src/share/vm/utilities/globalDefinitions.hpp

Wed, 14 Oct 2020 17:44:48 +0800

author
aoqi
date
Wed, 14 Oct 2020 17:44:48 +0800
changeset 9931
fd44df5e3bc3
parent 9852
70aa912cebe5
parent 9896
1b8c45b8216a
child 10015
eb7ce841ccec
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    32 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    34 #ifndef __STDC_FORMAT_MACROS
    35 #define __STDC_FORMAT_MACROS
    36 #endif
    38 #ifdef TARGET_COMPILER_gcc
    39 # include "utilities/globalDefinitions_gcc.hpp"
    40 #endif
    41 #ifdef TARGET_COMPILER_visCPP
    42 # include "utilities/globalDefinitions_visCPP.hpp"
    43 #endif
    44 #ifdef TARGET_COMPILER_sparcWorks
    45 # include "utilities/globalDefinitions_sparcWorks.hpp"
    46 #endif
    47 #ifdef TARGET_COMPILER_xlc
    48 # include "utilities/globalDefinitions_xlc.hpp"
    49 #endif
    51 // Defaults for macros that might be defined per compiler.
    52 #ifndef NOINLINE
    53 #define NOINLINE
    54 #endif
    55 #ifndef ALWAYSINLINE
    56 #define ALWAYSINLINE inline
    57 #endif
    59 #ifndef PRAGMA_DIAG_PUSH
    60 #define PRAGMA_DIAG_PUSH
    61 #endif
    62 #ifndef PRAGMA_DIAG_POP
    63 #define PRAGMA_DIAG_POP
    64 #endif
    65 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
    66 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
    67 #endif
    68 #ifndef PRAGMA_FORMAT_IGNORED
    69 #define PRAGMA_FORMAT_IGNORED
    70 #endif
    71 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    72 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    73 #endif
    74 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    75 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    76 #endif
    77 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    78 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    79 #endif
    80 #ifndef ATTRIBUTE_PRINTF
    81 #define ATTRIBUTE_PRINTF(fmt, vargs)
    82 #endif
    85 #include "utilities/macros.hpp"
    87 // This file holds all globally used constants & types, class (forward)
    88 // declarations and a few frequently used utility functions.
    90 //----------------------------------------------------------------------------------------------------
    91 // Constants
    93 const int LogBytesPerShort   = 1;
    94 const int LogBytesPerInt     = 2;
    95 #ifdef _LP64
    96 const int LogBytesPerWord    = 3;
    97 #else
    98 const int LogBytesPerWord    = 2;
    99 #endif
   100 const int LogBytesPerLong    = 3;
   102 const int BytesPerShort      = 1 << LogBytesPerShort;
   103 const int BytesPerInt        = 1 << LogBytesPerInt;
   104 const int BytesPerWord       = 1 << LogBytesPerWord;
   105 const int BytesPerLong       = 1 << LogBytesPerLong;
   107 const int LogBitsPerByte     = 3;
   108 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
   109 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
   110 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
   111 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
   113 const int BitsPerByte        = 1 << LogBitsPerByte;
   114 const int BitsPerShort       = 1 << LogBitsPerShort;
   115 const int BitsPerInt         = 1 << LogBitsPerInt;
   116 const int BitsPerWord        = 1 << LogBitsPerWord;
   117 const int BitsPerLong        = 1 << LogBitsPerLong;
   119 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
   120 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
   122 const int WordsPerLong       = 2;       // Number of stack entries for longs
   124 const int oopSize            = sizeof(char*); // Full-width oop
   125 extern int heapOopSize;                       // Oop within a java object
   126 const int wordSize           = sizeof(char*);
   127 const int longSize           = sizeof(jlong);
   128 const int jintSize           = sizeof(jint);
   129 const int size_tSize         = sizeof(size_t);
   131 const int BytesPerOop        = BytesPerWord;  // Full-width oop
   133 extern int LogBytesPerHeapOop;                // Oop within a java object
   134 extern int LogBitsPerHeapOop;
   135 extern int BytesPerHeapOop;
   136 extern int BitsPerHeapOop;
   138 // Oop encoding heap max
   139 extern uint64_t OopEncodingHeapMax;
   141 const int BitsPerJavaInteger = 32;
   142 const int BitsPerJavaLong    = 64;
   143 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   145 // Size of a char[] needed to represent a jint as a string in decimal.
   146 const int jintAsStringSize = 12;
   148 // In fact this should be
   149 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   150 // see os::set_memory_serialize_page()
   151 #ifdef _LP64
   152 const int SerializePageShiftCount = 4;
   153 #else
   154 const int SerializePageShiftCount = 3;
   155 #endif
   157 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   158 // pointer into the heap.  We require that object sizes be measured in
   159 // units of heap words, so that that
   160 //   HeapWord* hw;
   161 //   hw += oop(hw)->foo();
   162 // works, where foo is a method (like size or scavenge) that returns the
   163 // object size.
   164 class HeapWord {
   165   friend class VMStructs;
   166  private:
   167   char* i;
   168 #ifndef PRODUCT
   169  public:
   170   char* value() { return i; }
   171 #endif
   172 };
   174 // Analogous opaque struct for metadata allocated from
   175 // metaspaces.
   176 class MetaWord {
   177   friend class VMStructs;
   178  private:
   179   char* i;
   180 };
   182 // HeapWordSize must be 2^LogHeapWordSize.
