src/share/vm/runtime/objectMonitor.cpp

Wed, 14 Oct 2020 17:44:48 +0800

author
aoqi
date
Wed, 14 Oct 2020 17:44:48 +0800
changeset 9931
fd44df5e3bc3
parent 9041
95a08233f46c
parent 9858
b985cbb00e68
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "jfr/jfrEvents.hpp"
    28 #include "jfr/support/jfrThreadId.hpp"
    29 #include "memory/resourceArea.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/handles.inline.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/mutexLocker.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/objectMonitor.inline.hpp"
    37 #include "runtime/orderAccess.inline.hpp"
    38 #include "runtime/osThread.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "services/threadService.hpp"
    42 #include "utilities/dtrace.hpp"
    43 #include "utilities/macros.hpp"
    44 #include "utilities/preserveException.hpp"
    45 #ifdef TARGET_OS_FAMILY_linux
    46 # include "os_linux.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_solaris
    49 # include "os_solaris.inline.hpp"
    50 #endif
    51 #ifdef TARGET_OS_FAMILY_windows
    52 # include "os_windows.inline.hpp"
    53 #endif
    54 #ifdef TARGET_OS_FAMILY_bsd
    55 # include "os_bsd.inline.hpp"
    56 #endif
    57 #if INCLUDE_JFR
    58 #include "jfr/support/jfrFlush.hpp"
    59 #endif
    61 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
    62   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    63   #define ATTR __attribute__((noinline))
    64 #else
    65   #define ATTR
    66 #endif
    69 #ifdef DTRACE_ENABLED
    71 // Only bother with this argument setup if dtrace is available
    72 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    75 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
    76   char* bytes = NULL;                                                      \
    77   int len = 0;                                                             \
    78   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    79   Symbol* klassname = ((oop)obj)->klass()->name();                         \
    80   if (klassname != NULL) {                                                 \
    81     bytes = (char*)klassname->bytes();                                     \
    82     len = klassname->utf8_length();                                        \
    83   }
    85 #ifndef USDT2
    87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    88   jlong, uintptr_t, char*, int);
    89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    90   jlong, uintptr_t, char*, int);
    91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    92   jlong, uintptr_t, char*, int);
    93 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    94   jlong, uintptr_t, char*, int);
    95 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    96   jlong, uintptr_t, char*, int);
    98 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
    99   {                                                                        \
   100     if (DTraceMonitorProbes) {                                            \
   101       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
   102       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
   103                        (monitor), bytes, len, (millis));                   \
   104     }                                                                      \
   105   }
   107 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
   108   {                                                                        \
   109     if (DTraceMonitorProbes) {                                            \
   110       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
   111       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   112                        (uintptr_t)(monitor), bytes, len);                  \
   113     }                                                                      \
   114   }
   116 #else /* USDT2 */
   118 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
   119   {                                                                        \
   120     if (DTraceMonitorProbes) {                                            \
   121       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   122       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   123                        (monitor), bytes, len, (millis));                   \
   124     }                                                                      \
   125   }
   127 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
   128 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
   129 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
   130 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
   131 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
   133 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   134   {                                                                        \
   135     if (DTraceMonitorProbes) {                                            \
   136       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   137       HOTSPOT_MONITOR_##probe(jtid,                                               \
   138                        (uintptr_t)(monitor), bytes, len);                  \
   139     }                                                                      \
   140   }
   142 #endif /* USDT2 */
   143 #else //  ndef DTRACE_ENABLED
   145 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
   146 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
   148 #endif // ndef DTRACE_ENABLED
   150 // Tunables ...
   151 // The knob* variables are effectively final.  Once set they should
   152 // never be modified hence.  Consider using __read_mostly with GCC.
   154 int ObjectMonitor::Knob_Verbose    = 0 ;
   155 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
   156 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   157 static int Knob_HandOff            = 0 ;
   158 static int Knob_ReportSettings     = 0 ;
   160 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   161 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   162 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   163 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   164 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   165 static int Knob_SpinEarly          = 1 ;
   166 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   167 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   168 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   169 static int Knob_Bonus              = 100 ;     // spin success bonus
   170 static int Knob_BonusB             = 100 ;     // spin success bonus
   171 static int Knob_Penalty            = 200 ;     // spin failure penalty
   172 static int Knob_Poverty            = 1000 ;
   173 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   174 static int Knob_FixedSpin          = 0 ;
   175 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   176 static int Knob_UsePause           = 1 ;
   177 static int Knob_ExitPolicy         = 0 ;
   178 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   179 static int Knob_ResetEvent         = 0 ;
   180 static int BackOffMask             = 0 ;
   182 static int Knob_FastHSSEC          = 0 ;
   183 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   184 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   185 static volatile int InitDone       = 0 ;
   187 #define TrySpin TrySpin_VaryDuration
   189 // -----------------------------------------------------------------------------
   190 // Theory of operations -- Monitors lists, thread residency, etc:
   191 //
   192 // * A thread acquires ownership of a monitor by successfully
   193 //   CAS()ing the _owner field from null to non-null.
   194 //
   195 // * Invariant: A thread appears on at most one monitor list --
   196 //   cxq, EntryList or WaitSet -- at any one time.
   197 //
   198 // * Contending threads "push" themselves onto the cxq with CAS
   199 //   and then spin/park.
   200 //
   201 // * After a contending thread eventually acquires the lock it must
   202 //   dequeue itself from either the EntryList or the cxq.
   203 //
   204 // * The exiting thread identifies and unparks an "heir presumptive"
   205 //   tentative successor thread on the EntryList.  Critically, the
   206 //   exiting thread doesn't unlink the successor thread from the EntryList.
   207 //   After having been unparked, the wakee will recontend for ownership of
   208 //   the monitor.   The successor (wakee) will either acquire the lock or
   209 //   re-park itself.
   210 //
   211 //   Succession is provided for by a policy of competitive handoff.
   212 //   The exiting thread does _not_ grant or pass ownership to the
   213 //   successor thread.  (This is also referred to as "handoff" succession").
   214 //   Instead the exiting thread releases ownership and possibly wakes
   215 //   a successor, so the successor can (re)compete for ownership of the lock.
   216 //   If the EntryList is empty but the cxq is populated the exiting
   217 //   thread will drain the cxq into the EntryList.  It does so by
   218 //   by detaching the cxq (installing null with CAS) and folding
   219 //   the threads from the cxq into the EntryList.  The EntryList is
   220 //   doubly linked, while the cxq is singly linked because of the
   221 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
   222 //
   223 // * Concurrency invariants:
   224 //
   225 //   -- only the monitor owner may access or mutate the EntryList.
   226 //      The mutex property of the monitor itself protects the EntryList
   227 //      from concurrent interference.
   228 //   -- Only the monitor owner may detach the cxq.
   229 //
   230 // * The monitor entry list operations avoid locks, but strictly speaking
   231 //   they're not lock-free.  Enter is lock-free, exit is not.
   232 //   For a description of 'Methods and apparatus providing non-blocking access
   233 //   to a resource,' see U.S. Pat. No. 7844973.
   234 //
   235 // * The cxq can have multiple concurrent "pushers" but only one concurrent
   236 //   detaching thread.  This mechanism is immune from the ABA corruption.
   237 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
   238 //
   239 // * Taken together, the cxq and the EntryList constitute or form a
   240 //   single logical queue of threads stalled trying to acquire the lock.
   241 //   We use two distinct lists to improve the odds of a constant-time
   242 //   dequeue operation after acquisition (in the ::enter() epilog) and
   243 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
   244 //   A key desideratum is to minimize queue & monitor metadata manipulation
   245 //   that occurs while holding the monitor lock -- that is, we want to
   246 //   minimize monitor lock holds times.  Note that even a small amount of
   247 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
   248 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
   249 //   locks and monitor metadata.
   250 //
   251 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
   252 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
   253 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
   254 //   the unlocking thread notices that EntryList is null but _cxq is != null.
   255 //
   256 //   The EntryList is ordered by the prevailing queue discipline and
   257 //   can be organized in any convenient fashion, such as a doubly-linked list or
   258 //   a circular doubly-linked list.  Critically, we want insert and delete operations
   259 //   to operate in constant-time.  If we need a priority queue then something akin
   260 //   to Solaris' sleepq would work nicely.  Viz.,
   261 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
   262 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
   263 //   drains the cxq into the EntryList, and orders or reorders the threads on the
   264 //   EntryList accordingly.
   265 //
   266 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
   267 //   somewhat similar to an elevator-scan.
   268 //
   269 // * The monitor synchronization subsystem avoids the use of native
   270 //   synchronization primitives except for the narrow platform-specific
   271 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
   272 //   the semantics of park-unpark.  Put another way, this monitor implementation
   273 //   depends only on atomic operations and park-unpark.  The monitor subsystem
   274 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
   275 //   underlying OS manages the READY<->RUN transitions.
   276 //
   277 // * Waiting threads reside on the WaitSet list -- wait() puts
   278 //   the caller onto the WaitSet.
   279 //
   280 // * notify() or notifyAll() simply transfers threads from the WaitSet to
   281 //   either the EntryList or cxq.  Subsequent exit() operations will
   282 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
   283 //   it's likely the notifyee would simply impale itself on the lock held
   284 //   by the notifier.
   285 //
   286 // * An interesting alternative is to encode cxq as (List,LockByte) where
   287 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
   288 //   variable, like _recursions, in the scheme.  The threads or Events that form
   289 //   the list would have to be aligned in 256-byte addresses.  A thread would
   290 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
   291 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
   292 //   Note that is is *not* word-tearing, but it does presume that full-word
   293 //   CAS operations are coherent with intermix with STB operations.  That's true
   294 //   on most common processors.
   295 //
   296 // * See also http://blogs.sun.com/dave
   299 // -----------------------------------------------------------------------------
   300 // Enter support
   302 bool ObjectMonitor::try_enter(Thread* THREAD) {
   303   if (THREAD != _owner) {
   304     if (THREAD->is_lock_owned ((address)_owner)) {
   305        assert(_recursions == 0, "internal state error");
   306        _owner = THREAD ;
   307        _recursions = 1 ;
   308        OwnerIsThread = 1 ;
   309        return true;
   310     }
   311     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   312       return false;
   313     }
   314     return true;
   315   } else {
   316     _recursions++;
   317     return true;
   318   }
   319 }
   321 void ATTR ObjectMonitor::enter(TRAPS) {
   322   // The following code is ordered to check the most common cases first
   323   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
   324   Thread * const Self = THREAD ;
   325   void * cur ;
   327   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
   328   if (cur == NULL) {
   329      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
   330      assert (_recursions == 0   , "invariant") ;
   331      assert (_owner      == Self, "invariant") ;
   332      // CONSIDER: set or assert OwnerIsThread == 1
   333      return ;
   334   }
   336   if (cur == Self) {
   337      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
   338      _recursions ++ ;
   339      return ;
   340   }
   342   if (Self->is_lock_owned ((address)cur)) {
   343     assert (_recursions == 0, "internal state error");
   344     _recursions = 1 ;
   345     // Commute owner from a thread-specific on-stack BasicLockObject address to
   346     // a full-fledged "Thread *".
   347     _owner = Self ;
   348     OwnerIsThread = 1 ;
   349     return ;
   350   }
   352   // We've encountered genuine contention.
   353   assert (Self->_Stalled == 0, "invariant") ;
   354   Self->_Stalled = intptr_t(this) ;
   356   // Try one round of spinning *before* enqueueing Self
   357   // and before going through the awkward and expensive state
   358   // transitions.  The following spin is strictly optional ...
   359   // Note that if we acquire the monitor from an initial spin
   360   // we forgo posting JVMTI events and firing DTRACE probes.
