096   format %{ "FST_D  $mem,$src" %}
  7097   opcode(0xDD);       /* DD /2 */
  7098   ins_encode( enc_FPR_store(mem,src) );
  7099   ins_pipe( fpu_mem_reg );
  7100 %}
  7102 // Store double does rounding on x86
  7103 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  7104   predicate(UseSSE<=1);
  7105   match(Set mem (StoreD mem (RoundDouble src)));
  7107   ins_cost(100);
  7108   format %{ "FST_D  $mem,$src\t# round" %}
  7109   opcode(0xDD);       /* DD /2 */
  7110   ins_encode( enc_FPR_store(mem,src) );
  7111   ins_pipe( fpu_mem_reg );
  7112 %}
  7114 // Store XMM register to memory (double-precision floating points)
  7115 // MOVSD instruction
  7116 instruct storeD(memory mem, regD src) %{
  7117   predicate(UseSSE>=2);
  7118   match(Set mem (StoreD mem src));
  7119   ins_cost(95);
  7120   format %{ "MOVSD  $mem,$src" %}
  7121   ins_encode %{
  7122     __ movdbl($mem$$Address, $src$$XMMRegister);
  7123   %}
  7124   ins_pipe( pipe_slow );
  7125 %}
  7127 // Store XMM register to memory (single-precision floating point)
  7128 // MOVSS instruction
  7129 instruct storeF(memory mem, regF src) %{
  7130   predicate(UseSSE>=1);
  7131   match(Set mem (StoreF mem src));
  7132   ins_cost(95);
  7133   format %{ "MOVSS  $mem,$src" %}
  7134   ins_encode %{
  7135     __ movflt($mem$$Address, $src$$XMMRegister);
  7136   %}
  7137   ins_pipe( pipe_slow );
  7138 %}
  7140 // Store Aligned Packed Single Float XMM register to memory
  7141 instruct storeA2F(memory mem, regD src) %{
  7142   predicate(UseSSE>=1);
  7143   match(Set mem (Store2F mem src));
  7144   ins_cost(145);
  7145   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7146   ins_encode %{
  7147     __ movq($mem$$Address, $src$$XMMRegister);
  7148   %}
  7149   ins_pipe( pipe_slow );
  7150 %}
  7152 // Store Float
  7153 instruct storeFPR( memory mem, regFPR1 src) %{
  7154   predicate(UseSSE==0);
  7155   match(Set mem (StoreF mem src));
  7157   ins_cost(100);
  7158   format %{ "FST_S  $mem,$src" %}
  7159   opcode(0xD9);       /* D9 /2 */
  7160   ins_encode( enc_FPR_store(mem,src) );
  7161   ins_pipe( fpu_mem_reg );
  7162 %}
  7164 // Store Float does rounding on x86
  7165 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7166   predicate(UseSSE==0);
  7167   match(Set mem (StoreF mem (RoundFloat src)));
  7169   ins_cost(100);
  7170   format %{ "FST_S  $mem,$src\t# round" %}
  7171   opcode(0xD9);       /* D9 /2 */
  7172   ins_encode( enc_FPR_store(mem,src) );
  7173   ins_pipe( fpu_mem_reg );
  7174 %}
  7176 // Store Float does rounding on x86
  7177 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7178   predicate(UseSSE<=1);
  7179   match(Set mem (StoreF mem (ConvD2F src)));
  7181   ins_cost(100);
  7182   format %{ "FST_S  $mem,$src\t# D-round" %}
  7183   opcode(0xD9);       /* D9 /2 */
  7184   ins_encode( enc_FPR_store(mem,src) );
  7185   ins_pipe( fpu_mem_reg );
  7186 %}
  7188 // Store immediate Float value (it is faster than store from FPU register)
  7189 // The instruction usage is guarded by predicate in operand immFPR().
  7190 instruct storeFPR_imm( memory mem, immFPR src) %{
  7191   match(Set mem (StoreF mem src));
  7193   ins_cost(50);
  7194   format %{ "MOV    $mem,$src\t# store float" %}
  7195   opcode(0xC7);               /* C7 /0 */
  7196   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7197   ins_pipe( ialu_mem_imm );
  7198 %}
  7200 // Store immediate Float value (it is faster than store from XMM register)
  7201 // The instruction usage is guarded by predicate in operand immF().
  7202 instruct storeF_imm( memory mem, immF src) %{
  7203   match(Set mem (StoreF mem src));
  7205   ins_cost(50);
  7206   format %{ "MOV    $mem,$src\t# store float" %}
  7207   opcode(0xC7);               /* C7 /0 */
  7208   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7209   ins_pipe( ialu_mem_imm );
  7210 %}
  7212 // Store Integer to stack slot
  7213 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7214   match(Set dst src);
  7216   ins_cost(100);
  7217   format %{ "MOV    $dst,$src" %}
  7218   opcode(0x89);
  7219   ins_encode( OpcPRegSS( dst, src ) );
  7220   ins_pipe( ialu_mem_reg );
  7221 %}
  7223 // Store Integer to stack slot
  7224 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7225   match(Set dst src);
  7227   ins_cost(100);
  7228   format %{ "MOV    $dst,$src" %}
  7229   opcode(0x89);
  7230   ins_encode( OpcPRegSS( dst, src ) );
  7231   ins_pipe( ialu_mem_reg );
  7232 %}
  7234 // Store Long to stack slot
  7235 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7236   match(Set dst src);
  7238   ins_cost(200);
  7239   format %{ "MOV    $dst,$src.lo\n\t"
  7240             "MOV    $dst+4,$src.hi" %}
  7241   opcode(0x89, 0x89);
  7242   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7243   ins_pipe( ialu_mem_long_reg );
  7244 %}
  7246 //----------MemBar Instructions-----------------------------------------------
  7247 // Memory barrier flavors
  7249 instruct membar_acquire() %{
  7250   match(MemBarAcquire);
  7251   ins_cost(400);
  7253   size(0);
  7254   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7255   ins_encode();
  7256   ins_pipe(empty);
  7257 %}
  7259 instruct membar_acquire_lock() %{
  7260   match(MemBarAcquireLock);
  7261   ins_cost(0);
  7263   size(0);
  7264   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7265   ins_encode( );
  7266   ins_pipe(empty);
  7267 %}
  7269 instruct membar_release() %{
  7270   match(MemBarRelease);
  7271   ins_cost(400);
  7273   size(0);
  7274   format %{ "MEMBAR-release ! (empty encoding)" %}
  7275   ins_encode( );
  7276   ins_pipe(empty);
  7277 %}
  7279 instruct membar_release_lock() %{
  7280   match(MemBarReleaseLock);
  7281   ins_cost(0);
  7283   size(0);
  7284   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7285   ins_encode( );
  7286   ins_pipe(empty);
  7287 %}
  7289 instruct membar_volatile(eFlagsReg cr) %{
  7290   match(MemBarVolatile);
  7291   effect(KILL cr);
  7292   ins_cost(400);
  7294   format %{ 
  7295     $$template
  7296     if (os::is_MP()) {
  7297       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7298     } else {
  7299       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7301   %}
  7302   ins_encode %{
  7303     __ membar(Assembler::StoreLoad);
  7304   %}
  7305   ins_pipe(pipe_slow);
  7306 %}
  7308 instruct unnecessary_membar_volatile() %{
  7309   match(MemBarVolatile);
  7310   predicate(Matcher::post_store_load_barrier(n));
  7311   ins_cost(0);
  7313   size(0);
  7314   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7315   ins_encode( );
  7316   ins_pipe(empty);
  7317 %}
  7319 instruct membar_storestore() %{
  7320   match(MemBarStoreStore);
  7321   ins_cost(0);
  7323   size(0);
  7324   format %{ "MEMBAR-storestore (empty encoding)" %}
  7325   ins_encode( );
  7326   ins_pipe(empty);
  7327 %}
  7329 //----------Move Instructions--------------------------------------------------
  7330 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7331   match(Set dst (CastX2P src));
  7332   format %{ "# X2P  $dst, $src" %}
  7333   ins_encode( /*empty encoding*/ );
  7334   ins_cost(0);
  7335   ins_pipe(empty);
  7336 %}
  7338 instruct castP2X(eRegI dst, eRegP src ) %{
  7339   match(Set dst (CastP2X src));
  7340   ins_cost(50);
  7341   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7342   ins_encode( enc_Copy( dst, src) );
  7343   ins_pipe( ialu_reg_reg );
  7344 %}
  7346 //----------Conditional Move---------------------------------------------------
  7347 // Conditional move
  7348 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, eRegI dst, eRegI src) %{
  7349   predicate(!VM_Version::supports_cmov() );
  7350   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7351   ins_cost(200);
  7352   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7353             "MOV    $dst,$src\n"
  7354       "skip:" %}
  7355   ins_encode %{
  7356     Label Lskip;
  7357     // Invert sense of branch from sense of CMOV
  7358     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7359     __ movl($dst$$Register, $src$$Register);
  7360     __ bind(Lskip);
  7361   %}
  7362   ins_pipe( pipe_cmov_reg );
  7363 %}
  7365 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src) %{
  7366   predicate(!VM_Version::supports_cmov() );
  7367   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7368   ins_cost(200);
  7369   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7370             "MOV    $dst,$src\n"
  7371       "skip:" %}
  7372   ins_encode %{
  7373     Label Lskip;
  7374     // Invert sense of branch from sense of CMOV
  7375     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7376     __ movl($dst$$Register, $src$$Register);
  7377     __ bind(Lskip);
  7378   %}
  7379   ins_pipe( pipe_cmov_reg );
  7380 %}
  7382 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7383   predicate(VM_Version::supports_cmov() );
  7384   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7385   ins_cost(200);
  7386   format %{ "CMOV$cop $dst,$src" %}
  7387   opcode(0x0F,0x40);
  7388   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7389   ins_pipe( pipe_cmov_reg );
  7390 %}
  7392 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7393   predicate(VM_Version::supports_cmov() );
  7394   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7395   ins_cost(200);
  7396   format %{ "CMOV$cop $dst,$src" %}
  7397   opcode(0x0F,0x40);
  7398   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7399   ins_pipe( pipe_cmov_reg );
  7400 %}
  7402 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7403   predicate(VM_Version::supports_cmov() );
  7404   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7405   ins_cost(200);
  7406   expand %{
  7407     cmovI_regU(cop, cr, dst, src);
  7408   %}
  7409 %}
  7411 // Conditional move
  7412 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7413   predicate(VM_Version::supports_cmov() );
  7414   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7415   ins_cost(250);
  7416   format %{ "CMOV$cop $dst,$src" %}
  7417   opcode(0x0F,0x40);
  7418   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7419   ins_pipe( pipe_cmov_mem );
  7420 %}
  7422 // Conditional move
  7423 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7424   predicate(VM_Version::supports_cmov() );
  7425   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7426   ins_cost(250);
  7427   format %{ "CMOV$cop $dst,$src" %}
  7428   opcode(0x0F,0x40);
  7429   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7430   ins_pipe( pipe_cmov_mem );
  7431 %}
  7433 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7434   predicate(VM_Version::supports_cmov() );
  7435   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7436   ins_cost(250);
  7437   expand %{
  7438     cmovI_memU(cop, cr, dst, src);
  7439   %}
  7440 %}
  7442 // Conditional move
  7443 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7444   predicate(VM_Version::supports_cmov() );
  7445   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7446   ins_cost(200);
  7447   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7448   opcode(0x0F,0x40);
  7449   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7450   ins_pipe( pipe_cmov_reg );
  7451 %}
  7453 // Conditional move (non-P6 version)
  7454 // Note:  a CMoveP is generated for  stubs and native wrappers
  7455 //        regardless of whether we are on a P6, so we
  7456 //        emulate a cmov here
  7457 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7458   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7459   ins_cost(300);
  7460   format %{ "Jn$cop   skip\n\t"
  7461           "MOV    $dst,$src\t# pointer\n"
  7462       "skip:" %}
  7463   opcode(0x8b);
  7464   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7465   ins_pipe( pipe_cmov_reg );
  7466 %}
  7468 // Conditional move
  7469 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7470   predicate(VM_Version::supports_cmov() );
  7471   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7472   ins_cost(200);
  7473   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7474   opcode(0x0F,0x40);
  7475   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7476   ins_pipe( pipe_cmov_reg );
  7477 %}
  7479 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7480   predicate(VM_Version::supports_cmov() );
  7481   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7482   ins_cost(200);
  7483   expand %{
  7484     cmovP_regU(cop, cr, dst, src);
  7485   %}
  7486 %}
  7488 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7489 // correctly meets the two pointer arguments; one is an incoming
  7490 // register but the other is a memory operand.  ALSO appears to
  7491 // be buggy with implicit null checks.
  7492 //
  7493 //// Conditional move
  7494 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7495 //  predicate(VM_Version::supports_cmov() );
  7496 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7497 //  ins_cost(250);
  7498 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7499 //  opcode(0x0F,0x40);
  7500 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7501 //  ins_pipe( pipe_cmov_mem );
  7502 //%}
  7503 //
  7504 //// Conditional move
  7505 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7506 //  predicate(VM_Version::supports_cmov() );
  7507 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7508 //  ins_cost(250);
  7509 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7510 //  opcode(0x0F,0x40);
  7511 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7512 //  ins_pipe( pipe_cmov_mem );
  7513 //%}
  7515 // Conditional move
  7516 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7517   predicate(UseSSE<=1);
  7518   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7519   ins_cost(200);
  7520   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7521   opcode(0xDA);
  7522   ins_encode( enc_cmov_dpr(cop,src) );
  7523   ins_pipe( pipe_cmovDPR_reg );
  7524 %}
  7526 // Conditional move
  7527 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7528   predicate(UseSSE==0);
  7529   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7530   ins_cost(200);
  7531   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7532   opcode(0xDA);
  7533   ins_encode( enc_cmov_dpr(cop,src) );
  7534   ins_pipe( pipe_cmovDPR_reg );
  7535 %}
  7537 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7538 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7539   predicate(UseSSE<=1);
  7540   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7541   ins_cost(200);
  7542   format %{ "Jn$cop   skip\n\t"
  7543             "MOV    $dst,$src\t# double\n"
  7544       "skip:" %}
  7545   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7546   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7547   ins_pipe( pipe_cmovDPR_reg );
  7548 %}
  7550 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7551 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7552   predicate(UseSSE==0);
  7553   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7554   ins_cost(200);
  7555   format %{ "Jn$cop    skip\n\t"
  7556             "MOV    $dst,$src\t# float\n"
  7557       "skip:" %}
  7558   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7559   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7560   ins_pipe( pipe_cmovDPR_reg );
  7561 %}
  7563 // No CMOVE with SSE/SSE2
  7564 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7565   predicate (UseSSE>=1);
  7566   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7567   ins_cost(200);
  7568   format %{ "Jn$cop   skip\n\t"
  7569             "MOVSS  $dst,$src\t# float\n"
  7570       "skip:" %}
  7571   ins_encode %{
  7572     Label skip;
  7573     // Invert sense of branch from sense of CMOV
  7574     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7575     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7576     __ bind(skip);
  7577   %}
  7578   ins_pipe( pipe_slow );
  7579 %}
  7581 // No CMOVE with SSE/SSE2
  7582 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7583   predicate (UseSSE>=2);
  7584   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7585   ins_cost(200);
  7586   format %{ "Jn$cop   skip\n\t"
  7587             "MOVSD  $dst,$src\t# float\n"
  7588       "skip:" %}
  7589   ins_encode %{
  7590     Label skip;
  7591     // Invert sense of branch from sense of CMOV
  7592     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7593     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7594     __ bind(skip);
  7595   %}
  7596   ins_pipe( pipe_slow );
  7597 %}
  7599 // unsigned version
  7600 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7601   predicate (UseSSE>=1);
  7602   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7603   ins_cost(200);
  7604   format %{ "Jn$cop   skip\n\t"
  7605             "MOVSS  $dst,$src\t# float\n"
  7606       "skip:" %}
  7607   ins_encode %{
  7608     Label skip;
  7609     // Invert sense of branch from sense of CMOV
  7610     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7611     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7612     __ bind(skip);
  7613   %}
  7614   ins_pipe( pipe_slow );
  7615 %}
  7617 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7618   predicate (UseSSE>=1);
  7619   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7620   ins_cost(200);
  7621   expand %{
  7622     fcmovF_regU(cop, cr, dst, src);
  7623   %}
  7624 %}
  7626 // unsigned version
  7627 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7628   predicate (UseSSE>=2);
  7629   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7630   ins_cost(200);
  7631   format %{ "Jn$cop   skip\n\t"
  7632             "MOVSD  $dst,$src\t# float\n"
  7633       "skip:" %}
  7634   ins_encode %{
  7635     Label skip;
  7636     // Invert sense of branch from sense of CMOV
  7637     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7638     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7639     __ bind(skip);
  7640   %}
  7641   ins_pipe( pipe_slow );
  7642 %}
  7644 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7645   predicate (UseSSE>=2);
  7646   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7647   ins_cost(200);
  7648   expand %{
  7649     fcmovD_regU(cop, cr, dst, src);
  7650   %}
  7651 %}
  7653 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7654   predicate(VM_Version::supports_cmov() );
  7655   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7656   ins_cost(200);
  7657   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7658             "CMOV$cop $dst.hi,$src.hi" %}
  7659   opcode(0x0F,0x40);
  7660   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7661   ins_pipe( pipe_cmov_reg_long );
  7662 %}
  7664 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7665   predicate(VM_Version::supports_cmov() );
  7666   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7667   ins_cost(200);
  7668   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7669             "CMOV$cop $dst.hi,$src.hi" %}
  7670   opcode(0x0F,0x40);
  7671   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7672   ins_pipe( pipe_cmov_reg_long );
  7673 %}
  7675 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7676   predicate(VM_Version::supports_cmov() );
  7677   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7678   ins_cost(200);
  7679   expand %{
  7680     cmovL_regU(cop, cr, dst, src);
  7681   %}
  7682 %}
  7684 //----------Arithmetic Instructions--------------------------------------------
  7685 //----------Addition Instructions----------------------------------------------
  7686 // Integer Addition Instructions
  7687 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7688   match(Set dst (AddI dst src));
  7689   effect(KILL cr);
  7691   size(2);
  7692   format %{ "ADD    $dst,$src" %}
  7693   opcode(0x03);
  7694   ins_encode( OpcP, RegReg( dst, src) );
  7695   ins_pipe( ialu_reg_reg );
  7696 %}
  7698 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7699   match(Set dst (AddI dst src));
  7700   effect(KILL cr);
  7702   format %{ "ADD    $dst,$src" %}
  7703   opcode(0x81, 0x00); /* /0 id */
  7704   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7705   ins_pipe( ialu_reg );
  7706 %}
  7708 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  7709   predicate(UseIncDec);
  7710   match(Set dst (AddI dst src));
  7711   effect(KILL cr);
  7713   size(1);
  7714   format %{ "INC    $dst" %}
  7715   opcode(0x40); /*  */
  7716   ins_encode( Opc_plus( primary, dst ) );
  7717   ins_pipe( ialu_reg );
  7718 %}
  7720 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  7721   match(Set dst (AddI src0 src1));
  7722   ins_cost(110);
  7724   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7725   opcode(0x8D); /* 0x8D /r */
  7726   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7727   ins_pipe( ialu_reg_reg );
  7728 %}
  7730 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7731   match(Set dst (AddP src0 src1));
  7732   ins_cost(110);
  7734   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7735   opcode(0x8D); /* 0x8D /r */
  7736   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7737   ins_pipe( ialu_reg_reg );
  7738 %}
  7740 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  7741   predicate(UseIncDec);
  7742   match(Set dst (AddI dst src));
  7743   effect(KILL cr);
  7745   size(1);
  7746   format %{ "DEC    $dst" %}
  7747   opcode(0x48); /*  */
  7748   ins_encode( Opc_plus( primary, dst ) );
  7749   ins_pipe( ialu_reg );
  7750 %}
  7752 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  7753   match(Set dst (AddP dst src));
  7754   effect(KILL cr);
  7756   size(2);
  7757   format %{ "ADD    $dst,$src" %}
  7758   opcode(0x03);
  7759   ins_encode( OpcP, RegReg( dst, src) );
  7760   ins_pipe( ialu_reg_reg );
  7761 %}
  7763 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7764   match(Set dst (AddP dst src));
  7765   effect(KILL cr);
  7767   format %{ "ADD    $dst,$src" %}
  7768   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7769   // ins_encode( RegImm( dst, src) );
  7770   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7771   ins_pipe( ialu_reg );
  7772 %}
  7774 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7775   match(Set dst (AddI dst (LoadI src)));
  7776   effect(KILL cr);
  7778   ins_cost(125);
  7779   format %{ "ADD    $dst,$src" %}
  7780   opcode(0x03);
  7781   ins_encode( OpcP, RegMem( dst, src) );
  7782   ins_pipe( ialu_reg_mem );
  7783 %}
  7785 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7786   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7787   effect(KILL cr);
  7789   ins_cost(150);
  7790   format %{ "ADD    $dst,$src" %}
  7791   opcode(0x01);  /* Opcode 01 /r */
  7792   ins_encode( OpcP, RegMem( src, dst ) );
  7793   ins_pipe( ialu_mem_reg );
  7794 %}
  7796 // Add Memory with Immediate
  7797 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7798   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7799   effect(KILL cr);
  7801   ins_cost(125);
  7802   format %{ "ADD    $dst,$src" %}
  7803   opcode(0x81);               /* Opcode 81 /0 id */
  7804   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7805   ins_pipe( ialu_mem_imm );
  7806 %}
  7808 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7809   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7810   effect(KILL cr);
  7812   ins_cost(125);
  7813   format %{ "INC    $dst" %}
  7814   opcode(0xFF);               /* Opcode FF /0 */
  7815   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7816   ins_pipe( ialu_mem_imm );
  7817 %}
  7819 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7820   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7821   effect(KILL cr);
  7823   ins_cost(125);
  7824   format %{ "DEC    $dst" %}
  7825   opcode(0xFF);               /* Opcode FF /1 */
  7826   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7827   ins_pipe( ialu_mem_imm );
  7828 %}
  7831 instruct checkCastPP( eRegP dst ) %{
  7832   match(Set dst (CheckCastPP dst));
  7834   size(0);
  7835   format %{ "#checkcastPP of $dst" %}
  7836   ins_encode( /*empty encoding*/ );
  7837   ins_pipe( empty );
  7838 %}
  7840 instruct castPP( eRegP dst ) %{
  7841   match(Set dst (CastPP dst));
  7842   format %{ "#castPP of $dst" %}
  7843   ins_encode( /*empty encoding*/ );
  7844   ins_pipe( empty );
  7845 %}
  7847 instruct castII( eRegI dst ) %{
  7848   match(Set dst (CastII dst));
  7849   format %{ "#castII of $dst" %}
  7850   ins_encode( /*empty encoding*/ );
  7851   ins_cost(0);
  7852   ins_pipe( empty );
  7853 %}
  7856 // Load-locked - same as a regular pointer load when used with compare-swap
  7857 instruct loadPLocked(eRegP dst, memory mem) %{
  7858   match(Set dst (LoadPLocked mem));
  7860   ins_cost(125);
  7861   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7862   opcode(0x8B);
  7863   ins_encode( OpcP, RegMem(dst,mem));
  7864   ins_pipe( ialu_reg_mem );
  7865 %}
  7867 // LoadLong-locked - same as a volatile long load when used with compare-swap
  7868 instruct loadLLocked(stackSlotL dst, memory mem) %{
  7869   predicate(UseSSE<=1);
  7870   match(Set dst (LoadLLocked mem));
  7872   ins_cost(200);
  7873   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  7874             "FISTp  $dst" %}
  7875   ins_encode(enc_loadL_volatile(mem,dst));
  7876   ins_pipe( fpu_reg_mem );
  7877 %}
  7879 instruct loadLX_Locked(stackSlotL dst, memory mem, regD tmp) %{
  7880   predicate(UseSSE>=2);
  7881   match(Set dst (LoadLLocked mem));
  7882   effect(TEMP tmp);
  7883   ins_cost(180);
  7884   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7885             "MOVSD  $dst,$tmp" %}
  7886   ins_encode %{
  7887     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7888     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  7889   %}
  7890   ins_pipe( pipe_slow );
  7891 %}
  7893 instruct loadLX_reg_Locked(eRegL dst, memory mem, regD tmp) %{
  7894   predicate(UseSSE>=2);
  7895   match(Set dst (LoadLLocked mem));
  7896   effect(TEMP tmp);
  7897   ins_cost(160);
  7898   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7899             "MOVD   $dst.lo,$tmp\n\t"
  7900             "PSRLQ  $tmp,32\n\t"
  7901             "MOVD   $dst.hi,$tmp" %}
  7902   ins_encode %{
  7903     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7904     __ movdl($dst$$Register, $tmp$$XMMRegister);
  7905     __ psrlq($tmp$$XMMRegister, 32);
  7906     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  7907   %}
  7908   ins_pipe( pipe_slow );
  7909 %}
  7911 // Conditional-store of the updated heap-top.
  7912 // Used during allocation of the shared heap.
  7913 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7914 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7915   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7916   // EAX is killed if there is contention, but then it's also unused.
  7917   // In the common case of no contention, EAX holds the new oop address.
  7918   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7919   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7920   ins_pipe( pipe_cmpxchg );
  7921 %}
  7923 // Conditional-store of an int value.
  7924 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7925 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  7926   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7927   effect(KILL oldval);
  7928   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7929   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7930   ins_pipe( pipe_cmpxchg );
  7931 %}
  7933 // Conditional-store of a long value.
  7934 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7935 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7936   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7937   effect(KILL oldval);
  7938   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7939             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7940             "XCHG   EBX,ECX"
  7941   %}
  7942   ins_encode %{
  7943     // Note: we need to swap rbx, and rcx before and after the
  7944     //       cmpxchg8 instruction because the instruction uses
  7945     //       rcx as the high order word of the new value to store but
  7946     //       our register encoding uses rbx.