   183 const int HeapWordSize        = sizeof(HeapWord);
   184 #ifdef _LP64
   185 const int LogHeapWordSize     = 3;
   186 #else
   187 const int LogHeapWordSize     = 2;
   188 #endif
   189 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   190 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   192 // The larger HeapWordSize for 64bit requires larger heaps
   193 // for the same application running in 64bit.  See bug 4967770.
   194 // The minimum alignment to a heap word size is done.  Other
   195 // parts of the memory system may required additional alignment
   196 // and are responsible for those alignments.
   197 #ifdef _LP64
   198 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   199 #else
   200 #define ScaleForWordSize(x) (x)
   201 #endif
   203 // The minimum number of native machine words necessary to contain "byte_size"
   204 // bytes.
   205 inline size_t heap_word_size(size_t byte_size) {
   206   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   207 }
   210 const size_t K                  = 1024;
   211 const size_t M                  = K*K;
   212 const size_t G                  = M*K;
   213 const size_t HWperKB            = K / sizeof(HeapWord);
   215 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   216 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   218 // Constants for converting from a base unit to milli-base units.  For
   219 // example from seconds to milliseconds and microseconds
   221 const int MILLIUNITS    = 1000;         // milli units per base unit
   222 const int MICROUNITS    = 1000000;      // micro units per base unit
   223 const int NANOUNITS     = 1000000000;   // nano units per base unit
   225 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   226 const jint  NANOSECS_PER_MILLISEC = 1000000;
   228 // Proper units routines try to maintain at least three significant digits.
   229 // In worst case, it would print five significant digits with lower prefix.
   230 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
   231 // and therefore we need to be careful.
   233 inline const char* proper_unit_for_byte_size(size_t s) {
   234 #ifdef _LP64
   235   if (s >= 100*G) {
   236     return "G";
   237   }
   238 #endif
   239   if (s >= 100*M) {
   240     return "M";
   241   } else if (s >= 100*K) {
   242     return "K";
   243   } else {
   244     return "B";
   245   }
   246 }
   248 template <class T>
   249 inline T byte_size_in_proper_unit(T s) {
   250 #ifdef _LP64
   251   if (s >= 100*G) {
   252     return (T)(s/G);
   253   }
   254 #endif
   255   if (s >= 100*M) {
   256     return (T)(s/M);
   257   } else if (s >= 100*K) {
   258     return (T)(s/K);
   259   } else {
   260     return s;
   261   }
   262 }
   264 //----------------------------------------------------------------------------------------------------
   265 // VM type definitions
   267 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   268 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   270 typedef intptr_t  intx;
   271 typedef uintptr_t uintx;
   273 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   274 const intx  max_intx  = (uintx)min_intx - 1;
   275 const uintx max_uintx = (uintx)-1;
   277 // Table of values:
   278 //      sizeof intx         4               8
   279 // min_intx             0x80000000      0x8000000000000000
   280 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   281 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   283 typedef unsigned int uint;   NEEDS_CLEANUP
   286 //----------------------------------------------------------------------------------------------------
   287 // Java type definitions
   289 // All kinds of 'plain' byte addresses
   290 typedef   signed char s_char;
   291 typedef unsigned char u_char;
   292 typedef u_char*       address;
   293 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   294                                     // except for some implementations of a C++
   295                                     // linkage pointer to function. Should never
   296                                     // need one of those to be placed in this
   297                                     // type anyway.
   299 //  Utility functions to "portably" (?) bit twiddle pointers
   300 //  Where portable means keep ANSI C++ compilers quiet
   302 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   303 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   305 //  Utility functions to "portably" make cast to/from function pointers.
   307 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   308 inline address_word  castable_address(address x)              { return address_word(x) ; }
   309 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   311 // Pointer subtraction.
   312 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   313 // the range we might need to find differences from one end of the heap
   314 // to the other.
   315 // A typical use might be:
   316 //     if (pointer_delta(end(), top()) >= size) {
   317 //       // enough room for an object of size
   318 //       ...
   319 // and then additions like
   320 //       ... top() + size ...
   321 // are safe because we know that top() is at least size below end().
   322 inline size_t pointer_delta(const void* left,
   323                             const void* right,
   324                             size_t element_size) {
   325   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   326 }
   327 // A version specialized for HeapWord*'s.
   328 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   329   return pointer_delta(left, right, sizeof(HeapWord));
   330 }
   331 // A version specialized for MetaWord*'s.
   332 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
   333   return pointer_delta(left, right, sizeof(MetaWord));
   334 }
   336 //
   337 // ANSI C++ does not allow casting from one pointer type to a function pointer
   338 // directly without at best a warning. This macro accomplishes it silently
   339 // In every case that is present at this point the value be cast is a pointer
   340 // to a C linkage function. In somecase the type used for the cast reflects
   341 // that linkage and a picky compiler would not complain. In other cases because
   342 // there is no convenient place to place a typedef with extern C linkage (i.e
   343 // a platform dependent header file) it doesn't. At this point no compiler seems
   344 // picky enough to catch these instances (which are few). It is possible that
   345 // using templates could fix these for all cases. This use of templates is likely
   346 // so far from the middle of the road that it is likely to be problematic in
   347 // many C++ compilers.
   348 //
   349 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
   350 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   352 // Unsigned byte types for os and stream.hpp
   354 // Unsigned one, two, four and eigth byte quantities used for describing
   355 // the .class file format. See JVM book chapter 4.