   361   if (Knob_SpinEarly && TrySpin (Self) > 0) {
   362      assert (_owner == Self      , "invariant") ;
   363      assert (_recursions == 0    , "invariant") ;
   364      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   365      Self->_Stalled = 0 ;
   366      return ;
   367   }
   369   assert (_owner != Self          , "invariant") ;
   370   assert (_succ  != Self          , "invariant") ;
   371   assert (Self->is_Java_thread()  , "invariant") ;
   372   JavaThread * jt = (JavaThread *) Self ;
   373   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   374   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
   375   assert (this->object() != NULL  , "invariant") ;
   376   assert (_count >= 0, "invariant") ;
   378   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
   379   // Ensure the object-monitor relationship remains stable while there's contention.
   380   Atomic::inc_ptr(&_count);
   382   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
   383   EventJavaMonitorEnter event;
   384   if (event.should_commit()) {
   385     event.set_monitorClass(((oop)this->object())->klass());
   386     event.set_address((uintptr_t)(this->object_addr()));
   387   }
   389   { // Change java thread status to indicate blocked on monitor enter.
   390     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
   392     Self->set_current_pending_monitor(this);
   394     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
   395     if (JvmtiExport::should_post_monitor_contended_enter()) {
   396       JvmtiExport::post_monitor_contended_enter(jt, this);
   398       // The current thread does not yet own the monitor and does not
   399       // yet appear on any queues that would get it made the successor.
   400       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
   401       // handler cannot accidentally consume an unpark() meant for the
   402       // ParkEvent associated with this ObjectMonitor.
   403     }
   405     OSThreadContendState osts(Self->osthread());
   406     ThreadBlockInVM tbivm(jt);
   408     // TODO-FIXME: change the following for(;;) loop to straight-line code.
   409     for (;;) {
   410       jt->set_suspend_equivalent();
   411       // cleared by handle_special_suspend_equivalent_condition()
   412       // or java_suspend_self()
   414       EnterI (THREAD) ;
   416       if (!ExitSuspendEquivalent(jt)) break ;
   418       //
   419       // We have acquired the contended monitor, but while we were
   420       // waiting another thread suspended us. We don't want to enter
   421       // the monitor while suspended because that would surprise the
   422       // thread that suspended us.
   423       //
   424           _recursions = 0 ;
   425       _succ = NULL ;
   426       exit (false, Self) ;
   428       jt->java_suspend_self();
   429     }
   430     Self->set_current_pending_monitor(NULL);
   432     // We cleared the pending monitor info since we've just gotten past
   433     // the enter-check-for-suspend dance and we now own the monitor free
   434     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
   435     // destructor can go to a safepoint at the end of this block. If we
   436     // do a thread dump during that safepoint, then this thread will show
   437     // as having "-locked" the monitor, but the OS and java.lang.Thread
   438     // states will still report that the thread is blocked trying to
   439     // acquire it.
   440   }
   442   Atomic::dec_ptr(&_count);
   443   assert (_count >= 0, "invariant") ;
   444   Self->_Stalled = 0 ;
   446   // Must either set _recursions = 0 or ASSERT _recursions == 0.
   447   assert (_recursions == 0     , "invariant") ;
   448   assert (_owner == Self       , "invariant") ;
   449   assert (_succ  != Self       , "invariant") ;
   450   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   452   // The thread -- now the owner -- is back in vm mode.
   453   // Report the glorious news via TI,DTrace and jvmstat.
   454   // The probe effect is non-trivial.  All the reportage occurs
   455   // while we hold the monitor, increasing the length of the critical
   456   // section.  Amdahl's parallel speedup law comes vividly into play.
   457   //
   458   // Another option might be to aggregate the events (thread local or
   459   // per-monitor aggregation) and defer reporting until a more opportune
   460   // time -- such as next time some thread encounters contention but has
   461   // yet to acquire the lock.  While spinning that thread could
   462   // spinning we could increment JVMStat counters, etc.
   464   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
   465   if (JvmtiExport::should_post_monitor_contended_entered()) {
   466     JvmtiExport::post_monitor_contended_entered(jt, this);
   468     // The current thread already owns the monitor and is not going to
   469     // call park() for the remainder of the monitor enter protocol. So
   470     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
   471     // event handler consumed an unpark() issued by the thread that
   472     // just exited the monitor.
   473   }
   475   if (event.should_commit()) {
   476     event.set_previousOwner((uintptr_t)_previous_owner_tid);
   477     event.commit();
   478   }
   480   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
   481      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
   482   }
   483 }
   486 // Caveat: TryLock() is not necessarily serializing if it returns failure.
   487 // Callers must compensate as needed.
   489 int ObjectMonitor::TryLock (Thread * Self) {
   490    for (;;) {
   491       void * own = _owner ;
   492       if (own != NULL) return 0 ;
   493       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
   494          // Either guarantee _recursions == 0 or set _recursions = 0.
   495          assert (_recursions == 0, "invariant") ;
   496          assert (_owner == Self, "invariant") ;
   497          // CONSIDER: set or assert that OwnerIsThread == 1
   498          return 1 ;
   499       }
   500       // The lock had been free momentarily, but we lost the race to the lock.
   501       // Interference -- the CAS failed.
   502       // We can either return -1 or retry.
   503       // Retry doesn't make as much sense because the lock was just acquired.
   504       if (true) return -1 ;
   505    }
   506 }
   508 void ATTR ObjectMonitor::EnterI (TRAPS) {
   509     Thread * Self = THREAD ;
   510     assert (Self->is_Java_thread(), "invariant") ;
   511     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
   513     // Try the lock - TATAS
   514     if (TryLock (Self) > 0) {
   515         assert (_succ != Self              , "invariant") ;
   516         assert (_owner == Self             , "invariant") ;
   517         assert (_Responsible != Self       , "invariant") ;
   518         return ;
   519     }
   521     DeferredInitialize () ;
   523     // We try one round of spinning *before* enqueueing Self.
   524     //
   525     // If the _owner is ready but OFFPROC we could use a YieldTo()
   526     // operation to donate the remainder of this thread's quantum
   527     // to the owner.  This has subtle but beneficial affinity
   528     // effects.
   530     if (TrySpin (Self) > 0) {
   531         assert (_owner == Self        , "invariant") ;
   532         assert (_succ != Self         , "invariant") ;
   533         assert (_Responsible != Self  , "invariant") ;
   534         return ;
   535     }
   537     // The Spin failed -- Enqueue and park the thread ...
   538     assert (_succ  != Self            , "invariant") ;
   539     assert (_owner != Self            , "invariant") ;
   540     assert (_Responsible != Self      , "invariant") ;
   542     // Enqueue "Self" on ObjectMonitor's _cxq.
   543     //
   544     // Node acts as a proxy for Self.
   545     // As an aside, if were to ever rewrite the synchronization code mostly
   546     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
   547     // Java objects.  This would avoid awkward lifecycle and liveness issues,
   548     // as well as eliminate a subset of ABA issues.
   549     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
   550     //
   552     ObjectWaiter node(Self) ;
   553     Self->_ParkEvent->reset() ;
   554     node._prev   = (ObjectWaiter *) 0xBAD ;
   555     node.TState  = ObjectWaiter::TS_CXQ ;
   557     // Push "Self" onto the front of the _cxq.
   558     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
   559     // Note that spinning tends to reduce the rate at which threads
   560     // enqueue and dequeue on EntryList|cxq.
   561     ObjectWaiter * nxt ;
   562     for (;;) {
   563         node._next = nxt = _cxq ;
   564         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
   566         // Interference - the CAS failed because _cxq changed.  Just retry.
   567         // As an optional optimization we retry the lock.
   568         if (TryLock (Self) > 0) {
   569             assert (_succ != Self         , "invariant") ;
   570             assert (_owner == Self        , "invariant") ;
   571             assert (_Responsible != Self  , "invariant") ;
   572             return ;
   573         }
   574     }
   576     // Check for cxq|EntryList edge transition to non-null.  This indicates
   577     // the onset of contention.  While contention persists exiting threads
   578     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
   579     // operations revert to the faster 1-0 mode.  This enter operation may interleave
   580     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
   581     // arrange for one of the contending thread to use a timed park() operations
   582     // to detect and recover from the race.  (Stranding is form of progress failure
   583     // where the monitor is unlocked but all the contending threads remain parked).
   584     // That is, at least one of the contended threads will periodically poll _owner.
   585     // One of the contending threads will become the designated "Responsible" thread.
   586     // The Responsible thread uses a timed park instead of a normal indefinite park
   587     // operation -- it periodically wakes and checks for and recovers from potential
   588     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
   589     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
   590     // be responsible for a monitor.
   591     //
   592     // Currently, one of the contended threads takes on the added role of "Responsible".
   593     // A viable alternative would be to use a dedicated "stranding checker" thread
   594     // that periodically iterated over all the threads (or active monitors) and unparked
   595     // successors where there was risk of stranding.  This would help eliminate the
   596     // timer scalability issues we see on some platforms as we'd only have one thread
   597     // -- the checker -- parked on a timer.
   599     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
   600         // Try to assume the role of responsible thread for the monitor.
   601         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
   602         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   603     }
   605     // The lock have been released while this thread was occupied queueing
   606     // itself onto _cxq.  To close the race and avoid "stranding" and
   607     // progress-liveness failure we must resample-retry _owner before parking.
   608     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
   609     // In this case the ST-MEMBAR is accomplished with CAS().
   610     //
   611     // TODO: Defer all thread state transitions until park-time.
   612     // Since state transitions are heavy and inefficient we'd like
   613     // to defer the state transitions until absolutely necessary,
   614     // and in doing so avoid some transitions ...
   616     TEVENT (Inflated enter - Contention) ;
   617     int nWakeups = 0 ;
   618     int RecheckInterval = 1 ;
   620     for (;;) {
   622         if (TryLock (Self) > 0) break ;
   623         assert (_owner != Self, "invariant") ;
   625         if ((SyncFlags & 2) && _Responsible == NULL) {
   626            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   627         }
   629         // park self
   630         if (_Responsible == Self || (SyncFlags & 1)) {
   631             TEVENT (Inflated enter - park TIMED) ;
   632             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
   633             // Increase the RecheckInterval, but clamp the value.
   634             RecheckInterval *= 8 ;
   635             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
   636         } else {
   637             TEVENT (Inflated enter - park UNTIMED) ;
   638             Self->_ParkEvent->park() ;
   639         }
   641         if (TryLock(Self) > 0) break ;
   643         // The lock is still contested.
   644         // Keep a tally of the # of futile wakeups.
   645         // Note that the counter is not protected by a lock or updated by atomics.
   646         // That is by design - we trade "lossy" counters which are exposed to
   647         // races during updates for a lower probe effect.
   648         TEVENT (Inflated enter - Futile wakeup) ;
   649         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   650            ObjectMonitor::_sync_FutileWakeups->inc() ;
   651         }
   652         ++ nWakeups ;
   654         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
   655         // We can defer clearing _succ until after the spin completes
   656         // TrySpin() must tolerate being called with _succ == Self.
   657         // Try yet another round of adaptive spinning.
   658         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
   660         // We can find that we were unpark()ed and redesignated _succ while
   661         // we were spinning.  That's harmless.  If we iterate and call park(),
   662         // park() will consume the event and return immediately and we'll
   663         // just spin again.  This pattern can repeat, leaving _succ to simply
   664         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
   665         // Alternately, we can sample fired() here, and if set, forgo spinning
   666         // in the next iteration.
   668         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
   669            Self->_ParkEvent->reset() ;
   670            OrderAccess::fence() ;
   671         }
   672         if (_succ == Self) _succ = NULL ;
   674         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
   675         OrderAccess::fence() ;
   676     }
   678     // Egress :
   679     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
   680     // Normally we'll find Self on the EntryList .