  7947     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7948     if( os::is_MP() )
  7949       __ lock();
  7950     __ cmpxchg8($mem$$Address);
  7951     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7952   %}
  7953   ins_pipe( pipe_cmpxchg );
  7954 %}
  7956 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7958 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7959   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7960   effect(KILL cr, KILL oldval);
  7961   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7962             "MOV    $res,0\n\t"
  7963             "JNE,s  fail\n\t"
  7964             "MOV    $res,1\n"
  7965           "fail:" %}
  7966   ins_encode( enc_cmpxchg8(mem_ptr),
  7967               enc_flags_ne_to_boolean(res) );
  7968   ins_pipe( pipe_cmpxchg );
  7969 %}
  7971 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7972   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7973   effect(KILL cr, KILL oldval);
  7974   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7975             "MOV    $res,0\n\t"
  7976             "JNE,s  fail\n\t"
  7977             "MOV    $res,1\n"
  7978           "fail:" %}
  7979   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7980   ins_pipe( pipe_cmpxchg );
  7981 %}
  7983 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7984   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7985   effect(KILL cr, KILL oldval);
  7986   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7987             "MOV    $res,0\n\t"
  7988             "JNE,s  fail\n\t"
  7989             "MOV    $res,1\n"
  7990           "fail:" %}
  7991   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7992   ins_pipe( pipe_cmpxchg );
  7993 %}
  7995 //----------Subtraction Instructions-------------------------------------------
  7996 // Integer Subtraction Instructions
  7997 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7998   match(Set dst (SubI dst src));
  7999   effect(KILL cr);
  8001   size(2);
  8002   format %{ "SUB    $dst,$src" %}
  8003   opcode(0x2B);
  8004   ins_encode( OpcP, RegReg( dst, src) );
  8005   ins_pipe( ialu_reg_reg );
  8006 %}
  8008 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8009   match(Set dst (SubI dst src));
  8010   effect(KILL cr);
  8012   format %{ "SUB    $dst,$src" %}
  8013   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8014   // ins_encode( RegImm( dst, src) );
  8015   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8016   ins_pipe( ialu_reg );
  8017 %}
  8019 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8020   match(Set dst (SubI dst (LoadI src)));
  8021   effect(KILL cr);
  8023   ins_cost(125);
  8024   format %{ "SUB    $dst,$src" %}
  8025   opcode(0x2B);
  8026   ins_encode( OpcP, RegMem( dst, src) );
  8027   ins_pipe( ialu_reg_mem );
  8028 %}
  8030 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8031   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8032   effect(KILL cr);
  8034   ins_cost(150);
  8035   format %{ "SUB    $dst,$src" %}
  8036   opcode(0x29);  /* Opcode 29 /r */
  8037   ins_encode( OpcP, RegMem( src, dst ) );
  8038   ins_pipe( ialu_mem_reg );
  8039 %}
  8041 // Subtract from a pointer
  8042 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8043   match(Set dst (AddP dst (SubI zero src)));
  8044   effect(KILL cr);
  8046   size(2);
  8047   format %{ "SUB    $dst,$src" %}
  8048   opcode(0x2B);
  8049   ins_encode( OpcP, RegReg( dst, src) );
  8050   ins_pipe( ialu_reg_reg );
  8051 %}
  8053 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8054   match(Set dst (SubI zero dst));
  8055   effect(KILL cr);
  8057   size(2);
  8058   format %{ "NEG    $dst" %}
  8059   opcode(0xF7,0x03);  // Opcode F7 /3
  8060   ins_encode( OpcP, RegOpc( dst ) );
  8061   ins_pipe( ialu_reg );
  8062 %}
  8065 //----------Multiplication/Division Instructions-------------------------------
  8066 // Integer Multiplication Instructions
  8067 // Multiply Register
  8068 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8069   match(Set dst (MulI dst src));
  8070   effect(KILL cr);
  8072   size(3);
  8073   ins_cost(300);
  8074   format %{ "IMUL   $dst,$src" %}
  8075   opcode(0xAF, 0x0F);
  8076   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8077   ins_pipe( ialu_reg_reg_alu0 );
  8078 %}
  8080 // Multiply 32-bit Immediate
  8081 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8082   match(Set dst (MulI src imm));
  8083   effect(KILL cr);
  8085   ins_cost(300);
  8086   format %{ "IMUL   $dst,$src,$imm" %}
  8087   opcode(0x69);  /* 69 /r id */
  8088   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8089   ins_pipe( ialu_reg_reg_alu0 );
  8090 %}
  8092 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8093   match(Set dst src);
  8094   effect(KILL cr);
  8096   // Note that this is artificially increased to make it more expensive than loadConL
  8097   ins_cost(250);
  8098   format %{ "MOV    EAX,$src\t// low word only" %}
  8099   opcode(0xB8);
  8100   ins_encode( LdImmL_Lo(dst, src) );
  8101   ins_pipe( ialu_reg_fat );
  8102 %}
  8104 // Multiply by 32-bit Immediate, taking the shifted high order results
  8105 //  (special case for shift by 32)
  8106 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8107   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8108   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8109              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8110              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8111   effect(USE src1, KILL cr);
  8113   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8114   ins_cost(0*100 + 1*400 - 150);
  8115   format %{ "IMUL   EDX:EAX,$src1" %}
  8116   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8117   ins_pipe( pipe_slow );
  8118 %}
  8120 // Multiply by 32-bit Immediate, taking the shifted high order results
  8121 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8122   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8123   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8124              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8125              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8126   effect(USE src1, KILL cr);
  8128   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8129   ins_cost(1*100 + 1*400 - 150);
  8130   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8131             "SAR    EDX,$cnt-32" %}
  8132   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8133   ins_pipe( pipe_slow );
  8134 %}
  8136 // Multiply Memory 32-bit Immediate
  8137 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8138   match(Set dst (MulI (LoadI src) imm));
  8139   effect(KILL cr);
  8141   ins_cost(300);
  8142   format %{ "IMUL   $dst,$src,$imm" %}
  8143   opcode(0x69);  /* 69 /r id */
  8144   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8145   ins_pipe( ialu_reg_mem_alu0 );
  8146 %}
  8148 // Multiply Memory
  8149 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8150   match(Set dst (MulI dst (LoadI src)));
  8151   effect(KILL cr);
  8153   ins_cost(350);
  8154   format %{ "IMUL   $dst,$src" %}
  8155   opcode(0xAF, 0x0F);
  8156   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8157   ins_pipe( ialu_reg_mem_alu0 );
  8158 %}
  8160 // Multiply Register Int to Long
  8161 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8162   // Basic Idea: long = (long)int * (long)int
  8163   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8164   effect(DEF dst, USE src, USE src1, KILL flags);
  8166   ins_cost(300);
  8167   format %{ "IMUL   $dst,$src1" %}
  8169   ins_encode( long_int_multiply( dst, src1 ) );
  8170   ins_pipe( ialu_reg_reg_alu0 );
  8171 %}
  8173 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8174   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8175   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8176   effect(KILL flags);
  8178   ins_cost(300);
  8179   format %{ "MUL    $dst,$src1" %}
  8181   ins_encode( long_uint_multiply(dst, src1) );
  8182   ins_pipe( ialu_reg_reg_alu0 );
  8183 %}
  8185 // Multiply Register Long
  8186 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8187   match(Set dst (MulL dst src));
  8188   effect(KILL cr, TEMP tmp);
  8189   ins_cost(4*100+3*400);
  8190 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8191 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8192   format %{ "MOV    $tmp,$src.lo\n\t"
  8193             "IMUL   $tmp,EDX\n\t"
  8194             "MOV    EDX,$src.hi\n\t"
  8195             "IMUL   EDX,EAX\n\t"
  8196             "ADD    $tmp,EDX\n\t"
  8197             "MUL    EDX:EAX,$src.lo\n\t"
  8198             "ADD    EDX,$tmp" %}
  8199   ins_encode( long_multiply( dst, src, tmp ) );
  8200   ins_pipe( pipe_slow );
  8201 %}
  8203 // Multiply Register Long where the left operand's high 32 bits are zero
  8204 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8205   predicate(is_operand_hi32_zero(n->in(1)));
  8206   match(Set dst (MulL dst src));
  8207   effect(KILL cr, TEMP tmp);
  8208   ins_cost(2*100+2*400);
  8209 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8210 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8211   format %{ "MOV    $tmp,$src.hi\n\t"
  8212             "IMUL   $tmp,EAX\n\t"
  8213             "MUL    EDX:EAX,$src.lo\n\t"
  8214             "ADD    EDX,$tmp" %}
  8215   ins_encode %{
  8216     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8217     __ imull($tmp$$Register, rax);
  8218     __ mull($src$$Register);
  8219     __ addl(rdx, $tmp$$Register);
  8220   %}
  8221   ins_pipe( pipe_slow );
  8222 %}
  8224 // Multiply Register Long where the right operand's high 32 bits are zero
  8225 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8226   predicate(is_operand_hi32_zero(n->in(2)));
  8227   match(Set dst (MulL dst src));
  8228   effect(KILL cr, TEMP tmp);
  8229   ins_cost(2*100+2*400);
  8230 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8231 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8232   format %{ "MOV    $tmp,$src.lo\n\t"
  8233             "IMUL   $tmp,EDX\n\t"
  8234             "MUL    EDX:EAX,$src.lo\n\t"
  8235             "ADD    EDX,$tmp" %}
  8236   ins_encode %{
  8237     __ movl($tmp$$Register, $src$$Register);
  8238     __ imull($tmp$$Register, rdx);
  8239     __ mull($src$$Register);
  8240     __ addl(rdx, $tmp$$Register);
  8241   %}
  8242   ins_pipe( pipe_slow );
  8243 %}
  8245 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8246 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8247   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8248   match(Set dst (MulL dst src));
  8249   effect(KILL cr);
  8250   ins_cost(1*400);
  8251 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8252 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8253   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8254   ins_encode %{
  8255     __ mull($src$$Register);
  8256   %}
  8257   ins_pipe( pipe_slow );
  8258 %}
  8260 // Multiply Register Long by small constant
  8261 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8262   match(Set dst (MulL dst src));
  8263   effect(KILL cr, TEMP tmp);
  8264   ins_cost(2*100+2*400);
  8265   size(12);
  8266 // Basic idea: lo(result) = lo(src * EAX)
  8267 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8268   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8269             "MOV    EDX,$src\n\t"
  8270             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8271             "ADD    EDX,$tmp" %}
  8272   ins_encode( long_multiply_con( dst, src, tmp ) );
  8273   ins_pipe( pipe_slow );
  8274 %}
  8276 // Integer DIV with Register
  8277 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8278   match(Set rax (DivI rax div));
  8279   effect(KILL rdx, KILL cr);
  8280   size(26);
  8281   ins_cost(30*100+10*100);
  8282   format %{ "CMP    EAX,0x80000000\n\t"
  8283             "JNE,s  normal\n\t"
  8284             "XOR    EDX,EDX\n\t"
  8285             "CMP    ECX,-1\n\t"
  8286             "JE,s   done\n"
  8287     "normal: CDQ\n\t"
  8288             "IDIV   $div\n\t"
  8289     "done:"        %}
  8290   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8291   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8292   ins_pipe( ialu_reg_reg_alu0 );
  8293 %}
  8295 // Divide Register Long
  8296 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8297   match(Set dst (DivL src1 src2));
  8298   effect( KILL cr, KILL cx, KILL bx );
  8299   ins_cost(10000);
  8300   format %{ "PUSH   $src1.hi\n\t"
  8301             "PUSH   $src1.lo\n\t"
  8302             "PUSH   $src2.hi\n\t"
  8303             "PUSH   $src2.lo\n\t"
  8304             "CALL   SharedRuntime::ldiv\n\t"
  8305             "ADD    ESP,16" %}
  8306   ins_encode( long_div(src1,src2) );
  8307   ins_pipe( pipe_slow );
  8308 %}
  8310 // Integer DIVMOD with Register, both quotient and mod results
  8311 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8312   match(DivModI rax div);
  8313   effect(KILL cr);
  8314   size(26);
  8315   ins_cost(30*100+10*100);
  8316   format %{ "CMP    EAX,0x80000000\n\t"
  8317             "JNE,s  normal\n\t"
  8318             "XOR    EDX,EDX\n\t"
  8319             "CMP    ECX,-1\n\t"
  8320             "JE,s   done\n"
  8321     "normal: CDQ\n\t"
  8322             "IDIV   $div\n\t"
  8323     "done:"        %}
  8324   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8325   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8326   ins_pipe( pipe_slow );
  8327 %}
  8329 // Integer MOD with Register
  8330 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8331   match(Set rdx (ModI rax div));
  8332   effect(KILL rax, KILL cr);
  8334   size(26);
  8335   ins_cost(300);
  8336   format %{ "CDQ\n\t"
  8337             "IDIV   $div" %}
  8338   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8339   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8340   ins_pipe( ialu_reg_reg_alu0 );
  8341 %}
  8343 // Remainder Register Long
  8344 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8345   match(Set dst (ModL src1 src2));
  8346   effect( KILL cr, KILL cx, KILL bx );
  8347   ins_cost(10000);
  8348   format %{ "PUSH   $src1.hi\n\t"
  8349             "PUSH   $src1.lo\n\t"
  8350             "PUSH   $src2.hi\n\t"
  8351             "PUSH   $src2.lo\n\t"
  8352             "CALL   SharedRuntime::lrem\n\t"
  8353             "ADD    ESP,16" %}
  8354   ins_encode( long_mod(src1,src2) );
  8355   ins_pipe( pipe_slow );
  8356 %}
  8358 // Divide Register Long (no special case since divisor != -1)
  8359 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8360   match(Set dst (DivL dst imm));
  8361   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8362   ins_cost(1000);
  8363   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8364             "XOR    $tmp2,$tmp2\n\t"
  8365             "CMP    $tmp,EDX\n\t"
  8366             "JA,s   fast\n\t"
  8367             "MOV    $tmp2,EAX\n\t"
  8368             "MOV    EAX,EDX\n\t"
  8369             "MOV    EDX,0\n\t"
  8370             "JLE,s  pos\n\t"
  8371             "LNEG   EAX : $tmp2\n\t"
  8372             "DIV    $tmp # unsigned division\n\t"
  8373             "XCHG   EAX,$tmp2\n\t"
  8374             "DIV    $tmp\n\t"
  8375             "LNEG   $tmp2 : EAX\n\t"
  8376             "JMP,s  done\n"
  8377     "pos:\n\t"
  8378             "DIV    $tmp\n\t"
  8379             "XCHG   EAX,$tmp2\n"
  8380     "fast:\n\t"
  8381             "DIV    $tmp\n"
  8382     "done:\n\t"
  8383             "MOV    EDX,$tmp2\n\t"
  8384             "NEG    EDX:EAX # if $imm < 0" %}
  8385   ins_encode %{
  8386     int con = (int)$imm$$constant;
  8387     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8388     int pcon = (con > 0) ? con : -con;
  8389     Label Lfast, Lpos, Ldone;
  8391     __ movl($tmp$$Register, pcon);
  8392     __ xorl($tmp2$$Register,$tmp2$$Register);
  8393     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8394     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8396     __ movl($tmp2$$Register, $dst$$Register); // save
  8397     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8398     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8399     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8401     // Negative dividend.
  8402     // convert value to positive to use unsigned division
  8403     __ lneg($dst$$Register, $tmp2$$Register);
  8404     __ divl($tmp$$Register);
  8405     __ xchgl($dst$$Register, $tmp2$$Register);
  8406     __ divl($tmp$$Register);
  8407     // revert result back to negative
  8408     __ lneg($tmp2$$Register, $dst$$Register);
  8409     __ jmpb(Ldone);
  8411     __ bind(Lpos);
  8412     __ divl($tmp$$Register); // Use unsigned division
  8413     __ xchgl($dst$$Register, $tmp2$$Register);
  8414     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8416     __ bind(Lfast);
  8417     // fast path: src is positive
  8418     __ divl($tmp$$Register); // Use unsigned division
  8420     __ bind(Ldone);
  8421     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8422     if (con < 0) {
  8423       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8425   %}
  8426   ins_pipe( pipe_slow );
  8427 %}
  8429 // Remainder Register Long (remainder fit into 32 bits)
  8430 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8431   match(Set dst (ModL dst imm));
  8432   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8433   ins_cost(1000);
  8434   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8435             "CMP    $tmp,EDX\n\t"
  8436             "JA,s   fast\n\t"
  8437             "MOV    $tmp2,EAX\n\t"
  8438             "MOV    EAX,EDX\n\t"
  8439             "MOV    EDX,0\n\t"
  8440             "JLE,s  pos\n\t"
  8441             "LNEG   EAX : $tmp2\n\t"
  8442             "DIV    $tmp # unsigned division\n\t"
  8443             "MOV    EAX,$tmp2\n\t"
  8444             "DIV    $tmp\n\t"
  8445             "NEG    EDX\n\t"
  8446             "JMP,s  done\n"
  8447     "pos:\n\t"
  8448             "DIV    $tmp\n\t"
  8449             "MOV    EAX,$tmp2\n"
  8450     "fast:\n\t"
  8451             "DIV    $tmp\n"
  8452     "done:\n\t"
  8453             "MOV    EAX,EDX\n\t"
  8454             "SAR    EDX,31\n\t" %}
  8455   ins_encode %{
  8456     int con = (int)$imm$$constant;
  8457     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8458     int pcon = (con > 0) ? con : -con;
  8459     Label  Lfast, Lpos, Ldone;
  8461     __ movl($tmp$$Register, pcon);
  8462     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8463     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8465     __ movl($tmp2$$Register, $dst$$Register); // save
  8466     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8467     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8468     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8470     // Negative dividend.
  8471     // convert value to positive to use unsigned division
  8472     __ lneg($dst$$Register, $tmp2$$Register);
  8473     __ divl($tmp$$Register);
  8474     __ movl($dst$$Register, $tmp2$$Register);
  8475     __ divl($tmp$$Register);
  8476     // revert remainder back to negative
  8477     __ negl(HIGH_FROM_LOW($dst$$Register));
  8478     __ jmpb(Ldone);
  8480     __ bind(Lpos);
  8481     __ divl($tmp$$Register);
  8482     __ movl($dst$$Register, $tmp2$$Register);
  8484     __ bind(Lfast);
  8485     // fast path: src is positive
  8486     __ divl($tmp$$Register);
  8488     __ bind(Ldone);
  8489     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8490     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8492   %}
  8493   ins_pipe( pipe_slow );
  8494 %}
  8496 // Integer Shift Instructions
  8497 // Shift Left by one
  8498 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8499   match(Set dst (LShiftI dst shift));
  8500   effect(KILL cr);
  8502   size(2);
  8503   format %{ "SHL    $dst,$shift" %}
  8504   opcode(0xD1, 0x4);  /* D1 /4 */
  8505   ins_encode( OpcP, RegOpc( dst ) );
  8506   ins_pipe( ialu_reg );
  8507 %}
  8509 // Shift Left by 8-bit immediate
  8510 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8511   match(Set dst (LShiftI dst shift));
  8512   effect(KILL cr);
  8514   size(3);
  8515   format %{ "SHL    $dst,$shift" %}
  8516   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8517   ins_encode( RegOpcImm( dst, shift) );
  8518   ins_pipe( ialu_reg );
  8519 %}
  8521 // Shift Left by variable
  8522 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8523   match(Set dst (LShiftI dst shift));
  8524   effect(KILL cr);
  8526   size(2);
  8527   format %{ "SHL    $dst,$shift" %}
  8528   opcode(0xD3, 0x4);  /* D3 /4 */
  8529   ins_encode( OpcP, RegOpc( dst ) );
  8530   ins_pipe( ialu_reg_reg );
  8531 %}
  8533 // Arithmetic shift right by one
  8534 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8535   match(Set dst (RShiftI dst shift));
  8536   effect(KILL cr);
  8538   size(2);
  8539   format %{ "SAR    $dst,$shift" %}
  8540   opcode(0xD1, 0x7);  /* D1 /7 */
  8541   ins_encode( OpcP, RegOpc( dst ) );
  8542   ins_pipe( ialu_reg );
  8543 %}
  8545 // Arithmetic shift right by one
  8546 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8547   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8548   effect(KILL cr);
  8549   format %{ "SAR    $dst,$shift" %}
  8550   opcode(0xD1, 0x7);  /* D1 /7 */
  8551   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8552   ins_pipe( ialu_mem_imm );
  8553 %}
  8555 // Arithmetic Shift Right by 8-bit immediate
  8556 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8557   match(Set dst (RShiftI dst shift));
  8558   effect(KILL cr);
  8560   size(3);
  8561   format %{ "SAR    $dst,$shift" %}
  8562   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8563   ins_encode( RegOpcImm( dst, shift ) );
  8564   ins_pipe( ialu_mem_imm );
  8565 %}
  8567 // Arithmetic Shift Right by 8-bit immediate
  8568 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8569   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8570   effect(KILL cr);
  8572   format %{ "SAR    $dst,$shift" %}
  8573   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8574   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8575   ins_pipe( ialu_mem_imm );
  8576 %}
  8578 // Arithmetic Shift Right by variable
  8579 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8580   match(Set dst (RShiftI dst shift));
  8581   effect(KILL cr);
  8583   size(2);
  8584   format %{ "SAR    $dst,$shift" %}
  8585   opcode(0xD3, 0x7);  /* D3 /7 */
  8586   ins_encode( OpcP, RegOpc( dst ) );
  8587   ins_pipe( ialu_reg_reg );
  8588 %}
  8590 // Logical shift right by one
  8591 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8592   match(Set dst (URShiftI dst shift));
  8593   effect(KILL cr);
  8595   size(2);
  8596   format %{ "SHR    $dst,$shift" %}
  8597   opcode(0xD1, 0x5);  /* D1 /5 */
  8598   ins_encode( OpcP, RegOpc( dst ) );
  8599   ins_pipe( ialu_reg );
  8600 %}
  8602 // Logical Shift Right by 8-bit immediate
  8603 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8604   match(Set dst (URShiftI dst shift));
  8605   effect(KILL cr);
  8607   size(3);
  8608   format %{ "SHR    $dst,$shift" %}
  8609   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8610   ins_encode( RegOpcImm( dst, shift) );
  8611   ins_pipe( ialu_reg );
  8612 %}
  8615 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8616 // This idiom is used by the compiler for the i2b bytecode.
  8617 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8618   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8620   size(3);
  8621   format %{ "MOVSX  $dst,$src :8" %}
  8622   ins_encode %{
  8623     __ movsbl($dst$$Register, $src$$Register);
  8624   %}
  8625   ins_pipe(ialu_reg_reg);
  8626 %}
  8628 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8629 // This idiom is used by the compiler the i2s bytecode.