   357 typedef jubyte  u1;
   358 typedef jushort u2;
   359 typedef juint   u4;
   360 typedef julong  u8;
   362 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   363 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   364 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   365 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   367 typedef jbyte  s1;
   368 typedef jshort s2;
   369 typedef jint   s4;
   370 typedef jlong  s8;
   372 //----------------------------------------------------------------------------------------------------
   373 // JVM spec restrictions
   375 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   377 // Default ProtectionDomainCacheSize values
   379 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
   381 //----------------------------------------------------------------------------------------------------
   382 // Default and minimum StringTableSize values
   384 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
   385 const int minimumStringTableSize = 1009;
   387 const int defaultSymbolTableSize = 20011;
   388 const int minimumSymbolTableSize = 1009;
   391 //----------------------------------------------------------------------------------------------------
   392 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   393 //
   394 // Determines whether on-the-fly class replacement and frame popping are enabled.
   396 #define HOTSWAP
   398 //----------------------------------------------------------------------------------------------------
   399 // Object alignment, in units of HeapWords.
   400 //
   401 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   402 // reference fields can be naturally aligned.
   404 extern int MinObjAlignment;
   405 extern int MinObjAlignmentInBytes;
   406 extern int MinObjAlignmentInBytesMask;
   408 extern int LogMinObjAlignment;
   409 extern int LogMinObjAlignmentInBytes;
   411 const int LogKlassAlignmentInBytes = 3;
   412 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
   413 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
   414 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
   416 // Klass encoding metaspace max size
   417 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
   419 // Machine dependent stuff
   421 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
   422 // Include Restricted Transactional Memory lock eliding optimization
   423 #define INCLUDE_RTM_OPT 1
   424 #define RTM_OPT_ONLY(code) code
   425 #else
   426 #define INCLUDE_RTM_OPT 0
   427 #define RTM_OPT_ONLY(code)
   428 #endif
   429 // States of Restricted Transactional Memory usage.
   430 enum RTMState {
   431   NoRTM      = 0x2, // Don't use RTM
   432   UseRTM     = 0x1, // Use RTM
   433   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
   434 };
   436 #ifdef TARGET_ARCH_x86
   437 # include "globalDefinitions_x86.hpp"
   438 #endif
   439 #ifdef TARGET_ARCH_sparc
   440 # include "globalDefinitions_sparc.hpp"
   441 #endif
   442 #ifdef TARGET_ARCH_zero
   443 # include "globalDefinitions_zero.hpp"
   444 #endif
   445 #ifdef TARGET_ARCH_arm
   446 # include "globalDefinitions_arm.hpp"
   447 #endif
   448 #ifdef TARGET_ARCH_ppc
   449 # include "globalDefinitions_ppc.hpp"
   450 #endif
   451 #ifdef TARGET_ARCH_mips
   452 # include "globalDefinitions_mips.hpp"
   453 #endif
   455 /*
   456  * If a platform does not support native stack walking
   457  * the platform specific globalDefinitions (above)
   458  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
   459  */
   460 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
   461 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
   462 #endif
   464 // To assure the IRIW property on processors that are not multiple copy
   465 // atomic, sync instructions must be issued between volatile reads to
   466 // assure their ordering, instead of after volatile stores.
   467 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
   468 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
   469 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
   470 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
   471 #else
   472 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
   473 #endif
   475 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   476 // Note: this value must be a power of 2
   478 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   480 // Signed variants of alignment helpers.  There are two versions of each, a macro
   481 // for use in places like enum definitions that require compile-time constant
   482 // expressions and a function for all other places so as to get type checking.
   484 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   486 inline bool is_size_aligned(size_t size, size_t alignment) {
   487   return align_size_up_(size, alignment) == size;
   488 }
   490 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
   491   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
   492 }
   494 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   495   return align_size_up_(size, alignment);
   496 }
   498 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   500 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   501   return align_size_down_(size, alignment);
   502 }
   504 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
   506 inline void* align_ptr_up(void* ptr, size_t alignment) {
   507   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
   508 }
   510 inline void* align_ptr_down(void* ptr, size_t alignment) {
   511   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
   512 }
   514 // Align objects by rounding up their size, in HeapWord units.
   516 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   518 inline intptr_t align_object_size(intptr_t size) {
   519   return align_size_up(size, MinObjAlignment);
   520 }
   522 inline bool is_object_aligned(intptr_t addr) {
   523   return addr == align_object_size(addr);
   524 }
   526 // Pad out certain offsets to jlong alignment, in HeapWord units.
   528 inline intptr_t align_object_offset(intptr_t offset) {
   529   return align_size_up(offset, HeapWordsPerLong);
   530 }
   532 inline void* align_pointer_up(const void* addr, size_t size) {
   533   return (void*) align_size_up_((uintptr_t)addr, size);
   534 }
   536 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
   538 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
   539   size_t aligned_size = align_size_down_(size, alignment);
   540   return aligned_size > 0 ? aligned_size : alignment;
   541 }
   543 // Clamp an address to be within a specific page
   544 // 1. If addr is on the page it is returned as is
   545 // 2. If addr is above the page_address the start of the *next* page will be returned
   546 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
   547 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
   548   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
   549     // address is in the specified page, just return it as is
   550     return addr;
   551   } else if (addr > page_address) {
   552     // address is above specified page, return start of next page
   553     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
   554   } else {
   555     // address is below specified page, return start of page
   556     return (address)align_size_down(intptr_t(page_address), page_size);
   557   }
   558 }
   561 // The expected size in bytes of a cache line, used to pad data structures.