   681     // From the perspective of the lock owner (this thread), the
   682     // EntryList is stable and cxq is prepend-only.
   683     // The head of cxq is volatile but the interior is stable.
   684     // In addition, Self.TState is stable.
   686     assert (_owner == Self      , "invariant") ;
   687     assert (object() != NULL    , "invariant") ;
   688     // I'd like to write:
   689     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   690     // but as we're at a safepoint that's not safe.
   692     UnlinkAfterAcquire (Self, &node) ;
   693     if (_succ == Self) _succ = NULL ;
   695     assert (_succ != Self, "invariant") ;
   696     if (_Responsible == Self) {
   697         _Responsible = NULL ;
   698         OrderAccess::fence(); // Dekker pivot-point
   700         // We may leave threads on cxq|EntryList without a designated
   701         // "Responsible" thread.  This is benign.  When this thread subsequently
   702         // exits the monitor it can "see" such preexisting "old" threads --
   703         // threads that arrived on the cxq|EntryList before the fence, above --
   704         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
   705         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
   706         // non-null and elect a new "Responsible" timer thread.
   707         //
   708         // This thread executes:
   709         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
   710         //    LD cxq|EntryList               (in subsequent exit)
   711         //
   712         // Entering threads in the slow/contended path execute:
   713         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
   714         //    The (ST cxq; MEMBAR) is accomplished with CAS().
   715         //
   716         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
   717         // exit operation from floating above the ST Responsible=null.
   718     }
   720     // We've acquired ownership with CAS().
   721     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
   722     // But since the CAS() this thread may have also stored into _succ,
   723     // EntryList, cxq or Responsible.  These meta-data updates must be
   724     // visible __before this thread subsequently drops the lock.
   725     // Consider what could occur if we didn't enforce this constraint --
   726     // STs to monitor meta-data and user-data could reorder with (become
   727     // visible after) the ST in exit that drops ownership of the lock.
   728     // Some other thread could then acquire the lock, but observe inconsistent
   729     // or old monitor meta-data and heap data.  That violates the JMM.
   730     // To that end, the 1-0 exit() operation must have at least STST|LDST
   731     // "release" barrier semantics.  Specifically, there must be at least a
   732     // STST|LDST barrier in exit() before the ST of null into _owner that drops
   733     // the lock.   The barrier ensures that changes to monitor meta-data and data
   734     // protected by the lock will be visible before we release the lock, and
   735     // therefore before some other thread (CPU) has a chance to acquire the lock.
   736     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
   737     //
   738     // Critically, any prior STs to _succ or EntryList must be visible before
   739     // the ST of null into _owner in the *subsequent* (following) corresponding
   740     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
   741     // execute a serializing instruction.
   743     if (SyncFlags & 8) {
   744        OrderAccess::fence() ;
   745     }
   746     return ;
   747 }
   749 // ReenterI() is a specialized inline form of the latter half of the
   750 // contended slow-path from EnterI().  We use ReenterI() only for
   751 // monitor reentry in wait().
   752 //
   753 // In the future we should reconcile EnterI() and ReenterI(), adding
   754 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
   755 // loop accordingly.
   757 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
   758     assert (Self != NULL                , "invariant") ;
   759     assert (SelfNode != NULL            , "invariant") ;
   760     assert (SelfNode->_thread == Self   , "invariant") ;
   761     assert (_waiters > 0                , "invariant") ;
   762     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
   763     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   764     JavaThread * jt = (JavaThread *) Self ;
   766     int nWakeups = 0 ;
   767     for (;;) {
   768         ObjectWaiter::TStates v = SelfNode->TState ;
   769         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
   770         assert    (_owner != Self, "invariant") ;
   772         if (TryLock (Self) > 0) break ;
   773         if (TrySpin (Self) > 0) break ;
   775         TEVENT (Wait Reentry - parking) ;
   777         // State transition wrappers around park() ...
   778         // ReenterI() wisely defers state transitions until
   779         // it's clear we must park the thread.
   780         {
   781            OSThreadContendState osts(Self->osthread());
   782            ThreadBlockInVM tbivm(jt);
   784            // cleared by handle_special_suspend_equivalent_condition()
   785            // or java_suspend_self()
   786            jt->set_suspend_equivalent();
   787            if (SyncFlags & 1) {
   788               Self->_ParkEvent->park ((jlong)1000) ;
   789            } else {
   790               Self->_ParkEvent->park () ;
   791            }
   793            // were we externally suspended while we were waiting?
   794            for (;;) {
   795               if (!ExitSuspendEquivalent (jt)) break ;
   796               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
   797               jt->java_suspend_self();
   798               jt->set_suspend_equivalent();
   799            }
   800         }
   802         // Try again, but just so we distinguish between futile wakeups and
   803         // successful wakeups.  The following test isn't algorithmically
   804         // necessary, but it helps us maintain sensible statistics.
   805         if (TryLock(Self) > 0) break ;
   807         // The lock is still contested.
   808         // Keep a tally of the # of futile wakeups.
   809         // Note that the counter is not protected by a lock or updated by atomics.
   810         // That is by design - we trade "lossy" counters which are exposed to
   811         // races during updates for a lower probe effect.
   812         TEVENT (Wait Reentry - futile wakeup) ;
   813         ++ nWakeups ;
   815         // Assuming this is not a spurious wakeup we'll normally
   816         // find that _succ == Self.
   817         if (_succ == Self) _succ = NULL ;
   819         // Invariant: after clearing _succ a contending thread
   820         // *must* retry  _owner before parking.
   821         OrderAccess::fence() ;
   823         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   824           ObjectMonitor::_sync_FutileWakeups->inc() ;
   825         }
   826     }
   828     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
   829     // Normally we'll find Self on the EntryList.
   830     // Unlinking from the EntryList is constant-time and atomic-free.
   831     // From the perspective of the lock owner (this thread), the
   832     // EntryList is stable and cxq is prepend-only.
   833     // The head of cxq is volatile but the interior is stable.
   834     // In addition, Self.TState is stable.
   836     assert (_owner == Self, "invariant") ;
   837     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   838     UnlinkAfterAcquire (Self, SelfNode) ;
   839     if (_succ == Self) _succ = NULL ;
   840     assert (_succ != Self, "invariant") ;
   841     SelfNode->TState = ObjectWaiter::TS_RUN ;
   842     OrderAccess::fence() ;      // see comments at the end of EnterI()
   843 }
   845 // after the thread acquires the lock in ::enter().  Equally, we could defer
   846 // unlinking the thread until ::exit()-time.
   848 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
   849 {
   850     assert (_owner == Self, "invariant") ;
   851     assert (SelfNode->_thread == Self, "invariant") ;
   853     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
   854         // Normal case: remove Self from the DLL EntryList .
   855         // This is a constant-time operation.
   856         ObjectWaiter * nxt = SelfNode->_next ;
   857         ObjectWaiter * prv = SelfNode->_prev ;
   858         if (nxt != NULL) nxt->_prev = prv ;
   859         if (prv != NULL) prv->_next = nxt ;
   860         if (SelfNode == _EntryList ) _EntryList = nxt ;
   861         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   862         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   863         TEVENT (Unlink from EntryList) ;
   864     } else {
   865         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   866         // Inopportune interleaving -- Self is still on the cxq.
   867         // This usually means the enqueue of self raced an exiting thread.
   868         // Normally we'll find Self near the front of the cxq, so
   869         // dequeueing is typically fast.  If needbe we can accelerate
   870         // this with some MCS/CHL-like bidirectional list hints and advisory
   871         // back-links so dequeueing from the interior will normally operate
   872         // in constant-time.
   873         // Dequeue Self from either the head (with CAS) or from the interior
   874         // with a linear-time scan and normal non-atomic memory operations.
   875         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
   876         // and then unlink Self from EntryList.  We have to drain eventually,
   877         // so it might as well be now.
   879         ObjectWaiter * v = _cxq ;
   880         assert (v != NULL, "invariant") ;
   881         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
   882             // The CAS above can fail from interference IFF a "RAT" arrived.
   883             // In that case Self must be in the interior and can no longer be
   884             // at the head of cxq.
   885             if (v == SelfNode) {
   886                 assert (_cxq != v, "invariant") ;
   887                 v = _cxq ;          // CAS above failed - start scan at head of list
   888             }
   889             ObjectWaiter * p ;
   890             ObjectWaiter * q = NULL ;
   891             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
   892                 q = p ;
   893                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   894             }
   895             assert (v != SelfNode,  "invariant") ;
   896             assert (p == SelfNode,  "Node not found on cxq") ;
   897             assert (p != _cxq,      "invariant") ;
   898             assert (q != NULL,      "invariant") ;
   899             assert (q->_next == p,  "invariant") ;
   900             q->_next = p->_next ;
   901         }
   902         TEVENT (Unlink from cxq) ;
   903     }
   905     // Diagnostic hygiene ...
   906     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
   907     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
   908     SelfNode->TState = ObjectWaiter::TS_RUN ;
   909 }
   911 // -----------------------------------------------------------------------------
   912 // Exit support
   913 //
   914 // exit()
   915 // ~~~~~~
   916 // Note that the collector can't reclaim the objectMonitor or deflate
   917 // the object out from underneath the thread calling ::exit() as the
   918 // thread calling ::exit() never transitions to a stable state.
   919 // This inhibits GC, which in turn inhibits asynchronous (and
   920 // inopportune) reclamation of "this".
   921 //
   922 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
   923 // There's one exception to the claim above, however.  EnterI() can call
   924 // exit() to drop a lock if the acquirer has been externally suspended.
   925 // In that case exit() is called with _thread_state as _thread_blocked,
   926 // but the monitor's _count field is > 0, which inhibits reclamation.
   927 //
   928 // 1-0 exit
   929 // ~~~~~~~~
   930 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
   931 // the fast-path operators have been optimized so the common ::exit()
   932 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
   933 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
   934 // greatly improves latency -- MEMBAR and CAS having considerable local
   935 // latency on modern processors -- but at the cost of "stranding".  Absent the
   936 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
   937 // ::enter() path, resulting in the entering thread being stranding
   938 // and a progress-liveness failure.   Stranding is extremely rare.
   939 // We use timers (timed park operations) & periodic polling to detect
   940 // and recover from stranding.  Potentially stranded threads periodically
   941 // wake up and poll the lock.  See the usage of the _Responsible variable.
   942 //
   943 // The CAS() in enter provides for safety and exclusion, while the CAS or
   944 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
   945 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
   946 // We detect and recover from stranding with timers.
   947 //
   948 // If a thread transiently strands it'll park until (a) another
   949 // thread acquires the lock and then drops the lock, at which time the
   950 // exiting thread will notice and unpark the stranded thread, or, (b)
   951 // the timer expires.  If the lock is high traffic then the stranding latency
   952 // will be low due to (a).  If the lock is low traffic then the odds of
   953 // stranding are lower, although the worst-case stranding latency
   954 // is longer.  Critically, we don't want to put excessive load in the
   955 // platform's timer subsystem.  We want to minimize both the timer injection
   956 // rate (timers created/sec) as well as the number of timers active at
   957 // any one time.  (more precisely, we want to minimize timer-seconds, which is
   958 // the integral of the # of active timers at any instant over time).
   959 // Both impinge on OS scalability.  Given that, at most one thread parked on
   960 // a monitor will use a timer.
   962 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
   963    Thread * Self = THREAD ;
   964    if (THREAD != _owner) {
   965      if (THREAD->is_lock_owned((address) _owner)) {
   966        // Transmute _owner from a BasicLock pointer to a Thread address.
   967        // We don't need to hold _mutex for this transition.