  8630 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8631   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8633   size(3);
  8634   format %{ "MOVSX  $dst,$src :16" %}
  8635   ins_encode %{
  8636     __ movswl($dst$$Register, $src$$Register);
  8637   %}
  8638   ins_pipe(ialu_reg_reg);
  8639 %}
  8642 // Logical Shift Right by variable
  8643 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8644   match(Set dst (URShiftI dst shift));
  8645   effect(KILL cr);
  8647   size(2);
  8648   format %{ "SHR    $dst,$shift" %}
  8649   opcode(0xD3, 0x5);  /* D3 /5 */
  8650   ins_encode( OpcP, RegOpc( dst ) );
  8651   ins_pipe( ialu_reg_reg );
  8652 %}
  8655 //----------Logical Instructions-----------------------------------------------
  8656 //----------Integer Logical Instructions---------------------------------------
  8657 // And Instructions
  8658 // And Register with Register
  8659 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8660   match(Set dst (AndI dst src));
  8661   effect(KILL cr);
  8663   size(2);
  8664   format %{ "AND    $dst,$src" %}
  8665   opcode(0x23);
  8666   ins_encode( OpcP, RegReg( dst, src) );
  8667   ins_pipe( ialu_reg_reg );
  8668 %}
  8670 // And Register with Immediate
  8671 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8672   match(Set dst (AndI dst src));
  8673   effect(KILL cr);
  8675   format %{ "AND    $dst,$src" %}
  8676   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8677   // ins_encode( RegImm( dst, src) );
  8678   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8679   ins_pipe( ialu_reg );
  8680 %}
  8682 // And Register with Memory
  8683 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8684   match(Set dst (AndI dst (LoadI src)));
  8685   effect(KILL cr);
  8687   ins_cost(125);
  8688   format %{ "AND    $dst,$src" %}
  8689   opcode(0x23);
  8690   ins_encode( OpcP, RegMem( dst, src) );
  8691   ins_pipe( ialu_reg_mem );
  8692 %}
  8694 // And Memory with Register
  8695 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8696   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8697   effect(KILL cr);
  8699   ins_cost(150);
  8700   format %{ "AND    $dst,$src" %}
  8701   opcode(0x21);  /* Opcode 21 /r */
  8702   ins_encode( OpcP, RegMem( src, dst ) );
  8703   ins_pipe( ialu_mem_reg );
  8704 %}
  8706 // And Memory with Immediate
  8707 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8708   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8709   effect(KILL cr);
  8711   ins_cost(125);
  8712   format %{ "AND    $dst,$src" %}
  8713   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8714   // ins_encode( MemImm( dst, src) );
  8715   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8716   ins_pipe( ialu_mem_imm );
  8717 %}
  8719 // Or Instructions
  8720 // Or Register with Register
  8721 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8722   match(Set dst (OrI dst src));
  8723   effect(KILL cr);
  8725   size(2);
  8726   format %{ "OR     $dst,$src" %}
  8727   opcode(0x0B);
  8728   ins_encode( OpcP, RegReg( dst, src) );
  8729   ins_pipe( ialu_reg_reg );
  8730 %}
  8732 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8733   match(Set dst (OrI dst (CastP2X src)));
  8734   effect(KILL cr);
  8736   size(2);
  8737   format %{ "OR     $dst,$src" %}
  8738   opcode(0x0B);
  8739   ins_encode( OpcP, RegReg( dst, src) );
  8740   ins_pipe( ialu_reg_reg );
  8741 %}
  8744 // Or Register with Immediate
  8745 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8746   match(Set dst (OrI dst src));
  8747   effect(KILL cr);
  8749   format %{ "OR     $dst,$src" %}
  8750   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8751   // ins_encode( RegImm( dst, src) );
  8752   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8753   ins_pipe( ialu_reg );
  8754 %}
  8756 // Or Register with Memory
  8757 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8758   match(Set dst (OrI dst (LoadI src)));
  8759   effect(KILL cr);
  8761   ins_cost(125);
  8762   format %{ "OR     $dst,$src" %}
  8763   opcode(0x0B);
  8764   ins_encode( OpcP, RegMem( dst, src) );
  8765   ins_pipe( ialu_reg_mem );
  8766 %}
  8768 // Or Memory with Register
  8769 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8770   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8771   effect(KILL cr);
  8773   ins_cost(150);
  8774   format %{ "OR     $dst,$src" %}
  8775   opcode(0x09);  /* Opcode 09 /r */
  8776   ins_encode( OpcP, RegMem( src, dst ) );
  8777   ins_pipe( ialu_mem_reg );
  8778 %}
  8780 // Or Memory with Immediate
  8781 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8782   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8783   effect(KILL cr);
  8785   ins_cost(125);
  8786   format %{ "OR     $dst,$src" %}
  8787   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8788   // ins_encode( MemImm( dst, src) );
  8789   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8790   ins_pipe( ialu_mem_imm );
  8791 %}
  8793 // ROL/ROR
  8794 // ROL expand
  8795 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8796   effect(USE_DEF dst, USE shift, KILL cr);
  8798   format %{ "ROL    $dst, $shift" %}
  8799   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8800   ins_encode( OpcP, RegOpc( dst ));
  8801   ins_pipe( ialu_reg );
  8802 %}
  8804 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8805   effect(USE_DEF dst, USE shift, KILL cr);
  8807   format %{ "ROL    $dst, $shift" %}
  8808   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8809   ins_encode( RegOpcImm(dst, shift) );
  8810   ins_pipe(ialu_reg);
  8811 %}
  8813 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8814   effect(USE_DEF dst, USE shift, KILL cr);
  8816   format %{ "ROL    $dst, $shift" %}
  8817   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8818   ins_encode(OpcP, RegOpc(dst));
  8819   ins_pipe( ialu_reg_reg );
  8820 %}
  8821 // end of ROL expand
  8823 // ROL 32bit by one once
  8824 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8825   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8827   expand %{
  8828     rolI_eReg_imm1(dst, lshift, cr);
  8829   %}
  8830 %}
  8832 // ROL 32bit var by imm8 once
  8833 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8834   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8835   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8837   expand %{
  8838     rolI_eReg_imm8(dst, lshift, cr);
  8839   %}
  8840 %}
  8842 // ROL 32bit var by var once
  8843 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8844   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8846   expand %{
  8847     rolI_eReg_CL(dst, shift, cr);
  8848   %}
  8849 %}
  8851 // ROL 32bit var by var once
  8852 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8853   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8855   expand %{
  8856     rolI_eReg_CL(dst, shift, cr);
  8857   %}
  8858 %}
  8860 // ROR expand
  8861 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8862   effect(USE_DEF dst, USE shift, KILL cr);
  8864   format %{ "ROR    $dst, $shift" %}
  8865   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8866   ins_encode( OpcP, RegOpc( dst ) );
  8867   ins_pipe( ialu_reg );
  8868 %}
  8870 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8871   effect (USE_DEF dst, USE shift, KILL cr);
  8873   format %{ "ROR    $dst, $shift" %}
  8874   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8875   ins_encode( RegOpcImm(dst, shift) );
  8876   ins_pipe( ialu_reg );
  8877 %}
  8879 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8880   effect(USE_DEF dst, USE shift, KILL cr);
  8882   format %{ "ROR    $dst, $shift" %}
  8883   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8884   ins_encode(OpcP, RegOpc(dst));
  8885   ins_pipe( ialu_reg_reg );
  8886 %}
  8887 // end of ROR expand
  8889 // ROR right once
  8890 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8891   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8893   expand %{
  8894     rorI_eReg_imm1(dst, rshift, cr);
  8895   %}
  8896 %}
  8898 // ROR 32bit by immI8 once
  8899 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8900   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8901   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8903   expand %{
  8904     rorI_eReg_imm8(dst, rshift, cr);
  8905   %}
  8906 %}
  8908 // ROR 32bit var by var once
  8909 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8910   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8912   expand %{
  8913     rorI_eReg_CL(dst, shift, cr);
  8914   %}
  8915 %}
  8917 // ROR 32bit var by var once
  8918 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8919   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8921   expand %{
  8922     rorI_eReg_CL(dst, shift, cr);
  8923   %}
  8924 %}
  8926 // Xor Instructions
  8927 // Xor Register with Register
  8928 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8929   match(Set dst (XorI dst src));
  8930   effect(KILL cr);
  8932   size(2);
  8933   format %{ "XOR    $dst,$src" %}
  8934   opcode(0x33);
  8935   ins_encode( OpcP, RegReg( dst, src) );
  8936   ins_pipe( ialu_reg_reg );
  8937 %}
  8939 // Xor Register with Immediate -1
  8940 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  8941   match(Set dst (XorI dst imm));  
  8943   size(2);
  8944   format %{ "NOT    $dst" %}  
  8945   ins_encode %{
  8946      __ notl($dst$$Register);
  8947   %}
  8948   ins_pipe( ialu_reg );
  8949 %}
  8951 // Xor Register with Immediate
  8952 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8953   match(Set dst (XorI dst src));
  8954   effect(KILL cr);
  8956   format %{ "XOR    $dst,$src" %}
  8957   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8958   // ins_encode( RegImm( dst, src) );
  8959   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8960   ins_pipe( ialu_reg );
  8961 %}
  8963 // Xor Register with Memory
  8964 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8965   match(Set dst (XorI dst (LoadI src)));
  8966   effect(KILL cr);
  8968   ins_cost(125);
  8969   format %{ "XOR    $dst,$src" %}
  8970   opcode(0x33);
  8971   ins_encode( OpcP, RegMem(dst, src) );
  8972   ins_pipe( ialu_reg_mem );
  8973 %}
  8975 // Xor Memory with Register
  8976 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8977   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8978   effect(KILL cr);
  8980   ins_cost(150);
  8981   format %{ "XOR    $dst,$src" %}
  8982   opcode(0x31);  /* Opcode 31 /r */
  8983   ins_encode( OpcP, RegMem( src, dst ) );
  8984   ins_pipe( ialu_mem_reg );
  8985 %}
  8987 // Xor Memory with Immediate
  8988 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8989   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8990   effect(KILL cr);
  8992   ins_cost(125);
  8993   format %{ "XOR    $dst,$src" %}
  8994   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8995   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8996   ins_pipe( ialu_mem_imm );
  8997 %}
  8999 //----------Convert Int to Boolean---------------------------------------------
  9001 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9002   effect( DEF dst, USE src );
  9003   format %{ "MOV    $dst,$src" %}
  9004   ins_encode( enc_Copy( dst, src) );
  9005   ins_pipe( ialu_reg_reg );
  9006 %}
  9008 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9009   effect( USE_DEF dst, USE src, KILL cr );
  9011   size(4);
  9012   format %{ "NEG    $dst\n\t"
  9013             "ADC    $dst,$src" %}
  9014   ins_encode( neg_reg(dst),
  9015               OpcRegReg(0x13,dst,src) );
  9016   ins_pipe( ialu_reg_reg_long );
  9017 %}
  9019 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9020   match(Set dst (Conv2B src));
  9022   expand %{
  9023     movI_nocopy(dst,src);
  9024     ci2b(dst,src,cr);
  9025   %}
  9026 %}
  9028 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9029   effect( DEF dst, USE src );
  9030   format %{ "MOV    $dst,$src" %}
  9031   ins_encode( enc_Copy( dst, src) );
  9032   ins_pipe( ialu_reg_reg );
  9033 %}
  9035 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9036   effect( USE_DEF dst, USE src, KILL cr );
  9037   format %{ "NEG    $dst\n\t"
  9038             "ADC    $dst,$src" %}
  9039   ins_encode( neg_reg(dst),
  9040               OpcRegReg(0x13,dst,src) );
  9041   ins_pipe( ialu_reg_reg_long );
  9042 %}
  9044 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9045   match(Set dst (Conv2B src));
  9047   expand %{
  9048     movP_nocopy(dst,src);
  9049     cp2b(dst,src,cr);
  9050   %}
  9051 %}
  9053 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9054   match(Set dst (CmpLTMask p q));
  9055   effect( KILL cr );
  9056   ins_cost(400);
  9058   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9059   format %{ "XOR    $dst,$dst\n\t"
  9060             "CMP    $p,$q\n\t"
  9061             "SETlt  $dst\n\t"
  9062             "NEG    $dst" %}
  9063   ins_encode( OpcRegReg(0x33,dst,dst),
  9064               OpcRegReg(0x3B,p,q),
  9065               setLT_reg(dst), neg_reg(dst) );
  9066   ins_pipe( pipe_slow );
  9067 %}
  9069 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9070   match(Set dst (CmpLTMask dst zero));
  9071   effect( DEF dst, KILL cr );
  9072   ins_cost(100);
  9074   format %{ "SAR    $dst,31" %}
  9075   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9076   ins_encode( RegOpcImm( dst, 0x1F ) );
  9077   ins_pipe( ialu_reg );
  9078 %}
  9081 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9082   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9083   effect( KILL tmp, KILL cr );
  9084   ins_cost(400);
  9085   // annoyingly, $tmp has no edges so you cant ask for it in
  9086   // any format or encoding
  9087   format %{ "SUB    $p,$q\n\t"
  9088             "SBB    ECX,ECX\n\t"
  9089             "AND    ECX,$y\n\t"
  9090             "ADD    $p,ECX" %}
  9091   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9092   ins_pipe( pipe_cmplt );
  9093 %}
  9095 /* If I enable this, I encourage spilling in the inner loop of compress.
  9096 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9097   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9098   effect( USE_KILL tmp, KILL cr );
  9099   ins_cost(400);
  9101   format %{ "SUB    $p,$q\n\t"
  9102             "SBB    ECX,ECX\n\t"
  9103             "AND    ECX,$y\n\t"
  9104             "ADD    $p,ECX" %}
  9105   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9106 %}
  9107 */
  9109 //----------Long Instructions------------------------------------------------
  9110 // Add Long Register with Register
  9111 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9112   match(Set dst (AddL dst src));
  9113   effect(KILL cr);
  9114   ins_cost(200);
  9115   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9116             "ADC    $dst.hi,$src.hi" %}
  9117   opcode(0x03, 0x13);
  9118   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9119   ins_pipe( ialu_reg_reg_long );
  9120 %}
  9122 // Add Long Register with Immediate
  9123 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9124   match(Set dst (AddL dst src));
  9125   effect(KILL cr);
  9126   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9127             "ADC    $dst.hi,$src.hi" %}
  9128   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9129   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9130   ins_pipe( ialu_reg_long );
  9131 %}
  9133 // Add Long Register with Memory
  9134 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9135   match(Set dst (AddL dst (LoadL mem)));
  9136   effect(KILL cr);
  9137   ins_cost(125);
  9138   format %{ "ADD    $dst.lo,$mem\n\t"
  9139             "ADC    $dst.hi,$mem+4" %}
  9140   opcode(0x03, 0x13);
  9141   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9142   ins_pipe( ialu_reg_long_mem );
  9143 %}
  9145 // Subtract Long Register with Register.
  9146 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9147   match(Set dst (SubL dst src));
  9148   effect(KILL cr);
  9149   ins_cost(200);
  9150   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9151             "SBB    $dst.hi,$src.hi" %}
  9152   opcode(0x2B, 0x1B);
  9153   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9154   ins_pipe( ialu_reg_reg_long );
  9155 %}
  9157 // Subtract Long Register with Immediate
  9158 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9159   match(Set dst (SubL dst src));
  9160   effect(KILL cr);
  9161   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9162             "SBB    $dst.hi,$src.hi" %}
  9163   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9164   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9165   ins_pipe( ialu_reg_long );
  9166 %}
  9168 // Subtract Long Register with Memory
  9169 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9170   match(Set dst (SubL dst (LoadL mem)));
  9171   effect(KILL cr);
  9172   ins_cost(125);
  9173   format %{ "SUB    $dst.lo,$mem\n\t"
  9174             "SBB    $dst.hi,$mem+4" %}
  9175   opcode(0x2B, 0x1B);
  9176   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9177   ins_pipe( ialu_reg_long_mem );
  9178 %}
  9180 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9181   match(Set dst (SubL zero dst));
  9182   effect(KILL cr);
  9183   ins_cost(300);
  9184   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9185   ins_encode( neg_long(dst) );
  9186   ins_pipe( ialu_reg_reg_long );
  9187 %}
  9189 // And Long Register with Register
  9190 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9191   match(Set dst (AndL dst src));
  9192   effect(KILL cr);
  9193   format %{ "AND    $dst.lo,$src.lo\n\t"
  9194             "AND    $dst.hi,$src.hi" %}
  9195   opcode(0x23,0x23);
  9196   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9197   ins_pipe( ialu_reg_reg_long );
  9198 %}
  9200 // And Long Register with Immediate
  9201 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9202   match(Set dst (AndL dst src));
  9203   effect(KILL cr);
  9204   format %{ "AND    $dst.lo,$src.lo\n\t"
  9205             "AND    $dst.hi,$src.hi" %}
  9206   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9207   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9208   ins_pipe( ialu_reg_long );
  9209 %}
  9211 // And Long Register with Memory
  9212 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9213   match(Set dst (AndL dst (LoadL mem)));
  9214   effect(KILL cr);
  9215   ins_cost(125);
  9216   format %{ "AND    $dst.lo,$mem\n\t"
  9217             "AND    $dst.hi,$mem+4" %}
  9218   opcode(0x23, 0x23);
  9219   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9220   ins_pipe( ialu_reg_long_mem );
  9221 %}
  9223 // Or Long Register with Register
  9224 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9225   match(Set dst (OrL dst src));
  9226   effect(KILL cr);
  9227   format %{ "OR     $dst.lo,$src.lo\n\t"
  9228             "OR     $dst.hi,$src.hi" %}
  9229   opcode(0x0B,0x0B);
  9230   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9231   ins_pipe( ialu_reg_reg_long );
  9232 %}
  9234 // Or Long Register with Immediate
  9235 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9236   match(Set dst (OrL dst src));
  9237   effect(KILL cr);
  9238   format %{ "OR     $dst.lo,$src.lo\n\t"
  9239             "OR     $dst.hi,$src.hi" %}
  9240   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9241   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9242   ins_pipe( ialu_reg_long );
  9243 %}
  9245 // Or Long Register with Memory
  9246 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9247   match(Set dst (OrL dst (LoadL mem)));
  9248   effect(KILL cr);
  9249   ins_cost(125);
  9250   format %{ "OR     $dst.lo,$mem\n\t"
  9251             "OR     $dst.hi,$mem+4" %}
  9252   opcode(0x0B,0x0B);
  9253   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9254   ins_pipe( ialu_reg_long_mem );
  9255 %}
  9257 // Xor Long Register with Register
  9258 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9259   match(Set dst (XorL dst src));
  9260   effect(KILL cr);
  9261   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9262             "XOR    $dst.hi,$src.hi" %}
  9263   opcode(0x33,0x33);
  9264   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9265   ins_pipe( ialu_reg_reg_long );
  9266 %}
  9268 // Xor Long Register with Immediate -1
  9269 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9270   match(Set dst (XorL dst imm));  
  9271   format %{ "NOT    $dst.lo\n\t"
  9272             "NOT    $dst.hi" %}
  9273   ins_encode %{
  9274      __ notl($dst$$Register);
  9275      __ notl(HIGH_FROM_LOW($dst$$Register));
  9276   %}
  9277   ins_pipe( ialu_reg_long );
  9278 %}
  9280 // Xor Long Register with Immediate
  9281 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9282   match(Set dst (XorL dst src));
  9283   effect(KILL cr);
  9284   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9285             "XOR    $dst.hi,$src.hi" %}
  9286   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9287   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9288   ins_pipe( ialu_reg_long );
  9289 %}
  9291 // Xor Long Register with Memory
  9292 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9293   match(Set dst (XorL dst (LoadL mem)));
  9294   effect(KILL cr);
  9295   ins_cost(125);
  9296   format %{ "XOR    $dst.lo,$mem\n\t"
  9297             "XOR    $dst.hi,$mem+4" %}
  9298   opcode(0x33,0x33);
  9299   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9300   ins_pipe( ialu_reg_long_mem );
  9301 %}
  9303 // Shift Left Long by 1
  9304 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9305   predicate(UseNewLongLShift);
  9306   match(Set dst (LShiftL dst cnt));
  9307   effect(KILL cr);
  9308   ins_cost(100);
  9309   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9310             "ADC    $dst.hi,$dst.hi" %}
  9311   ins_encode %{
  9312     __ addl($dst$$Register,$dst$$Register);
  9313     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9314   %}
  9315   ins_pipe( ialu_reg_long );
  9316 %}
  9318 // Shift Left Long by 2
  9319 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9320   predicate(UseNewLongLShift);
  9321   match(Set dst (LShiftL dst cnt));
  9322   effect(KILL cr);
  9323   ins_cost(100);
  9324   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9325             "ADC    $dst.hi,$dst.hi\n\t" 
  9326             "ADD    $dst.lo,$dst.lo\n\t"
  9327             "ADC    $dst.hi,$dst.hi" %}
  9328   ins_encode %{
  9329     __ addl($dst$$Register,$dst$$Register);
  9330     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9331     __ addl($dst$$Register,$dst$$Register);
  9332     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9333   %}
  9334   ins_pipe( ialu_reg_long );
  9335 %}
  9337 // Shift Left Long by 3
  9338 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9339   predicate(UseNewLongLShift);
  9340   match(Set dst (LShiftL dst cnt));
  9341   effect(KILL cr);
  9342   ins_cost(100);
  9343   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9344             "ADC    $dst.hi,$dst.hi\n\t" 
  9345             "ADD    $dst.lo,$dst.lo\n\t"
  9346             "ADC    $dst.hi,$dst.hi\n\t" 
  9347             "ADD    $dst.lo,$dst.lo\n\t"
  9348             "ADC    $dst.hi,$dst.hi" %}
  9349   ins_encode %{
  9350     __ addl($dst$$Register,$dst$$Register);
  9351     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9352     __ addl($dst$$Register,$dst$$Register);
  9353     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9354     __ addl($dst$$Register,$dst$$Register);
  9355     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9356   %}
  9357   ins_pipe( ialu_reg_long );
  9358 %}
  9360 // Shift Left Long by 1-31
  9361 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9362   match(Set dst (LShiftL dst cnt));
  9363   effect(KILL cr);
  9364   ins_cost(200);
  9365   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9366             "SHL    $dst.lo,$cnt" %}
  9367   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9368   ins_encode( move_long_small_shift(dst,cnt) );
  9369   ins_pipe( ialu_reg_long );
  9370 %}
  9372 // Shift Left Long by 32-63
  9373 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9374   match(Set dst (LShiftL dst cnt));
  9375   effect(KILL cr);
  9376   ins_cost(300);
  9377   format %{ "MOV    $dst.hi,$dst.lo\n"
  9378           "\tSHL    $dst.hi,$cnt-32\n"
  9379           "\tXOR    $dst.lo,$dst.lo" %}
  9380   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9381   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9382   ins_pipe( ialu_reg_long );
  9383 %}
  9385 // Shift Left Long by variable
  9386 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9387   match(Set dst (LShiftL dst shift));
  9388   effect(KILL cr);
  9389   ins_cost(500+200);
  9390   size(17);
  9391   format %{ "TEST   $shift,32\n\t"
  9392             "JEQ,s  small\n\t"
  9393             "MOV    $dst.hi,$dst.lo\n\t"
  9394             "XOR    $dst.lo,$dst.lo\n"
  9395     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9396             "SHL    $dst.lo,$shift" %}
  9397   ins_encode( shift_left_long( dst, shift ) );
  9398   ins_pipe( pipe_slow );
  9399 %}
  9401 // Shift Right Long by 1-31
  9402 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9403   match(Set dst (URShiftL dst cnt));
  9404   effect(KILL cr);
  9405   ins_cost(200);
  9406   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9407             "SHR    $dst.hi,$cnt" %}
  9408   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9409   ins_encode( move_long_small_shift(dst,cnt) );
  9410   ins_pipe( ialu_reg_long );
  9411 %}
  9413 // Shift Right Long by 32-63
  9414 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9415   match(Set dst (URShiftL dst cnt));
  9416   effect(KILL cr);
  9417   ins_cost(300);
  9418   format %{ "MOV    $dst.lo,$dst.hi\n"
  9419           "\tSHR    $dst.lo,$cnt-32\n"
  9420           "\tXOR    $dst.hi,$dst.hi" %}
  9421   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9422   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9423   ins_pipe( ialu_reg_long );
  9424 %}
  9426 // Shift Right Long by variable
  9427 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9428   match(Set dst (URShiftL dst shift));
  9429   effect(KILL cr);
  9430   ins_cost(600);
  9431   size(17);
  9432   format %{ "TEST   $shift,32\n\t"
  9433             "JEQ,s  small\n\t"
  9434             "MOV    $dst.lo,$dst.hi\n\t"
  9435             "XOR    $dst.hi,$dst.hi\n"
  9436     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9437             "SHR    $dst.hi,$shift" %}
  9438   ins_encode( shift_right_long( dst, shift ) );
  9439   ins_pipe( pipe_slow );
  9440 %}
  9442 // Shift Right Long by 1-31
  9443 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9444   match(Set dst (RShiftL dst cnt));
  9445   effect(KILL cr);
  9446   ins_cost(200);
  9447   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9448             "SAR    $dst.hi,$cnt" %}
  9449   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9450   ins_encode( move_long_small_shift(dst,cnt) );
  9451   ins_pipe( ialu_reg_long );
  9452 %}
  9454 // Shift Right Long by 32-63
  9455 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9456   match(Set dst (RShiftL dst cnt));
  9457   effect(KILL cr);
  9458   ins_cost(300);
  9459   format %{ "MOV    $dst.lo,$dst.hi\n"
  9460           "\tSAR    $dst.lo,$cnt-32\n"
  9461           "\tSAR    $dst.hi,31" %}
  9462   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9463   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9464   ins_pipe( ialu_reg_long );
  9465 %}
  9467 // Shift Right arithmetic Long by variable
  9468 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9469   match(Set dst (RShiftL dst shift));
  9470   effect(KILL cr);
  9471   ins_cost(600);
  9472   size(18);
  9473   format %{ "TEST   $shift,32\n\t"
  9474             "JEQ,s  small\n\t"
  9475             "MOV    $dst.lo,$dst.hi\n\t"
  9476             "SAR    $dst.hi,31\n"
  9477     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9478             "SAR    $dst.hi,$shift" %}
  9479   ins_encode( shift_right_arith_long( dst, shift ) );
  9480   ins_pipe( pipe_slow );
  9481 %}
  9484 //----------Double Instructions------------------------------------------------
  9485 // Double Math
  9487 // Compare & branch
  9489 // P6 version of float compare, sets condition codes in EFLAGS
  9490 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9491   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9492   match(Set cr (CmpD src1 src2));
  9493   effect(KILL rax);
  9494   ins_cost(150);
  9495   format %{ "FLD    $src1\n\t"
  9496             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9497             "JNP    exit\n\t"
  9498             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9499             "SAHF\n"
  9500      "exit:\tNOP               // avoid branch to branch" %}
  9501   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9502   ins_encode( Push_Reg_DPR(src1),
  9503               OpcP, RegOpc(src2),
  9504               cmpF_P6_fixup );
  9505   ins_pipe( pipe_slow );
  9506 %}
  9508 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9509   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9510   match(Set cr (CmpD src1 src2));
  9511   ins_cost(150);
  9512   format %{ "FLD    $src1\n\t"
  9513             "FUCOMIP ST,$src2  // P6 instruction" %}
  9514   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9515   ins_encode( Push_Reg_DPR(src1),
  9516               OpcP, RegOpc(src2));
  9517   ins_pipe( pipe_slow );
  9518 %}
  9520 // Compare & branch
  9521 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9522   predicate(UseSSE<=1);
  9523   match(Set cr (CmpD src1 src2));
  9524   effect(KILL rax);
  9525   ins_cost(200);
  9526   format %{ "FLD    $src1\n\t"
  9527             "FCOMp  $src2\n\t"
  9528             "FNSTSW AX\n\t"
  9529             "TEST   AX,0x400\n\t"
  9530             "JZ,s   flags\n\t"
  9531             "MOV    AH,1\t# unordered treat as LT\n"
  9532     "flags:\tSAHF" %}
  9533   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9534   ins_encode( Push_Reg_DPR(src1),
  9535               OpcP, RegOpc(src2),
  9536               fpu_flags);
  9537   ins_pipe( pipe_slow );
  9538 %}
  9540 // Compare vs zero into -1,0,1
  9541 instruct cmpDPR_0(eRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9542   predicate(UseSSE<=1);
  9543   match(Set dst (CmpD3 src1 zero));
  9544   effect(KILL cr, KILL rax);
  9545   ins_cost(280);
  9546   format %{ "FTSTD  $dst,$src1" %}
  9547   opcode(0xE4, 0xD9);
  9548   ins_encode( Push_Reg_DPR(src1),
  9549               OpcS, OpcP, PopFPU,
  9550               CmpF_Result(dst));
  9551   ins_pipe( pipe_slow );
  9552 %}
  9554 // Compare into -1,0,1
  9555 instruct cmpDPR_reg(eRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9556   predicate(UseSSE<=1);