   562 #define DEFAULT_CACHE_LINE_SIZE 64
   565 //----------------------------------------------------------------------------------------------------
   566 // Utility macros for compilers
   567 // used to silence compiler warnings
   569 #define Unused_Variable(var) var
   572 //----------------------------------------------------------------------------------------------------
   573 // Miscellaneous
   575 // 6302670 Eliminate Hotspot __fabsf dependency
   576 // All fabs() callers should call this function instead, which will implicitly
   577 // convert the operand to double, avoiding a dependency on __fabsf which
   578 // doesn't exist in early versions of Solaris 8.
   579 inline double fabsd(double value) {
   580   return fabs(value);
   581 }
   583 //----------------------------------------------------------------------------------------------------
   584 // Special casts
   585 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
   586 typedef union {
   587   jfloat f;
   588   jint i;
   589 } FloatIntConv;
   591 typedef union {
   592   jdouble d;
   593   jlong l;
   594   julong ul;
   595 } DoubleLongConv;
   597 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
   598 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
   600 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
   601 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
   602 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
   604 inline jint low (jlong value)                    { return jint(value); }
   605 inline jint high(jlong value)                    { return jint(value >> 32); }
   607 // the fancy casts are a hopefully portable way
   608 // to do unsigned 32 to 64 bit type conversion
   609 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   610                                                    *value |= (jlong)(julong)(juint)low; }
   612 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   613                                                    *value |= (jlong)high       << 32; }
   615 inline jlong jlong_from(jint h, jint l) {
   616   jlong result = 0; // initialization to avoid warning
   617   set_high(&result, h);
   618   set_low(&result,  l);
   619   return result;
   620 }
   622 union jlong_accessor {
   623   jint  words[2];
   624   jlong long_value;
   625 };
   627 void basic_types_init(); // cannot define here; uses assert
   630 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   631 enum BasicType {
   632   T_BOOLEAN     =  4,
   633   T_CHAR        =  5,
   634   T_FLOAT       =  6,
   635   T_DOUBLE      =  7,
   636   T_BYTE        =  8,
   637   T_SHORT       =  9,
   638   T_INT         = 10,
   639   T_LONG        = 11,
   640   T_OBJECT      = 12,
   641   T_ARRAY       = 13,
   642   T_VOID        = 14,
   643   T_ADDRESS     = 15,
   644   T_NARROWOOP   = 16,
   645   T_METADATA    = 17,
   646   T_NARROWKLASS = 18,
   647   T_CONFLICT    = 19, // for stack value type with conflicting contents
   648   T_ILLEGAL     = 99
   649 };
   651 inline bool is_java_primitive(BasicType t) {
   652   return T_BOOLEAN <= t && t <= T_LONG;
   653 }
   655 inline bool is_subword_type(BasicType t) {
   656   // these guys are processed exactly like T_INT in calling sequences:
   657   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   658 }
   660 inline bool is_signed_subword_type(BasicType t) {
   661   return (t == T_BYTE || t == T_SHORT);
   662 }
   664 inline bool is_reference_type(BasicType t) {
   665   return (t == T_OBJECT || t == T_ARRAY);
   666 }
   668 // Convert a char from a classfile signature to a BasicType
   669 inline BasicType char2type(char c) {
   670   switch( c ) {
   671   case 'B': return T_BYTE;
   672   case 'C': return T_CHAR;
   673   case 'D': return T_DOUBLE;
   674   case 'F': return T_FLOAT;
   675   case 'I': return T_INT;
   676   case 'J': return T_LONG;
   677   case 'S': return T_SHORT;
   678   case 'Z': return T_BOOLEAN;
   679   case 'V': return T_VOID;
   680   case 'L': return T_OBJECT;
   681   case '[': return T_ARRAY;
   682   }
   683   return T_ILLEGAL;
   684 }
   686 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   687 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   688 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   689 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   690 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   691 extern BasicType name2type(const char* name);
   693 // Auxilary math routines
   694 // least common multiple
   695 extern size_t lcm(size_t a, size_t b);
   698 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   699 enum BasicTypeSize {
   700   T_BOOLEAN_size     = 1,
   701   T_CHAR_size        = 1,
   702   T_FLOAT_size       = 1,
   703   T_DOUBLE_size      = 2,
   704   T_BYTE_size        = 1,
   705   T_SHORT_size       = 1,
   706   T_INT_size         = 1,
   707   T_LONG_size        = 2,
   708   T_OBJECT_size      = 1,
   709   T_ARRAY_size       = 1,
   710   T_NARROWOOP_size   = 1,
   711   T_NARROWKLASS_size = 1,
   712   T_VOID_size        = 0
   713 };
   716 // maps a BasicType to its instance field storage type:
   717 // all sub-word integral types are widened to T_INT
   718 extern BasicType type2field[T_CONFLICT+1];
   719 extern BasicType type2wfield[T_CONFLICT+1];
   722 // size in bytes
   723 enum ArrayElementSize {
   724   T_BOOLEAN_aelem_bytes     = 1,
   725   T_CHAR_aelem_bytes        = 2,
   726   T_FLOAT_aelem_bytes       = 4,
   727   T_DOUBLE_aelem_bytes      = 8,
   728   T_BYTE_aelem_bytes        = 1,
   729   T_SHORT_aelem_bytes       = 2,
   730   T_INT_aelem_bytes         = 4,
   731   T_LONG_aelem_bytes        = 8,
   732 #ifdef _LP64
   733   T_OBJECT_aelem_bytes      = 8,
   734   T_ARRAY_aelem_bytes       = 8,
   735 #else
   736   T_OBJECT_aelem_bytes      = 4,
   737   T_ARRAY_aelem_bytes       = 4,
   738 #endif
   739   T_NARROWOOP_aelem_bytes   = 4,
   740   T_NARROWKLASS_aelem_bytes = 4,
   741   T_VOID_aelem_bytes        = 0
   742 };
   744 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   745 #ifdef ASSERT
   746 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   747 #else
   748 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   749 #endif
   752 // JavaValue serves as a container for arbitrary Java values.