   968        // Non-null to Non-null is safe as long as all readers can
   969        // tolerate either flavor.
   970        assert (_recursions == 0, "invariant") ;
   971        _owner = THREAD ;
   972        _recursions = 0 ;
   973        OwnerIsThread = 1 ;
   974      } else {
   975        // NOTE: we need to handle unbalanced monitor enter/exit
   976        // in native code by throwing an exception.
   977        // TODO: Throw an IllegalMonitorStateException ?
   978        TEVENT (Exit - Throw IMSX) ;
   979        assert(false, "Non-balanced monitor enter/exit!");
   980        if (false) {
   981           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   982        }
   983        return;
   984      }
   985    }
   987    if (_recursions != 0) {
   988      _recursions--;        // this is simple recursive enter
   989      TEVENT (Inflated exit - recursive) ;
   990      return ;
   991    }
   993    // Invariant: after setting Responsible=null an thread must execute
   994    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   995    if ((SyncFlags & 4) == 0) {
   996       _Responsible = NULL ;
   997    }
   999 #if INCLUDE_JFR
  1000    // get the owner's thread id for the MonitorEnter event
  1001    // if it is enabled and the thread isn't suspended
  1002    if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
  1003     _previous_owner_tid = JFR_THREAD_ID(Self);
  1005 #endif
  1007    for (;;) {
  1008       assert (THREAD == _owner, "invariant") ;
  1011       if (Knob_ExitPolicy == 0) {
  1012          // release semantics: prior loads and stores from within the critical section
  1013          // must not float (reorder) past the following store that drops the lock.
  1014          // On SPARC that requires MEMBAR #loadstore|#storestore.
  1015          // But of course in TSO #loadstore|#storestore is not required.
  1016          // I'd like to write one of the following:
  1017          // A.  OrderAccess::release() ; _owner = NULL
  1018          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
  1019          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
  1020          // store into a _dummy variable.  That store is not needed, but can result
  1021          // in massive wasteful coherency traffic on classic SMP systems.
  1022          // Instead, I use release_store(), which is implemented as just a simple
  1023          // ST on x64, x86 and SPARC.
  1024          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1025          OrderAccess::storeload() ;                         // See if we need to wake a successor
  1026          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1027             TEVENT (Inflated exit - simple egress) ;
  1028             return ;
  1030          TEVENT (Inflated exit - complex egress) ;
  1032          // Normally the exiting thread is responsible for ensuring succession,
  1033          // but if other successors are ready or other entering threads are spinning
  1034          // then this thread can simply store NULL into _owner and exit without
  1035          // waking a successor.  The existence of spinners or ready successors
  1036          // guarantees proper succession (liveness).  Responsibility passes to the
  1037          // ready or running successors.  The exiting thread delegates the duty.
  1038          // More precisely, if a successor already exists this thread is absolved
  1039          // of the responsibility of waking (unparking) one.
  1040          //
  1041          // The _succ variable is critical to reducing futile wakeup frequency.
  1042          // _succ identifies the "heir presumptive" thread that has been made
  1043          // ready (unparked) but that has not yet run.  We need only one such
  1044          // successor thread to guarantee progress.
  1045          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  1046          // section 3.3 "Futile Wakeup Throttling" for details.
  1047          //
  1048          // Note that spinners in Enter() also set _succ non-null.
  1049          // In the current implementation spinners opportunistically set
  1050          // _succ so that exiting threads might avoid waking a successor.
  1051          // Another less appealing alternative would be for the exiting thread
  1052          // to drop the lock and then spin briefly to see if a spinner managed
  1053          // to acquire the lock.  If so, the exiting thread could exit
  1054          // immediately without waking a successor, otherwise the exiting
  1055          // thread would need to dequeue and wake a successor.
  1056          // (Note that we'd need to make the post-drop spin short, but no
  1057          // shorter than the worst-case round-trip cache-line migration time.
  1058          // The dropped lock needs to become visible to the spinner, and then
  1059          // the acquisition of the lock by the spinner must become visible to
  1060          // the exiting thread).
  1061          //
  1063          // It appears that an heir-presumptive (successor) must be made ready.
  1064          // Only the current lock owner can manipulate the EntryList or
  1065          // drain _cxq, so we need to reacquire the lock.  If we fail
  1066          // to reacquire the lock the responsibility for ensuring succession
  1067          // falls to the new owner.
  1068          //
  1069          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1070             return ;
  1072          TEVENT (Exit - Reacquired) ;
  1073       } else {
  1074          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1075             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1076             OrderAccess::storeload() ;
  1077             // Ratify the previously observed values.
  1078             if (_cxq == NULL || _succ != NULL) {
  1079                 TEVENT (Inflated exit - simple egress) ;
  1080                 return ;
  1083             // inopportune interleaving -- the exiting thread (this thread)
  1084             // in the fast-exit path raced an entering thread in the slow-enter
  1085             // path.
  1086             // We have two choices:
  1087             // A.  Try to reacquire the lock.
  1088             //     If the CAS() fails return immediately, otherwise
  1089             //     we either restart/rerun the exit operation, or simply
  1090             //     fall-through into the code below which wakes a successor.
  1091             // B.  If the elements forming the EntryList|cxq are TSM
  1092             //     we could simply unpark() the lead thread and return
  1093             //     without having set _succ.
  1094             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1095                TEVENT (Inflated exit - reacquired succeeded) ;
  1096                return ;
  1098             TEVENT (Inflated exit - reacquired failed) ;
  1099          } else {
  1100             TEVENT (Inflated exit - complex egress) ;
  1104       guarantee (_owner == THREAD, "invariant") ;
  1106       ObjectWaiter * w = NULL ;
  1107       int QMode = Knob_QMode ;
  1109       if (QMode == 2 && _cxq != NULL) {
  1110           // QMode == 2 : cxq has precedence over EntryList.
  1111           // Try to directly wake a successor from the cxq.
  1112           // If successful, the successor will need to unlink itself from cxq.
  1113           w = _cxq ;
  1114           assert (w != NULL, "invariant") ;
  1115           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1116           ExitEpilog (Self, w) ;
  1117           return ;
  1120       if (QMode == 3 && _cxq != NULL) {
  1121           // Aggressively drain cxq into EntryList at the first opportunity.
  1122           // This policy ensure that recently-run threads live at the head of EntryList.
  1123           // Drain _cxq into EntryList - bulk transfer.
  1124           // First, detach _cxq.
  1125           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1126           w = _cxq ;
  1127           for (;;) {
  1128              assert (w != NULL, "Invariant") ;
  1129              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1130              if (u == w) break ;
  1131              w = u ;
  1133           assert (w != NULL              , "invariant") ;
  1135           ObjectWaiter * q = NULL ;
  1136           ObjectWaiter * p ;
  1137           for (p = w ; p != NULL ; p = p->_next) {
  1138               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1139               p->TState = ObjectWaiter::TS_ENTER ;
  1140               p->_prev = q ;
  1141               q = p ;
  1144           // Append the RATs to the EntryList
  1145           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1146           ObjectWaiter * Tail ;
  1147           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1148           if (Tail == NULL) {
  1149               _EntryList = w ;
  1150           } else {
  1151               Tail->_next = w ;
  1152               w->_prev = Tail ;
  1155           // Fall thru into code that tries to wake a successor from EntryList
  1158       if (QMode == 4 && _cxq != NULL) {
  1159           // Aggressively drain cxq into EntryList at the first opportunity.
  1160           // This policy ensure that recently-run threads live at the head of EntryList.
  1162           // Drain _cxq into EntryList - bulk transfer.
  1163           // First, detach _cxq.
  1164           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1165           w = _cxq ;
  1166           for (;;) {
  1167              assert (w != NULL, "Invariant") ;
  1168              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1169              if (u == w) break ;
  1170              w = u ;
  1172           assert (w != NULL              , "invariant") ;
  1174           ObjectWaiter * q = NULL ;
  1175           ObjectWaiter * p ;
  1176           for (p = w ; p != NULL ; p = p->_next) {
  1177               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1178               p->TState = ObjectWaiter::TS_ENTER ;
  1179               p->_prev = q ;
  1180               q = p ;
  1183           // Prepend the RATs to the EntryList
  1184           if (_EntryList != NULL) {
  1185               q->_next = _EntryList ;
  1186               _EntryList->_prev = q ;
  1188           _EntryList = w ;
  1190           // Fall thru into code that tries to wake a successor from EntryList
  1193       w = _EntryList  ;
  1194       if (w != NULL) {
  1195           // I'd like to write: guarantee (w->_thread != Self).
  1196           // But in practice an exiting thread may find itself on the EntryList.
  1197           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1198           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1199           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1200           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1201           // release the lock "O".  T2 resumes immediately after the ST of null into
  1202           // _owner, above.  T2 notices that the EntryList is populated, so it
  1203           // reacquires the lock and then finds itself on the EntryList.
  1204           // Given all that, we have to tolerate the circumstance where "w" is
  1205           // associated with Self.
  1206           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1207           ExitEpilog (Self, w) ;
  1208           return ;
  1211       // If we find that both _cxq and EntryList are null then just
  1212       // re-run the exit protocol from the top.
  1213       w = _cxq ;
  1214       if (w == NULL) continue ;
  1216       // Drain _cxq into EntryList - bulk transfer.
  1217       // First, detach _cxq.
  1218       // The following loop is tantamount to: w = swap (&cxq, NULL)
  1219       for (;;) {
  1220           assert (w != NULL, "Invariant") ;
  1221           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1222           if (u == w) break ;
  1223           w = u ;
  1225       TEVENT (Inflated exit - drain cxq into EntryList) ;
  1227       assert (w != NULL              , "invariant") ;
  1228       assert (_EntryList  == NULL    , "invariant") ;
  1230       // Convert the LIFO SLL anchored by _cxq into a DLL.
  1231       // The list reorganization step operates in O(LENGTH(w)) time.
  1232       // It's critical that this step operate quickly as
  1233       // "Self" still holds the outer-lock, restricting parallelism
  1234       // and effectively lengthening the critical section.
  1235       // Invariant: s chases t chases u.
  1236       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1237       // we have faster access to the tail.
  1239       if (QMode == 1) {
  1240          // QMode == 1 : drain cxq to EntryList, reversing order
  1241          // We also reverse the order of the list.
  1242          ObjectWaiter * s = NULL ;
  1243          ObjectWaiter * t = w ;
  1244          ObjectWaiter * u = NULL ;
  1245          while (t != NULL) {
  1246              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1247              t->TState = ObjectWaiter::TS_ENTER ;
  1248              u = t->_next ;
  1249              t->_prev = u ;
  1250              t->_next = s ;
  1251              s = t;
  1252              t = u ;
  1254          _EntryList  = s ;
  1255          assert (s != NULL, "invariant") ;
  1256       } else {
  1257          // QMode == 0 or QMode == 2
  1258          _EntryList = w ;
  1259          ObjectWaiter * q = NULL ;
  1260          ObjectWaiter * p ;
  1261          for (p = w ; p != NULL ; p = p->_next) {
  1262              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1263              p->TState = ObjectWaiter::TS_ENTER ;
  1264              p->_prev = q ;
  1265              q = p ;
  1269       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1270       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1272       // See if we can abdicate to a spinner instead of waking a thread.
  1273       // A primary goal of the implementation is to reduce the
  1274       // context-switch rate.
  1275       if (_succ != NULL) continue;
  1277       w = _EntryList  ;
  1278       if (w != NULL) {
  1279           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1280           ExitEpilog (Self, w) ;
  1281           return ;
  1286 // ExitSuspendEquivalent:
  1287 // A faster alternate to handle_special_suspend_equivalent_condition()
  1288 //
  1289 // handle_special_suspend_equivalent_condition() unconditionally
  1290 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1291 // operations have high latency.  Note that in ::enter() we call HSSEC
  1292 // while holding the monitor, so we effectively lengthen the critical sections.