  9557   match(Set dst (CmpD3 src1 src2));
  9558   effect(KILL cr, KILL rax);
  9559   ins_cost(300);
  9560   format %{ "FCMPD  $dst,$src1,$src2" %}
  9561   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9562   ins_encode( Push_Reg_DPR(src1),
  9563               OpcP, RegOpc(src2),
  9564               CmpF_Result(dst));
  9565   ins_pipe( pipe_slow );
  9566 %}
  9568 // float compare and set condition codes in EFLAGS by XMM regs
  9569 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9570   predicate(UseSSE>=2);
  9571   match(Set cr (CmpD src1 src2));
  9572   ins_cost(145);
  9573   format %{ "UCOMISD $src1,$src2\n\t"
  9574             "JNP,s   exit\n\t"
  9575             "PUSHF\t# saw NaN, set CF\n\t"
  9576             "AND     [rsp], #0xffffff2b\n\t"
  9577             "POPF\n"
  9578     "exit:" %}
  9579   ins_encode %{
  9580     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9581     emit_cmpfp_fixup(_masm);
  9582   %}
  9583   ins_pipe( pipe_slow );
  9584 %}
  9586 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9587   predicate(UseSSE>=2);
  9588   match(Set cr (CmpD src1 src2));
  9589   ins_cost(100);
  9590   format %{ "UCOMISD $src1,$src2" %}
  9591   ins_encode %{
  9592     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9593   %}
  9594   ins_pipe( pipe_slow );
  9595 %}
  9597 // float compare and set condition codes in EFLAGS by XMM regs
  9598 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9599   predicate(UseSSE>=2);
  9600   match(Set cr (CmpD src1 (LoadD src2)));
  9601   ins_cost(145);
  9602   format %{ "UCOMISD $src1,$src2\n\t"
  9603             "JNP,s   exit\n\t"
  9604             "PUSHF\t# saw NaN, set CF\n\t"
  9605             "AND     [rsp], #0xffffff2b\n\t"
  9606             "POPF\n"
  9607     "exit:" %}
  9608   ins_encode %{
  9609     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9610     emit_cmpfp_fixup(_masm);
  9611   %}
  9612   ins_pipe( pipe_slow );
  9613 %}
  9615 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9616   predicate(UseSSE>=2);
  9617   match(Set cr (CmpD src1 (LoadD src2)));
  9618   ins_cost(100);
  9619   format %{ "UCOMISD $src1,$src2" %}
  9620   ins_encode %{
  9621     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9622   %}
  9623   ins_pipe( pipe_slow );
  9624 %}
  9626 // Compare into -1,0,1 in XMM
  9627 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9628   predicate(UseSSE>=2);
  9629   match(Set dst (CmpD3 src1 src2));
  9630   effect(KILL cr);
  9631   ins_cost(255);
  9632   format %{ "UCOMISD $src1, $src2\n\t"
  9633             "MOV     $dst, #-1\n\t"
  9634             "JP,s    done\n\t"
  9635             "JB,s    done\n\t"
  9636             "SETNE   $dst\n\t"
  9637             "MOVZB   $dst, $dst\n"
  9638     "done:" %}
  9639   ins_encode %{
  9640     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9641     emit_cmpfp3(_masm, $dst$$Register);
  9642   %}
  9643   ins_pipe( pipe_slow );
  9644 %}
  9646 // Compare into -1,0,1 in XMM and memory
  9647 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9648   predicate(UseSSE>=2);
  9649   match(Set dst (CmpD3 src1 (LoadD src2)));
  9650   effect(KILL cr);
  9651   ins_cost(275);
  9652   format %{ "UCOMISD $src1, $src2\n\t"
  9653             "MOV     $dst, #-1\n\t"
  9654             "JP,s    done\n\t"
  9655             "JB,s    done\n\t"
  9656             "SETNE   $dst\n\t"
  9657             "MOVZB   $dst, $dst\n"
  9658     "done:" %}
  9659   ins_encode %{
  9660     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9661     emit_cmpfp3(_masm, $dst$$Register);
  9662   %}
  9663   ins_pipe( pipe_slow );
  9664 %}
  9667 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9668   predicate (UseSSE <=1);
  9669   match(Set dst (SubD dst src));
  9671   format %{ "FLD    $src\n\t"
  9672             "DSUBp  $dst,ST" %}
  9673   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9674   ins_cost(150);
  9675   ins_encode( Push_Reg_DPR(src),
  9676               OpcP, RegOpc(dst) );
  9677   ins_pipe( fpu_reg_reg );
  9678 %}
  9680 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9681   predicate (UseSSE <=1);
  9682   match(Set dst (RoundDouble (SubD src1 src2)));
  9683   ins_cost(250);
  9685   format %{ "FLD    $src2\n\t"
  9686             "DSUB   ST,$src1\n\t"
  9687             "FSTP_D $dst\t# D-round" %}
  9688   opcode(0xD8, 0x5);
  9689   ins_encode( Push_Reg_DPR(src2),
  9690               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9691   ins_pipe( fpu_mem_reg_reg );
  9692 %}
  9695 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9696   predicate (UseSSE <=1);
  9697   match(Set dst (SubD dst (LoadD src)));
  9698   ins_cost(150);
  9700   format %{ "FLD    $src\n\t"
  9701             "DSUBp  $dst,ST" %}
  9702   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9703   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9704               OpcP, RegOpc(dst) );
  9705   ins_pipe( fpu_reg_mem );
  9706 %}
  9708 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9709   predicate (UseSSE<=1);
  9710   match(Set dst (AbsD src));
  9711   ins_cost(100);
  9712   format %{ "FABS" %}
  9713   opcode(0xE1, 0xD9);
  9714   ins_encode( OpcS, OpcP );
  9715   ins_pipe( fpu_reg_reg );
  9716 %}
  9718 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9719   predicate(UseSSE<=1);
  9720   match(Set dst (NegD src));
  9721   ins_cost(100);
  9722   format %{ "FCHS" %}
  9723   opcode(0xE0, 0xD9);
  9724   ins_encode( OpcS, OpcP );
  9725   ins_pipe( fpu_reg_reg );
  9726 %}
  9728 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9729   predicate(UseSSE<=1);
  9730   match(Set dst (AddD dst src));
  9731   format %{ "FLD    $src\n\t"
  9732             "DADD   $dst,ST" %}
  9733   size(4);
  9734   ins_cost(150);
  9735   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9736   ins_encode( Push_Reg_DPR(src),
  9737               OpcP, RegOpc(dst) );
  9738   ins_pipe( fpu_reg_reg );
  9739 %}
  9742 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9743   predicate(UseSSE<=1);
  9744   match(Set dst (RoundDouble (AddD src1 src2)));
  9745   ins_cost(250);
  9747   format %{ "FLD    $src2\n\t"
  9748             "DADD   ST,$src1\n\t"
  9749             "FSTP_D $dst\t# D-round" %}
  9750   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9751   ins_encode( Push_Reg_DPR(src2),
  9752               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9753   ins_pipe( fpu_mem_reg_reg );
  9754 %}
  9757 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9758   predicate(UseSSE<=1);
  9759   match(Set dst (AddD dst (LoadD src)));
  9760   ins_cost(150);
  9762   format %{ "FLD    $src\n\t"
  9763             "DADDp  $dst,ST" %}
  9764   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9765   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9766               OpcP, RegOpc(dst) );
  9767   ins_pipe( fpu_reg_mem );
  9768 %}
  9770 // add-to-memory
  9771 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9772   predicate(UseSSE<=1);
  9773   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9774   ins_cost(150);
  9776   format %{ "FLD_D  $dst\n\t"
  9777             "DADD   ST,$src\n\t"
  9778             "FST_D  $dst" %}
  9779   opcode(0xDD, 0x0);
  9780   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9781               Opcode(0xD8), RegOpc(src),
  9782               set_instruction_start,
  9783               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9784   ins_pipe( fpu_reg_mem );
  9785 %}
  9787 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9788   predicate(UseSSE<=1);
  9789   match(Set dst (AddD dst con));
  9790   ins_cost(125);
  9791   format %{ "FLD1\n\t"
  9792             "DADDp  $dst,ST" %}
  9793   ins_encode %{
  9794     __ fld1();
  9795     __ faddp($dst$$reg);
  9796   %}
  9797   ins_pipe(fpu_reg);
  9798 %}
  9800 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9801   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9802   match(Set dst (AddD dst con));
  9803   ins_cost(200);
  9804   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9805             "DADDp  $dst,ST" %}
  9806   ins_encode %{
  9807     __ fld_d($constantaddress($con));
  9808     __ faddp($dst$$reg);
  9809   %}
  9810   ins_pipe(fpu_reg_mem);
  9811 %}
  9813 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9814   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9815   match(Set dst (RoundDouble (AddD src con)));
  9816   ins_cost(200);
  9817   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9818             "DADD   ST,$src\n\t"
  9819             "FSTP_D $dst\t# D-round" %}
  9820   ins_encode %{
  9821     __ fld_d($constantaddress($con));
  9822     __ fadd($src$$reg);
  9823     __ fstp_d(Address(rsp, $dst$$disp));
  9824   %}
  9825   ins_pipe(fpu_mem_reg_con);
  9826 %}
  9828 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9829   predicate(UseSSE<=1);
  9830   match(Set dst (MulD dst src));
  9831   format %{ "FLD    $src\n\t"
  9832             "DMULp  $dst,ST" %}
  9833   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9834   ins_cost(150);
  9835   ins_encode( Push_Reg_DPR(src),
  9836               OpcP, RegOpc(dst) );
  9837   ins_pipe( fpu_reg_reg );
  9838 %}
  9840 // Strict FP instruction biases argument before multiply then
  9841 // biases result to avoid double rounding of subnormals.
  9842 //
  9843 // scale arg1 by multiplying arg1 by 2^(-15360)
  9844 // load arg2
  9845 // multiply scaled arg1 by arg2
  9846 // rescale product by 2^(15360)
  9847 //
  9848 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9849   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9850   match(Set dst (MulD dst src));
  9851   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9853   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9854             "DMULp  $dst,ST\n\t"
  9855             "FLD    $src\n\t"
  9856             "DMULp  $dst,ST\n\t"
  9857             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9858             "DMULp  $dst,ST\n\t" %}
  9859   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9860   ins_encode( strictfp_bias1(dst),
  9861               Push_Reg_DPR(src),
  9862               OpcP, RegOpc(dst),
  9863               strictfp_bias2(dst) );
  9864   ins_pipe( fpu_reg_reg );
  9865 %}
  9867 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9868   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9869   match(Set dst (MulD dst con));
  9870   ins_cost(200);
  9871   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9872             "DMULp  $dst,ST" %}
  9873   ins_encode %{
  9874     __ fld_d($constantaddress($con));
  9875     __ fmulp($dst$$reg);
  9876   %}
  9877   ins_pipe(fpu_reg_mem);
  9878 %}
  9881 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9882   predicate( UseSSE<=1 );
  9883   match(Set dst (MulD dst (LoadD src)));
  9884   ins_cost(200);
  9885   format %{ "FLD_D  $src\n\t"
  9886             "DMULp  $dst,ST" %}
  9887   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9888   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9889               OpcP, RegOpc(dst) );
  9890   ins_pipe( fpu_reg_mem );
  9891 %}
  9893 //
  9894 // Cisc-alternate to reg-reg multiply
  9895 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9896   predicate( UseSSE<=1 );
  9897   match(Set dst (MulD src (LoadD mem)));
  9898   ins_cost(250);
  9899   format %{ "FLD_D  $mem\n\t"
  9900             "DMUL   ST,$src\n\t"
  9901             "FSTP_D $dst" %}
  9902   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9903   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9904               OpcReg_FPR(src),
  9905               Pop_Reg_DPR(dst) );
  9906   ins_pipe( fpu_reg_reg_mem );
  9907 %}
  9910 // MACRO3 -- addDPR a mulDPR
  9911 // This instruction is a '2-address' instruction in that the result goes
  9912 // back to src2.  This eliminates a move from the macro; possibly the
  9913 // register allocator will have to add it back (and maybe not).
  9914 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9915   predicate( UseSSE<=1 );
  9916   match(Set src2 (AddD (MulD src0 src1) src2));
  9917   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9918             "DMUL   ST,$src1\n\t"
  9919             "DADDp  $src2,ST" %}
  9920   ins_cost(250);
  9921   opcode(0xDD); /* LoadD DD /0 */
  9922   ins_encode( Push_Reg_FPR(src0),
  9923               FMul_ST_reg(src1),
  9924               FAddP_reg_ST(src2) );
  9925   ins_pipe( fpu_reg_reg_reg );
  9926 %}
  9929 // MACRO3 -- subDPR a mulDPR
  9930 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9931   predicate( UseSSE<=1 );
  9932   match(Set src2 (SubD (MulD src0 src1) src2));
  9933   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9934             "DMUL   ST,$src1\n\t"
  9935             "DSUBRp $src2,ST" %}
  9936   ins_cost(250);
  9937   ins_encode( Push_Reg_FPR(src0),
  9938               FMul_ST_reg(src1),
  9939               Opcode(0xDE), Opc_plus(0xE0,src2));
  9940   ins_pipe( fpu_reg_reg_reg );
  9941 %}
  9944 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9945   predicate( UseSSE<=1 );
  9946   match(Set dst (DivD dst src));
  9948   format %{ "FLD    $src\n\t"
  9949             "FDIVp  $dst,ST" %}
  9950   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9951   ins_cost(150);
  9952   ins_encode( Push_Reg_DPR(src),
  9953               OpcP, RegOpc(dst) );
  9954   ins_pipe( fpu_reg_reg );
  9955 %}
  9957 // Strict FP instruction biases argument before division then
  9958 // biases result, to avoid double rounding of subnormals.
  9959 //
  9960 // scale dividend by multiplying dividend by 2^(-15360)
  9961 // load divisor
  9962 // divide scaled dividend by divisor
  9963 // rescale quotient by 2^(15360)
  9964 //
  9965 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9966   predicate (UseSSE<=1);
  9967   match(Set dst (DivD dst src));
  9968   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9969   ins_cost(01);
  9971   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9972             "DMULp  $dst,ST\n\t"
  9973             "FLD    $src\n\t"
  9974             "FDIVp  $dst,ST\n\t"
  9975             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9976             "DMULp  $dst,ST\n\t" %}
  9977   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9978   ins_encode( strictfp_bias1(dst),
  9979               Push_Reg_DPR(src),
  9980               OpcP, RegOpc(dst),
  9981               strictfp_bias2(dst) );
  9982   ins_pipe( fpu_reg_reg );
  9983 %}
  9985 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9986   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9987   match(Set dst (RoundDouble (DivD src1 src2)));
  9989   format %{ "FLD    $src1\n\t"
  9990             "FDIV   ST,$src2\n\t"
  9991             "FSTP_D $dst\t# D-round" %}
  9992   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9993   ins_encode( Push_Reg_DPR(src1),
  9994               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9995   ins_pipe( fpu_mem_reg_reg );
  9996 %}
  9999 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
 10000   predicate(UseSSE<=1);
 10001   match(Set dst (ModD dst src));
 10002   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10004   format %{ "DMOD   $dst,$src" %}
 10005   ins_cost(250);
 10006   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10007               emitModDPR(),
 10008               Push_Result_Mod_DPR(src),
 10009               Pop_Reg_DPR(dst));
 10010   ins_pipe( pipe_slow );
 10011 %}
 10013 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
 10014   predicate(UseSSE>=2);
 10015   match(Set dst (ModD src0 src1));
 10016   effect(KILL rax, KILL cr);
 10018   format %{ "SUB    ESP,8\t # DMOD\n"
 10019           "\tMOVSD  [ESP+0],$src1\n"
 10020           "\tFLD_D  [ESP+0]\n"
 10021           "\tMOVSD  [ESP+0],$src0\n"
 10022           "\tFLD_D  [ESP+0]\n"
 10023      "loop:\tFPREM\n"
 10024           "\tFWAIT\n"
 10025           "\tFNSTSW AX\n"
 10026           "\tSAHF\n"
 10027           "\tJP     loop\n"
 10028           "\tFSTP_D [ESP+0]\n"
 10029           "\tMOVSD  $dst,[ESP+0]\n"
 10030           "\tADD    ESP,8\n"
 10031           "\tFSTP   ST0\t # Restore FPU Stack"
 10032     %}
 10033   ins_cost(250);
 10034   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
 10035   ins_pipe( pipe_slow );
 10036 %}
 10038 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
 10039   predicate (UseSSE<=1);
 10040   match(Set dst (SinD src));
 10041   ins_cost(1800);
 10042   format %{ "DSIN   $dst" %}
 10043   opcode(0xD9, 0xFE);
 10044   ins_encode( OpcP, OpcS );
 10045   ins_pipe( pipe_slow );
 10046 %}
 10048 instruct sinD_reg(regD dst, eFlagsReg cr) %{
 10049   predicate (UseSSE>=2);
 10050   match(Set dst (SinD dst));
 10051   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10052   ins_cost(1800);
 10053   format %{ "DSIN   $dst" %}
 10054   opcode(0xD9, 0xFE);
 10055   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10056   ins_pipe( pipe_slow );
 10057 %}
 10059 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
 10060   predicate (UseSSE<=1);
 10061   match(Set dst (CosD src));
 10062   ins_cost(1800);
 10063   format %{ "DCOS   $dst" %}
 10064   opcode(0xD9, 0xFF);
 10065   ins_encode( OpcP, OpcS );
 10066   ins_pipe( pipe_slow );
 10067 %}
 10069 instruct cosD_reg(regD dst, eFlagsReg cr) %{
 10070   predicate (UseSSE>=2);
 10071   match(Set dst (CosD dst));
 10072   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10073   ins_cost(1800);
 10074   format %{ "DCOS   $dst" %}
 10075   opcode(0xD9, 0xFF);
 10076   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10077   ins_pipe( pipe_slow );
 10078 %}
 10080 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
 10081   predicate (UseSSE<=1);
 10082   match(Set dst(TanD src));
 10083   format %{ "DTAN   $dst" %}
 10084   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10085               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10086   ins_pipe( pipe_slow );
 10087 %}
 10089 instruct tanD_reg(regD dst, eFlagsReg cr) %{
 10090   predicate (UseSSE>=2);
 10091   match(Set dst(TanD dst));
 10092   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10093   format %{ "DTAN   $dst" %}
 10094   ins_encode( Push_SrcD(dst),
 10095               Opcode(0xD9), Opcode(0xF2),    // fptan
 10096               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10097               Push_ResultD(dst) );
 10098   ins_pipe( pipe_slow );
 10099 %}
 10101 instruct atanDPR_reg(regDPR dst, regDPR src) %{
 10102   predicate (UseSSE<=1);
 10103   match(Set dst(AtanD dst src));
 10104   format %{ "DATA   $dst,$src" %}
 10105   opcode(0xD9, 0xF3);
 10106   ins_encode( Push_Reg_DPR(src),
 10107               OpcP, OpcS, RegOpc(dst) );
 10108   ins_pipe( pipe_slow );
 10109 %}
 10111 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
 10112   predicate (UseSSE>=2);
 10113   match(Set dst(AtanD dst src));
 10114   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10115   format %{ "DATA   $dst,$src" %}
 10116   opcode(0xD9, 0xF3);
 10117   ins_encode( Push_SrcD(src),
 10118               OpcP, OpcS, Push_ResultD(dst) );
 10119   ins_pipe( pipe_slow );
 10120 %}
 10122 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
 10123   predicate (UseSSE<=1);
 10124   match(Set dst (SqrtD src));
 10125   format %{ "DSQRT  $dst,$src" %}
 10126   opcode(0xFA, 0xD9);
 10127   ins_encode( Push_Reg_DPR(src),
 10128               OpcS, OpcP, Pop_Reg_DPR(dst) );
 10129   ins_pipe( pipe_slow );
 10130 %}
 10132 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10133   predicate (UseSSE<=1);
 10134   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10135   effect(KILL rax, KILL rbx, KILL rcx);
 10136   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10137             "FLD_D  $X\n\t"
 10138             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10140             "FDUP   \t\t\t# Q Q\n\t"
 10141             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10142             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10143             "FISTP  dword [ESP]\n\t"
 10144             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10145             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10146             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10147             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10148             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10149             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10150             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10151             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10152             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10153             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10154             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10155             "MOV    [ESP+0],0\n\t"
 10156             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10158             "ADD    ESP,8"
 10159              %}
 10160   ins_encode( push_stack_temp_qword,
 10161               Push_Reg_DPR(X),
 10162               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10163               pow_exp_core_encoding,
 10164               pop_stack_temp_qword);
 10165   ins_pipe( pipe_slow );
 10166 %}
 10168 instruct powD_reg(regD dst, regD src0, regD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10169   predicate (UseSSE>=2);
 10170   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10171   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10172   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10173             "MOVSD  [ESP],$src1\n\t"
 10174             "FLD    FPR1,$src1\n\t"
 10175             "MOVSD  [ESP],$src0\n\t"
 10176             "FLD    FPR1,$src0\n\t"
 10177             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10179             "FDUP   \t\t\t# Q Q\n\t"
 10180             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10181             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10182             "FISTP  dword [ESP]\n\t"
 10183             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10184             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10185             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10186             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10187             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10188             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10189             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10190             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10191             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10192             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10193             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10194             "MOV    [ESP+0],0\n\t"
 10195             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10197             "FST_D  [ESP]\n\t"
 10198             "MOVSD  $dst,[ESP]\n\t"
 10199             "ADD    ESP,8"
 10200              %}
 10201   ins_encode( push_stack_temp_qword,
 10202               push_xmm_to_fpr1(src1),
 10203               push_xmm_to_fpr1(src0),
 10204               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10205               pow_exp_core_encoding,
 10206               Push_ResultD(dst) );
 10207   ins_pipe( pipe_slow );
 10208 %}
 10211 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10212   predicate (UseSSE<=1);
 10213   match(Set dpr1 (ExpD dpr1));
 10214   effect(KILL rax, KILL rbx, KILL rcx);
 10215   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10216             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10217             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10219             "FDUP   \t\t\t# Q Q\n\t"
 10220             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10221             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10222             "FISTP  dword [ESP]\n\t"
 10223             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10224             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10225             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10226             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10227             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10228             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10229             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10230             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10231             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10232             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10233             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10234             "MOV    [ESP+0],0\n\t"
 10235             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10237             "ADD    ESP,8"
 10238              %}
 10239   ins_encode( push_stack_temp_qword,
 10240               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10241               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10242               pow_exp_core_encoding,
 10243               pop_stack_temp_qword);
 10244   ins_pipe( pipe_slow );
 10245 %}
 10247 instruct expD_reg(regD dst, regD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10248   predicate (UseSSE>=2);
 10249   match(Set dst (ExpD src));
 10250   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10251   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10252             "MOVSD  [ESP],$src\n\t"
 10253             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10254             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10256             "FDUP   \t\t\t# Q Q\n\t"
 10257             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10258             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10259             "FISTP  dword [ESP]\n\t"
 10260             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10261             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10262             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10263             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10264             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10265             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10266             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10267             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10268             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10269             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10270             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10271             "MOV    [ESP+0],0\n\t"
 10272             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10274             "FST_D  [ESP]\n\t"
 10275             "MOVSD  $dst,[ESP]\n\t"
 10276             "ADD    ESP,8"
 10277              %}
 10278   ins_encode( Push_SrcD(src),
 10279               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10280               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10281               pow_exp_core_encoding,
 10282               Push_ResultD(dst) );
 10283   ins_pipe( pipe_slow );
 10284 %}
 10288 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10289   predicate (UseSSE<=1);
 10290   // The source Double operand on FPU stack
 10291   match(Set dst (Log10D src));
 10292   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10293   // fxch         ; swap ST(0) with ST(1)
 10294   // fyl2x        ; compute log_10(2) * log_2(x)
 10295   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10296             "FXCH   \n\t"
 10297             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10298          %}
 10299   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10300               Opcode(0xD9), Opcode(0xC9),   // fxch
 10301               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10303   ins_pipe( pipe_slow );
 10304 %}
 10306 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10307   predicate (UseSSE>=2);
 10308   effect(KILL cr);
 10309   match(Set dst (Log10D src));
 10310   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10311   // fyl2x        ; compute log_10(2) * log_2(x)
 10312   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10313             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10314          %}
 10315   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10316               Push_SrcD(src),
 10317               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10318               Push_ResultD(dst));
 10320   ins_pipe( pipe_slow );
 10321 %}
 10323 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10324   predicate (UseSSE<=1);
 10325   // The source Double operand on FPU stack
 10326   match(Set dst (LogD src));
 10327   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10328   // fxch         ; swap ST(0) with ST(1)
 10329   // fyl2x        ; compute log_e(2) * log_2(x)
 10330   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10331             "FXCH   \n\t"
 10332             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10333          %}
 10334   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10335               Opcode(0xD9), Opcode(0xC9),   // fxch
 10336               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10338   ins_pipe( pipe_slow );
 10339 %}
 10341 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10342   predicate (UseSSE>=2);
 10343   effect(KILL cr);
 10344   // The source and result Double operands in XMM registers
 10345   match(Set dst (LogD src));
 10346   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10347   // fyl2x        ; compute log_e(2) * log_2(x)
 10348   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10349             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10350          %}
 10351   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10352               Push_SrcD(src),
 10353               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10354               Push_ResultD(dst));
 10355   ins_pipe( pipe_slow );
 10356 %}
 10358 //-------------Float Instructions-------------------------------
 10359 // Float Math
 10361 // Code for float compare:
 10362 //     fcompp();
 10363 //     fwait(); fnstsw_ax();
 10364 //     sahf();
 10365 //     movl(dst, unordered_result);
 10366 //     jcc(Assembler::parity, exit);
 10367 //     movl(dst, less_result);
 10368 //     jcc(Assembler::below, exit);
 10369 //     movl(dst, equal_result);
 10370 //     jcc(Assembler::equal, exit);
 10371 //     movl(dst, greater_result);
 10372 //   exit:
 10374 // P6 version of float compare, sets condition codes in EFLAGS
 10375 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10376   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10377   match(Set cr (CmpF src1 src2));
 10378   effect(KILL rax);