   754 class JavaValue {
   756  public:
   757   typedef union JavaCallValue {
   758     jfloat   f;
   759     jdouble  d;
   760     jint     i;
   761     jlong    l;
   762     jobject  h;
   763   } JavaCallValue;
   765  private:
   766   BasicType _type;
   767   JavaCallValue _value;
   769  public:
   770   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   772   JavaValue(jfloat value) {
   773     _type    = T_FLOAT;
   774     _value.f = value;
   775   }
   777   JavaValue(jdouble value) {
   778     _type    = T_DOUBLE;
   779     _value.d = value;
   780   }
   782  jfloat get_jfloat() const { return _value.f; }
   783  jdouble get_jdouble() const { return _value.d; }
   784  jint get_jint() const { return _value.i; }
   785  jlong get_jlong() const { return _value.l; }
   786  jobject get_jobject() const { return _value.h; }
   787  JavaCallValue* get_value_addr() { return &_value; }
   788  BasicType get_type() const { return _type; }
   790  void set_jfloat(jfloat f) { _value.f = f;}
   791  void set_jdouble(jdouble d) { _value.d = d;}
   792  void set_jint(jint i) { _value.i = i;}
   793  void set_jlong(jlong l) { _value.l = l;}
   794  void set_jobject(jobject h) { _value.h = h;}
   795  void set_type(BasicType t) { _type = t; }
   797  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   798  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   799  jchar get_jchar() const { return (jchar) (_value.i);}
   800  jshort get_jshort() const { return (jshort) (_value.i);}
   802 };
   805 #define STACK_BIAS      0
   806 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   807 // in order to extend the reach of the stack pointer.
   808 #if defined(SPARC) && defined(_LP64)
   809 #undef STACK_BIAS
   810 #define STACK_BIAS      0x7ff
   811 #endif
   814 // TosState describes the top-of-stack state before and after the execution of
   815 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   816 // registers. The TosState corresponds to the 'machine represention' of this cached
   817 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   818 // as well as a 5th state in case the top-of-stack value is actually on the top
   819 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   820 // state when it comes to machine representation but is used separately for (oop)
   821 // type specific operations (e.g. verification code).
   823 enum TosState {         // describes the tos cache contents
   824   btos = 0,             // byte, bool tos cached
   825   ztos = 1,             // byte, bool tos cached
   826   ctos = 2,             // char tos cached
   827   stos = 3,             // short tos cached
   828   itos = 4,             // int tos cached
   829   ltos = 5,             // long tos cached
   830   ftos = 6,             // float tos cached
   831   dtos = 7,             // double tos cached
   832   atos = 8,             // object cached
   833   vtos = 9,             // tos not cached
   834   number_of_states,
   835   ilgl                  // illegal state: should not occur
   836 };
   839 inline TosState as_TosState(BasicType type) {
   840   switch (type) {
   841     case T_BYTE   : return btos;
   842     case T_BOOLEAN: return ztos;
   843     case T_CHAR   : return ctos;
   844     case T_SHORT  : return stos;
   845     case T_INT    : return itos;
   846     case T_LONG   : return ltos;
   847     case T_FLOAT  : return ftos;
   848     case T_DOUBLE : return dtos;
   849     case T_VOID   : return vtos;
   850     case T_ARRAY  : // fall through
   851     case T_OBJECT : return atos;
   852   }
   853   return ilgl;
   854 }
   856 inline BasicType as_BasicType(TosState state) {
   857   switch (state) {
   858     case btos : return T_BYTE;
   859     case ztos : return T_BOOLEAN;
   860     case ctos : return T_CHAR;
   861     case stos : return T_SHORT;
   862     case itos : return T_INT;
   863     case ltos : return T_LONG;
   864     case ftos : return T_FLOAT;
   865     case dtos : return T_DOUBLE;
   866     case atos : return T_OBJECT;
   867     case vtos : return T_VOID;
   868   }
   869   return T_ILLEGAL;
   870 }
   873 // Helper function to convert BasicType info into TosState
   874 // Note: Cannot define here as it uses global constant at the time being.
   875 TosState as_TosState(BasicType type);
   878 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   879 // information is needed by the safepoint code.
   880 //
   881 // There are 4 essential states:
   882 //
   883 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   884 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   885 //  _thread_in_vm       : Executing in the vm
   886 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   887 //
   888 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   889 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   890 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   891 //
   892 // Given a state, the xxx_trans state can always be found by adding 1.
   893 //
   894 enum JavaThreadState {
   895   _thread_uninitialized     =  0, // should never happen (missing initialization)
   896   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   897   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   898   _thread_in_native         =  4, // running in native code
   899   _thread_in_native_trans   =  5, // corresponding transition state
   900   _thread_in_vm             =  6, // running in VM
   901   _thread_in_vm_trans       =  7, // corresponding transition state
   902   _thread_in_Java           =  8, // running in Java or in stub code
   903   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   904   _thread_blocked           = 10, // blocked in vm
   905   _thread_blocked_trans     = 11, // corresponding transition state
   906   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   907 };
   910 // Handy constants for deciding which compiler mode to use.