  1293 //
  1294 // There are a number of possible solutions:
  1295 //
  1296 // A.  To ameliorate the problem we might also defer state transitions
  1297 //     to as late as possible -- just prior to parking.
  1298 //     Given that, we'd call HSSEC after having returned from park(),
  1299 //     but before attempting to acquire the monitor.  This is only a
  1300 //     partial solution.  It avoids calling HSSEC while holding the
  1301 //     monitor (good), but it still increases successor reacquisition latency --
  1302 //     the interval between unparking a successor and the time the successor
  1303 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1304 //     If we use this technique we can also avoid EnterI()-exit() loop
  1305 //     in ::enter() where we iteratively drop the lock and then attempt
  1306 //     to reacquire it after suspending.
  1307 //
  1308 // B.  In the future we might fold all the suspend bits into a
  1309 //     composite per-thread suspend flag and then update it with CAS().
  1310 //     Alternately, a Dekker-like mechanism with multiple variables
  1311 //     would suffice:
  1312 //       ST Self->_suspend_equivalent = false
  1313 //       MEMBAR
  1314 //       LD Self_>_suspend_flags
  1315 //
  1318 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1319    int Mode = Knob_FastHSSEC ;
  1320    if (Mode && !jSelf->is_external_suspend()) {
  1321       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1322       jSelf->clear_suspend_equivalent() ;
  1323       if (2 == Mode) OrderAccess::storeload() ;
  1324       if (!jSelf->is_external_suspend()) return false ;
  1325       // We raced a suspension -- fall thru into the slow path
  1326       TEVENT (ExitSuspendEquivalent - raced) ;
  1327       jSelf->set_suspend_equivalent() ;
  1329    return jSelf->handle_special_suspend_equivalent_condition() ;
  1333 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1334    assert (_owner == Self, "invariant") ;
  1336    // Exit protocol:
  1337    // 1. ST _succ = wakee
  1338    // 2. membar #loadstore|#storestore;
  1339    // 2. ST _owner = NULL
  1340    // 3. unpark(wakee)
  1342    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1343    ParkEvent * Trigger = Wakee->_event ;
  1345    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1346    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1347    // out-of-scope (non-extant).
  1348    Wakee  = NULL ;
  1350    // Drop the lock
  1351    OrderAccess::release_store_ptr (&_owner, NULL) ;
  1352    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1354    if (SafepointSynchronize::do_call_back()) {
  1355       TEVENT (unpark before SAFEPOINT) ;
  1358    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1359    Trigger->unpark() ;
  1361    // Maintain stats and report events to JVMTI
  1362    if (ObjectMonitor::_sync_Parks != NULL) {
  1363       ObjectMonitor::_sync_Parks->inc() ;
  1368 // -----------------------------------------------------------------------------
  1369 // Class Loader deadlock handling.
  1370 //
  1371 // complete_exit exits a lock returning recursion count
  1372 // complete_exit/reenter operate as a wait without waiting
  1373 // complete_exit requires an inflated monitor
  1374 // The _owner field is not always the Thread addr even with an
  1375 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  1376 // thread due to contention.
  1377 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1378    Thread * const Self = THREAD;
  1379    assert(Self->is_Java_thread(), "Must be Java thread!");
  1380    JavaThread *jt = (JavaThread *)THREAD;
  1382    DeferredInitialize();
  1384    if (THREAD != _owner) {
  1385     if (THREAD->is_lock_owned ((address)_owner)) {
  1386        assert(_recursions == 0, "internal state error");
  1387        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1388        _recursions = 0 ;
  1389        OwnerIsThread = 1 ;
  1393    guarantee(Self == _owner, "complete_exit not owner");
  1394    intptr_t save = _recursions; // record the old recursion count
  1395    _recursions = 0;        // set the recursion level to be 0
  1396    exit (true, Self) ;           // exit the monitor
  1397    guarantee (_owner != Self, "invariant");
  1398    return save;
  1401 // reenter() enters a lock and sets recursion count
  1402 // complete_exit/reenter operate as a wait without waiting
  1403 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1404    Thread * const Self = THREAD;
  1405    assert(Self->is_Java_thread(), "Must be Java thread!");
  1406    JavaThread *jt = (JavaThread *)THREAD;
  1408    guarantee(_owner != Self, "reenter already owner");
  1409    enter (THREAD);       // enter the monitor
  1410    guarantee (_recursions == 0, "reenter recursion");
  1411    _recursions = recursions;
  1412    return;
  1416 // -----------------------------------------------------------------------------
  1417 // A macro is used below because there may already be a pending
  1418 // exception which should not abort the execution of the routines
  1419 // which use this (which is why we don't put this into check_slow and
  1420 // call it with a CHECK argument).
  1422 #define CHECK_OWNER()                                                             \
  1423   do {                                                                            \
  1424     if (THREAD != _owner) {                                                       \
  1425       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1426         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1427         _recursions = 0;                                                          \
  1428         OwnerIsThread = 1 ;                                                       \
  1429       } else {                                                                    \
  1430         TEVENT (Throw IMSX) ;                                                     \
  1431         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1432       }                                                                           \
  1433     }                                                                             \
  1434   } while (false)
  1436 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1437 // TODO-FIXME: remove check_slow() -- it's likely dead.
  1439 void ObjectMonitor::check_slow(TRAPS) {
  1440   TEVENT (check_slow - throw IMSX) ;
  1441   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1442   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1445 static int Adjust (volatile int * adr, int dx) {
  1446   int v ;
  1447   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  1448   return v ;
  1451 // helper method for posting a monitor wait event
  1452 static void post_monitor_wait_event(EventJavaMonitorWait* event,
  1453                                     ObjectMonitor* monitor,
  1454                                     jlong notifier_tid,
  1455                                     jlong timeout,
  1456                                     bool timedout) {
  1457   assert(monitor != NULL, "invariant");
  1458   event->set_monitorClass(((oop)monitor->object())->klass());
  1459   event->set_timeout(timeout);
  1460   event->set_address((uintptr_t)monitor->object_addr());
  1461   event->set_notifier((u8)notifier_tid);
  1462   event->set_timedOut(timedout);
  1463   event->commit();
  1466 // -----------------------------------------------------------------------------
  1467 // Wait/Notify/NotifyAll
  1468 //
  1469 // Note: a subset of changes to ObjectMonitor::wait()
  1470 // will need to be replicated in complete_exit above
  1471 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1472    Thread * const Self = THREAD ;
  1473    assert(Self->is_Java_thread(), "Must be Java thread!");
  1474    JavaThread *jt = (JavaThread *)THREAD;
  1476    DeferredInitialize () ;
  1478    // Throw IMSX or IEX.
  1479    CHECK_OWNER();
  1481    EventJavaMonitorWait event;
  1483    // check for a pending interrupt
  1484    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1485      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1486      if (JvmtiExport::should_post_monitor_waited()) {
  1487         // Note: 'false' parameter is passed here because the
  1488         // wait was not timed out due to thread interrupt.
  1489         JvmtiExport::post_monitor_waited(jt, this, false);
  1491         // In this short circuit of the monitor wait protocol, the
  1492         // current thread never drops ownership of the monitor and
  1493         // never gets added to the wait queue so the current thread
  1494         // cannot be made the successor. This means that the
  1495         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
  1496         // consume an unpark() meant for the ParkEvent associated with
  1497         // this ObjectMonitor.
  1499      if (event.should_commit()) {
  1500        post_monitor_wait_event(&event, this, 0, millis, false);
  1502      TEVENT (Wait - Throw IEX) ;
  1503      THROW(vmSymbols::java_lang_InterruptedException());
  1504      return ;
  1507    TEVENT (Wait) ;
  1509    assert (Self->_Stalled == 0, "invariant") ;
  1510    Self->_Stalled = intptr_t(this) ;
  1511    jt->set_current_waiting_monitor(this);
  1513    // create a node to be put into the queue
  1514    // Critically, after we reset() the event but prior to park(), we must check
  1515    // for a pending interrupt.
  1516    ObjectWaiter node(Self);
  1517    node.TState = ObjectWaiter::TS_WAIT ;
  1518    Self->_ParkEvent->reset() ;
  1519    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1521    // Enter the waiting queue, which is a circular doubly linked list in this case
  1522    // but it could be a priority queue or any data structure.
  1523    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1524    // by the the owner of the monitor *except* in the case where park()
  1525    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1526    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1528    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1529    AddWaiter (&node) ;
  1530    Thread::SpinRelease (&_WaitSetLock) ;
  1532    if ((SyncFlags & 4) == 0) {
  1533       _Responsible = NULL ;
  1535    intptr_t save = _recursions; // record the old recursion count
  1536    _waiters++;                  // increment the number of waiters
  1537    _recursions = 0;             // set the recursion level to be 1
  1538    exit (true, Self) ;                    // exit the monitor
  1539    guarantee (_owner != Self, "invariant") ;
  1541    // The thread is on the WaitSet list - now park() it.
  1542    // On MP systems it's conceivable that a brief spin before we park
  1543    // could be profitable.
  1544    //
  1545    // TODO-FIXME: change the following logic to a loop of the form
  1546    //   while (!timeout && !interrupted && _notified == 0) park()
  1548    int ret = OS_OK ;
  1549    int WasNotified = 0 ;
  1550    { // State transition wrappers
  1551      OSThread* osthread = Self->osthread();
  1552      OSThreadWaitState osts(osthread, true);
  1554        ThreadBlockInVM tbivm(jt);
  1555        // Thread is in thread_blocked state and oop access is unsafe.
  1556        jt->set_suspend_equivalent();
  1558        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1559            // Intentionally empty
  1560        } else
  1561        if (node._notified == 0) {
  1562          if (millis <= 0) {
  1563             Self->_ParkEvent->park () ;
  1564          } else {
  1565             ret = Self->_ParkEvent->park (millis) ;
  1569        // were we externally suspended while we were waiting?
  1570        if (ExitSuspendEquivalent (jt)) {
  1571           // TODO-FIXME: add -- if succ == Self then succ = null.
  1572           jt->java_suspend_self();
  1575      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1578      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1579      // from the WaitSet to the EntryList.
  1580      // See if we need to remove Node from the WaitSet.
  1581      // We use double-checked locking to avoid grabbing _WaitSetLock
  1582      // if the thread is not on the wait queue.
  1583      //
  1584      // Note that we don't need a fence before the fetch of TState.
  1585      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1586      // written by the is thread. (perhaps the fetch might even be satisfied
  1587      // by a look-aside into the processor's own store buffer, although given
  1588      // the length of the code path between the prior ST and this load that's
  1589      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1590      // then we'll acquire the lock and then re-fetch a fresh TState value.
  1591      // That is, we fail toward safety.
  1593      if (node.TState == ObjectWaiter::TS_WAIT) {
  1594          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1595          if (node.TState == ObjectWaiter::TS_WAIT) {
  1596             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1597             assert(node._notified == 0, "invariant");
  1598             node.TState = ObjectWaiter::TS_RUN ;
  1600          Thread::SpinRelease (&_WaitSetLock) ;
  1603      // The thread is now either on off-list (TS_RUN),
  1604      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1605      // The Node's TState variable is stable from the perspective of this thread.
  1606      // No other threads will asynchronously modify TState.
  1607      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1608      OrderAccess::loadload() ;
  1609      if (_succ == Self) _succ = NULL ;
  1610      WasNotified = node._notified ;
  1612      // Reentry phase -- reacquire the monitor.
  1613      // re-enter contended monitor after object.wait().