 10379   ins_cost(150);
 10380   format %{ "FLD    $src1\n\t"
 10381             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10382             "JNP    exit\n\t"
 10383             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10384             "SAHF\n"
 10385      "exit:\tNOP               // avoid branch to branch" %}
 10386   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10387   ins_encode( Push_Reg_DPR(src1),
 10388               OpcP, RegOpc(src2),
 10389               cmpF_P6_fixup );
 10390   ins_pipe( pipe_slow );
 10391 %}
 10393 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10394   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10395   match(Set cr (CmpF src1 src2));
 10396   ins_cost(100);
 10397   format %{ "FLD    $src1\n\t"
 10398             "FUCOMIP ST,$src2  // P6 instruction" %}
 10399   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10400   ins_encode( Push_Reg_DPR(src1),
 10401               OpcP, RegOpc(src2));
 10402   ins_pipe( pipe_slow );
 10403 %}
 10406 // Compare & branch
 10407 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10408   predicate(UseSSE == 0);
 10409   match(Set cr (CmpF src1 src2));
 10410   effect(KILL rax);
 10411   ins_cost(200);
 10412   format %{ "FLD    $src1\n\t"
 10413             "FCOMp  $src2\n\t"
 10414             "FNSTSW AX\n\t"
 10415             "TEST   AX,0x400\n\t"
 10416             "JZ,s   flags\n\t"
 10417             "MOV    AH,1\t# unordered treat as LT\n"
 10418     "flags:\tSAHF" %}
 10419   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10420   ins_encode( Push_Reg_DPR(src1),
 10421               OpcP, RegOpc(src2),
 10422               fpu_flags);
 10423   ins_pipe( pipe_slow );
 10424 %}
 10426 // Compare vs zero into -1,0,1
 10427 instruct cmpFPR_0(eRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10428   predicate(UseSSE == 0);
 10429   match(Set dst (CmpF3 src1 zero));
 10430   effect(KILL cr, KILL rax);
 10431   ins_cost(280);
 10432   format %{ "FTSTF  $dst,$src1" %}
 10433   opcode(0xE4, 0xD9);
 10434   ins_encode( Push_Reg_DPR(src1),
 10435               OpcS, OpcP, PopFPU,
 10436               CmpF_Result(dst));
 10437   ins_pipe( pipe_slow );
 10438 %}
 10440 // Compare into -1,0,1
 10441 instruct cmpFPR_reg(eRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10442   predicate(UseSSE == 0);
 10443   match(Set dst (CmpF3 src1 src2));
 10444   effect(KILL cr, KILL rax);
 10445   ins_cost(300);
 10446   format %{ "FCMPF  $dst,$src1,$src2" %}
 10447   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10448   ins_encode( Push_Reg_DPR(src1),
 10449               OpcP, RegOpc(src2),
 10450               CmpF_Result(dst));
 10451   ins_pipe( pipe_slow );
 10452 %}
 10454 // float compare and set condition codes in EFLAGS by XMM regs
 10455 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10456   predicate(UseSSE>=1);
 10457   match(Set cr (CmpF src1 src2));
 10458   ins_cost(145);
 10459   format %{ "UCOMISS $src1,$src2\n\t"
 10460             "JNP,s   exit\n\t"
 10461             "PUSHF\t# saw NaN, set CF\n\t"
 10462             "AND     [rsp], #0xffffff2b\n\t"
 10463             "POPF\n"
 10464     "exit:" %}
 10465   ins_encode %{
 10466     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10467     emit_cmpfp_fixup(_masm);
 10468   %}
 10469   ins_pipe( pipe_slow );
 10470 %}
 10472 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10473   predicate(UseSSE>=1);
 10474   match(Set cr (CmpF src1 src2));
 10475   ins_cost(100);
 10476   format %{ "UCOMISS $src1,$src2" %}
 10477   ins_encode %{
 10478     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10479   %}
 10480   ins_pipe( pipe_slow );
 10481 %}
 10483 // float compare and set condition codes in EFLAGS by XMM regs
 10484 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10485   predicate(UseSSE>=1);
 10486   match(Set cr (CmpF src1 (LoadF src2)));
 10487   ins_cost(165);
 10488   format %{ "UCOMISS $src1,$src2\n\t"
 10489             "JNP,s   exit\n\t"
 10490             "PUSHF\t# saw NaN, set CF\n\t"
 10491             "AND     [rsp], #0xffffff2b\n\t"
 10492             "POPF\n"
 10493     "exit:" %}
 10494   ins_encode %{
 10495     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10496     emit_cmpfp_fixup(_masm);
 10497   %}
 10498   ins_pipe( pipe_slow );
 10499 %}
 10501 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10502   predicate(UseSSE>=1);
 10503   match(Set cr (CmpF src1 (LoadF src2)));
 10504   ins_cost(100);
 10505   format %{ "UCOMISS $src1,$src2" %}
 10506   ins_encode %{
 10507     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10508   %}
 10509   ins_pipe( pipe_slow );
 10510 %}
 10512 // Compare into -1,0,1 in XMM
 10513 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10514   predicate(UseSSE>=1);
 10515   match(Set dst (CmpF3 src1 src2));
 10516   effect(KILL cr);
 10517   ins_cost(255);
 10518   format %{ "UCOMISS $src1, $src2\n\t"
 10519             "MOV     $dst, #-1\n\t"
 10520             "JP,s    done\n\t"
 10521             "JB,s    done\n\t"
 10522             "SETNE   $dst\n\t"
 10523             "MOVZB   $dst, $dst\n"
 10524     "done:" %}
 10525   ins_encode %{
 10526     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10527     emit_cmpfp3(_masm, $dst$$Register);
 10528   %}
 10529   ins_pipe( pipe_slow );
 10530 %}
 10532 // Compare into -1,0,1 in XMM and memory
 10533 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10534   predicate(UseSSE>=1);
 10535   match(Set dst (CmpF3 src1 (LoadF src2)));
 10536   effect(KILL cr);
 10537   ins_cost(275);
 10538   format %{ "UCOMISS $src1, $src2\n\t"
 10539             "MOV     $dst, #-1\n\t"
 10540             "JP,s    done\n\t"
 10541             "JB,s    done\n\t"
 10542             "SETNE   $dst\n\t"
 10543             "MOVZB   $dst, $dst\n"
 10544     "done:" %}
 10545   ins_encode %{
 10546     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10547     emit_cmpfp3(_masm, $dst$$Register);
 10548   %}
 10549   ins_pipe( pipe_slow );
 10550 %}
 10552 // Spill to obtain 24-bit precision
 10553 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10554   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10555   match(Set dst (SubF src1 src2));
 10557   format %{ "FSUB   $dst,$src1 - $src2" %}
 10558   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10559   ins_encode( Push_Reg_FPR(src1),
 10560               OpcReg_FPR(src2),
 10561               Pop_Mem_FPR(dst) );
 10562   ins_pipe( fpu_mem_reg_reg );
 10563 %}
 10564 //
 10565 // This instruction does not round to 24-bits
 10566 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10567   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10568   match(Set dst (SubF dst src));
 10570   format %{ "FSUB   $dst,$src" %}
 10571   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10572   ins_encode( Push_Reg_FPR(src),
 10573               OpcP, RegOpc(dst) );
 10574   ins_pipe( fpu_reg_reg );
 10575 %}
 10577 // Spill to obtain 24-bit precision
 10578 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10579   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10580   match(Set dst (AddF src1 src2));
 10582   format %{ "FADD   $dst,$src1,$src2" %}
 10583   opcode(0xD8, 0x0); /* D8 C0+i */
 10584   ins_encode( Push_Reg_FPR(src2),
 10585               OpcReg_FPR(src1),
 10586               Pop_Mem_FPR(dst) );
 10587   ins_pipe( fpu_mem_reg_reg );
 10588 %}
 10589 //
 10590 // This instruction does not round to 24-bits
 10591 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10592   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10593   match(Set dst (AddF dst src));
 10595   format %{ "FLD    $src\n\t"
 10596             "FADDp  $dst,ST" %}
 10597   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10598   ins_encode( Push_Reg_FPR(src),
 10599               OpcP, RegOpc(dst) );
 10600   ins_pipe( fpu_reg_reg );
 10601 %}
 10603 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10604   predicate(UseSSE==0);
 10605   match(Set dst (AbsF src));
 10606   ins_cost(100);
 10607   format %{ "FABS" %}
 10608   opcode(0xE1, 0xD9);
 10609   ins_encode( OpcS, OpcP );
 10610   ins_pipe( fpu_reg_reg );
 10611 %}
 10613 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10614   predicate(UseSSE==0);
 10615   match(Set dst (NegF src));
 10616   ins_cost(100);
 10617   format %{ "FCHS" %}
 10618   opcode(0xE0, 0xD9);
 10619   ins_encode( OpcS, OpcP );
 10620   ins_pipe( fpu_reg_reg );
 10621 %}
 10623 // Cisc-alternate to addFPR_reg
 10624 // Spill to obtain 24-bit precision
 10625 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10626   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10627   match(Set dst (AddF src1 (LoadF src2)));
 10629   format %{ "FLD    $src2\n\t"
 10630             "FADD   ST,$src1\n\t"
 10631             "FSTP_S $dst" %}
 10632   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10633   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10634               OpcReg_FPR(src1),
 10635               Pop_Mem_FPR(dst) );
 10636   ins_pipe( fpu_mem_reg_mem );
 10637 %}
 10638 //
 10639 // Cisc-alternate to addFPR_reg
 10640 // This instruction does not round to 24-bits
 10641 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10642   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10643   match(Set dst (AddF dst (LoadF src)));
 10645   format %{ "FADD   $dst,$src" %}
 10646   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10647   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10648               OpcP, RegOpc(dst) );
 10649   ins_pipe( fpu_reg_mem );
 10650 %}
 10652 // // Following two instructions for _222_mpegaudio
 10653 // Spill to obtain 24-bit precision
 10654 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10655   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10656   match(Set dst (AddF src1 src2));
 10658   format %{ "FADD   $dst,$src1,$src2" %}
 10659   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10660   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10661               OpcReg_FPR(src2),
 10662               Pop_Mem_FPR(dst) );
 10663   ins_pipe( fpu_mem_reg_mem );
 10664 %}
 10666 // Cisc-spill variant
 10667 // Spill to obtain 24-bit precision
 10668 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10669   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10670   match(Set dst (AddF src1 (LoadF src2)));
 10672   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10673   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10674   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10675               set_instruction_start,
 10676               OpcP, RMopc_Mem(secondary,src1),
 10677               Pop_Mem_FPR(dst) );
 10678   ins_pipe( fpu_mem_mem_mem );
 10679 %}
 10681 // Spill to obtain 24-bit precision
 10682 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10683   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10684   match(Set dst (AddF src1 src2));
 10686   format %{ "FADD   $dst,$src1,$src2" %}
 10687   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10688   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10689               set_instruction_start,
 10690               OpcP, RMopc_Mem(secondary,src1),
 10691               Pop_Mem_FPR(dst) );
 10692   ins_pipe( fpu_mem_mem_mem );
 10693 %}
 10696 // Spill to obtain 24-bit precision
 10697 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10698   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10699   match(Set dst (AddF src con));
 10700   format %{ "FLD    $src\n\t"
 10701             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10702             "FSTP_S $dst"  %}
 10703   ins_encode %{
 10704     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10705     __ fadd_s($constantaddress($con));
 10706     __ fstp_s(Address(rsp, $dst$$disp));
 10707   %}
 10708   ins_pipe(fpu_mem_reg_con);
 10709 %}
 10710 //
 10711 // This instruction does not round to 24-bits
 10712 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10713   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10714   match(Set dst (AddF src con));
 10715   format %{ "FLD    $src\n\t"
 10716             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10717             "FSTP   $dst"  %}
 10718   ins_encode %{
 10719     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10720     __ fadd_s($constantaddress($con));
 10721     __ fstp_d($dst$$reg);
 10722   %}
 10723   ins_pipe(fpu_reg_reg_con);
 10724 %}
 10726 // Spill to obtain 24-bit precision
 10727 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10728   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10729   match(Set dst (MulF src1 src2));
 10731   format %{ "FLD    $src1\n\t"
 10732             "FMUL   $src2\n\t"
 10733             "FSTP_S $dst"  %}
 10734   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10735   ins_encode( Push_Reg_FPR(src1),
 10736               OpcReg_FPR(src2),
 10737               Pop_Mem_FPR(dst) );
 10738   ins_pipe( fpu_mem_reg_reg );
 10739 %}
 10740 //
 10741 // This instruction does not round to 24-bits
 10742 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10743   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10744   match(Set dst (MulF src1 src2));
 10746   format %{ "FLD    $src1\n\t"
 10747             "FMUL   $src2\n\t"
 10748             "FSTP_S $dst"  %}
 10749   opcode(0xD8, 0x1); /* D8 C8+i */
 10750   ins_encode( Push_Reg_FPR(src2),
 10751               OpcReg_FPR(src1),
 10752               Pop_Reg_FPR(dst) );
 10753   ins_pipe( fpu_reg_reg_reg );
 10754 %}
 10757 // Spill to obtain 24-bit precision
 10758 // Cisc-alternate to reg-reg multiply
 10759 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10760   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10761   match(Set dst (MulF src1 (LoadF src2)));
 10763   format %{ "FLD_S  $src2\n\t"
 10764             "FMUL   $src1\n\t"
 10765             "FSTP_S $dst"  %}
 10766   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10767   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10768               OpcReg_FPR(src1),
 10769               Pop_Mem_FPR(dst) );
 10770   ins_pipe( fpu_mem_reg_mem );
 10771 %}
 10772 //
 10773 // This instruction does not round to 24-bits
 10774 // Cisc-alternate to reg-reg multiply
 10775 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10776   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10777   match(Set dst (MulF src1 (LoadF src2)));
 10779   format %{ "FMUL   $dst,$src1,$src2" %}
 10780   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10781   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10782               OpcReg_FPR(src1),
 10783               Pop_Reg_FPR(dst) );
 10784   ins_pipe( fpu_reg_reg_mem );
 10785 %}
 10787 // Spill to obtain 24-bit precision
 10788 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10789   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10790   match(Set dst (MulF src1 src2));
 10792   format %{ "FMUL   $dst,$src1,$src2" %}
 10793   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10794   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10795               set_instruction_start,
 10796               OpcP, RMopc_Mem(secondary,src1),
 10797               Pop_Mem_FPR(dst) );
 10798   ins_pipe( fpu_mem_mem_mem );
 10799 %}
 10801 // Spill to obtain 24-bit precision
 10802 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10803   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10804   match(Set dst (MulF src con));
 10806   format %{ "FLD    $src\n\t"
 10807             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10808             "FSTP_S $dst"  %}
 10809   ins_encode %{
 10810     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10811     __ fmul_s($constantaddress($con));
 10812     __ fstp_s(Address(rsp, $dst$$disp));
 10813   %}
 10814   ins_pipe(fpu_mem_reg_con);
 10815 %}
 10816 //
 10817 // This instruction does not round to 24-bits
 10818 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10819   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10820   match(Set dst (MulF src con));
 10822   format %{ "FLD    $src\n\t"
 10823             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10824             "FSTP   $dst"  %}
 10825   ins_encode %{
 10826     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10827     __ fmul_s($constantaddress($con));
 10828     __ fstp_d($dst$$reg);
 10829   %}
 10830   ins_pipe(fpu_reg_reg_con);
 10831 %}
 10834 //
 10835 // MACRO1 -- subsume unshared load into mulFPR
 10836 // This instruction does not round to 24-bits
 10837 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10838   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10839   match(Set dst (MulF (LoadF mem1) src));
 10841   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10842             "FMUL   ST,$src\n\t"
 10843             "FSTP   $dst" %}
 10844   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10845   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10846               OpcReg_FPR(src),
 10847               Pop_Reg_FPR(dst) );
 10848   ins_pipe( fpu_reg_reg_mem );
 10849 %}
 10850 //
 10851 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10852 // This instruction does not round to 24-bits
 10853 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10854   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10855   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10856   ins_cost(95);
 10858   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10859             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10860             "FADD   ST,$src2\n\t"
 10861             "FSTP   $dst" %}
 10862   opcode(0xD9); /* LoadF D9 /0 */
 10863   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10864               FMul_ST_reg(src1),
 10865               FAdd_ST_reg(src2),
 10866               Pop_Reg_FPR(dst) );
 10867   ins_pipe( fpu_reg_mem_reg_reg );
 10868 %}
 10870 // MACRO3 -- addFPR a mulFPR
 10871 // This instruction does not round to 24-bits.  It is a '2-address'
 10872 // instruction in that the result goes back to src2.  This eliminates
 10873 // a move from the macro; possibly the register allocator will have
 10874 // to add it back (and maybe not).
 10875 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10876   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10877   match(Set src2 (AddF (MulF src0 src1) src2));
 10879   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10880             "FMUL   ST,$src1\n\t"
 10881             "FADDP  $src2,ST" %}
 10882   opcode(0xD9); /* LoadF D9 /0 */
 10883   ins_encode( Push_Reg_FPR(src0),
 10884               FMul_ST_reg(src1),
 10885               FAddP_reg_ST(src2) );
 10886   ins_pipe( fpu_reg_reg_reg );
 10887 %}
 10889 // MACRO4 -- divFPR subFPR
 10890 // This instruction does not round to 24-bits
 10891 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10892   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10893   match(Set dst (DivF (SubF src2 src1) src3));
 10895   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10896             "FSUB   ST,$src1\n\t"
 10897             "FDIV   ST,$src3\n\t"
 10898             "FSTP  $dst" %}
 10899   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10900   ins_encode( Push_Reg_FPR(src2),
 10901               subFPR_divFPR_encode(src1,src3),
 10902               Pop_Reg_FPR(dst) );
 10903   ins_pipe( fpu_reg_reg_reg_reg );
 10904 %}
 10906 // Spill to obtain 24-bit precision
 10907 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10908   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10909   match(Set dst (DivF src1 src2));
 10911   format %{ "FDIV   $dst,$src1,$src2" %}
 10912   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10913   ins_encode( Push_Reg_FPR(src1),
 10914               OpcReg_FPR(src2),
 10915               Pop_Mem_FPR(dst) );
 10916   ins_pipe( fpu_mem_reg_reg );
 10917 %}
 10918 //
 10919 // This instruction does not round to 24-bits
 10920 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10921   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10922   match(Set dst (DivF dst src));
 10924   format %{ "FDIV   $dst,$src" %}
 10925   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10926   ins_encode( Push_Reg_FPR(src),
 10927               OpcP, RegOpc(dst) );
 10928   ins_pipe( fpu_reg_reg );
 10929 %}
 10932 // Spill to obtain 24-bit precision
 10933 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10934   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10935   match(Set dst (ModF src1 src2));
 10936   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10938   format %{ "FMOD   $dst,$src1,$src2" %}
 10939   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10940               emitModDPR(),
 10941               Push_Result_Mod_DPR(src2),
 10942               Pop_Mem_FPR(dst));
 10943   ins_pipe( pipe_slow );
 10944 %}
 10945 //
 10946 // This instruction does not round to 24-bits
 10947 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10948   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10949   match(Set dst (ModF dst src));
 10950   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10952   format %{ "FMOD   $dst,$src" %}
 10953   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10954               emitModDPR(),
 10955               Push_Result_Mod_DPR(src),
 10956               Pop_Reg_FPR(dst));
 10957   ins_pipe( pipe_slow );
 10958 %}
 10960 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10961   predicate(UseSSE>=1);
 10962   match(Set dst (ModF src0 src1));
 10963   effect(KILL rax, KILL cr);
 10964   format %{ "SUB    ESP,4\t # FMOD\n"
 10965           "\tMOVSS  [ESP+0],$src1\n"
 10966           "\tFLD_S  [ESP+0]\n"
 10967           "\tMOVSS  [ESP+0],$src0\n"
 10968           "\tFLD_S  [ESP+0]\n"
 10969      "loop:\tFPREM\n"
 10970           "\tFWAIT\n"
 10971           "\tFNSTSW AX\n"
 10972           "\tSAHF\n"
 10973           "\tJP     loop\n"
 10974           "\tFSTP_S [ESP+0]\n"
 10975           "\tMOVSS  $dst,[ESP+0]\n"
 10976           "\tADD    ESP,4\n"
 10977           "\tFSTP   ST0\t # Restore FPU Stack"
 10978     %}
 10979   ins_cost(250);
 10980   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10981   ins_pipe( pipe_slow );
 10982 %}
 10985 //----------Arithmetic Conversion Instructions---------------------------------
 10986 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10988 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10989   predicate(UseSSE==0);
 10990   match(Set dst (RoundFloat src));
 10991   ins_cost(125);
 10992   format %{ "FST_S  $dst,$src\t# F-round" %}
 10993   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10994   ins_pipe( fpu_mem_reg );
 10995 %}
 10997 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10998   predicate(UseSSE<=1);
 10999   match(Set dst (RoundDouble src));
 11000   ins_cost(125);
 11001   format %{ "FST_D  $dst,$src\t# D-round" %}
 11002   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11003   ins_pipe( fpu_mem_reg );
 11004 %}
 11006 // Force rounding to 24-bit precision and 6-bit exponent
 11007 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 11008   predicate(UseSSE==0);
 11009   match(Set dst (ConvD2F src));
 11010   format %{ "FST_S  $dst,$src\t# F-round" %}
 11011   expand %{
 11012     roundFloat_mem_reg(dst,src);
 11013   %}
 11014 %}
 11016 // Force rounding to 24-bit precision and 6-bit exponent
 11017 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 11018   predicate(UseSSE==1);
 11019   match(Set dst (ConvD2F src));
 11020   effect( KILL cr );
 11021   format %{ "SUB    ESP,4\n\t"
 11022             "FST_S  [ESP],$src\t# F-round\n\t"
 11023             "MOVSS  $dst,[ESP]\n\t"
 11024             "ADD ESP,4" %}
 11025   ins_encode %{
 11026     __ subptr(rsp, 4);
 11027     if ($src$$reg != FPR1L_enc) {
 11028       __ fld_s($src$$reg-1);
 11029       __ fstp_s(Address(rsp, 0));
 11030     } else {
 11031       __ fst_s(Address(rsp, 0));
 11033     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 11034     __ addptr(rsp, 4);
 11035   %}
 11036   ins_pipe( pipe_slow );
 11037 %}
 11039 // Force rounding double precision to single precision
 11040 instruct convD2F_reg(regF dst, regD src) %{
 11041   predicate(UseSSE>=2);
 11042   match(Set dst (ConvD2F src));
 11043   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11044   ins_encode %{
 11045     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 11046   %}
 11047   ins_pipe( pipe_slow );
 11048 %}
 11050 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 11051   predicate(UseSSE==0);
 11052   match(Set dst (ConvF2D src));
 11053   format %{ "FST_S  $dst,$src\t# D-round" %}
 11054   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 11055   ins_pipe( fpu_reg_reg );
 11056 %}
 11058 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 11059   predicate(UseSSE==1);
 11060   match(Set dst (ConvF2D src));
 11061   format %{ "FST_D  $dst,$src\t# D-round" %}
 11062   expand %{
 11063     roundDouble_mem_reg(dst,src);
 11064   %}
 11065 %}
 11067 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 11068   predicate(UseSSE==1);
 11069   match(Set dst (ConvF2D src));
 11070   effect( KILL cr );
 11071   format %{ "SUB    ESP,4\n\t"
 11072             "MOVSS  [ESP] $src\n\t"
 11073             "FLD_S  [ESP]\n\t"
 11074             "ADD    ESP,4\n\t"
 11075             "FSTP   $dst\t# D-round" %}
 11076   ins_encode %{
 11077     __ subptr(rsp, 4);
 11078     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11079     __ fld_s(Address(rsp, 0));
 11080     __ addptr(rsp, 4);
 11081     __ fstp_d($dst$$reg);
 11082   %}
 11083   ins_pipe( pipe_slow );
 11084 %}
 11086 instruct convF2D_reg(regD dst, regF src) %{
 11087   predicate(UseSSE>=2);
 11088   match(Set dst (ConvF2D src));
 11089   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11090   ins_encode %{
 11091     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 11092   %}
 11093   ins_pipe( pipe_slow );
 11094 %}
 11096 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11097 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 11098   predicate(UseSSE<=1);
 11099   match(Set dst (ConvD2I src));
 11100   effect( KILL tmp, KILL cr );
 11101   format %{ "FLD    $src\t# Convert double to int \n\t"
 11102             "FLDCW  trunc mode\n\t"
 11103             "SUB    ESP,4\n\t"
 11104             "FISTp  [ESP + #0]\n\t"
 11105             "FLDCW  std/24-bit mode\n\t"
 11106             "POP    EAX\n\t"
 11107             "CMP    EAX,0x80000000\n\t"
 11108             "JNE,s  fast\n\t"
 11109             "FLD_D  $src\n\t"
 11110             "CALL   d2i_wrapper\n"
 11111       "fast:" %}
 11112   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 11113   ins_pipe( pipe_slow );
 11114 %}
 11116 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11117 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11118   predicate(UseSSE>=2);
 11119   match(Set dst (ConvD2I src));
 11120   effect( KILL tmp, KILL cr );
 11121   format %{ "CVTTSD2SI $dst, $src\n\t"
 11122             "CMP    $dst,0x80000000\n\t"
 11123             "JNE,s  fast\n\t"
 11124             "SUB    ESP, 8\n\t"
 11125             "MOVSD  [ESP], $src\n\t"
 11126             "FLD_D  [ESP]\n\t"
 11127             "ADD    ESP, 8\n\t"
 11128             "CALL   d2i_wrapper\n"
 11129       "fast:" %}
 11130   ins_encode %{
 11131     Label fast;
 11132     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 11133     __ cmpl($dst$$Register, 0x80000000);
 11134     __ jccb(Assembler::notEqual, fast);
 11135     __ subptr(rsp, 8);
 11136     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11137     __ fld_d(Address(rsp, 0));
 11138     __ addptr(rsp, 8);
 11139     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11140     __ bind(fast);
 11141   %}
 11142   ins_pipe( pipe_slow );
 11143 %}
 11145 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 11146   predicate(UseSSE<=1);
 11147   match(Set dst (ConvD2L src));
 11148   effect( KILL cr );
 11149   format %{ "FLD    $src\t# Convert double to long\n\t"
 11150             "FLDCW  trunc mode\n\t"
 11151             "SUB    ESP,8\n\t"
 11152             "FISTp  [ESP + #0]\n\t"
 11153             "FLDCW  std/24-bit mode\n\t"
 11154             "POP    EAX\n\t"
 11155             "POP    EDX\n\t"
 11156             "CMP    EDX,0x80000000\n\t"
 11157             "JNE,s  fast\n\t"
 11158             "TEST   EAX,EAX\n\t"
 11159             "JNE,s  fast\n\t"
 11160             "FLD    $src\n\t"
 11161             "CALL   d2l_wrapper\n"
 11162       "fast:" %}
 11163   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 11164   ins_pipe( pipe_slow );
 11165 %}
 11167 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11168 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11169   predicate (UseSSE>=2);
 11170   match(Set dst (ConvD2L src));
 11171   effect( KILL cr );
 11172   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11173             "MOVSD  [ESP],$src\n\t"
 11174             "FLD_D  [ESP]\n\t"
 11175             "FLDCW  trunc mode\n\t"
 11176             "FISTp  [ESP + #0]\n\t"
 11177             "FLDCW  std/24-bit mode\n\t"
 11178             "POP    EAX\n\t"
 11179             "POP    EDX\n\t"
 11180             "CMP    EDX,0x80000000\n\t"
 11181             "JNE,s  fast\n\t"
 11182             "TEST   EAX,EAX\n\t"
 11183             "JNE,s  fast\n\t"
 11184             "SUB    ESP,8\n\t"
 11185             "MOVSD  [ESP],$src\n\t"
 11186             "FLD_D  [ESP]\n\t"
 11187             "ADD    ESP,8\n\t"
 11188             "CALL   d2l_wrapper\n"
 11189       "fast:" %}
 11190   ins_encode %{
 11191     Label fast;
 11192     __ subptr(rsp, 8);
 11193     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11194     __ fld_d(Address(rsp, 0));
 11195     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11196     __ fistp_d(Address(rsp, 0));
 11197     // Restore the rounding mode, mask the exception
 11198     if (Compile::current()->in_24_bit_fp_mode()) {
 11199       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11200     } else {
 11201       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11203     // Load the converted long, adjust CPU stack
 11204     __ pop(rax);
 11205     __ pop(rdx);
 11206     __ cmpl(rdx, 0x80000000);
 11207     __ jccb(Assembler::notEqual, fast);
 11208     __ testl(rax, rax);
 11209     __ jccb(Assembler::notEqual, fast);
 11210     __ subptr(rsp, 8);
 11211     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11212     __ fld_d(Address(rsp, 0));
 11213     __ addptr(rsp, 8);
 11214     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11215     __ bind(fast);
 11216   %}
 11217   ins_pipe( pipe_slow );
 11218 %}
 11220 // Convert a double to an int.  Java semantics require we do complex
 11221 // manglations in the corner cases.  So we set the rounding mode to
 11222 // 'zero', store the darned double down as an int, and reset the
 11223 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11224 // if we would overflow or converted a NAN; we check for this and
 11225 // and go the slow path if needed.
