src/share/vm/utilities/growableArray.hpp

Wed, 14 Oct 2020 17:44:48 +0800

author
aoqi
date
Wed, 14 Oct 2020 17:44:48 +0800
changeset 9931
fd44df5e3bc3
parent 7535
7ae4e26cb1e0
parent 9858
b985cbb00e68
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "utilities/debug.hpp"
    31 #include "utilities/globalDefinitions.hpp"
    32 #include "utilities/top.hpp"
    34 // A growable array.
    36 /*************************************************************************/
    37 /*                                                                       */
    38 /*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
    39 /*                                                                       */
    40 /* Should you use GrowableArrays to contain handles you must be certain  */
    41 /* the the GrowableArray does not outlive the HandleMark that contains   */
    42 /* the handles. Since GrowableArrays are typically resource allocated    */
    43 /* the following is an example of INCORRECT CODE,                        */
    44 /*                                                                       */
    45 /* ResourceMark rm;                                                      */
    46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
    47 /* if (blah) {                                                           */
    48 /*    while (...) {                                                      */
    49 /*      HandleMark hm;                                                   */
    50 /*      ...                                                              */
    51 /*      Handle h(THREAD, some_oop);                                      */
    52 /*      arr->append(h);                                                  */
    53 /*    }                                                                  */
    54 /* }                                                                     */
    55 /* if (arr->length() != 0 ) {                                            */
    56 /*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
    57 /*    ...                                                                */
    58 /* }                                                                     */
    59 /*                                                                       */
    60 /* If the GrowableArrays you are creating is C_Heap allocated then it    */
    61 /* hould not old handles since the handles could trivially try and       */
    62 /* outlive their HandleMark. In some situations you might need to do     */
    63 /* this and it would be legal but be very careful and see if you can do  */
    64 /* the code in some other manner.                                        */
    65 /*                                                                       */
    66 /*************************************************************************/
    68 // To call default constructor the placement operator new() is used.
    69 // It should be empty (it only returns the passed void* pointer).
    70 // The definition of placement operator new(size_t, void*) in the <new>.
    72 #include <new>
    74 // Need the correct linkage to call qsort without warnings
    75 extern "C" {
    76   typedef int (*_sort_Fn)(const void *, const void *);
    77 }
    79 class GenericGrowableArray : public ResourceObj {
    80   friend class VMStructs;
    82  protected:
    83   int    _len;          // current length
    84   int    _max;          // maximum length
    85   Arena* _arena;        // Indicates where allocation occurs:
    86                         //   0 means default ResourceArea
    87                         //   1 means on C heap
    88                         //   otherwise, allocate in _arena
    90   MEMFLAGS   _memflags;   // memory type if allocation in C heap
    92 #ifdef ASSERT
    93   int    _nesting;      // resource area nesting at creation
    94   void   set_nesting();
    95   void   check_nesting();
    96 #else
    97 #define  set_nesting();
    98 #define  check_nesting();
    99 #endif
   101   // Where are we going to allocate memory?
   102   bool on_C_heap() { return _arena == (Arena*)1; }
   103   bool on_stack () { return _arena == NULL;      }
   104   bool on_arena () { return _arena >  (Arena*)1;  }
   106   // This GA will use the resource stack for storage if c_heap==false,
   107   // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
   108   GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
   109     _len = initial_len;
   110     _max = initial_size;
   111     _memflags = flags;
   113     // memory type has to be specified for C heap allocation
   114     assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
   116     assert(_len >= 0 && _len <= _max, "initial_len too big");
   117     _arena = (c_heap ? (Arena*)1 : NULL);
   118     set_nesting();
   119     assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
   120     assert(!on_stack() ||
   121            (allocated_on_res_area() || allocated_on_stack()),
   122            "growable array must be on stack if elements are not on arena and not on C heap");
   123   }
   125   // This GA will use the given arena for storage.
   126   // Consider using new(arena) GrowableArray<T> to allocate the header.
   127   GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
   128     _len = initial_len;
   129     _max = initial_size;
   130     assert(_len >= 0 && _len <= _max, "initial_len too big");
   131     _arena = arena;
   132     _memflags = mtNone;
   134     assert(on_arena(), "arena has taken on reserved value 0 or 1");
   135     // Relax next assert to allow object allocation on resource area,
   136     // on stack or embedded into an other object.
   137     assert(allocated_on_arena() || allocated_on_stack(),
   138            "growable array must be on arena or on stack if elements are on arena");
   139   }
   141   void* raw_allocate(int elementSize);
   143   // some uses pass the Thread explicitly for speed (4990299 tuning)
   144   void* raw_allocate(Thread* thread, int elementSize) {
   145     assert(on_stack(), "fast ResourceObj path only");
   146     return (void*)resource_allocate_bytes(thread, elementSize * _max);
   147   }
   148 };
   150 template<class E> class GrowableArrayIterator;
   151 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
   153 template<class E> class GrowableArray : public GenericGrowableArray {
   154   friend class VMStructs;
   156  private:
   157   E*     _data;         // data array
   159   void grow(int j);
   160   void raw_at_put_grow(int i, const E& p, const E& fill);
   161   void  clear_and_deallocate();
   162  public:
   163   GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
   164     _data = (E*)raw_allocate(thread, sizeof(E));
   165     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   166   }
   168   GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
   169     : GenericGrowableArray(initial_size, 0, C_heap, F) {
   170     _data = (E*)raw_allocate(sizeof(E));
   171 // Needed for Visual Studio 2012 and older
   172 #ifdef _MSC_VER
   173 #pragma warning(suppress: 4345)
   174 #endif
   175     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   176   }
   178   GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
   179     : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
   180     _data = (E*)raw_allocate(sizeof(E));
   181     int i = 0;
   182     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   183     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   184   }
   186   GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
   187     _data = (E*)raw_allocate(sizeof(E));
   188     int i = 0;
   189     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   190     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   191   }
   193   GrowableArray() : GenericGrowableArray(2, 0, false) {
   194     _data = (E*)raw_allocate(sizeof(E));
   195     ::new ((void*)&_data[0]) E();
   196     ::new ((void*)&_data[1]) E();
   197   }
   199                                 // Does nothing for resource and arena objects
   200   ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
   202   void  clear()                 { _len = 0; }
   203   int   length() const          { return _len; }
   204   int   max_length() const      { return _max; }
   205   void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
   206   bool  is_empty() const        { return _len == 0; }
   207   bool  is_nonempty() const     { return _len != 0; }
   208   bool  is_full() const         { return _len == _max; }
   209   DEBUG_ONLY(E* data_addr() const      { return _data; })
   211   void print();
   213   int append(const E& elem) {
   214     check_nesting();
   215     if (_len == _max) grow(_len);
   216     int idx = _len++;
   217     _data[idx] = elem;
   218     return idx;
   219   }
   221   bool append_if_missing(const E& elem) {
   222     // Returns TRUE if elem is added.
   223     bool missed = !contains(elem);
   224     if (missed) append(elem);
   225     return missed;
   226   }
   228   E& at(int i) {
   229     assert(0 <= i && i < _len, "illegal index");
   230     return _data[i];
   231   }
   233   E const& at(int i) const {
   234     assert(0 <= i && i < _len, "illegal index");
   235     return _data[i];
   236   }
   238   E* adr_at(int i) const {
   239     assert(0 <= i && i < _len, "illegal index");
   240     return &_data[i];
   241   }
   243   E first() const {
   244     assert(_len > 0, "empty list");
   245     return _data[0];
   246   }
   248   E top() const {
   249     assert(_len > 0, "empty list");
   250     return _data[_len-1];
   251   }
   253   GrowableArrayIterator<E> begin() const {
   254     return GrowableArrayIterator<E>(this, 0);
   255   }
   257   GrowableArrayIterator<E> end() const {
   258     return GrowableArrayIterator<E>(this, length());
   259   }
   261   void push(const E& elem) { append(elem); }
   263   E pop() {
   264     assert(_len > 0, "empty list");
   265     return _data[--_len];
   266   }
   268   void at_put(int i, const E& elem) {
   269     assert(0 <= i && i < _len, "illegal index");
   270     _data[i] = elem;
   271   }
   273   E at_grow(int i, const E& fill = E()) {
   274     assert(0 <= i, "negative index");
   275     check_nesting();
   276     if (i >= _len) {
   277       if (i >= _max) grow(i);
   278       for (int j = _len; j <= i; j++)
   279         _data[j] = fill;
   280       _len = i+1;
   281     }
   282     return _data[i];
   283   }
   285   void at_put_grow(int i, const E& elem, const E& fill = E()) {
   286     assert(0 <= i, "negative index");
   287     check_nesting();
   288     raw_at_put_grow(i, elem, fill);
   289   }
   291   bool contains(const E& elem) const {
   292     for (int i = 0; i < _len; i++) {
   293       if (_data[i] == elem) return true;
   294     }
   295     return false;
   296   }
   298   int  find(const E& elem) const {
   299     for (int i = 0; i < _len; i++) {
   300       if (_data[i] == elem) return i;
   301     }
   302     return -1;
   303   }
   305   int  find_from_end(const E& elem) const {
   306     for (int i = _len-1; i >= 0; i--) {
   307       if (_data[i] == elem) return i;
   308     }
   309     return -1;
   310   }
   312   int  find(void* token, bool f(void*, E)) const {
   313     for (int i = 0; i < _len; i++) {
   314       if (f(token, _data[i])) return i;
   315     }
   316     return -1;
   317   }
   319   int  find_from_end(void* token, bool f(void*, E)) const {
   320     // start at the end of the array
   321     for (int i = _len-1; i >= 0; i--) {
   322       if (f(token, _data[i])) return i;
   323     }
   324     return -1;
   325   }
   327   void remove(const E& elem) {
   328     for (int i = 0; i < _len; i++) {
   329       if (_data[i] == elem) {
   330         for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
   331         _len--;
   332         return;
   333       }
   334     }
   335     ShouldNotReachHere();
   336   }
   338   // The order is preserved.
   339   void remove_at(int index) {
   340     assert(0 <= index && index < _len, "illegal index");
   341     for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
   342     _len--;
   343   }
   345   // The order is changed.
   346   void delete_at(int index) {
   347     assert(0 <= index && index < _len, "illegal index");
   348     if (index < --_len) {
   349       // Replace removed element with last one.
   350       _data[index] = _data[_len];
   351     }
   352   }
   354   // inserts the given element before the element at index i
   355   void insert_before(const int idx, const E& elem) {
   356     assert(0 <= idx && idx <= _len, "illegal index");
   357     check_nesting();
   358     if (_len == _max) grow(_len);
   359     for (int j = _len - 1; j >= idx; j--) {
   360       _data[j + 1] = _data[j];
   361     }
   362     _len++;
   363     _data[idx] = elem;
   364   }
   366   void appendAll(const GrowableArray<E>* l) {
   367     for (int i = 0; i < l->_len; i++) {
   368       raw_at_put_grow(_len, l->_data[i], E());
   369     }
   370   }
   372   void sort(int f(E*,E*)) {
   373     qsort(_data, length(), sizeof(E), (_sort_Fn)f);
   374   }
   375   // sort by fixed-stride sub arrays:
   376   void sort(int f(E*,E*), int stride) {
   377     qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
   378   }
   380   // Binary search and insertion utility.  Search array for element
   381   // matching key according to the static compare function.  Insert
   382   // that element is not already in the list.  Assumes the list is
   383   // already sorted according to compare function.
   384   template <int compare(const E&, const E&)> E insert_sorted(const E& key) {
   385     bool found;
   386     int location = find_sorted<E, compare>(key, found);
   387     if (!found) {
   388       insert_before(location, key);
   389     }
   390     return at(location);
   391   }
   393   template <typename K, int compare(const K&, const E&)> int find_sorted(const K& key, bool& found) {
   394     found = false;
   395     int min = 0;
   396     int max = length() - 1;
   398     while (max >= min) {
   399       int mid = (int)(((uint)max + min) / 2);
   400       E value = at(mid);
   401       int diff = compare(key, value);
   402       if (diff > 0) {
   403         min = mid + 1;
   404       } else if (diff < 0) {
   405         max = mid - 1;
   406       } else {
   407         found = true;
   408         return mid;
   409       }
   410     }
   411     return min;
   412   }
   413 };
   415 // Global GrowableArray methods (one instance in the library per each 'E' type).
   417 template<class E> void GrowableArray<E>::grow(int j) {
   418     // grow the array by doubling its size (amortized growth)
   419     int old_max = _max;
   420     if (_max == 0) _max = 1; // prevent endless loop
   421     while (j >= _max) _max = _max*2;
   422     // j < _max
   423     E* newData = (E*)raw_allocate(sizeof(E));
   424     int i = 0;
   425     for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
   426 // Needed for Visual Studio 2012 and older
   427 #ifdef _MSC_VER
   428 #pragma warning(suppress: 4345)
   429 #endif
   430     for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
   431     for (i = 0; i < old_max; i++) _data[i].~E();
   432     if (on_C_heap() && _data != NULL) {
   433       FreeHeap(_data);
   434     }
   435     _data = newData;
   436 }
   438 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
   439     if (i >= _len) {
   440       if (i >= _max) grow(i);
   441       for (int j = _len; j < i; j++)
   442         _data[j] = fill;
   443       _len = i+1;
   444     }
   445     _data[i] = p;
   446 }
   448 // This function clears and deallocate the data in the growable array that
   449 // has been allocated on the C heap.  It's not public - called by the
   450 // destructor.
   451 template<class E> void GrowableArray<E>::clear_and_deallocate() {
   452     assert(on_C_heap(),
   453            "clear_and_deallocate should only be called when on C heap");
   454     clear();
   455     if (_data != NULL) {
   456       for (int i = 0; i < _max; i++) _data[i].~E();
   457       FreeHeap(_data);
   458       _data = NULL;
   459     }
   460 }
   462 template<class E> void GrowableArray<E>::print() {
   463     tty->print("Growable Array " INTPTR_FORMAT, this);
   464     tty->print(": length %ld (_max %ld) { ", _len, _max);
   465     for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
   466     tty->print("}\n");
   467 }
   469 // Custom STL-style iterator to iterate over GrowableArrays
   470 // It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
   471 template<class E> class GrowableArrayIterator : public StackObj {
   472   friend class GrowableArray<E>;
   473   template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
   475  private:
   476   const GrowableArray<E>* _array; // GrowableArray we iterate over
   477   int _position;                  // The current position in the GrowableArray
   479   // Private constructor used in GrowableArray::begin() and GrowableArray::end()
   480   GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
   481     assert(0 <= position && position <= _array->length(), "illegal position");
   482   }
   484  public:
   485   GrowableArrayIterator<E>& operator++()  { ++_position; return *this; }
   486   E operator*()                           { return _array->at(_position); }
   488   bool operator==(const GrowableArrayIterator<E>& rhs)  {
   489     assert(_array == rhs._array, "iterator belongs to different array");
   490     return _position == rhs._position;
   491   }
   493   bool operator!=(const GrowableArrayIterator<E>& rhs)  {
   494     assert(_array == rhs._array, "iterator belongs to different array");
   495     return _position != rhs._position;
   496   }
   497 };
   499 // Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
   500 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
   501   friend class GrowableArray<E>;
   503  private:
   504   const GrowableArray<E>* _array;   // GrowableArray we iterate over
   505   int _position;                    // Current position in the GrowableArray
   506   UnaryPredicate _predicate;        // Unary predicate the elements of the GrowableArray should satisfy
   508  public:
   509   GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
   510    : _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
   511     // Advance to first element satisfying the predicate
   512     while(_position != _array->length() && !_predicate(_array->at(_position))) {
   513       ++_position;
   514     }
   515   }
   517   GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
   518     do {
   519       // Advance to next element satisfying the predicate
   520       ++_position;
   521     } while(_position != _array->length() && !_predicate(_array->at(_position)));
   522     return *this;
   523   }
   525   E operator*()   { return _array->at(_position); }
   527   bool operator==(const GrowableArrayIterator<E>& rhs)  {
   528     assert(_array == rhs._array, "iterator belongs to different array");
   529     return _position == rhs._position;
   530   }
   532   bool operator!=(const GrowableArrayIterator<E>& rhs)  {
   533     assert(_array == rhs._array, "iterator belongs to different array");
   534     return _position != rhs._position;
   535   }
   537   bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
   538     assert(_array == rhs._array, "iterator belongs to different array");
   539     return _position == rhs._position;
   540   }
   542   bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
   543     assert(_array == rhs._array, "iterator belongs to different array");
   544     return _position != rhs._position;
   545   }
   546 };
   548 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP

mercurial