  1614      // retain OBJECT_WAIT state until re-enter successfully completes
  1615      // Thread state is thread_in_vm and oop access is again safe,
  1616      // although the raw address of the object may have changed.
  1617      // (Don't cache naked oops over safepoints, of course).
  1619      // post monitor waited event. Note that this is past-tense, we are done waiting.
  1620      if (JvmtiExport::should_post_monitor_waited()) {
  1621        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1623        if (node._notified != 0 && _succ == Self) {
  1624          // In this part of the monitor wait-notify-reenter protocol it
  1625          // is possible (and normal) for another thread to do a fastpath
  1626          // monitor enter-exit while this thread is still trying to get
  1627          // to the reenter portion of the protocol.
  1628          //
  1629          // The ObjectMonitor was notified and the current thread is
  1630          // the successor which also means that an unpark() has already
  1631          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
  1632          // consume the unpark() that was done when the successor was
  1633          // set because the same ParkEvent is shared between Java
  1634          // monitors and JVM/TI RawMonitors (for now).
  1635          //
  1636          // We redo the unpark() to ensure forward progress, i.e., we
  1637          // don't want all pending threads hanging (parked) with none
  1638          // entering the unlocked monitor.
  1639          node._event->unpark();
  1643      if (event.should_commit()) {
  1644        post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
  1647      OrderAccess::fence() ;
  1649      assert (Self->_Stalled != 0, "invariant") ;
  1650      Self->_Stalled = 0 ;
  1652      assert (_owner != Self, "invariant") ;
  1653      ObjectWaiter::TStates v = node.TState ;
  1654      if (v == ObjectWaiter::TS_RUN) {
  1655          enter (Self) ;
  1656      } else {
  1657          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1658          ReenterI (Self, &node) ;
  1659          node.wait_reenter_end(this);
  1662      // Self has reacquired the lock.
  1663      // Lifecycle - the node representing Self must not appear on any queues.
  1664      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1665      // want residual elements associated with this thread left on any lists.
  1666      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1667      assert    (_owner == Self, "invariant") ;
  1668      assert    (_succ != Self , "invariant") ;
  1669    } // OSThreadWaitState()
  1671    jt->set_current_waiting_monitor(NULL);
  1673    guarantee (_recursions == 0, "invariant") ;
  1674    _recursions = save;     // restore the old recursion count
  1675    _waiters--;             // decrement the number of waiters
  1677    // Verify a few postconditions
  1678    assert (_owner == Self       , "invariant") ;
  1679    assert (_succ  != Self       , "invariant") ;
  1680    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1682    if (SyncFlags & 32) {
  1683       OrderAccess::fence() ;
  1686    // check if the notification happened
  1687    if (!WasNotified) {
  1688      // no, it could be timeout or Thread.interrupt() or both
  1689      // check for interrupt event, otherwise it is timeout
  1690      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1691        TEVENT (Wait - throw IEX from epilog) ;
  1692        THROW(vmSymbols::java_lang_InterruptedException());
  1696    // NOTE: Spurious wake up will be consider as timeout.
  1697    // Monitor notify has precedence over thread interrupt.
  1701 // Consider:
  1702 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1703 // then instead of transferring a thread from the WaitSet to the EntryList
  1704 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  1706 void ObjectMonitor::notify(TRAPS) {
  1707   CHECK_OWNER();
  1708   if (_WaitSet == NULL) {
  1709      TEVENT (Empty-Notify) ;
  1710      return ;
  1712   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1714   int Policy = Knob_MoveNotifyee ;
  1716   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1717   ObjectWaiter * iterator = DequeueWaiter() ;
  1718   if (iterator != NULL) {
  1719      TEVENT (Notify1 - Transfer) ;
  1720      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1721      guarantee (iterator->_notified == 0, "invariant") ;
  1722      if (Policy != 4) {
  1723         iterator->TState = ObjectWaiter::TS_ENTER ;
  1725      iterator->_notified = 1 ;
  1726      Thread * Self = THREAD;
  1727      iterator->_notifier_tid = JFR_THREAD_ID(Self);
  1729      ObjectWaiter * List = _EntryList ;
  1730      if (List != NULL) {
  1731         assert (List->_prev == NULL, "invariant") ;
  1732         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1733         assert (List != iterator, "invariant") ;
  1736      if (Policy == 0) {       // prepend to EntryList
  1737          if (List == NULL) {
  1738              iterator->_next = iterator->_prev = NULL ;
  1739              _EntryList = iterator ;
  1740          } else {
  1741              List->_prev = iterator ;
  1742              iterator->_next = List ;
  1743              iterator->_prev = NULL ;
  1744              _EntryList = iterator ;
  1746      } else
  1747      if (Policy == 1) {      // append to EntryList
  1748          if (List == NULL) {
  1749              iterator->_next = iterator->_prev = NULL ;
  1750              _EntryList = iterator ;
  1751          } else {
  1752             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1753             // the EntryList.  We can make tail access constant-time by converting to
  1754             // a CDLL instead of using our current DLL.
  1755             ObjectWaiter * Tail ;
  1756             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1757             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1758             Tail->_next = iterator ;
  1759             iterator->_prev = Tail ;
  1760             iterator->_next = NULL ;
  1762      } else
  1763      if (Policy == 2) {      // prepend to cxq
  1764          // prepend to cxq
  1765          if (List == NULL) {
  1766              iterator->_next = iterator->_prev = NULL ;
  1767              _EntryList = iterator ;
  1768          } else {
  1769             iterator->TState = ObjectWaiter::TS_CXQ ;
  1770             for (;;) {
  1771                 ObjectWaiter * Front = _cxq ;
  1772                 iterator->_next = Front ;
  1773                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1774                     break ;
  1778      } else
  1779      if (Policy == 3) {      // append to cxq
  1780         iterator->TState = ObjectWaiter::TS_CXQ ;
  1781         for (;;) {
  1782             ObjectWaiter * Tail ;
  1783             Tail = _cxq ;
  1784             if (Tail == NULL) {
  1785                 iterator->_next = NULL ;
  1786                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1787                    break ;
  1789             } else {
  1790                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1791                 Tail->_next = iterator ;
  1792                 iterator->_prev = Tail ;
  1793                 iterator->_next = NULL ;
  1794                 break ;
  1797      } else {
  1798         ParkEvent * ev = iterator->_event ;
  1799         iterator->TState = ObjectWaiter::TS_RUN ;
  1800         OrderAccess::fence() ;
  1801         ev->unpark() ;
  1804      if (Policy < 4) {
  1805        iterator->wait_reenter_begin(this);
  1808      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1809      // move the add-to-EntryList operation, above, outside the critical section
  1810      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1811      // exception of  wait() timeouts and interrupts the monitor owner
  1812      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1813      // on _WaitSetLock so it's not profitable to reduce the length of the
  1814      // critical section.
  1817   Thread::SpinRelease (&_WaitSetLock) ;
  1819   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
  1820      ObjectMonitor::_sync_Notifications->inc() ;
  1825 void ObjectMonitor::notifyAll(TRAPS) {
  1826   CHECK_OWNER();
  1827   ObjectWaiter* iterator;
  1828   if (_WaitSet == NULL) {
  1829       TEVENT (Empty-NotifyAll) ;
  1830       return ;
  1832   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1834   int Policy = Knob_MoveNotifyee ;
  1835   int Tally = 0 ;
  1836   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1838   for (;;) {
  1839      iterator = DequeueWaiter () ;
  1840      if (iterator == NULL) break ;
  1841      TEVENT (NotifyAll - Transfer1) ;
  1842      ++Tally ;
  1844      // Disposition - what might we do with iterator ?
  1845      // a.  add it directly to the EntryList - either tail or head.
  1846      // b.  push it onto the front of the _cxq.
  1847      // For now we use (a).
  1849      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1850      guarantee (iterator->_notified == 0, "invariant") ;
  1851      iterator->_notified = 1 ;
  1852      Thread * Self = THREAD;
  1853      iterator->_notifier_tid = JFR_THREAD_ID(Self);
  1854      if (Policy != 4) {
  1855         iterator->TState = ObjectWaiter::TS_ENTER ;
  1858      ObjectWaiter * List = _EntryList ;
  1859      if (List != NULL) {
  1860         assert (List->_prev == NULL, "invariant") ;
  1861         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1862         assert (List != iterator, "invariant") ;
  1865      if (Policy == 0) {       // prepend to EntryList
  1866          if (List == NULL) {
  1867              iterator->_next = iterator->_prev = NULL ;
  1868              _EntryList = iterator ;
  1869          } else {
  1870              List->_prev = iterator ;
  1871              iterator->_next = List ;
  1872              iterator->_prev = NULL ;
  1873              _EntryList = iterator ;
  1875      } else
  1876      if (Policy == 1) {      // append to EntryList
  1877          if (List == NULL) {
  1878              iterator->_next = iterator->_prev = NULL ;
  1879              _EntryList = iterator ;
  1880          } else {
  1881             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1882             // the EntryList.  We can make tail access constant-time by converting to
  1883             // a CDLL instead of using our current DLL.
  1884             ObjectWaiter * Tail ;
  1885             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1886             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1887             Tail->_next = iterator ;
  1888             iterator->_prev = Tail ;
  1889             iterator->_next = NULL ;
  1891      } else
  1892      if (Policy == 2) {      // prepend to cxq
  1893          // prepend to cxq
  1894          iterator->TState = ObjectWaiter::TS_CXQ ;
  1895          for (;;) {
  1896              ObjectWaiter * Front = _cxq ;
  1897              iterator->_next = Front ;
  1898              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1899                  break ;
  1902      } else
  1903      if (Policy == 3) {      // append to cxq
  1904         iterator->TState = ObjectWaiter::TS_CXQ ;
  1905         for (;;) {
  1906             ObjectWaiter * Tail ;
  1907             Tail = _cxq ;
  1908             if (Tail == NULL) {
  1909                 iterator->_next = NULL ;
  1910                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1911                    break ;
  1913             } else {
  1914                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1915                 Tail->_next = iterator ;
  1916                 iterator->_prev = Tail ;
  1917                 iterator->_next = NULL ;
  1918                 break ;
  1921      } else {
  1922         ParkEvent * ev = iterator->_event ;
  1923         iterator->TState = ObjectWaiter::TS_RUN ;
  1924         OrderAccess::fence() ;
  1925         ev->unpark() ;
  1928      if (Policy < 4) {
  1929        iterator->wait_reenter_begin(this);
  1932      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1933      // move the add-to-EntryList operation, above, outside the critical section
  1934      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1935      // exception of  wait() timeouts and interrupts the monitor owner
  1936      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1937      // on _WaitSetLock so it's not profitable to reduce the length of the
  1938      // critical section.
  1941   Thread::SpinRelease (&_WaitSetLock) ;
  1943   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
  1944      ObjectMonitor::_sync_Notifications->inc(Tally) ;
  1948 // -----------------------------------------------------------------------------
  1949 // Adaptive Spinning Support
  1950 //
  1951 // Adaptive spin-then-block - rational spinning
  1952 //
  1953 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1954 // algorithm.  On high order SMP systems it would be better to start with
  1955 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1956 // a contending thread could enqueue itself on the cxq and then spin locally
  1957 // on a thread-specific variable such as its ParkEvent._Event flag.
  1958 // That's left as an exercise for the reader.  Note that global spinning is
  1959 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  1960 // low latency and massive bandwidth.
  1961 //
  1962 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1963 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1964 // (duration) or we can fix the count at approximately the duration of
  1965 // a context switch and vary the frequency.   Of course we could also
  1966 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1967 // For a description of 'Adaptive spin-then-block mutual exclusion in
  1968 // multi-threaded processing,' see U.S. Pat. No. 8046758.