 11226 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 11227   predicate(UseSSE==0);
 11228   match(Set dst (ConvF2I src));
 11229   effect( KILL tmp, KILL cr );
 11230   format %{ "FLD    $src\t# Convert float to int \n\t"
 11231             "FLDCW  trunc mode\n\t"
 11232             "SUB    ESP,4\n\t"
 11233             "FISTp  [ESP + #0]\n\t"
 11234             "FLDCW  std/24-bit mode\n\t"
 11235             "POP    EAX\n\t"
 11236             "CMP    EAX,0x80000000\n\t"
 11237             "JNE,s  fast\n\t"
 11238             "FLD    $src\n\t"
 11239             "CALL   d2i_wrapper\n"
 11240       "fast:" %}
 11241   // DPR2I_encoding works for FPR2I
 11242   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 11243   ins_pipe( pipe_slow );
 11244 %}
 11246 // Convert a float in xmm to an int reg.
 11247 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11248   predicate(UseSSE>=1);
 11249   match(Set dst (ConvF2I src));
 11250   effect( KILL tmp, KILL cr );
 11251   format %{ "CVTTSS2SI $dst, $src\n\t"
 11252             "CMP    $dst,0x80000000\n\t"
 11253             "JNE,s  fast\n\t"
 11254             "SUB    ESP, 4\n\t"
 11255             "MOVSS  [ESP], $src\n\t"
 11256             "FLD    [ESP]\n\t"
 11257             "ADD    ESP, 4\n\t"
 11258             "CALL   d2i_wrapper\n"
 11259       "fast:" %}
 11260   ins_encode %{
 11261     Label fast;
 11262     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11263     __ cmpl($dst$$Register, 0x80000000);
 11264     __ jccb(Assembler::notEqual, fast);
 11265     __ subptr(rsp, 4);
 11266     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11267     __ fld_s(Address(rsp, 0));
 11268     __ addptr(rsp, 4);
 11269     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11270     __ bind(fast);
 11271   %}
 11272   ins_pipe( pipe_slow );
 11273 %}
 11275 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11276   predicate(UseSSE==0);
 11277   match(Set dst (ConvF2L src));
 11278   effect( KILL cr );
 11279   format %{ "FLD    $src\t# Convert float to long\n\t"
 11280             "FLDCW  trunc mode\n\t"
 11281             "SUB    ESP,8\n\t"
 11282             "FISTp  [ESP + #0]\n\t"
 11283             "FLDCW  std/24-bit mode\n\t"
 11284             "POP    EAX\n\t"
 11285             "POP    EDX\n\t"
 11286             "CMP    EDX,0x80000000\n\t"
 11287             "JNE,s  fast\n\t"
 11288             "TEST   EAX,EAX\n\t"
 11289             "JNE,s  fast\n\t"
 11290             "FLD    $src\n\t"
 11291             "CALL   d2l_wrapper\n"
 11292       "fast:" %}
 11293   // DPR2L_encoding works for FPR2L
 11294   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11295   ins_pipe( pipe_slow );
 11296 %}
 11298 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11299 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11300   predicate (UseSSE>=1);
 11301   match(Set dst (ConvF2L src));
 11302   effect( KILL cr );
 11303   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11304             "MOVSS  [ESP],$src\n\t"
 11305             "FLD_S  [ESP]\n\t"
 11306             "FLDCW  trunc mode\n\t"
 11307             "FISTp  [ESP + #0]\n\t"
 11308             "FLDCW  std/24-bit mode\n\t"
 11309             "POP    EAX\n\t"
 11310             "POP    EDX\n\t"
 11311             "CMP    EDX,0x80000000\n\t"
 11312             "JNE,s  fast\n\t"
 11313             "TEST   EAX,EAX\n\t"
 11314             "JNE,s  fast\n\t"
 11315             "SUB    ESP,4\t# Convert float to long\n\t"
 11316             "MOVSS  [ESP],$src\n\t"
 11317             "FLD_S  [ESP]\n\t"
 11318             "ADD    ESP,4\n\t"
 11319             "CALL   d2l_wrapper\n"
 11320       "fast:" %}
 11321   ins_encode %{
 11322     Label fast;
 11323     __ subptr(rsp, 8);
 11324     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11325     __ fld_s(Address(rsp, 0));
 11326     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11327     __ fistp_d(Address(rsp, 0));
 11328     // Restore the rounding mode, mask the exception
 11329     if (Compile::current()->in_24_bit_fp_mode()) {
 11330       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11331     } else {
 11332       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11334     // Load the converted long, adjust CPU stack
 11335     __ pop(rax);
 11336     __ pop(rdx);
 11337     __ cmpl(rdx, 0x80000000);
 11338     __ jccb(Assembler::notEqual, fast);
 11339     __ testl(rax, rax);
 11340     __ jccb(Assembler::notEqual, fast);
 11341     __ subptr(rsp, 4);
 11342     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11343     __ fld_s(Address(rsp, 0));
 11344     __ addptr(rsp, 4);
 11345     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11346     __ bind(fast);
 11347   %}
 11348   ins_pipe( pipe_slow );
 11349 %}
 11351 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11352   predicate( UseSSE<=1 );
 11353   match(Set dst (ConvI2D src));
 11354   format %{ "FILD   $src\n\t"
 11355             "FSTP   $dst" %}
 11356   opcode(0xDB, 0x0);  /* DB /0 */
 11357   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11358   ins_pipe( fpu_reg_mem );
 11359 %}
 11361 instruct convI2D_reg(regD dst, eRegI src) %{
 11362   predicate( UseSSE>=2 && !UseXmmI2D );
 11363   match(Set dst (ConvI2D src));
 11364   format %{ "CVTSI2SD $dst,$src" %}
 11365   ins_encode %{
 11366     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11367   %}
 11368   ins_pipe( pipe_slow );
 11369 %}
 11371 instruct convI2D_mem(regD dst, memory mem) %{
 11372   predicate( UseSSE>=2 );
 11373   match(Set dst (ConvI2D (LoadI mem)));
 11374   format %{ "CVTSI2SD $dst,$mem" %}
 11375   ins_encode %{
 11376     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11377   %}
 11378   ins_pipe( pipe_slow );
 11379 %}
 11381 instruct convXI2D_reg(regD dst, eRegI src)
 11382 %{
 11383   predicate( UseSSE>=2 && UseXmmI2D );
 11384   match(Set dst (ConvI2D src));
 11386   format %{ "MOVD  $dst,$src\n\t"
 11387             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11388   ins_encode %{
 11389     __ movdl($dst$$XMMRegister, $src$$Register);
 11390     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11391   %}
 11392   ins_pipe(pipe_slow); // XXX
 11393 %}
 11395 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11396   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11397   match(Set dst (ConvI2D (LoadI mem)));
 11398   format %{ "FILD   $mem\n\t"
 11399             "FSTP   $dst" %}
 11400   opcode(0xDB);      /* DB /0 */
 11401   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11402               Pop_Reg_DPR(dst));
 11403   ins_pipe( fpu_reg_mem );
 11404 %}
 11406 // Convert a byte to a float; no rounding step needed.
 11407 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11408   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11409   match(Set dst (ConvI2F src));
 11410   format %{ "FILD   $src\n\t"
 11411             "FSTP   $dst" %}
 11413   opcode(0xDB, 0x0);  /* DB /0 */
 11414   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11415   ins_pipe( fpu_reg_mem );
 11416 %}
 11418 // In 24-bit mode, force exponent rounding by storing back out
 11419 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11420   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11421   match(Set dst (ConvI2F src));
 11422   ins_cost(200);
 11423   format %{ "FILD   $src\n\t"
 11424             "FSTP_S $dst" %}
 11425   opcode(0xDB, 0x0);  /* DB /0 */
 11426   ins_encode( Push_Mem_I(src),
 11427               Pop_Mem_FPR(dst));
 11428   ins_pipe( fpu_mem_mem );
 11429 %}
 11431 // In 24-bit mode, force exponent rounding by storing back out
 11432 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11433   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11434   match(Set dst (ConvI2F (LoadI mem)));
 11435   ins_cost(200);
 11436   format %{ "FILD   $mem\n\t"
 11437             "FSTP_S $dst" %}
 11438   opcode(0xDB);  /* DB /0 */
 11439   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11440               Pop_Mem_FPR(dst));
 11441   ins_pipe( fpu_mem_mem );
 11442 %}
 11444 // This instruction does not round to 24-bits
 11445 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11446   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11447   match(Set dst (ConvI2F src));
 11448   format %{ "FILD   $src\n\t"
 11449             "FSTP   $dst" %}
 11450   opcode(0xDB, 0x0);  /* DB /0 */
 11451   ins_encode( Push_Mem_I(src),
 11452               Pop_Reg_FPR(dst));
 11453   ins_pipe( fpu_reg_mem );
 11454 %}
 11456 // This instruction does not round to 24-bits
 11457 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11458   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11459   match(Set dst (ConvI2F (LoadI mem)));
 11460   format %{ "FILD   $mem\n\t"
 11461             "FSTP   $dst" %}
 11462   opcode(0xDB);      /* DB /0 */
 11463   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11464               Pop_Reg_FPR(dst));
 11465   ins_pipe( fpu_reg_mem );
 11466 %}
 11468 // Convert an int to a float in xmm; no rounding step needed.
 11469 instruct convI2F_reg(regF dst, eRegI src) %{
 11470   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11471   match(Set dst (ConvI2F src));
 11472   format %{ "CVTSI2SS $dst, $src" %}
 11473   ins_encode %{
 11474     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11475   %}
 11476   ins_pipe( pipe_slow );
 11477 %}
 11479  instruct convXI2F_reg(regF dst, eRegI src)
 11480 %{
 11481   predicate( UseSSE>=2 && UseXmmI2F );
 11482   match(Set dst (ConvI2F src));
 11484   format %{ "MOVD  $dst,$src\n\t"
 11485             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11486   ins_encode %{
 11487     __ movdl($dst$$XMMRegister, $src$$Register);
 11488     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11489   %}
 11490   ins_pipe(pipe_slow); // XXX
 11491 %}
 11493 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11494   match(Set dst (ConvI2L src));
 11495   effect(KILL cr);
 11496   ins_cost(375);
 11497   format %{ "MOV    $dst.lo,$src\n\t"
 11498             "MOV    $dst.hi,$src\n\t"
 11499             "SAR    $dst.hi,31" %}
 11500   ins_encode(convert_int_long(dst,src));
 11501   ins_pipe( ialu_reg_reg_long );
 11502 %}
 11504 // Zero-extend convert int to long
 11505 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11506   match(Set dst (AndL (ConvI2L src) mask) );
 11507   effect( KILL flags );
 11508   ins_cost(250);
 11509   format %{ "MOV    $dst.lo,$src\n\t"
 11510             "XOR    $dst.hi,$dst.hi" %}
 11511   opcode(0x33); // XOR
 11512   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11513   ins_pipe( ialu_reg_reg_long );
 11514 %}
 11516 // Zero-extend long
 11517 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11518   match(Set dst (AndL src mask) );
 11519   effect( KILL flags );
 11520   ins_cost(250);
 11521   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11522             "XOR    $dst.hi,$dst.hi\n\t" %}
 11523   opcode(0x33); // XOR
 11524   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11525   ins_pipe( ialu_reg_reg_long );
 11526 %}
 11528 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11529   predicate (UseSSE<=1);
 11530   match(Set dst (ConvL2D src));
 11531   effect( KILL cr );
 11532   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11533             "PUSH   $src.lo\n\t"
 11534             "FILD   ST,[ESP + #0]\n\t"
 11535             "ADD    ESP,8\n\t"
 11536             "FSTP_D $dst\t# D-round" %}
 11537   opcode(0xDF, 0x5);  /* DF /5 */
 11538   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11539   ins_pipe( pipe_slow );
 11540 %}
 11542 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11543   predicate (UseSSE>=2);
 11544   match(Set dst (ConvL2D src));
 11545   effect( KILL cr );
 11546   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11547             "PUSH   $src.lo\n\t"
 11548             "FILD_D [ESP]\n\t"
 11549             "FSTP_D [ESP]\n\t"
 11550             "MOVSD  $dst,[ESP]\n\t"
 11551             "ADD    ESP,8" %}
 11552   opcode(0xDF, 0x5);  /* DF /5 */
 11553   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11554   ins_pipe( pipe_slow );
 11555 %}
 11557 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11558   predicate (UseSSE>=1);
 11559   match(Set dst (ConvL2F src));
 11560   effect( KILL cr );
 11561   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11562             "PUSH   $src.lo\n\t"
 11563             "FILD_D [ESP]\n\t"
 11564             "FSTP_S [ESP]\n\t"
 11565             "MOVSS  $dst,[ESP]\n\t"
 11566             "ADD    ESP,8" %}
 11567   opcode(0xDF, 0x5);  /* DF /5 */
 11568   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11569   ins_pipe( pipe_slow );
 11570 %}
 11572 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11573   match(Set dst (ConvL2F src));
 11574   effect( KILL cr );
 11575   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11576             "PUSH   $src.lo\n\t"
 11577             "FILD   ST,[ESP + #0]\n\t"
 11578             "ADD    ESP,8\n\t"
 11579             "FSTP_S $dst\t# F-round" %}
 11580   opcode(0xDF, 0x5);  /* DF /5 */
 11581   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11582   ins_pipe( pipe_slow );
 11583 %}
 11585 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11586   match(Set dst (ConvL2I src));
 11587   effect( DEF dst, USE src );
 11588   format %{ "MOV    $dst,$src.lo" %}
 11589   ins_encode(enc_CopyL_Lo(dst,src));
 11590   ins_pipe( ialu_reg_reg );
 11591 %}
 11594 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11595   match(Set dst (MoveF2I src));
 11596   effect( DEF dst, USE src );
 11597   ins_cost(100);
 11598   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11599   ins_encode %{
 11600     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11601   %}
 11602   ins_pipe( ialu_reg_mem );
 11603 %}
 11605 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11606   predicate(UseSSE==0);
 11607   match(Set dst (MoveF2I src));
 11608   effect( DEF dst, USE src );
 11610   ins_cost(125);
 11611   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11612   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11613   ins_pipe( fpu_mem_reg );
 11614 %}
 11616 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11617   predicate(UseSSE>=1);
 11618   match(Set dst (MoveF2I src));
 11619   effect( DEF dst, USE src );
 11621   ins_cost(95);
 11622   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11623   ins_encode %{
 11624     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11625   %}
 11626   ins_pipe( pipe_slow );
 11627 %}
 11629 instruct MoveF2I_reg_reg_sse(eRegI dst, regF src) %{
 11630   predicate(UseSSE>=2);
 11631   match(Set dst (MoveF2I src));
 11632   effect( DEF dst, USE src );
 11633   ins_cost(85);
 11634   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11635   ins_encode %{
 11636     __ movdl($dst$$Register, $src$$XMMRegister);
 11637   %}
 11638   ins_pipe( pipe_slow );
 11639 %}
 11641 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 11642   match(Set dst (MoveI2F src));
 11643   effect( DEF dst, USE src );
 11645   ins_cost(100);
 11646   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11647   ins_encode %{
 11648     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11649   %}
 11650   ins_pipe( ialu_mem_reg );
 11651 %}
 11654 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11655   predicate(UseSSE==0);
 11656   match(Set dst (MoveI2F src));
 11657   effect(DEF dst, USE src);
 11659   ins_cost(125);
 11660   format %{ "FLD_S  $src\n\t"
 11661             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11662   opcode(0xD9);               /* D9 /0, FLD m32real */
 11663   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11664               Pop_Reg_FPR(dst) );
 11665   ins_pipe( fpu_reg_mem );
 11666 %}
 11668 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11669   predicate(UseSSE>=1);
 11670   match(Set dst (MoveI2F src));
 11671   effect( DEF dst, USE src );
 11673   ins_cost(95);
 11674   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11675   ins_encode %{
 11676     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11677   %}
 11678   ins_pipe( pipe_slow );
 11679 %}
 11681 instruct MoveI2F_reg_reg_sse(regF dst, eRegI src) %{
 11682   predicate(UseSSE>=2);
 11683   match(Set dst (MoveI2F src));
 11684   effect( DEF dst, USE src );
 11686   ins_cost(85);
 11687   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11688   ins_encode %{
 11689     __ movdl($dst$$XMMRegister, $src$$Register);
 11690   %}
 11691   ins_pipe( pipe_slow );
 11692 %}
 11694 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11695   match(Set dst (MoveD2L src));
 11696   effect(DEF dst, USE src);
 11698   ins_cost(250);
 11699   format %{ "MOV    $dst.lo,$src\n\t"
 11700             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11701   opcode(0x8B, 0x8B);
 11702   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11703   ins_pipe( ialu_mem_long_reg );
 11704 %}
 11706 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11707   predicate(UseSSE<=1);
 11708   match(Set dst (MoveD2L src));
 11709   effect(DEF dst, USE src);
 11711   ins_cost(125);
 11712   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11713   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11714   ins_pipe( fpu_mem_reg );
 11715 %}
 11717 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11718   predicate(UseSSE>=2);
 11719   match(Set dst (MoveD2L src));
 11720   effect(DEF dst, USE src);
 11721   ins_cost(95);
 11722   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11723   ins_encode %{
 11724     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11725   %}
 11726   ins_pipe( pipe_slow );
 11727 %}
 11729 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11730   predicate(UseSSE>=2);
 11731   match(Set dst (MoveD2L src));
 11732   effect(DEF dst, USE src, TEMP tmp);
 11733   ins_cost(85);
 11734   format %{ "MOVD   $dst.lo,$src\n\t"
 11735             "PSHUFLW $tmp,$src,0x4E\n\t"
 11736             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11737   ins_encode %{
 11738     __ movdl($dst$$Register, $src$$XMMRegister);
 11739     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11740     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11741   %}
 11742   ins_pipe( pipe_slow );
 11743 %}
 11745 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11746   match(Set dst (MoveL2D src));
 11747   effect(DEF dst, USE src);
 11749   ins_cost(200);
 11750   format %{ "MOV    $dst,$src.lo\n\t"
 11751             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11752   opcode(0x89, 0x89);
 11753   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11754   ins_pipe( ialu_mem_long_reg );
 11755 %}
 11758 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11759   predicate(UseSSE<=1);
 11760   match(Set dst (MoveL2D src));
 11761   effect(DEF dst, USE src);
 11762   ins_cost(125);
 11764   format %{ "FLD_D  $src\n\t"
 11765             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11766   opcode(0xDD);               /* DD /0, FLD m64real */
 11767   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11768               Pop_Reg_DPR(dst) );
 11769   ins_pipe( fpu_reg_mem );
 11770 %}
 11773 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11774   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11775   match(Set dst (MoveL2D src));
 11776   effect(DEF dst, USE src);
 11778   ins_cost(95);
 11779   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11780   ins_encode %{
 11781     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11782   %}
 11783   ins_pipe( pipe_slow );
 11784 %}
 11786 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11787   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11788   match(Set dst (MoveL2D src));
 11789   effect(DEF dst, USE src);
 11791   ins_cost(95);
 11792   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11793   ins_encode %{
 11794     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11795   %}
 11796   ins_pipe( pipe_slow );
 11797 %}
 11799 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11800   predicate(UseSSE>=2);
 11801   match(Set dst (MoveL2D src));
 11802   effect(TEMP dst, USE src, TEMP tmp);
 11803   ins_cost(85);
 11804   format %{ "MOVD   $dst,$src.lo\n\t"
 11805             "MOVD   $tmp,$src.hi\n\t"
 11806             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11807   ins_encode %{
 11808     __ movdl($dst$$XMMRegister, $src$$Register);
 11809     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11810     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11811   %}
 11812   ins_pipe( pipe_slow );
 11813 %}
 11815 // Replicate scalar to packed byte (1 byte) values in xmm
 11816 instruct Repl8B_reg(regD dst, regD src) %{
 11817   predicate(UseSSE>=2);
 11818   match(Set dst (Replicate8B src));
 11819   format %{ "MOVDQA  $dst,$src\n\t"
 11820             "PUNPCKLBW $dst,$dst\n\t"
 11821             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11822   ins_encode %{
 11823     if ($dst$$reg != $src$$reg) {
 11824       __ movdqa($dst$$XMMRegister, $src$$XMMRegister);
 11826     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11827     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11828   %}
 11829   ins_pipe( pipe_slow );
 11830 %}
 11832 // Replicate scalar to packed byte (1 byte) values in xmm
 11833 instruct Repl8B_eRegI(regD dst, eRegI src) %{
 11834   predicate(UseSSE>=2);
 11835   match(Set dst (Replicate8B src));
 11836   format %{ "MOVD    $dst,$src\n\t"
 11837             "PUNPCKLBW $dst,$dst\n\t"
 11838             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11839   ins_encode %{
 11840     __ movdl($dst$$XMMRegister, $src$$Register);
 11841     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11842     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11843   %}
 11844   ins_pipe( pipe_slow );
 11845 %}
 11847 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11848 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11849   predicate(UseSSE>=2);
 11850   match(Set dst (Replicate8B zero));
 11851   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11852   ins_encode %{
 11853     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11854   %}
 11855   ins_pipe( fpu_reg_reg );
 11856 %}
 11858 // Replicate scalar to packed shore (2 byte) values in xmm
 11859 instruct Repl4S_reg(regD dst, regD src) %{
 11860   predicate(UseSSE>=2);
 11861   match(Set dst (Replicate4S src));
 11862   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11863   ins_encode %{
 11864     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11865   %}
 11866   ins_pipe( fpu_reg_reg );
 11867 %}
 11869 // Replicate scalar to packed shore (2 byte) values in xmm
 11870 instruct Repl4S_eRegI(regD dst, eRegI src) %{
 11871   predicate(UseSSE>=2);
 11872   match(Set dst (Replicate4S src));
 11873   format %{ "MOVD    $dst,$src\n\t"
 11874             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11875   ins_encode %{
 11876     __ movdl($dst$$XMMRegister, $src$$Register);
 11877     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11878   %}
 11879   ins_pipe( fpu_reg_reg );
 11880 %}
 11882 // Replicate scalar zero to packed short (2 byte) values in xmm
 11883 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11884   predicate(UseSSE>=2);
 11885   match(Set dst (Replicate4S zero));
 11886   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11887   ins_encode %{
 11888     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11889   %}
 11890   ins_pipe( fpu_reg_reg );
 11891 %}
 11893 // Replicate scalar to packed char (2 byte) values in xmm
 11894 instruct Repl4C_reg(regD dst, regD src) %{
 11895   predicate(UseSSE>=2);
 11896   match(Set dst (Replicate4C src));
 11897   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11898   ins_encode %{
 11899     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11900   %}
 11901   ins_pipe( fpu_reg_reg );
 11902 %}
 11904 // Replicate scalar to packed char (2 byte) values in xmm
 11905 instruct Repl4C_eRegI(regD dst, eRegI src) %{
 11906   predicate(UseSSE>=2);
 11907   match(Set dst (Replicate4C src));
 11908   format %{ "MOVD    $dst,$src\n\t"
 11909             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11910   ins_encode %{
 11911     __ movdl($dst$$XMMRegister, $src$$Register);
 11912     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11913   %}
 11914   ins_pipe( fpu_reg_reg );
 11915 %}
 11917 // Replicate scalar zero to packed char (2 byte) values in xmm
 11918 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11919   predicate(UseSSE>=2);
 11920   match(Set dst (Replicate4C zero));
 11921   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11922   ins_encode %{
 11923     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11924   %}
 11925   ins_pipe( fpu_reg_reg );
 11926 %}
 11928 // Replicate scalar to packed integer (4 byte) values in xmm
 11929 instruct Repl2I_reg(regD dst, regD src) %{
 11930   predicate(UseSSE>=2);
 11931   match(Set dst (Replicate2I src));
 11932   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11933   ins_encode %{
 11934     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11935   %}
 11936   ins_pipe( fpu_reg_reg );
 11937 %}
 11939 // Replicate scalar to packed integer (4 byte) values in xmm
 11940 instruct Repl2I_eRegI(regD dst, eRegI src) %{
 11941   predicate(UseSSE>=2);
 11942   match(Set dst (Replicate2I src));
 11943   format %{ "MOVD   $dst,$src\n\t"
 11944             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11945   ins_encode %{
 11946     __ movdl($dst$$XMMRegister, $src$$Register);
 11947     __ pshufd($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11948   %}
 11949   ins_pipe( fpu_reg_reg );
 11950 %}
 11952 // Replicate scalar zero to packed integer (2 byte) values in xmm
 11953 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 11954   predicate(UseSSE>=2);
 11955   match(Set dst (Replicate2I zero));
 11956   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 11957   ins_encode %{
 11958     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11959   %}
 11960   ins_pipe( fpu_reg_reg );
 11961 %}
 11963 // Replicate scalar to packed single precision floating point values in xmm
 11964 instruct Repl2F_reg(regD dst, regD src) %{
 11965   predicate(UseSSE>=2);
 11966   match(Set dst (Replicate2F src));
 11967   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11968   ins_encode %{
 11969     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 11970   %}
 11971   ins_pipe( fpu_reg_reg );
 11972 %}
 11974 // Replicate scalar to packed single precision floating point values in xmm
 11975 instruct Repl2F_regF(regD dst, regF src) %{
 11976   predicate(UseSSE>=2);
 11977   match(Set dst (Replicate2F src));
 11978   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11979   ins_encode %{
 11980     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 11981   %}
 11982   ins_pipe( fpu_reg_reg );
 11983 %}
 11985 // Replicate scalar to packed single precision floating point values in xmm
 11986 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 11987   predicate(UseSSE>=2);
 11988   match(Set dst (Replicate2F zero));
 11989   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 11990   ins_encode %{
 11991     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11992   %}
 11993   ins_pipe( fpu_reg_reg );
 11994 %}
 11996 // =======================================================================
 11997 // fast clearing of an array
 11998 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11999   match(Set dummy (ClearArray cnt base));
 12000   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12001   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12002             "XOR    EAX,EAX\n\t"
 12003             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12004   opcode(0,0x4);
 12005   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12006               OpcRegReg(0x33,EAX,EAX),
 12007               Opcode(0xF3), Opcode(0xAB) );
 12008   ins_pipe( pipe_slow );
 12009 %}
 12011 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 12012                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 12013   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12014   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12016   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 12017   ins_encode %{
 12018     __ string_compare($str1$$Register, $str2$$Register,
 12019                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12020                       $tmp1$$XMMRegister);
 12021   %}
 12022   ins_pipe( pipe_slow );
 12023 %}
 12025 // fast string equals
 12026 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12027                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12028   match(Set result (StrEquals (Binary str1 str2) cnt));
 12029   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12031   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12032   ins_encode %{
 12033     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12034                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12035                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12036   %}
 12037   ins_pipe( pipe_slow );
 12038 %}
 12040 // fast search of substring with known size.