   911 enum MethodCompilation {
   912   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   913   InvalidOSREntryBci = -2
   914 };
   916 // Enumeration to distinguish tiers of compilation
   917 enum CompLevel {
   918   CompLevel_any               = -1,
   919   CompLevel_all               = -1,
   920   CompLevel_none              = 0,         // Interpreter
   921   CompLevel_simple            = 1,         // C1
   922   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   923   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   924   CompLevel_full_optimization = 4,         // C2 or Shark
   926 #if defined(COMPILER2) || defined(SHARK)
   927   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   928 #elif defined(COMPILER1)
   929   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   930 #else
   931   CompLevel_highest_tier      = CompLevel_none,
   932 #endif
   934 #if defined(TIERED)
   935   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   936 #elif defined(COMPILER1)
   937   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   938 #elif defined(COMPILER2) || defined(SHARK)
   939   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   940 #else
   941   CompLevel_initial_compile   = CompLevel_none
   942 #endif
   943 };
   945 inline bool is_c1_compile(int comp_level) {
   946   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   947 }
   949 inline bool is_c2_compile(int comp_level) {
   950   return comp_level == CompLevel_full_optimization;
   951 }
   953 inline bool is_highest_tier_compile(int comp_level) {
   954   return comp_level == CompLevel_highest_tier;
   955 }
   957 inline bool is_compile(int comp_level) {
   958   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
   959 }
   961 //----------------------------------------------------------------------------------------------------
   962 // 'Forward' declarations of frequently used classes
   963 // (in order to reduce interface dependencies & reduce
   964 // number of unnecessary compilations after changes)
   966 class symbolTable;
   967 class ClassFileStream;
   969 class Event;
   971 class Thread;
   972 class  VMThread;
   973 class  JavaThread;
   974 class Threads;
   976 class VM_Operation;
   977 class VMOperationQueue;
   979 class CodeBlob;
   980 class  nmethod;
   981 class  OSRAdapter;
   982 class  I2CAdapter;
   983 class  C2IAdapter;
   984 class CompiledIC;
   985 class relocInfo;
   986 class ScopeDesc;
   987 class PcDesc;
   989 class Recompiler;
   990 class Recompilee;
   991 class RecompilationPolicy;
   992 class RFrame;
   993 class  CompiledRFrame;
   994 class  InterpretedRFrame;
   996 class frame;
   998 class vframe;
   999 class   javaVFrame;
  1000 class     interpretedVFrame;
  1001 class     compiledVFrame;
  1002 class     deoptimizedVFrame;
  1003 class   externalVFrame;
  1004 class     entryVFrame;
  1006 class RegisterMap;
  1008 class Mutex;
  1009 class Monitor;
  1010 class BasicLock;
  1011 class BasicObjectLock;
  1013 class PeriodicTask;
  1015 class JavaCallWrapper;
  1017 class   oopDesc;
  1018 class   metaDataOopDesc;
  1020 class NativeCall;
  1022 class zone;
  1024 class StubQueue;
  1026 class outputStream;
  1028 class ResourceArea;
  1030 class DebugInformationRecorder;
  1031 class ScopeValue;
  1032 class CompressedStream;
  1033 class   DebugInfoReadStream;
  1034 class   DebugInfoWriteStream;
  1035 class LocationValue;
  1036 class ConstantValue;
  1037 class IllegalValue;
  1039 class PrivilegedElement;
  1040 class MonitorArray;
  1042 class MonitorInfo;
  1044 class OffsetClosure;
  1045 class OopMapCache;
  1046 class InterpreterOopMap;
  1047 class OopMapCacheEntry;
  1048 class OSThread;
  1050 typedef int (*OSThreadStartFunc)(void*);
  1052 class Space;
  1054 class JavaValue;
  1055 class methodHandle;
  1056 class JavaCallArguments;
  1058 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
  1060 extern void basic_fatal(const char* msg);
  1063 //----------------------------------------------------------------------------------------------------
  1064 // Special constants for debugging
  1066 const jint     badInt           = -3;                       // generic "bad int" value
  1067 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
  1068 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
  1069 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
  1070 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
  1071 const int      badResourceValue = 0xAB;                     // value used to zap resource area
  1072 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
  1073 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
  1074 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
  1075 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
  1076 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
  1077 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
  1078 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
  1081 // (These must be implemented as #defines because C++ compilers are
  1082 // not obligated to inline non-integral constants!)
  1083 #define       badAddress        ((address)::badAddressVal)
  1084 #define       badOop            (cast_to_oop(::badOopVal))
  1085 #define       badHeapWord       (::badHeapWordVal)
  1086 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
  1088 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
  1089 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
  1091 //----------------------------------------------------------------------------------------------------
  1092 // Utility functions for bitfield manipulations
  1094 const intptr_t AllBits    = ~0; // all bits set in a word
  1095 const intptr_t NoBits     =  0; // no bits set in a word
  1096 const jlong    NoLongBits =  0; // no bits set in a long
  1097 const intptr_t OneBit     =  1; // only right_most bit set in a word
  1099 // get a word with the n.th or the right-most or left-most n bits set
  1100 // (note: #define used only so that they can be used in enum constant definitions)
  1101 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
  1102 #define right_n_bits(n)   (nth_bit(n) - 1)
  1103 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
  1105 // bit-operations using a mask m
  1106 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
  1107 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
  1108 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
  1109 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
  1110 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
  1112 // bit-operations using the n.th bit
  1113 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
  1114 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
  1115 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
  1117 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
  1118 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
  1119   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
  1123 //----------------------------------------------------------------------------------------------------
  1124 // Utility functions for integers
  1126 // Avoid use of global min/max macros which may cause unwanted double
  1127 // evaluation of arguments.