  1969 //
  1970 // This implementation varies the duration "D", where D varies with
  1971 // the success rate of recent spin attempts. (D is capped at approximately
  1972 // length of a round-trip context switch).  The success rate for recent
  1973 // spin attempts is a good predictor of the success rate of future spin
  1974 // attempts.  The mechanism adapts automatically to varying critical
  1975 // section length (lock modality), system load and degree of parallelism.
  1976 // D is maintained per-monitor in _SpinDuration and is initialized
  1977 // optimistically.  Spin frequency is fixed at 100%.
  1978 //
  1979 // Note that _SpinDuration is volatile, but we update it without locks
  1980 // or atomics.  The code is designed so that _SpinDuration stays within
  1981 // a reasonable range even in the presence of races.  The arithmetic
  1982 // operations on _SpinDuration are closed over the domain of legal values,
  1983 // so at worst a race will install and older but still legal value.
  1984 // At the very worst this introduces some apparent non-determinism.
  1985 // We might spin when we shouldn't or vice-versa, but since the spin
  1986 // count are relatively short, even in the worst case, the effect is harmless.
  1987 //
  1988 // Care must be taken that a low "D" value does not become an
  1989 // an absorbing state.  Transient spinning failures -- when spinning
  1990 // is overall profitable -- should not cause the system to converge
  1991 // on low "D" values.  We want spinning to be stable and predictable
  1992 // and fairly responsive to change and at the same time we don't want
  1993 // it to oscillate, become metastable, be "too" non-deterministic,
  1994 // or converge on or enter undesirable stable absorbing states.
  1995 //
  1996 // We implement a feedback-based control system -- using past behavior
  1997 // to predict future behavior.  We face two issues: (a) if the
  1998 // input signal is random then the spin predictor won't provide optimal
  1999 // results, and (b) if the signal frequency is too high then the control
  2000 // system, which has some natural response lag, will "chase" the signal.
  2001 // (b) can arise from multimodal lock hold times.  Transient preemption
  2002 // can also result in apparent bimodal lock hold times.
  2003 // Although sub-optimal, neither condition is particularly harmful, as
  2004 // in the worst-case we'll spin when we shouldn't or vice-versa.
  2005 // The maximum spin duration is rather short so the failure modes aren't bad.
  2006 // To be conservative, I've tuned the gain in system to bias toward
  2007 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  2008 // "rings" or oscillates between spinning and not spinning.  This happens
  2009 // when spinning is just on the cusp of profitability, however, so the
  2010 // situation is not dire.  The state is benign -- there's no need to add
  2011 // hysteresis control to damp the transition rate between spinning and
  2012 // not spinning.
  2013 //
  2015 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  2016 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  2018 // Spinning: Fixed frequency (100%), vary duration
  2021 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  2023     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  2024     int ctr = Knob_FixedSpin ;
  2025     if (ctr != 0) {
  2026         while (--ctr >= 0) {
  2027             if (TryLock (Self) > 0) return 1 ;
  2028             SpinPause () ;
  2030         return 0 ;
  2033     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  2034       if (TryLock(Self) > 0) {
  2035         // Increase _SpinDuration ...
  2036         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2037         // Raising _SpurDuration to the poverty line is key.
  2038         int x = _SpinDuration ;
  2039         if (x < Knob_SpinLimit) {
  2040            if (x < Knob_Poverty) x = Knob_Poverty ;
  2041            _SpinDuration = x + Knob_BonusB ;
  2043         return 1 ;
  2045       SpinPause () ;
  2048     // Admission control - verify preconditions for spinning
  2049     //
  2050     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  2051     // becoming an absorbing state.  Put another way, we spin briefly to
  2052     // sample, just in case the system load, parallelism, contention, or lock
  2053     // modality changed.
  2054     //
  2055     // Consider the following alternative:
  2056     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  2057     // spin attempt.  "Periodically" might mean after a tally of
  2058     // the # of failed spin attempts (or iterations) reaches some threshold.
  2059     // This takes us into the realm of 1-out-of-N spinning, where we
  2060     // hold the duration constant but vary the frequency.
  2062     ctr = _SpinDuration  ;
  2063     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  2064     if (ctr <= 0) return 0 ;
  2066     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  2067     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  2068        TEVENT (Spin abort - notrunnable [TOP]);
  2069        return 0 ;
  2072     int MaxSpin = Knob_MaxSpinners ;
  2073     if (MaxSpin >= 0) {
  2074        if (_Spinner > MaxSpin) {
  2075           TEVENT (Spin abort -- too many spinners) ;
  2076           return 0 ;
  2078        // Slighty racy, but benign ...
  2079        Adjust (&_Spinner, 1) ;
  2082     // We're good to spin ... spin ingress.
  2083     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  2084     // when preparing to LD...CAS _owner, etc and the CAS is likely
  2085     // to succeed.
  2086     int hits    = 0 ;
  2087     int msk     = 0 ;
  2088     int caspty  = Knob_CASPenalty ;
  2089     int oxpty   = Knob_OXPenalty ;
  2090     int sss     = Knob_SpinSetSucc ;
  2091     if (sss && _succ == NULL ) _succ = Self ;
  2092     Thread * prv = NULL ;
  2094     // There are three ways to exit the following loop:
  2095     // 1.  A successful spin where this thread has acquired the lock.
  2096     // 2.  Spin failure with prejudice
  2097     // 3.  Spin failure without prejudice
  2099     while (--ctr >= 0) {
  2101       // Periodic polling -- Check for pending GC
  2102       // Threads may spin while they're unsafe.
  2103       // We don't want spinning threads to delay the JVM from reaching
  2104       // a stop-the-world safepoint or to steal cycles from GC.
  2105       // If we detect a pending safepoint we abort in order that
  2106       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2107       // this thread, if safe, doesn't steal cycles from GC.
  2108       // This is in keeping with the "no loitering in runtime" rule.
  2109       // We periodically check to see if there's a safepoint pending.
  2110       if ((ctr & 0xFF) == 0) {
  2111          if (SafepointSynchronize::do_call_back()) {
  2112             TEVENT (Spin: safepoint) ;
  2113             goto Abort ;           // abrupt spin egress
  2115          if (Knob_UsePause & 1) SpinPause () ;
  2117          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2118          if (hits > 50 && scb != NULL) {
  2119             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2123       if (Knob_UsePause & 2) SpinPause() ;
  2125       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2126       // This is useful on classic SMP systems, but is of less utility on
  2127       // N1-style CMT platforms.
  2128       //
  2129       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2130       // Lock hold times are typically short.  A histogram
  2131       // of successful spin attempts shows that we usually acquire
  2132       // the lock early in the spin.  That suggests we want to
  2133       // sample _owner frequently in the early phase of the spin,
  2134       // but then back-off and sample less frequently as the spin
  2135       // progresses.  The back-off makes a good citizen on SMP big
  2136       // SMP systems.  Oversampling _owner can consume excessive
  2137       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2138       // can inadvertently interfere with the the ST m->owner=null.
  2139       // executed by the lock owner.
  2140       if (ctr & msk) continue ;
  2141       ++hits ;
  2142       if ((hits & 0xF) == 0) {
  2143         // The 0xF, above, corresponds to the exponent.
  2144         // Consider: (msk+1)|msk
  2145         msk = ((msk << 2)|3) & BackOffMask ;
  2148       // Probe _owner with TATAS
  2149       // If this thread observes the monitor transition or flicker
  2150       // from locked to unlocked to locked, then the odds that this
  2151       // thread will acquire the lock in this spin attempt go down
  2152       // considerably.  The same argument applies if the CAS fails
  2153       // or if we observe _owner change from one non-null value to
  2154       // another non-null value.   In such cases we might abort
  2155       // the spin without prejudice or apply a "penalty" to the
  2156       // spin count-down variable "ctr", reducing it by 100, say.
  2158       Thread * ox = (Thread *) _owner ;
  2159       if (ox == NULL) {
  2160          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2161          if (ox == NULL) {
  2162             // The CAS succeeded -- this thread acquired ownership
  2163             // Take care of some bookkeeping to exit spin state.
  2164             if (sss && _succ == Self) {
  2165                _succ = NULL ;
  2167             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2169             // Increase _SpinDuration :
  2170             // The spin was successful (profitable) so we tend toward
  2171             // longer spin attempts in the future.
  2172             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2173             // If we acquired the lock early in the spin cycle it
  2174             // makes sense to increase _SpinDuration proportionally.
  2175             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2176             int x = _SpinDuration ;
  2177             if (x < Knob_SpinLimit) {
  2178                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2179                 _SpinDuration = x + Knob_Bonus ;
  2181             return 1 ;
  2184          // The CAS failed ... we can take any of the following actions:
  2185          // * penalize: ctr -= Knob_CASPenalty
  2186          // * exit spin with prejudice -- goto Abort;
  2187          // * exit spin without prejudice.
  2188          // * Since CAS is high-latency, retry again immediately.
  2189          prv = ox ;
  2190          TEVENT (Spin: cas failed) ;
  2191          if (caspty == -2) break ;
  2192          if (caspty == -1) goto Abort ;
  2193          ctr -= caspty ;
  2194          continue ;
  2197       // Did lock ownership change hands ?
  2198       if (ox != prv && prv != NULL ) {
  2199           TEVENT (spin: Owner changed)
  2200           if (oxpty == -2) break ;
  2201           if (oxpty == -1) goto Abort ;
  2202           ctr -= oxpty ;
  2204       prv = ox ;
  2206       // Abort the spin if the owner is not executing.
  2207       // The owner must be executing in order to drop the lock.
  2208       // Spinning while the owner is OFFPROC is idiocy.
  2209       // Consider: ctr -= RunnablePenalty ;
  2210       if (Knob_OState && NotRunnable (Self, ox)) {
  2211          TEVENT (Spin abort - notrunnable);
  2212          goto Abort ;
  2214       if (sss && _succ == NULL ) _succ = Self ;
  2217    // Spin failed with prejudice -- reduce _SpinDuration.
  2218    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2219    // AIMD is globally stable.
  2220    TEVENT (Spin failure) ;
  2222      int x = _SpinDuration ;
  2223      if (x > 0) {
  2224         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2225         // This is globally sample and tends to damp the response.
  2226         x -= Knob_Penalty ;
  2227         if (x < 0) x = 0 ;
  2228         _SpinDuration = x ;
  2232  Abort:
  2233    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2234    if (sss && _succ == Self) {
  2235       _succ = NULL ;
  2236       // Invariant: after setting succ=null a contending thread
  2237       // must recheck-retry _owner before parking.  This usually happens
  2238       // in the normal usage of TrySpin(), but it's safest
  2239       // to make TrySpin() as foolproof as possible.
  2240       OrderAccess::fence() ;
  2241       if (TryLock(Self) > 0) return 1 ;
  2243    return 0 ;
  2246 // NotRunnable() -- informed spinning
  2247 //
  2248 // Don't bother spinning if the owner is not eligible to drop the lock.
  2249 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2250 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2251 // The thread must be runnable in order to drop the lock in timely fashion.
  2252 // If the _owner is not runnable then spinning will not likely be
  2253 // successful (profitable).
  2254 //
  2255 // Beware -- the thread referenced by _owner could have died
  2256 // so a simply fetch from _owner->_thread_state might trap.
  2257 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2258 // Because of the lifecycle issues the schedctl and _thread_state values
  2259 // observed by NotRunnable() might be garbage.  NotRunnable must
  2260 // tolerate this and consider the observed _thread_state value
  2261 // as advisory.
  2262 //
  2263 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2264 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2265 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2266 // with the LSB of _owner.  Another option would be to probablistically probe
  2267 // the putative _owner->TypeTag value.