 12041 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 12042                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 12043   predicate(UseSSE42Intrinsics);
 12044   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 12045   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 12047   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 12048   ins_encode %{
 12049     int icnt2 = (int)$int_cnt2$$constant;
 12050     if (icnt2 >= 8) {
 12051       // IndexOf for constant substrings with size >= 8 elements
 12052       // which don't need to be loaded through stack.
 12053       __ string_indexofC8($str1$$Register, $str2$$Register,
 12054                           $cnt1$$Register, $cnt2$$Register,
 12055                           icnt2, $result$$Register,
 12056                           $vec$$XMMRegister, $tmp$$Register);
 12057     } else {
 12058       // Small strings are loaded through stack if they cross page boundary.
 12059       __ string_indexof($str1$$Register, $str2$$Register,
 12060                         $cnt1$$Register, $cnt2$$Register,
 12061                         icnt2, $result$$Register,
 12062                         $vec$$XMMRegister, $tmp$$Register);
 12064   %}
 12065   ins_pipe( pipe_slow );
 12066 %}
 12068 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12069                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 12070   predicate(UseSSE42Intrinsics);
 12071   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12072   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 12074   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 12075   ins_encode %{
 12076     __ string_indexof($str1$$Register, $str2$$Register,
 12077                       $cnt1$$Register, $cnt2$$Register,
 12078                       (-1), $result$$Register,
 12079                       $vec$$XMMRegister, $tmp$$Register);
 12080   %}
 12081   ins_pipe( pipe_slow );
 12082 %}
 12084 // fast array equals
 12085 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12086                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12087 %{
 12088   match(Set result (AryEq ary1 ary2));
 12089   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12090   //ins_cost(300);
 12092   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12093   ins_encode %{
 12094     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12095                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12096                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12097   %}
 12098   ins_pipe( pipe_slow );
 12099 %}
 12101 //----------Control Flow Instructions------------------------------------------
 12102 // Signed compare Instructions
 12103 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12104   match(Set cr (CmpI op1 op2));
 12105   effect( DEF cr, USE op1, USE op2 );
 12106   format %{ "CMP    $op1,$op2" %}
 12107   opcode(0x3B);  /* Opcode 3B /r */
 12108   ins_encode( OpcP, RegReg( op1, op2) );
 12109   ins_pipe( ialu_cr_reg_reg );
 12110 %}
 12112 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12113   match(Set cr (CmpI op1 op2));
 12114   effect( DEF cr, USE op1 );
 12115   format %{ "CMP    $op1,$op2" %}
 12116   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12117   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12118   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12119   ins_pipe( ialu_cr_reg_imm );
 12120 %}
 12122 // Cisc-spilled version of cmpI_eReg
 12123 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12124   match(Set cr (CmpI op1 (LoadI op2)));
 12126   format %{ "CMP    $op1,$op2" %}
 12127   ins_cost(500);
 12128   opcode(0x3B);  /* Opcode 3B /r */
 12129   ins_encode( OpcP, RegMem( op1, op2) );
 12130   ins_pipe( ialu_cr_reg_mem );
 12131 %}
 12133 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12134   match(Set cr (CmpI src zero));
 12135   effect( DEF cr, USE src );
 12137   format %{ "TEST   $src,$src" %}
 12138   opcode(0x85);
 12139   ins_encode( OpcP, RegReg( src, src ) );
 12140   ins_pipe( ialu_cr_reg_imm );
 12141 %}
 12143 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12144   match(Set cr (CmpI (AndI src con) zero));
 12146   format %{ "TEST   $src,$con" %}
 12147   opcode(0xF7,0x00);
 12148   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12149   ins_pipe( ialu_cr_reg_imm );
 12150 %}
 12152 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12153   match(Set cr (CmpI (AndI src mem) zero));
 12155   format %{ "TEST   $src,$mem" %}
 12156   opcode(0x85);
 12157   ins_encode( OpcP, RegMem( src, mem ) );
 12158   ins_pipe( ialu_cr_reg_mem );
 12159 %}
 12161 // Unsigned compare Instructions; really, same as signed except they
 12162 // produce an eFlagsRegU instead of eFlagsReg.
 12163 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12164   match(Set cr (CmpU op1 op2));
 12166   format %{ "CMPu   $op1,$op2" %}
 12167   opcode(0x3B);  /* Opcode 3B /r */
 12168   ins_encode( OpcP, RegReg( op1, op2) );
 12169   ins_pipe( ialu_cr_reg_reg );
 12170 %}
 12172 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12173   match(Set cr (CmpU op1 op2));
 12175   format %{ "CMPu   $op1,$op2" %}
 12176   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12177   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12178   ins_pipe( ialu_cr_reg_imm );
 12179 %}
 12181 // // Cisc-spilled version of cmpU_eReg
 12182 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12183   match(Set cr (CmpU op1 (LoadI op2)));
 12185   format %{ "CMPu   $op1,$op2" %}
 12186   ins_cost(500);
 12187   opcode(0x3B);  /* Opcode 3B /r */
 12188   ins_encode( OpcP, RegMem( op1, op2) );
 12189   ins_pipe( ialu_cr_reg_mem );
 12190 %}
 12192 // // Cisc-spilled version of cmpU_eReg
 12193 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12194 //  match(Set cr (CmpU (LoadI op1) op2));
 12195 //
 12196 //  format %{ "CMPu   $op1,$op2" %}
 12197 //  ins_cost(500);
 12198 //  opcode(0x39);  /* Opcode 39 /r */
 12199 //  ins_encode( OpcP, RegMem( op1, op2) );
 12200 //%}
 12202 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12203   match(Set cr (CmpU src zero));
 12205   format %{ "TESTu  $src,$src" %}
 12206   opcode(0x85);
 12207   ins_encode( OpcP, RegReg( src, src ) );
 12208   ins_pipe( ialu_cr_reg_imm );
 12209 %}
 12211 // Unsigned pointer compare Instructions
 12212 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12213   match(Set cr (CmpP op1 op2));
 12215   format %{ "CMPu   $op1,$op2" %}
 12216   opcode(0x3B);  /* Opcode 3B /r */
 12217   ins_encode( OpcP, RegReg( op1, op2) );
 12218   ins_pipe( ialu_cr_reg_reg );
 12219 %}
 12221 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12222   match(Set cr (CmpP op1 op2));
 12224   format %{ "CMPu   $op1,$op2" %}
 12225   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12226   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12227   ins_pipe( ialu_cr_reg_imm );
 12228 %}
 12230 // // Cisc-spilled version of cmpP_eReg
 12231 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12232   match(Set cr (CmpP op1 (LoadP op2)));
 12234   format %{ "CMPu   $op1,$op2" %}
 12235   ins_cost(500);
 12236   opcode(0x3B);  /* Opcode 3B /r */
 12237   ins_encode( OpcP, RegMem( op1, op2) );
 12238   ins_pipe( ialu_cr_reg_mem );
 12239 %}
 12241 // // Cisc-spilled version of cmpP_eReg
 12242 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12243 //  match(Set cr (CmpP (LoadP op1) op2));
 12244 //
 12245 //  format %{ "CMPu   $op1,$op2" %}
 12246 //  ins_cost(500);
 12247 //  opcode(0x39);  /* Opcode 39 /r */
 12248 //  ins_encode( OpcP, RegMem( op1, op2) );
 12249 //%}
 12251 // Compare raw pointer (used in out-of-heap check).
 12252 // Only works because non-oop pointers must be raw pointers
 12253 // and raw pointers have no anti-dependencies.
 12254 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12255   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12256   match(Set cr (CmpP op1 (LoadP op2)));
 12258   format %{ "CMPu   $op1,$op2" %}
 12259   opcode(0x3B);  /* Opcode 3B /r */
 12260   ins_encode( OpcP, RegMem( op1, op2) );
 12261   ins_pipe( ialu_cr_reg_mem );
 12262 %}
 12264 //
 12265 // This will generate a signed flags result. This should be ok
 12266 // since any compare to a zero should be eq/neq.
 12267 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12268   match(Set cr (CmpP src zero));
 12270   format %{ "TEST   $src,$src" %}
 12271   opcode(0x85);
 12272   ins_encode( OpcP, RegReg( src, src ) );
 12273   ins_pipe( ialu_cr_reg_imm );
 12274 %}
 12276 // Cisc-spilled version of testP_reg
 12277 // This will generate a signed flags result. This should be ok
 12278 // since any compare to a zero should be eq/neq.
 12279 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12280   match(Set cr (CmpP (LoadP op) zero));
 12282   format %{ "TEST   $op,0xFFFFFFFF" %}
 12283   ins_cost(500);
 12284   opcode(0xF7);               /* Opcode F7 /0 */
 12285   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12286   ins_pipe( ialu_cr_reg_imm );
 12287 %}
 12289 // Yanked all unsigned pointer compare operations.
 12290 // Pointer compares are done with CmpP which is already unsigned.
 12292 //----------Max and Min--------------------------------------------------------
 12293 // Min Instructions
 12294 ////
 12295 //   *** Min and Max using the conditional move are slower than the
 12296 //   *** branch version on a Pentium III.
 12297 // // Conditional move for min
 12298 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12299 //  effect( USE_DEF op2, USE op1, USE cr );
 12300 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12301 //  opcode(0x4C,0x0F);
 12302 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12303 //  ins_pipe( pipe_cmov_reg );
 12304 //%}
 12305 //
 12306 //// Min Register with Register (P6 version)
 12307 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12308 //  predicate(VM_Version::supports_cmov() );
 12309 //  match(Set op2 (MinI op1 op2));
 12310 //  ins_cost(200);
 12311 //  expand %{
 12312 //    eFlagsReg cr;
 12313 //    compI_eReg(cr,op1,op2);
 12314 //    cmovI_reg_lt(op2,op1,cr);
 12315 //  %}
 12316 //%}
 12318 // Min Register with Register (generic version)
 12319 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12320   match(Set dst (MinI dst src));
 12321   effect(KILL flags);
 12322   ins_cost(300);
 12324   format %{ "MIN    $dst,$src" %}
 12325   opcode(0xCC);
 12326   ins_encode( min_enc(dst,src) );
 12327   ins_pipe( pipe_slow );
 12328 %}
 12330 // Max Register with Register
 12331 //   *** Min and Max using the conditional move are slower than the
 12332 //   *** branch version on a Pentium III.
 12333 // // Conditional move for max
 12334 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12335 //  effect( USE_DEF op2, USE op1, USE cr );
 12336 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12337 //  opcode(0x4F,0x0F);
 12338 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12339 //  ins_pipe( pipe_cmov_reg );
 12340 //%}
 12341 //
 12342 // // Max Register with Register (P6 version)
 12343 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12344 //  predicate(VM_Version::supports_cmov() );
 12345 //  match(Set op2 (MaxI op1 op2));
 12346 //  ins_cost(200);
 12347 //  expand %{
 12348 //    eFlagsReg cr;
 12349 //    compI_eReg(cr,op1,op2);
 12350 //    cmovI_reg_gt(op2,op1,cr);
 12351 //  %}
 12352 //%}
 12354 // Max Register with Register (generic version)
 12355 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12356   match(Set dst (MaxI dst src));
 12357   effect(KILL flags);
 12358   ins_cost(300);
 12360   format %{ "MAX    $dst,$src" %}
 12361   opcode(0xCC);
 12362   ins_encode( max_enc(dst,src) );
 12363   ins_pipe( pipe_slow );
 12364 %}
 12366 // ============================================================================
 12367 // Counted Loop limit node which represents exact final iterator value.
 12368 // Note: the resulting value should fit into integer range since
 12369 // counted loops have limit check on overflow.
 12370 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 12371   match(Set limit (LoopLimit (Binary init limit) stride));
 12372   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 12373   ins_cost(300);
 12375   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 12376   ins_encode %{
 12377     int strd = (int)$stride$$constant;
 12378     assert(strd != 1 && strd != -1, "sanity");
 12379     int m1 = (strd > 0) ? 1 : -1;
 12380     // Convert limit to long (EAX:EDX)
 12381     __ cdql();
 12382     // Convert init to long (init:tmp)
 12383     __ movl($tmp$$Register, $init$$Register);
 12384     __ sarl($tmp$$Register, 31);
 12385     // $limit - $init
 12386     __ subl($limit$$Register, $init$$Register);
 12387     __ sbbl($limit_hi$$Register, $tmp$$Register);
 12388     // + ($stride - 1)
 12389     if (strd > 0) {
 12390       __ addl($limit$$Register, (strd - 1));
 12391       __ adcl($limit_hi$$Register, 0);
 12392       __ movl($tmp$$Register, strd);
 12393     } else {
 12394       __ addl($limit$$Register, (strd + 1));
 12395       __ adcl($limit_hi$$Register, -1);
 12396       __ lneg($limit_hi$$Register, $limit$$Register);
 12397       __ movl($tmp$$Register, -strd);
 12399     // signed devision: (EAX:EDX) / pos_stride
 12400     __ idivl($tmp$$Register);
 12401     if (strd < 0) {
 12402       // restore sign
 12403       __ negl($tmp$$Register);
 12405     // (EAX) * stride
 12406     __ mull($tmp$$Register);
 12407     // + init (ignore upper bits)
 12408     __ addl($limit$$Register, $init$$Register);
 12409   %}
 12410   ins_pipe( pipe_slow );
 12411 %}
 12413 // ============================================================================
 12414 // Branch Instructions
 12415 // Jump Table
 12416 instruct jumpXtnd(eRegI switch_val) %{
 12417   match(Jump switch_val);
 12418   ins_cost(350);
 12419   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12420   ins_encode %{
 12421     // Jump to Address(table_base + switch_reg)
 12422     Address index(noreg, $switch_val$$Register, Address::times_1);
 12423     __ jump(ArrayAddress($constantaddress, index));
 12424   %}
 12425   ins_pipe(pipe_jmp);
 12426 %}
 12428 // Jump Direct - Label defines a relative address from JMP+1
 12429 instruct jmpDir(label labl) %{
 12430   match(Goto);
 12431   effect(USE labl);
 12433   ins_cost(300);
 12434   format %{ "JMP    $labl" %}
 12435   size(5);
 12436   ins_encode %{
 12437     Label* L = $labl$$label;
 12438     __ jmp(*L, false); // Always long jump
 12439   %}
 12440   ins_pipe( pipe_jmp );
 12441 %}
 12443 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12444 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12445   match(If cop cr);
 12446   effect(USE labl);
 12448   ins_cost(300);
 12449   format %{ "J$cop    $labl" %}
 12450   size(6);
 12451   ins_encode %{
 12452     Label* L = $labl$$label;
 12453     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12454   %}
 12455   ins_pipe( pipe_jcc );
 12456 %}
 12458 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12459 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12460   match(CountedLoopEnd cop cr);
 12461   effect(USE labl);
 12463   ins_cost(300);
 12464   format %{ "J$cop    $labl\t# Loop end" %}
 12465   size(6);
 12466   ins_encode %{
 12467     Label* L = $labl$$label;
 12468     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12469   %}
 12470   ins_pipe( pipe_jcc );
 12471 %}
 12473 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12474 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12475   match(CountedLoopEnd cop cmp);
 12476   effect(USE labl);
 12478   ins_cost(300);
 12479   format %{ "J$cop,u  $labl\t# Loop end" %}
 12480   size(6);
 12481   ins_encode %{
 12482     Label* L = $labl$$label;
 12483     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12484   %}
 12485   ins_pipe( pipe_jcc );
 12486 %}
 12488 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12489   match(CountedLoopEnd cop cmp);
 12490   effect(USE labl);
 12492   ins_cost(200);
 12493   format %{ "J$cop,u  $labl\t# Loop end" %}
 12494   size(6);
 12495   ins_encode %{
 12496     Label* L = $labl$$label;
 12497     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12498   %}
 12499   ins_pipe( pipe_jcc );
 12500 %}
 12502 // Jump Direct Conditional - using unsigned comparison
 12503 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12504   match(If cop cmp);
 12505   effect(USE labl);
 12507   ins_cost(300);
 12508   format %{ "J$cop,u  $labl" %}
 12509   size(6);
 12510   ins_encode %{
 12511     Label* L = $labl$$label;
 12512     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12513   %}
 12514   ins_pipe(pipe_jcc);
 12515 %}
 12517 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12518   match(If cop cmp);
 12519   effect(USE labl);
 12521   ins_cost(200);
 12522   format %{ "J$cop,u  $labl" %}
 12523   size(6);
 12524   ins_encode %{
 12525     Label* L = $labl$$label;
 12526     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12527   %}
 12528   ins_pipe(pipe_jcc);
 12529 %}
 12531 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12532   match(If cop cmp);
 12533   effect(USE labl);
 12535   ins_cost(200);
 12536   format %{ $$template
 12537     if ($cop$$cmpcode == Assembler::notEqual) {
 12538       $$emit$$"JP,u   $labl\n\t"
 12539       $$emit$$"J$cop,u   $labl"
 12540     } else {
 12541       $$emit$$"JP,u   done\n\t"
 12542       $$emit$$"J$cop,u   $labl\n\t"
 12543       $$emit$$"done:"
 12545   %}
 12546   ins_encode %{
 12547     Label* l = $labl$$label;
 12548     if ($cop$$cmpcode == Assembler::notEqual) {
 12549       __ jcc(Assembler::parity, *l, false);
 12550       __ jcc(Assembler::notEqual, *l, false);
 12551     } else if ($cop$$cmpcode == Assembler::equal) {
 12552       Label done;
 12553       __ jccb(Assembler::parity, done);
 12554       __ jcc(Assembler::equal, *l, false);
 12555       __ bind(done);
 12556     } else {
 12557        ShouldNotReachHere();
 12559   %}
 12560   ins_pipe(pipe_jcc);
 12561 %}
 12563 // ============================================================================
 12564 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12565 // array for an instance of the superklass.  Set a hidden internal cache on a
 12566 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12567 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12568 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12569   match(Set result (PartialSubtypeCheck sub super));
 12570   effect( KILL rcx, KILL cr );
 12572   ins_cost(1100);  // slightly larger than the next version
 12573   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12574             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12575             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12576             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12577             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12578             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12579             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12580      "miss:\t" %}
 12582   opcode(0x1); // Force a XOR of EDI
 12583   ins_encode( enc_PartialSubtypeCheck() );
 12584   ins_pipe( pipe_slow );
 12585 %}
 12587 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12588   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12589   effect( KILL rcx, KILL result );
 12591   ins_cost(1000);
 12592   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12593             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12594             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12595             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12596             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12597             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12598      "miss:\t" %}
 12600   opcode(0x0);  // No need to XOR EDI
 12601   ins_encode( enc_PartialSubtypeCheck() );
 12602   ins_pipe( pipe_slow );
 12603 %}
 12605 // ============================================================================
 12606 // Branch Instructions -- short offset versions
 12607 //
 12608 // These instructions are used to replace jumps of a long offset (the default
 12609 // match) with jumps of a shorter offset.  These instructions are all tagged
 12610 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12611 // match rules in general matching.  Instead, the ADLC generates a conversion
 12612 // method in the MachNode which can be used to do in-place replacement of the
 12613 // long variant with the shorter variant.  The compiler will determine if a
 12614 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12615 // specific code section of the file.