  1128 #ifdef max
  1129 #undef max
  1130 #endif
  1132 #ifdef min
  1133 #undef min
  1134 #endif
  1136 #define max(a,b) Do_not_use_max_use_MAX2_instead
  1137 #define min(a,b) Do_not_use_min_use_MIN2_instead
  1139 // It is necessary to use templates here. Having normal overloaded
  1140 // functions does not work because it is necessary to provide both 32-
  1141 // and 64-bit overloaded functions, which does not work, and having
  1142 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
  1143 // will be even more error-prone than macros.
  1144 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
  1145 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
  1146 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
  1147 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
  1148 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
  1149 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
  1151 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
  1153 // true if x is a power of 2, false otherwise
  1154 inline bool is_power_of_2(intptr_t x) {
  1155   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
  1158 // long version of is_power_of_2
  1159 inline bool is_power_of_2_long(jlong x) {
  1160   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
  1163 //* largest i such that 2^i <= x
  1164 //  A negative value of 'x' will return '31'
  1165 inline int log2_intptr(uintptr_t x) {
  1166   int i = -1;
  1167   uintptr_t p =  1;
  1168   while (p != 0 && p <= x) {
  1169     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1170     i++; p *= 2;
  1172   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1173   // (if p = 0 then overflow occurred and i = 31)
  1174   return i;
  1177 //* largest i such that 2^i <= x
  1178 inline int log2_long(julong x) {
  1179   int i = -1;
  1180   julong p =  1;
  1181   while (p != 0 && p <= x) {
  1182     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1183     i++; p *= 2;
  1185   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1186   // (if p = 0 then overflow occurred and i = 63)
  1187   return i;
  1190 inline int log2_intptr(intptr_t x) {
  1191   return log2_intptr((uintptr_t)x);
  1194 inline int log2_int(int x) {
  1195   return log2_intptr((uintptr_t)x);
  1198 inline int log2_jint(jint x) {
  1199   return log2_intptr((uintptr_t)x);
  1202 inline int log2_uint(uint x) {
  1203   return log2_intptr((uintptr_t)x);
  1206 //  A negative value of 'x' will return '63'
  1207 inline int log2_jlong(jlong x) {
  1208   return log2_long((julong)x);
  1211 //* the argument must be exactly a power of 2
  1212 inline int exact_log2(intptr_t x) {
  1213   #ifdef ASSERT
  1214     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1215   #endif
  1216   return log2_intptr(x);
  1219 //* the argument must be exactly a power of 2
  1220 inline int exact_log2_long(jlong x) {
  1221   #ifdef ASSERT
  1222     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1223   #endif
  1224   return log2_long(x);
  1228 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1229 inline intptr_t round_to(intptr_t x, uintx s) {
  1230   #ifdef ASSERT
  1231     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1232   #endif
  1233   const uintx m = s - 1;
  1234   return mask_bits(x + m, ~m);
  1237 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1238 inline intptr_t round_down(intptr_t x, uintx s) {
  1239   #ifdef ASSERT
  1240     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1241   #endif
  1242   const uintx m = s - 1;
  1243   return mask_bits(x, ~m);
  1247 inline bool is_odd (intx x) { return x & 1;      }
  1248 inline bool is_even(intx x) { return !is_odd(x); }
  1250 // abs methods which cannot overflow and so are well-defined across
  1251 // the entire domain of integer types.
  1252 static inline unsigned int uabs(unsigned int n) {
  1253   union {
  1254     unsigned int result;
  1255     int value;
  1256   };
  1257   result = n;
  1258   if (value < 0) result = 0-result;
  1259   return result;
  1261 static inline julong uabs(julong n) {
  1262   union {
  1263     julong result;
  1264     jlong value;
  1265   };
  1266   result = n;
  1267   if (value < 0) result = 0-result;
  1268   return result;
  1270 static inline julong uabs(jlong n) { return uabs((julong)n); }
  1271 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
  1273 // "to" should be greater than "from."
  1274 inline intx byte_size(void* from, void* to) {
  1275   return (address)to - (address)from;
  1278 //----------------------------------------------------------------------------------------------------
  1279 // Avoid non-portable casts with these routines (DEPRECATED)
  1281 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1282 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1284 // Given sequence of four bytes, build into a 32-bit word
  1285 // following the conventions used in class files.
  1286 // On the 386, this could be realized with a simple address cast.