  2268 //
  2269 // Checking _thread_state isn't perfect.  Even if the thread is
  2270 // in_java it might be blocked on a page-fault or have been preempted
  2271 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2272 // with schedctl.sc_state gives us a good picture of what the
  2273 // thread is doing, however.
  2274 //
  2275 // TODO: check schedctl.sc_state.
  2276 // We'll need to use SafeFetch32() to read from the schedctl block.
  2277 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2278 //
  2279 // The return value from NotRunnable() is *advisory* -- the
  2280 // result is based on sampling and is not necessarily coherent.
  2281 // The caller must tolerate false-negative and false-positive errors.
  2282 // Spinning, in general, is probabilistic anyway.
  2285 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2286     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2287     if (!OwnerIsThread) return 0 ;
  2289     if (ox == NULL) return 0 ;
  2291     // Avoid transitive spinning ...
  2292     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2293     // Immediately after T1 acquires L it's possible that T2, also
  2294     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2295     // This occurs transiently after T1 acquired L but before
  2296     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2297     // its spin in this circumstance.
  2298     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2300     if (BlockedOn == 1) return 1 ;
  2301     if (BlockedOn != 0) {
  2302       return BlockedOn != intptr_t(this) && _owner == ox ;
  2305     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2306     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2307     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2308     return jst == _thread_blocked || jst == _thread_in_native ;
  2312 // -----------------------------------------------------------------------------
  2313 // WaitSet management ...
  2315 ObjectWaiter::ObjectWaiter(Thread* thread) {
  2316   _next     = NULL;
  2317   _prev     = NULL;
  2318   _notified = 0;
  2319   TState    = TS_RUN ;
  2320   _thread   = thread;
  2321   _event    = thread->_ParkEvent ;
  2322   _active   = false;
  2323   assert (_event != NULL, "invariant") ;
  2326 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  2327   JavaThread *jt = (JavaThread *)this->_thread;
  2328   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
  2331 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  2332   JavaThread *jt = (JavaThread *)this->_thread;
  2333   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
  2336 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2337   assert(node != NULL, "should not dequeue NULL node");
  2338   assert(node->_prev == NULL, "node already in list");
  2339   assert(node->_next == NULL, "node already in list");
  2340   // put node at end of queue (circular doubly linked list)
  2341   if (_WaitSet == NULL) {
  2342     _WaitSet = node;
  2343     node->_prev = node;
  2344     node->_next = node;
  2345   } else {
  2346     ObjectWaiter* head = _WaitSet ;
  2347     ObjectWaiter* tail = head->_prev;
  2348     assert(tail->_next == head, "invariant check");
  2349     tail->_next = node;
  2350     head->_prev = node;
  2351     node->_next = head;
  2352     node->_prev = tail;
  2356 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2357   // dequeue the very first waiter
  2358   ObjectWaiter* waiter = _WaitSet;
  2359   if (waiter) {
  2360     DequeueSpecificWaiter(waiter);
  2362   return waiter;
  2365 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2366   assert(node != NULL, "should not dequeue NULL node");
  2367   assert(node->_prev != NULL, "node already removed from list");
  2368   assert(node->_next != NULL, "node already removed from list");
  2369   // when the waiter has woken up because of interrupt,
  2370   // timeout or other spurious wake-up, dequeue the
  2371   // waiter from waiting list
  2372   ObjectWaiter* next = node->_next;
  2373   if (next == node) {
  2374     assert(node->_prev == node, "invariant check");
  2375     _WaitSet = NULL;
  2376   } else {
  2377     ObjectWaiter* prev = node->_prev;
  2378     assert(prev->_next == node, "invariant check");
  2379     assert(next->_prev == node, "invariant check");
  2380     next->_prev = prev;
  2381     prev->_next = next;
  2382     if (_WaitSet == node) {
  2383       _WaitSet = next;
  2386   node->_next = NULL;
  2387   node->_prev = NULL;
  2390 // -----------------------------------------------------------------------------
  2391 // PerfData support
  2392 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
  2393 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
  2394 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
  2395 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
  2396 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
  2397 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
  2398 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
  2399 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
  2400 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
  2401 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
  2402 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
  2403 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
  2404 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
  2405 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
  2406 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
  2407 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
  2408 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
  2409 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
  2411 // One-shot global initialization for the sync subsystem.
  2412 // We could also defer initialization and initialize on-demand
  2413 // the first time we call inflate().  Initialization would
  2414 // be protected - like so many things - by the MonitorCache_lock.
  2416 void ObjectMonitor::Initialize () {
  2417   static int InitializationCompleted = 0 ;
  2418   assert (InitializationCompleted == 0, "invariant") ;
  2419   InitializationCompleted = 1 ;
  2420   if (UsePerfData) {
  2421       EXCEPTION_MARK ;
  2422       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2423       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2424       NEWPERFCOUNTER(_sync_Inflations) ;
  2425       NEWPERFCOUNTER(_sync_Deflations) ;
  2426       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
  2427       NEWPERFCOUNTER(_sync_FutileWakeups) ;
  2428       NEWPERFCOUNTER(_sync_Parks) ;
  2429       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
  2430       NEWPERFCOUNTER(_sync_Notifications) ;
  2431       NEWPERFCOUNTER(_sync_SlowEnter) ;
  2432       NEWPERFCOUNTER(_sync_SlowExit) ;
  2433       NEWPERFCOUNTER(_sync_SlowNotify) ;
  2434       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
  2435       NEWPERFCOUNTER(_sync_FailedSpins) ;
  2436       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
  2437       NEWPERFCOUNTER(_sync_PrivateA) ;
  2438       NEWPERFCOUNTER(_sync_PrivateB) ;
  2439       NEWPERFCOUNTER(_sync_MonInCirculation) ;
  2440       NEWPERFCOUNTER(_sync_MonScavenged) ;
  2441       NEWPERFVARIABLE(_sync_MonExtant) ;
  2442       #undef NEWPERFCOUNTER
  2447 // Compile-time asserts
  2448 // When possible, it's better to catch errors deterministically at
  2449 // compile-time than at runtime.  The down-side to using compile-time
  2450 // asserts is that error message -- often something about negative array
  2451 // indices -- is opaque.
  2453 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
  2455 void ObjectMonitor::ctAsserts() {
  2456   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
  2460 static char * kvGet (char * kvList, const char * Key) {
  2461     if (kvList == NULL) return NULL ;
  2462     size_t n = strlen (Key) ;
  2463     char * Search ;
  2464     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2465         if (strncmp (Search, Key, n) == 0) {
  2466             if (Search[n] == '=') return Search + n + 1 ;
  2467             if (Search[n] == 0)   return (char *) "1" ;
  2470     return NULL ;
  2473 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2474     char * v = kvGet (kvList, Key) ;
  2475     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2476     if (Knob_ReportSettings && v != NULL) {
  2477         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2478         ::fflush (stdout) ;
  2480     return rslt ;
  2483 void ObjectMonitor::DeferredInitialize () {
  2484   if (InitDone > 0) return ;
  2485   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2486       while (InitDone != 1) ;
  2487       return ;
  2490   // One-shot global initialization ...
  2491   // The initialization is idempotent, so we don't need locks.
  2492   // In the future consider doing this via os::init_2().
  2493   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2494   // of environment variables.  Start by converting ':' to NUL.
  2496   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2498   size_t sz = strlen (SyncKnobs) ;
  2499   char * knobs = (char *) malloc (sz + 2) ;
  2500   if (knobs == NULL) {
  2501      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
  2502      guarantee (0, "invariant") ;
  2504   strcpy (knobs, SyncKnobs) ;
  2505   knobs[sz+1] = 0 ;
  2506   for (char * p = knobs ; *p ; p++) {
  2507      if (*p == ':') *p = 0 ;
  2510   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2511   SETKNOB(ReportSettings) ;
  2512   SETKNOB(Verbose) ;
  2513   SETKNOB(FixedSpin) ;
  2514   SETKNOB(SpinLimit) ;
  2515   SETKNOB(SpinBase) ;
  2516   SETKNOB(SpinBackOff);
  2517   SETKNOB(CASPenalty) ;
  2518   SETKNOB(OXPenalty) ;
  2519   SETKNOB(LogSpins) ;
  2520   SETKNOB(SpinSetSucc) ;
  2521   SETKNOB(SuccEnabled) ;
  2522   SETKNOB(SuccRestrict) ;
  2523   SETKNOB(Penalty) ;
  2524   SETKNOB(Bonus) ;
  2525   SETKNOB(BonusB) ;
  2526   SETKNOB(Poverty) ;
  2527   SETKNOB(SpinAfterFutile) ;
  2528   SETKNOB(UsePause) ;
  2529   SETKNOB(SpinEarly) ;
  2530   SETKNOB(OState) ;
  2531   SETKNOB(MaxSpinners) ;
  2532   SETKNOB(PreSpin) ;
  2533   SETKNOB(ExitPolicy) ;
  2534   SETKNOB(QMode);
  2535   SETKNOB(ResetEvent) ;
  2536   SETKNOB(MoveNotifyee) ;
  2537   SETKNOB(FastHSSEC) ;
  2538   #undef SETKNOB
  2540   if (Knob_Verbose) {
  2541     sanity_checks();
  2544   if (os::is_MP()) {
  2545      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2546      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2547      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2548   } else {
  2549      Knob_SpinLimit = 0 ;
  2550      Knob_SpinBase  = 0 ;
  2551      Knob_PreSpin   = 0 ;
  2552      Knob_FixedSpin = -1 ;
  2555   if (Knob_LogSpins == 0) {
  2556      ObjectMonitor::_sync_FailedSpins = NULL ;
  2559   free (knobs) ;
  2560   OrderAccess::fence() ;
  2561   InitDone = 1 ;
  2564 void ObjectMonitor::sanity_checks() {
  2565   int error_cnt = 0;
  2566   int warning_cnt = 0;
  2567   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
  2569   if (verbose) {
  2570     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
  2571                   sizeof(ObjectMonitor));
  2574   uint cache_line_size = VM_Version::L1_data_cache_line_size();
  2575   if (verbose) {
  2576     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
  2579   ObjectMonitor dummy;
  2580   u_char *addr_begin  = (u_char*)&dummy;
  2581   u_char *addr_header = (u_char*)&dummy._header;
  2582   u_char *addr_owner  = (u_char*)&dummy._owner;
  2584   uint offset_header = (uint)(addr_header - addr_begin);
  2585   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
  2587   uint offset_owner = (uint)(addr_owner - addr_begin);
  2588   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
  2590   if ((uint)(addr_header - addr_begin) != 0) {
  2591     tty->print_cr("ERROR: offset(_header) must be zero (0).");
  2592     error_cnt++;
  2595   if (cache_line_size != 0) {
  2596     // We were able to determine the L1 data cache line size so
  2597     // do some cache line specific sanity checks
  2599     if ((offset_owner - offset_header) < cache_line_size) {
  2600       tty->print_cr("WARNING: the _header and _owner fields are closer "
  2601                     "than a cache line which permits false sharing.");
  2602       warning_cnt++;
  2605     if ((sizeof(ObjectMonitor) % cache_line_size) != 0) {
  2606       tty->print_cr("WARNING: ObjectMonitor size is not a multiple of "
  2607                     "a cache line which permits false sharing.");
  2608       warning_cnt++;
  2612   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
  2613                                     &warning_cnt);
  2615   if (verbose || error_cnt != 0 || warning_cnt != 0) {
  2616     tty->print_cr("INFO: error_cnt=%d", error_cnt);
  2617     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
  2620   guarantee(error_cnt == 0,
  2621             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
  2624 #ifndef PRODUCT
  2625 void ObjectMonitor::verify() {
  2628 void ObjectMonitor::print() {
  2630 #endif

mercurial