 12617 // Jump Direct - Label defines a relative address from JMP+1
 12618 instruct jmpDir_short(label labl) %{
 12619   match(Goto);
 12620   effect(USE labl);
 12622   ins_cost(300);
 12623   format %{ "JMP,s  $labl" %}
 12624   size(2);
 12625   ins_encode %{
 12626     Label* L = $labl$$label;
 12627     __ jmpb(*L);
 12628   %}
 12629   ins_pipe( pipe_jmp );
 12630   ins_short_branch(1);
 12631 %}
 12633 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12634 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12635   match(If cop cr);
 12636   effect(USE labl);
 12638   ins_cost(300);
 12639   format %{ "J$cop,s  $labl" %}
 12640   size(2);
 12641   ins_encode %{
 12642     Label* L = $labl$$label;
 12643     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12644   %}
 12645   ins_pipe( pipe_jcc );
 12646   ins_short_branch(1);
 12647 %}
 12649 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12650 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12651   match(CountedLoopEnd cop cr);
 12652   effect(USE labl);
 12654   ins_cost(300);
 12655   format %{ "J$cop,s  $labl\t# Loop end" %}
 12656   size(2);
 12657   ins_encode %{
 12658     Label* L = $labl$$label;
 12659     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12660   %}
 12661   ins_pipe( pipe_jcc );
 12662   ins_short_branch(1);
 12663 %}
 12665 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12666 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12667   match(CountedLoopEnd cop cmp);
 12668   effect(USE labl);
 12670   ins_cost(300);
 12671   format %{ "J$cop,us $labl\t# Loop end" %}
 12672   size(2);
 12673   ins_encode %{
 12674     Label* L = $labl$$label;
 12675     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12676   %}
 12677   ins_pipe( pipe_jcc );
 12678   ins_short_branch(1);
 12679 %}
 12681 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12682   match(CountedLoopEnd cop cmp);
 12683   effect(USE labl);
 12685   ins_cost(300);
 12686   format %{ "J$cop,us $labl\t# Loop end" %}
 12687   size(2);
 12688   ins_encode %{
 12689     Label* L = $labl$$label;
 12690     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12691   %}
 12692   ins_pipe( pipe_jcc );
 12693   ins_short_branch(1);
 12694 %}
 12696 // Jump Direct Conditional - using unsigned comparison
 12697 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12698   match(If cop cmp);
 12699   effect(USE labl);
 12701   ins_cost(300);
 12702   format %{ "J$cop,us $labl" %}
 12703   size(2);
 12704   ins_encode %{
 12705     Label* L = $labl$$label;
 12706     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12707   %}
 12708   ins_pipe( pipe_jcc );
 12709   ins_short_branch(1);
 12710 %}
 12712 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12713   match(If cop cmp);
 12714   effect(USE labl);
 12716   ins_cost(300);
 12717   format %{ "J$cop,us $labl" %}
 12718   size(2);
 12719   ins_encode %{
 12720     Label* L = $labl$$label;
 12721     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12722   %}
 12723   ins_pipe( pipe_jcc );
 12724   ins_short_branch(1);
 12725 %}
 12727 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12728   match(If cop cmp);
 12729   effect(USE labl);
 12731   ins_cost(300);
 12732   format %{ $$template
 12733     if ($cop$$cmpcode == Assembler::notEqual) {
 12734       $$emit$$"JP,u,s   $labl\n\t"
 12735       $$emit$$"J$cop,u,s   $labl"
 12736     } else {
 12737       $$emit$$"JP,u,s   done\n\t"
 12738       $$emit$$"J$cop,u,s  $labl\n\t"
 12739       $$emit$$"done:"
 12741   %}
 12742   size(4);
 12743   ins_encode %{
 12744     Label* l = $labl$$label;
 12745     if ($cop$$cmpcode == Assembler::notEqual) {
 12746       __ jccb(Assembler::parity, *l);
 12747       __ jccb(Assembler::notEqual, *l);
 12748     } else if ($cop$$cmpcode == Assembler::equal) {
 12749       Label done;
 12750       __ jccb(Assembler::parity, done);
 12751       __ jccb(Assembler::equal, *l);
 12752       __ bind(done);
 12753     } else {
 12754        ShouldNotReachHere();
 12756   %}
 12757   ins_pipe(pipe_jcc);
 12758   ins_short_branch(1);
 12759 %}
 12761 // ============================================================================
 12762 // Long Compare
 12763 //
 12764 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12765 // is tricky.  The flavor of compare used depends on whether we are testing
 12766 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12767 // The GE test is the negated LT test.  The LE test can be had by commuting
 12768 // the operands (yielding a GE test) and then negating; negate again for the
 12769 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12770 // NE test is negated from that.
 12772 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12773 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12774 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12775 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12776 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12777 // foo match ends up with the wrong leaf.  One fix is to not match both
 12778 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12779 // both forms beat the trinary form of long-compare and both are very useful
 12780 // on Intel which has so few registers.
 12782 // Manifest a CmpL result in an integer register.  Very painful.
 12783 // This is the test to avoid.
 12784 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12785   match(Set dst (CmpL3 src1 src2));
 12786   effect( KILL flags );
 12787   ins_cost(1000);
 12788   format %{ "XOR    $dst,$dst\n\t"
 12789             "CMP    $src1.hi,$src2.hi\n\t"
 12790             "JLT,s  m_one\n\t"
 12791             "JGT,s  p_one\n\t"
 12792             "CMP    $src1.lo,$src2.lo\n\t"
 12793             "JB,s   m_one\n\t"
 12794             "JEQ,s  done\n"
 12795     "p_one:\tINC    $dst\n\t"
 12796             "JMP,s  done\n"
 12797     "m_one:\tDEC    $dst\n"
 12798      "done:" %}
 12799   ins_encode %{
 12800     Label p_one, m_one, done;
 12801     __ xorptr($dst$$Register, $dst$$Register);
 12802     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12803     __ jccb(Assembler::less,    m_one);
 12804     __ jccb(Assembler::greater, p_one);
 12805     __ cmpl($src1$$Register, $src2$$Register);
 12806     __ jccb(Assembler::below,   m_one);
 12807     __ jccb(Assembler::equal,   done);
 12808     __ bind(p_one);
 12809     __ incrementl($dst$$Register);
 12810     __ jmpb(done);
 12811     __ bind(m_one);
 12812     __ decrementl($dst$$Register);
 12813     __ bind(done);
 12814   %}
 12815   ins_pipe( pipe_slow );
 12816 %}
 12818 //======
 12819 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12820 // compares.  Can be used for LE or GT compares by reversing arguments.
 12821 // NOT GOOD FOR EQ/NE tests.
 12822 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12823   match( Set flags (CmpL src zero ));
 12824   ins_cost(100);
 12825   format %{ "TEST   $src.hi,$src.hi" %}
 12826   opcode(0x85);
 12827   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12828   ins_pipe( ialu_cr_reg_reg );
 12829 %}
 12831 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12832 // compares.  Can be used for LE or GT compares by reversing arguments.
 12833 // NOT GOOD FOR EQ/NE tests.
 12834 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12835   match( Set flags (CmpL src1 src2 ));
 12836   effect( TEMP tmp );
 12837   ins_cost(300);
 12838   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12839             "MOV    $tmp,$src1.hi\n\t"
 12840             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12841   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12842   ins_pipe( ialu_cr_reg_reg );
 12843 %}
 12845 // Long compares reg < zero/req OR reg >= zero/req.
 12846 // Just a wrapper for a normal branch, plus the predicate test.
 12847 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12848   match(If cmp flags);
 12849   effect(USE labl);
 12850   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12851   expand %{
 12852     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12853   %}
 12854 %}
 12856 // Compare 2 longs and CMOVE longs.
 12857 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12858   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12859   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12860   ins_cost(400);
 12861   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12862             "CMOV$cmp $dst.hi,$src.hi" %}
 12863   opcode(0x0F,0x40);
 12864   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12865   ins_pipe( pipe_cmov_reg_long );
 12866 %}
 12868 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12869   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12870   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12871   ins_cost(500);
 12872   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12873             "CMOV$cmp $dst.hi,$src.hi" %}
 12874   opcode(0x0F,0x40);
 12875   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12876   ins_pipe( pipe_cmov_reg_long );
 12877 %}
 12879 // Compare 2 longs and CMOVE ints.
 12880 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 12881   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12882   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12883   ins_cost(200);
 12884   format %{ "CMOV$cmp $dst,$src" %}
 12885   opcode(0x0F,0x40);
 12886   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12887   ins_pipe( pipe_cmov_reg );
 12888 %}
 12890 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 12891   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12892   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12893   ins_cost(250);
 12894   format %{ "CMOV$cmp $dst,$src" %}
 12895   opcode(0x0F,0x40);
 12896   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12897   ins_pipe( pipe_cmov_mem );
 12898 %}
 12900 // Compare 2 longs and CMOVE ints.
 12901 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12902   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12903   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12904   ins_cost(200);
 12905   format %{ "CMOV$cmp $dst,$src" %}
 12906   opcode(0x0F,0x40);
 12907   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12908   ins_pipe( pipe_cmov_reg );
 12909 %}
 12911 // Compare 2 longs and CMOVE doubles
 12912 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12913   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12914   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12915   ins_cost(200);
 12916   expand %{
 12917     fcmovDPR_regS(cmp,flags,dst,src);
 12918   %}
 12919 %}
 12921 // Compare 2 longs and CMOVE doubles
 12922 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12923   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12924   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12925   ins_cost(200);
 12926   expand %{
 12927     fcmovD_regS(cmp,flags,dst,src);
 12928   %}
 12929 %}
 12931 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12932   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12933   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12934   ins_cost(200);
 12935   expand %{
 12936     fcmovFPR_regS(cmp,flags,dst,src);
 12937   %}
 12938 %}
 12940 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12941   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12942   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12943   ins_cost(200);
 12944   expand %{
 12945     fcmovF_regS(cmp,flags,dst,src);
 12946   %}
 12947 %}
 12949 //======
 12950 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12951 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 12952   match( Set flags (CmpL src zero ));
 12953   effect(TEMP tmp);
 12954   ins_cost(200);
 12955   format %{ "MOV    $tmp,$src.lo\n\t"
 12956             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12957   ins_encode( long_cmp_flags0( src, tmp ) );
 12958   ins_pipe( ialu_reg_reg_long );
 12959 %}
 12961 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12962 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12963   match( Set flags (CmpL src1 src2 ));
 12964   ins_cost(200+300);
 12965   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12966             "JNE,s  skip\n\t"
 12967             "CMP    $src1.hi,$src2.hi\n\t"
 12968      "skip:\t" %}
 12969   ins_encode( long_cmp_flags1( src1, src2 ) );
 12970   ins_pipe( ialu_cr_reg_reg );
 12971 %}
 12973 // Long compare reg == zero/reg OR reg != zero/reg
 12974 // Just a wrapper for a normal branch, plus the predicate test.
 12975 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12976   match(If cmp flags);
 12977   effect(USE labl);
 12978   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12979   expand %{
 12980     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12981   %}
 12982 %}
 12984 // Compare 2 longs and CMOVE longs.
 12985 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12986   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12987   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12988   ins_cost(400);
 12989   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12990             "CMOV$cmp $dst.hi,$src.hi" %}
 12991   opcode(0x0F,0x40);
 12992   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12993   ins_pipe( pipe_cmov_reg_long );
 12994 %}
 12996 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12997   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12998   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12999   ins_cost(500);
 13000   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13001             "CMOV$cmp $dst.hi,$src.hi" %}
 13002   opcode(0x0F,0x40);
 13003   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13004   ins_pipe( pipe_cmov_reg_long );
 13005 %}
 13007 // Compare 2 longs and CMOVE ints.
 13008 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13009   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13010   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13011   ins_cost(200);
 13012   format %{ "CMOV$cmp $dst,$src" %}
 13013   opcode(0x0F,0x40);
 13014   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13015   ins_pipe( pipe_cmov_reg );
 13016 %}
 13018 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13019   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13020   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13021   ins_cost(250);
 13022   format %{ "CMOV$cmp $dst,$src" %}
 13023   opcode(0x0F,0x40);
 13024   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13025   ins_pipe( pipe_cmov_mem );
 13026 %}
 13028 // Compare 2 longs and CMOVE ints.
 13029 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13030   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13031   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13032   ins_cost(200);
 13033   format %{ "CMOV$cmp $dst,$src" %}
 13034   opcode(0x0F,0x40);
 13035   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13036   ins_pipe( pipe_cmov_reg );
 13037 %}
 13039 // Compare 2 longs and CMOVE doubles
 13040 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 13041   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13042   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13043   ins_cost(200);
 13044   expand %{
 13045     fcmovDPR_regS(cmp,flags,dst,src);
 13046   %}
 13047 %}
 13049 // Compare 2 longs and CMOVE doubles
 13050 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13051   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13052   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13053   ins_cost(200);
 13054   expand %{
 13055     fcmovD_regS(cmp,flags,dst,src);
 13056   %}
 13057 %}
 13059 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 13060   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13061   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13062   ins_cost(200);
 13063   expand %{
 13064     fcmovFPR_regS(cmp,flags,dst,src);
 13065   %}
 13066 %}
 13068 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13069   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13070   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13071   ins_cost(200);
 13072   expand %{
 13073     fcmovF_regS(cmp,flags,dst,src);
 13074   %}
 13075 %}
 13077 //======
 13078 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13079 // Same as cmpL_reg_flags_LEGT except must negate src
 13080 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13081   match( Set flags (CmpL src zero ));
 13082   effect( TEMP tmp );
 13083   ins_cost(300);
 13084   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13085             "CMP    $tmp,$src.lo\n\t"
 13086             "SBB    $tmp,$src.hi\n\t" %}
 13087   ins_encode( long_cmp_flags3(src, tmp) );
 13088   ins_pipe( ialu_reg_reg_long );
 13089 %}
 13091 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13092 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13093 // requires a commuted test to get the same result.
 13094 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13095   match( Set flags (CmpL src1 src2 ));
 13096   effect( TEMP tmp );
 13097   ins_cost(300);
 13098   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13099             "MOV    $tmp,$src2.hi\n\t"
 13100             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13101   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13102   ins_pipe( ialu_cr_reg_reg );
 13103 %}
 13105 // Long compares reg < zero/req OR reg >= zero/req.
 13106 // Just a wrapper for a normal branch, plus the predicate test
 13107 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13108   match(If cmp flags);
 13109   effect(USE labl);
 13110   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13111   ins_cost(300);
 13112   expand %{
 13113     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13114   %}
 13115 %}
 13117 // Compare 2 longs and CMOVE longs.
 13118 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13119   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13120   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13121   ins_cost(400);
 13122   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13123             "CMOV$cmp $dst.hi,$src.hi" %}
 13124   opcode(0x0F,0x40);
 13125   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13126   ins_pipe( pipe_cmov_reg_long );
 13127 %}
 13129 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13130   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13131   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13132   ins_cost(500);
 13133   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13134             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13135   opcode(0x0F,0x40);
 13136   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13137   ins_pipe( pipe_cmov_reg_long );
 13138 %}
 13140 // Compare 2 longs and CMOVE ints.
 13141 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13142   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13143   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13144   ins_cost(200);
 13145   format %{ "CMOV$cmp $dst,$src" %}
 13146   opcode(0x0F,0x40);
 13147   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13148   ins_pipe( pipe_cmov_reg );
 13149 %}
 13151 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13152   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13153   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13154   ins_cost(250);
 13155   format %{ "CMOV$cmp $dst,$src" %}
 13156   opcode(0x0F,0x40);
 13157   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13158   ins_pipe( pipe_cmov_mem );
 13159 %}
 13161 // Compare 2 longs and CMOVE ptrs.
 13162 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13163   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13164   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13165   ins_cost(200);
 13166   format %{ "CMOV$cmp $dst,$src" %}
 13167   opcode(0x0F,0x40);
 13168   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13169   ins_pipe( pipe_cmov_reg );
 13170 %}
 13172 // Compare 2 longs and CMOVE doubles
 13173 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 13174   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13175   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13176   ins_cost(200);
 13177   expand %{
 13178     fcmovDPR_regS(cmp,flags,dst,src);
 13179   %}
 13180 %}
 13182 // Compare 2 longs and CMOVE doubles
 13183 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13184   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13185   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13186   ins_cost(200);
 13187   expand %{
 13188     fcmovD_regS(cmp,flags,dst,src);
 13189   %}
 13190 %}
 13192 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 13193   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13194   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13195   ins_cost(200);
 13196   expand %{
 13197     fcmovFPR_regS(cmp,flags,dst,src);
 13198   %}
 13199 %}
 13202 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13203   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13204   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13205   ins_cost(200);
 13206   expand %{
 13207     fcmovF_regS(cmp,flags,dst,src);
 13208   %}
 13209 %}
 13212 // ============================================================================
 13213 // Procedure Call/Return Instructions
 13214 // Call Java Static Instruction
 13215 // Note: If this code changes, the corresponding ret_addr_offset() and
 13216 //       compute_padding() functions will have to be adjusted.
 13217 instruct CallStaticJavaDirect(method meth) %{
 13218   match(CallStaticJava);
 13219   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13220   effect(USE meth);
 13222   ins_cost(300);
 13223   format %{ "CALL,static " %}
 13224   opcode(0xE8); /* E8 cd */
 13225   ins_encode( pre_call_FPU,
 13226               Java_Static_Call( meth ),
 13227               call_epilog,
 13228               post_call_FPU );
 13229   ins_pipe( pipe_slow );
 13230   ins_alignment(4);
 13231 %}
 13233 // Call Java Static Instruction (method handle version)
 13234 // Note: If this code changes, the corresponding ret_addr_offset() and
 13235 //       compute_padding() functions will have to be adjusted.
 13236 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13237   match(CallStaticJava);
 13238   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13239   effect(USE meth);
 13240   // EBP is saved by all callees (for interpreter stack correction).
 13241   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13243   ins_cost(300);
 13244   format %{ "CALL,static/MethodHandle " %}
 13245   opcode(0xE8); /* E8 cd */
 13246   ins_encode( pre_call_FPU,
 13247               preserve_SP,
 13248               Java_Static_Call( meth ),
 13249               restore_SP,
 13250               call_epilog,
 13251               post_call_FPU );
 13252   ins_pipe( pipe_slow );
 13253   ins_alignment(4);
 13254 %}
 13256 // Call Java Dynamic Instruction
 13257 // Note: If this code changes, the corresponding ret_addr_offset() and
 13258 //       compute_padding() functions will have to be adjusted.
 13259 instruct CallDynamicJavaDirect(method meth) %{
 13260   match(CallDynamicJava);
 13261   effect(USE meth);
 13263   ins_cost(300);
 13264   format %{ "MOV    EAX,(oop)-1\n\t"
 13265             "CALL,dynamic" %}
 13266   opcode(0xE8); /* E8 cd */
 13267   ins_encode( pre_call_FPU,
 13268               Java_Dynamic_Call( meth ),
 13269               call_epilog,
 13270               post_call_FPU );
 13271   ins_pipe( pipe_slow );
 13272   ins_alignment(4);
 13273 %}
 13275 // Call Runtime Instruction
 13276 instruct CallRuntimeDirect(method meth) %{
 13277   match(CallRuntime );
 13278   effect(USE meth);
 13280   ins_cost(300);
 13281   format %{ "CALL,runtime " %}
 13282   opcode(0xE8); /* E8 cd */
 13283   // Use FFREEs to clear entries in float stack
 13284   ins_encode( pre_call_FPU,
 13285               FFree_Float_Stack_All,
 13286               Java_To_Runtime( meth ),
 13287               post_call_FPU );
 13288   ins_pipe( pipe_slow );
 13289 %}
 13291 // Call runtime without safepoint
 13292 instruct CallLeafDirect(method meth) %{
 13293   match(CallLeaf);
 13294   effect(USE meth);
 13296   ins_cost(300);
 13297   format %{ "CALL_LEAF,runtime " %}
 13298   opcode(0xE8); /* E8 cd */
 13299   ins_encode( pre_call_FPU,
 13300               FFree_Float_Stack_All,
 13301               Java_To_Runtime( meth ),
 13302               Verify_FPU_For_Leaf, post_call_FPU );
 13303   ins_pipe( pipe_slow );
 13304 %}
 13306 instruct CallLeafNoFPDirect(method meth) %{
 13307   match(CallLeafNoFP);
 13308   effect(USE meth);
 13310   ins_cost(300);
 13311   format %{ "CALL_LEAF_NOFP,runtime " %}
 13312   opcode(0xE8); /* E8 cd */
 13313   ins_encode(Java_To_Runtime(meth));
 13314   ins_pipe( pipe_slow );
 13315 %}
 13318 // Return Instruction
 13319 // Remove the return address & jump to it.
 13320 instruct Ret() %{
 13321   match(Return);
 13322   format %{ "RET" %}
 13323   opcode(0xC3);
 13324   ins_encode(OpcP);
 13325   ins_pipe( pipe_jmp );
 13326 %}
 13328 // Tail Call; Jump from runtime stub to Java code.
 13329 // Also known as an 'interprocedural jump'.
 13330 // Target of jump will eventually return to caller.
 13331 // TailJump below removes the return address.
 13332 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13333   match(TailCall jump_target method_oop );
 13334   ins_cost(300);
 13335   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13336   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13337   ins_encode( OpcP, RegOpc(jump_target) );
 13338   ins_pipe( pipe_jmp );
 13339 %}
 13342 // Tail Jump; remove the return address; jump to target.
 13343 // TailCall above leaves the return address around.
 13344 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13345   match( TailJump jump_target ex_oop );
 13346   ins_cost(300);
 13347   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13348             "JMP    $jump_target " %}
 13349   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13350   ins_encode( enc_pop_rdx,
 13351               OpcP, RegOpc(jump_target) );
 13352   ins_pipe( pipe_jmp );
 13353 %}
 13355 // Create exception oop: created by stack-crawling runtime code.
 13356 // Created exception is now available to this handler, and is setup
 13357 // just prior to jumping to this handler.  No code emitted.
 13358 instruct CreateException( eAXRegP ex_oop )
 13359 %{
 13360   match(Set ex_oop (CreateEx));
 13362   size(0);
 13363   // use the following format syntax
 13364   format %{ "# exception oop is in EAX; no code emitted" %}
 13365   ins_encode();
 13366   ins_pipe( empty );
 13367 %}
 13370 // Rethrow exception:
 13371 // The exception oop will come in the first argument position.
 13372 // Then JUMP (not call) to the rethrow stub code.
 13373 instruct RethrowException()
 13374 %{
 13375   match(Rethrow);
 13377   // use the following format syntax
 13378   format %{ "JMP    rethrow_stub" %}
 13379   ins_encode(enc_rethrow);
 13380   ins_pipe( pipe_jmp );
 13381 %}
 13383 // inlined locking and unlocking
 13386 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 13387   match( Set cr (FastLock object box) );
 13388   effect( TEMP tmp, TEMP scr, USE_KILL box );
 13389   ins_cost(300);
 13390   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 13391   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13392   ins_pipe( pipe_slow );
 13393 %}
 13395 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13396   match( Set cr (FastUnlock object box) );
 13397   effect( TEMP tmp, USE_KILL box );
 13398   ins_cost(300);
 13399   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 13400   ins_encode( Fast_Unlock(object,box,tmp) );
 13401   ins_pipe( pipe_slow );
 13402 %}
 13406 // ============================================================================
 13407 // Safepoint Instruction
 13408 instruct safePoint_poll(eFlagsReg cr) %{
 13409   match(SafePoint);
 13410   effect(KILL cr);
 13412   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13413   // On SPARC that might be acceptable as we can generate the address with
 13414   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13415   // putting additional pressure on the index-0 in the D$.  Because of
 13416   // alignment (just like the situation at hand) the lower indices tend
 13417   // to see more traffic.  It'd be better to change the polling address
 13418   // to offset 0 of the last $line in the polling page.
 13420   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13421   ins_cost(125);
 13422   size(6) ;
 13423   ins_encode( Safepoint_Poll() );
 13424   ins_pipe( ialu_reg_mem );
 13425 %}
 13427 //----------PEEPHOLE RULES-----------------------------------------------------
 13428 // These must follow all instruction definitions as they use the names
 13429 // defined in the instructions definitions.
 13430 //
 13431 // peepmatch ( root_instr_name [preceding_instruction]* );
 13432 //
 13433 // peepconstraint %{
 13434 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13435 //  [, ...] );
 13436 // // instruction numbers are zero-based using left to right order in peepmatch
 13437 //
 13438 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13439 // // provide an instruction_number.operand_name for each operand that appears
 13440 // // in the replacement instruction's match rule
 13441 //
 13442 // ---------VM FLAGS---------------------------------------------------------
 13443 //
 13444 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13445 //
 13446 // Each peephole rule is given an identifying number starting with zero and
 13447 // increasing by one in the order seen by the parser.  An individual peephole
 13448 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13449 // on the command-line.
 13450 //
 13451 // ---------CURRENT LIMITATIONS----------------------------------------------
 13452 //
 13453 // Only match adjacent instructions in same basic block
 13454 // Only equality constraints
 13455 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13456 // Only one replacement instruction
 13457 //
 13458 // ---------EXAMPLE----------------------------------------------------------
 13459 //
 13460 // // pertinent parts of existing instructions in architecture description
 13461 // instruct movI(eRegI dst, eRegI src) %{
 13462 //   match(Set dst (CopyI src));
 13463 // %}
 13464 //
 13465 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13466 //   match(Set dst (AddI dst src));
 13467 //   effect(KILL cr);
 13468 // %}
 13469 //
 13470 // // Change (inc mov) to lea
 13471 // peephole %{
 13472 //   // increment preceeded by register-register move
 13473 //   peepmatch ( incI_eReg movI );
 13474 //   // require that the destination register of the increment
 13475 //   // match the destination register of the move
 13476 //   peepconstraint ( 0.dst == 1.dst );
 13477 //   // construct a replacement instruction that sets
 13478 //   // the destination to ( move's source register + one )
 13479 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13480 // %}
 13481 //
 13482 // Implementation no longer uses movX instructions since
 13483 // machine-independent system no longer uses CopyX nodes.
 13484 //
 13485 // peephole %{
 13486 //   peepmatch ( incI_eReg movI );
 13487 //   peepconstraint ( 0.dst == 1.dst );
 13488 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13489 // %}
 13490 //
 13491 // peephole %{
 13492 //   peepmatch ( decI_eReg movI );
 13493 //   peepconstraint ( 0.dst == 1.dst );
 13494 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13495 // %}
 13496 //
 13497 // peephole %{
 13498 //   peepmatch ( addI_eReg_imm movI );
 13499 //   peepconstraint ( 0.dst == 1.dst );
 13500 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13501 // %}
 13502 //
 13503 // peephole %{
 13504 //   peepmatch ( addP_eReg_imm movP );
 13505 //   peepconstraint ( 0.dst == 1.dst );
 13506 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13507 // %}
 13509 // // Change load of spilled value to only a spill
 13510 // instruct storeI(memory mem, eRegI src) %{
 13511 //   match(Set mem (StoreI mem src));
 13512 // %}
 13513 //
 13514 // instruct loadI(eRegI dst, memory mem) %{
 13515 //   match(Set dst (LoadI mem));
 13516 // %}
 13517 //
 13518 peephole %{
 13519   peepmatch ( loadI storeI );
 13520   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13521   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13522 %}
 13524 //----------SMARTSPILL RULES---------------------------------------------------
 13525 // These must follow all instruction definitions as they use the names
 13526 // defined in the instructions definitions.

mercurial