  1287 //
  1289 // This routine takes eight bytes:
  1290 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1291   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1292        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1293        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1294        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1295        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1296        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1297        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1298        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1301 // This routine takes four bytes:
  1302 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1303   return  (( u4(c1) << 24 )  &  0xff000000)
  1304        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1305        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1306        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1309 // And this one works if the four bytes are contiguous in memory:
  1310 inline u4 build_u4_from( u1* p ) {
  1311   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1314 // Ditto for two-byte ints:
  1315 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1316   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1317           |  (( u2(c2) <<  0 )  &  0x00ff));
  1320 // And this one works if the two bytes are contiguous in memory:
  1321 inline u2 build_u2_from( u1* p ) {
  1322   return  build_u2_from( p[0], p[1] );
  1325 // Ditto for floats:
  1326 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1327   u4 u = build_u4_from( c1, c2, c3, c4 );
  1328   return  *(jfloat*)&u;
  1331 inline jfloat build_float_from( u1* p ) {
  1332   u4 u = build_u4_from( p );
  1333   return  *(jfloat*)&u;
  1337 // now (64-bit) longs
  1339 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1340   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1341        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1342        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1343        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1344        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1345        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1346        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1347        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1350 inline jlong build_long_from( u1* p ) {
  1351   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1355 // Doubles, too!
  1356 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1357   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1358   return  *(jdouble*)&u;
  1361 inline jdouble build_double_from( u1* p ) {
  1362   jlong u = build_long_from( p );
  1363   return  *(jdouble*)&u;
  1367 // Portable routines to go the other way:
  1369 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1370   c1 = u1(x >> 8);
  1371   c2 = u1(x);
  1374 inline void explode_short_to( u2 x, u1* p ) {
  1375   explode_short_to( x, p[0], p[1]);
  1378 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1379   c1 = u1(x >> 24);
  1380   c2 = u1(x >> 16);
  1381   c3 = u1(x >>  8);
  1382   c4 = u1(x);
  1385 inline void explode_int_to( u4 x, u1* p ) {
  1386   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1390 // Pack and extract shorts to/from ints:
  1392 inline int extract_low_short_from_int(jint x) {
  1393   return x & 0xffff;
  1396 inline int extract_high_short_from_int(jint x) {
  1397   return (x >> 16) & 0xffff;
  1400 inline int build_int_from_shorts( jushort low, jushort high ) {
  1401   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1404 // Convert pointer to intptr_t, for use in printing pointers.
  1405 inline intptr_t p2i(const void * p) {
  1406   return (intptr_t) p;
  1409 // Printf-style formatters for fixed- and variable-width types as pointers and
  1410 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1411 // doesn't provide appropriate definitions, they should be provided in
  1412 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1414 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1416 // Format 32-bit quantities.
  1417 #define INT32_FORMAT           "%" PRId32
  1418 #define UINT32_FORMAT          "%" PRIu32
  1419 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1420 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1422 #define PTR32_FORMAT           "0x%08" PRIx32
  1424 // Format 64-bit quantities.
  1425 #define INT64_FORMAT           "%" PRId64
  1426 #define UINT64_FORMAT          "%" PRIu64
  1427 #define UINT64_FORMAT_X        "%" PRIx64
  1428 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1429 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1431 #define PTR64_FORMAT           "0x%016" PRIx64
  1433 // Format jlong, if necessary
  1434 #ifndef JLONG_FORMAT
  1435 #define JLONG_FORMAT           INT64_FORMAT
  1436 #endif
  1437 #ifndef JULONG_FORMAT
  1438 #define JULONG_FORMAT          UINT64_FORMAT
  1439 #endif
  1441 // Format pointers which change size between 32- and 64-bit.
  1442 #ifdef  _LP64
  1443 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1444 #define PTR_FORMAT    "0x%016" PRIxPTR
  1445 #else   // !_LP64
  1446 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1447 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1448 #endif  // _LP64
  1450 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  1452 #define SSIZE_FORMAT          "%"   PRIdPTR
  1453 #define SIZE_FORMAT           "%"   PRIuPTR
  1454 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
  1455 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
  1456 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
  1457 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
  1459 #define INTX_FORMAT           "%" PRIdPTR
  1460 #define UINTX_FORMAT          "%" PRIuPTR
  1461 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1462 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1465 // Enable zap-a-lot if in debug version.
  1467 # ifdef ASSERT
  1468 # ifdef COMPILER2
  1469 #   define ENABLE_ZAP_DEAD_LOCALS
  1470 #endif /* COMPILER2 */
  1471 # endif /* ASSERT */
  1473 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1475 //----------------------------------------------------------------------------------------------------
  1476 // Sum and product which can never overflow: they wrap, just like the
  1477 // Java operations.  Note that we don't intend these to be used for
  1478 // general-purpose arithmetic: their purpose is to emulate Java
  1479 // operations.
  1481 // The goal of this code to avoid undefined or implementation-defined
  1482 // behaviour.  The use of an lvalue to reference cast is explicitly
  1483 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
  1484 // 15 in C++03]
  1485 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
  1486 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
  1487   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
  1488   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
  1489   return reinterpret_cast<TYPE&>(ures);                 \
  1492 JAVA_INTEGER_OP(+, java_add, jint, juint)
  1493 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
  1494 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
  1495 JAVA_INTEGER_OP(+, java_add, jlong, julong)
  1496 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
  1497 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
  1499 #undef JAVA_INTEGER_OP
  1501 // Dereference vptr
  1502 // All C++ compilers that we know of have the vtbl pointer in the first
  1503 // word.  If there are exceptions, this function needs to be made compiler
  1504 // specific.
  1505 static inline void* dereference_vptr(const void* addr) {
  1506   return *(void**)addr;
  1509 #ifndef PRODUCT
  1511 // For unit testing only
  1512 class GlobalDefinitions {
  1513 public:
  1514   static void test_globals();
  1515   static void test_proper_unit();
  1516 };
  1518 #endif // PRODUCT
  1520 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial