src/share/vm/memory/referenceProcessor.cpp

Wed, 14 Oct 2020 17:44:48 +0800

author
aoqi
date
Wed, 14 Oct 2020 17:44:48 +0800
changeset 9931
fd44df5e3bc3
parent 9703
2fdf635bcf28
parent 9858
b985cbb00e68
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    37 #if INCLUDE_JFR
    38 #include "jfr/jfr.hpp"
    39 #endif // INCLUDE_JFR
    41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    43 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    44 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    45 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    46 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    48 void referenceProcessor_init() {
    49   ReferenceProcessor::init_statics();
    50 }
    52 void ReferenceProcessor::init_statics() {
    53   // We need a monotonically non-deccreasing time in ms but
    54   // os::javaTimeMillis() does not guarantee monotonicity.
    55   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    57   // Initialize the soft ref timestamp clock.
    58   _soft_ref_timestamp_clock = now;
    59   // Also update the soft ref clock in j.l.r.SoftReference
    60   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    62   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    63   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    64                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    66     vm_exit_during_initialization("Could not allocate reference policy object");
    67   }
    68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    69             RefDiscoveryPolicy == ReferentBasedDiscovery,
    70             "Unrecongnized RefDiscoveryPolicy");
    71   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    72 }
    74 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    75 #ifdef ASSERT
    76   // Verify that we're not currently discovering refs
    77   assert(!verify_disabled || !_discovering_refs, "nested call?");
    79   if (check_no_refs) {
    80     // Verify that the discovered lists are empty
    81     verify_no_references_recorded();
    82   }
    83 #endif // ASSERT
    85   // Someone could have modified the value of the static
    86   // field in the j.l.r.SoftReference class that holds the
    87   // soft reference timestamp clock using reflection or
    88   // Unsafe between GCs. Unconditionally update the static
    89   // field in ReferenceProcessor here so that we use the new
    90   // value during reference discovery.
    92   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    93   _discovering_refs = true;
    94 }
    96 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    97                                        bool      mt_processing,
    98                                        uint      mt_processing_degree,
    99                                        bool      mt_discovery,
   100                                        uint      mt_discovery_degree,
   101                                        bool      atomic_discovery,
   102                                        BoolObjectClosure* is_alive_non_header)  :
   103   _discovering_refs(false),
   104   _enqueuing_is_done(false),
   105   _is_alive_non_header(is_alive_non_header),
   106   _processing_is_mt(mt_processing),
   107   _next_id(0)
   108 {
   109   _span = span;
   110   _discovery_is_atomic = atomic_discovery;
   111   _discovery_is_mt     = mt_discovery;
   112   _num_q               = MAX2(1U, mt_processing_degree);
   113   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   114   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   115             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   117   if (_discovered_refs == NULL) {
   118     vm_exit_during_initialization("Could not allocated RefProc Array");
   119   }
   120   _discoveredSoftRefs    = &_discovered_refs[0];
   121   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   122   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   123   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   124   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
   126   // Initialize all entries to NULL
   127   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   128     _discovered_refs[i].set_head(NULL);
   129     _discovered_refs[i].set_length(0);
   130   }
   132   setup_policy(false /* default soft ref policy */);
   133 }
   135 #ifndef PRODUCT
   136 void ReferenceProcessor::verify_no_references_recorded() {
   137   guarantee(!_discovering_refs, "Discovering refs?");
   138   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   139     guarantee(_discovered_refs[i].is_empty(),
   140               "Found non-empty discovered list");
   141   }
   142 }
   143 #endif
   145 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   146   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   147     if (UseCompressedOops) {
   148       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   149     } else {
   150       f->do_oop((oop*)_discovered_refs[i].adr_head());
   151     }
   152   }
   153 }
   155 void ReferenceProcessor::update_soft_ref_master_clock() {
   156   // Update (advance) the soft ref master clock field. This must be done
   157   // after processing the soft ref list.
   159   // We need a monotonically non-deccreasing time in ms but
   160   // os::javaTimeMillis() does not guarantee monotonicity.
   161   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   162   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   163   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   165   NOT_PRODUCT(
   166   if (now < _soft_ref_timestamp_clock) {
   167     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   168             _soft_ref_timestamp_clock, now);
   169   }
   170   )
   171   // The values of now and _soft_ref_timestamp_clock are set using
   172   // javaTimeNanos(), which is guaranteed to be monotonically
   173   // non-decreasing provided the underlying platform provides such
   174   // a time source (and it is bug free).
   175   // In product mode, however, protect ourselves from non-monotonicty.
   176   if (now > _soft_ref_timestamp_clock) {
   177     _soft_ref_timestamp_clock = now;
   178     java_lang_ref_SoftReference::set_clock(now);
   179   }
   180   // Else leave clock stalled at its old value until time progresses
   181   // past clock value.
   182 }
   184 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   185   size_t total = 0;
   186   for (uint i = 0; i < _max_num_q; ++i) {
   187     total += lists[i].length();
   188   }
   189   return total;
   190 }
   192 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   193   BoolObjectClosure*           is_alive,
   194   OopClosure*                  keep_alive,
   195   VoidClosure*                 complete_gc,
   196   AbstractRefProcTaskExecutor* task_executor,
   197   GCTimer*                     gc_timer,
   198   GCId                         gc_id) {
   199   NOT_PRODUCT(verify_ok_to_handle_reflists());
   201   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   202   // Stop treating discovered references specially.
   203   disable_discovery();
   205   // If discovery was concurrent, someone could have modified
   206   // the value of the static field in the j.l.r.SoftReference
   207   // class that holds the soft reference timestamp clock using
   208   // reflection or Unsafe between when discovery was enabled and
   209   // now. Unconditionally update the static field in ReferenceProcessor
   210   // here so that we use the new value during processing of the
   211   // discovered soft refs.
   213   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   215   bool trace_time = PrintGCDetails && PrintReferenceGC;
   217   // Soft references
   218   size_t soft_count = 0;
   219   {
   220     GCTraceTime tt("SoftReference", trace_time, false, gc_timer, gc_id);
   221     soft_count =
   222       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   223                                  is_alive, keep_alive, complete_gc, task_executor);
   224   }
   226   update_soft_ref_master_clock();
   228   // Weak references
   229   size_t weak_count = 0;
   230   {
   231     GCTraceTime tt("WeakReference", trace_time, false, gc_timer, gc_id);
   232     weak_count =
   233       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   234                                  is_alive, keep_alive, complete_gc, task_executor);
   235   }
   237   // Final references
   238   size_t final_count = 0;
   239   {
   240     GCTraceTime tt("FinalReference", trace_time, false, gc_timer, gc_id);
   241     final_count =
   242       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   243                                  is_alive, keep_alive, complete_gc, task_executor);
   244   }
   246   // Phantom references
   247   size_t phantom_count = 0;
   248   {
   249     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer, gc_id);
   250     phantom_count =
   251       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   252                                  is_alive, keep_alive, complete_gc, task_executor);
   254     // Process cleaners, but include them in phantom statistics.  We expect
   255     // Cleaner references to be temporary, and don't want to deal with
   256     // possible incompatibilities arising from making it more visible.
   257     phantom_count +=
   258       process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
   259                                  is_alive, keep_alive, complete_gc, task_executor);
   260   }
   262   // Weak global JNI references. It would make more sense (semantically) to
   263   // traverse these simultaneously with the regular weak references above, but
   264   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   265   // thus use JNI weak references to circumvent the phantom references and
   266   // resurrect a "post-mortem" object.
   267   {
   268     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer, gc_id);
   269     if (task_executor != NULL) {
   270       task_executor->set_single_threaded_mode();
   271     }
   272     process_phaseJNI(is_alive, keep_alive, complete_gc);
   273   }
   275   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   276 }
   278 #ifndef PRODUCT
   279 // Calculate the number of jni handles.
   280 uint ReferenceProcessor::count_jni_refs() {
   281   class CountHandleClosure: public OopClosure {
   282   private:
   283     int _count;
   284   public:
   285     CountHandleClosure(): _count(0) {}
   286     void do_oop(oop* unused)       { _count++; }
   287     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   288     int count() { return _count; }
   289   };
   290   CountHandleClosure global_handle_count;
   291   JNIHandles::weak_oops_do(&global_handle_count);
   292   return global_handle_count.count();
   293 }
   294 #endif
   296 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   297                                           OopClosure*        keep_alive,
   298                                           VoidClosure*       complete_gc) {
   299 #ifndef PRODUCT
   300   if (PrintGCDetails && PrintReferenceGC) {
   301     unsigned int count = count_jni_refs();
   302     gclog_or_tty->print(", %u refs", count);
   303   }
   304 #endif
   305   JNIHandles::weak_oops_do(is_alive, keep_alive);
   306   JFR_ONLY(Jfr::weak_oops_do(is_alive, keep_alive));
   307   complete_gc->do_void();
   308 }
   311 template <class T>
   312 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   313                                    AbstractRefProcTaskExecutor* task_executor) {
   315   // Remember old value of pending references list
   316   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   317   T old_pending_list_value = *pending_list_addr;
   319   // Enqueue references that are not made active again, and
   320   // clear the decks for the next collection (cycle).
   321   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   322   // Do the post-barrier on pending_list_addr missed in
   323   // enqueue_discovered_reflist.
   324   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   326   // Stop treating discovered references specially.
   327   ref->disable_discovery();
   329   // Return true if new pending references were added
   330   return old_pending_list_value != *pending_list_addr;
   331 }
   333 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   334   NOT_PRODUCT(verify_ok_to_handle_reflists());
   335   if (UseCompressedOops) {
   336     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   337   } else {
   338     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   339   }
   340 }
   342 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   343                                                     HeapWord* pending_list_addr) {
   344   // Given a list of refs linked through the "discovered" field
   345   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   346   // thus distinguishing them from active References, then
   347   // prepend them to the pending list.
   348   //
   349   // The Java threads will see the Reference objects linked together through
   350   // the discovered field. Instead of trying to do the write barrier updates
   351   // in all places in the reference processor where we manipulate the discovered
   352   // field we make sure to do the barrier here where we anyway iterate through
   353   // all linked Reference objects. Note that it is important to not dirty any
   354   // cards during reference processing since this will cause card table
   355   // verification to fail for G1.
   356   //
   357   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   358   // the "next" field is used to chain the pending list, not the discovered
   359   // field.
   360   if (TraceReferenceGC && PrintGCDetails) {
   361     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   362                            INTPTR_FORMAT, (address)refs_list.head());
   363   }
   365   oop obj = NULL;
   366   oop next_d = refs_list.head();
   367   if (pending_list_uses_discovered_field()) { // New behavior
   368     // Walk down the list, self-looping the next field
   369     // so that the References are not considered active.
   370     while (obj != next_d) {
   371       obj = next_d;
   372       assert(obj->is_instanceRef(), "should be reference object");
   373       next_d = java_lang_ref_Reference::discovered(obj);
   374       if (TraceReferenceGC && PrintGCDetails) {
   375         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   376                                (void *)obj, (void *)next_d);
   377       }
   378       assert(java_lang_ref_Reference::next(obj) == NULL,
   379              "Reference not active; should not be discovered");
   380       // Self-loop next, so as to make Ref not active.
   381       java_lang_ref_Reference::set_next_raw(obj, obj);
   382       if (next_d != obj) {
   383         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
   384       } else {
   385         // This is the last object.
   386         // Swap refs_list into pending_list_addr and
   387         // set obj's discovered to what we read from pending_list_addr.
   388         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   389         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
   390         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
   391         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
   392       }
   393     }
   394   } else { // Old behaviour
   395     // Walk down the list, copying the discovered field into
   396     // the next field and clearing the discovered field.
   397     while (obj != next_d) {
   398       obj = next_d;
   399       assert(obj->is_instanceRef(), "should be reference object");
   400       next_d = java_lang_ref_Reference::discovered(obj);
   401       if (TraceReferenceGC && PrintGCDetails) {
   402         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   403                                (void *)obj, (void *)next_d);
   404       }
   405       assert(java_lang_ref_Reference::next(obj) == NULL,
   406              "The reference should not be enqueued");
   407       if (next_d == obj) {  // obj is last
   408         // Swap refs_list into pendling_list_addr and
   409         // set obj's next to what we read from pending_list_addr.
   410         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   411         // Need oop_check on pending_list_addr above;
   412         // see special oop-check code at the end of
   413         // enqueue_discovered_reflists() further below.
   414         if (old == NULL) {
   415           // obj should be made to point to itself, since
   416           // pending list was empty.
   417           java_lang_ref_Reference::set_next(obj, obj);
   418         } else {
   419           java_lang_ref_Reference::set_next(obj, old);
   420         }
   421       } else {
   422         java_lang_ref_Reference::set_next(obj, next_d);
   423       }
   424       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   425     }
   426   }
   427 }
   429 // Parallel enqueue task
   430 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   431 public:
   432   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   433                      DiscoveredList      discovered_refs[],
   434                      HeapWord*           pending_list_addr,
   435                      int                 n_queues)
   436     : EnqueueTask(ref_processor, discovered_refs,
   437                   pending_list_addr, n_queues)
   438   { }
   440   virtual void work(unsigned int work_id) {
   441     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   442     // Simplest first cut: static partitioning.
   443     int index = work_id;
   444     // The increment on "index" must correspond to the maximum number of queues
   445     // (n_queues) with which that ReferenceProcessor was created.  That
   446     // is because of the "clever" way the discovered references lists were
   447     // allocated and are indexed into.
   448     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   449     for (int j = 0;
   450          j < ReferenceProcessor::number_of_subclasses_of_ref();
   451          j++, index += _n_queues) {
   452       _ref_processor.enqueue_discovered_reflist(
   453         _refs_lists[index], _pending_list_addr);
   454       _refs_lists[index].set_head(NULL);
   455       _refs_lists[index].set_length(0);
   456     }
   457   }
   458 };
   460 // Enqueue references that are not made active again
   461 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   462   AbstractRefProcTaskExecutor* task_executor) {
   463   if (_processing_is_mt && task_executor != NULL) {
   464     // Parallel code
   465     RefProcEnqueueTask tsk(*this, _discovered_refs,
   466                            pending_list_addr, _max_num_q);
   467     task_executor->execute(tsk);
   468   } else {
   469     // Serial code: call the parent class's implementation
   470     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   471       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   472       _discovered_refs[i].set_head(NULL);
   473       _discovered_refs[i].set_length(0);
   474     }
   475   }
   476 }
   478 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   479   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   480   oop discovered = java_lang_ref_Reference::discovered(_ref);
   481   assert(_discovered_addr && discovered->is_oop_or_null(),
   482          "discovered field is bad");
   483   _next = discovered;
   484   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   485   _referent = java_lang_ref_Reference::referent(_ref);
   486   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   487          "Wrong oop found in java.lang.Reference object");
   488   assert(allow_null_referent ?
   489              _referent->is_oop_or_null()
   490            : _referent->is_oop(),
   491          "bad referent");
   492 }
   494 void DiscoveredListIterator::remove() {
   495   assert(_ref->is_oop(), "Dropping a bad reference");
   496   oop_store_raw(_discovered_addr, NULL);
   498   // First _prev_next ref actually points into DiscoveredList (gross).
   499   oop new_next;
   500   if (_next == _ref) {
   501     // At the end of the list, we should make _prev point to itself.
   502     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   503     // and _prev will be NULL.
   504     new_next = _prev;
   505   } else {
   506     new_next = _next;
   507   }
   508   // Remove Reference object from discovered list. Note that G1 does not need a
   509   // pre-barrier here because we know the Reference has already been found/marked,
   510   // that's how it ended up in the discovered list in the first place.
   511   oop_store_raw(_prev_next, new_next);
   512   NOT_PRODUCT(_removed++);
   513   _refs_list.dec_length(1);
   514 }
   516 // Make the Reference object active again.
   517 void DiscoveredListIterator::make_active() {
   518   // The pre barrier for G1 is probably just needed for the old
   519   // reference processing behavior. Should we guard this with
   520   // ReferenceProcessor::pending_list_uses_discovered_field() ?
   521   if (UseG1GC) {
   522     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   523     if (UseCompressedOops) {
   524       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
   525     } else {
   526       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
   527     }
   528   }
   529   java_lang_ref_Reference::set_next_raw(_ref, NULL);
   530 }
   532 void DiscoveredListIterator::clear_referent() {
   533   oop_store_raw(_referent_addr, NULL);
   534 }
   536 // NOTE: process_phase*() are largely similar, and at a high level
   537 // merely iterate over the extant list applying a predicate to
   538 // each of its elements and possibly removing that element from the
   539 // list and applying some further closures to that element.
   540 // We should consider the possibility of replacing these
   541 // process_phase*() methods by abstracting them into
   542 // a single general iterator invocation that receives appropriate
   543 // closures that accomplish this work.
   545 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   546 // referents are not alive, but that should be kept alive for policy reasons.
   547 // Keep alive the transitive closure of all such referents.
   548 void
   549 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   550                                    ReferencePolicy*   policy,
   551                                    BoolObjectClosure* is_alive,
   552                                    OopClosure*        keep_alive,
   553                                    VoidClosure*       complete_gc) {
   554   assert(policy != NULL, "Must have a non-NULL policy");
   555   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   556   // Decide which softly reachable refs should be kept alive.
   557   while (iter.has_next()) {
   558     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   559     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   560     if (referent_is_dead &&
   561         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   562       if (TraceReferenceGC) {
   563         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   564                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   565       }
   566       // Remove Reference object from list
   567       iter.remove();
   568       // Make the Reference object active again
   569       iter.make_active();
   570       // keep the referent around
   571       iter.make_referent_alive();
   572       iter.move_to_next();
   573     } else {
   574       iter.next();
   575     }
   576   }
   577   // Close the reachable set
   578   complete_gc->do_void();
   579   NOT_PRODUCT(
   580     if (PrintGCDetails && TraceReferenceGC) {
   581       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   582         "discovered Refs by policy, from list " INTPTR_FORMAT,
   583         iter.removed(), iter.processed(), (address)refs_list.head());
   584     }
   585   )
   586 }
   588 // Traverse the list and remove any Refs that are not active, or
   589 // whose referents are either alive or NULL.
   590 void
   591 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   592                              BoolObjectClosure* is_alive,
   593                              OopClosure*        keep_alive) {
   594   assert(discovery_is_atomic(), "Error");
   595   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   596   while (iter.has_next()) {
   597     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   598     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   599     assert(next == NULL, "Should not discover inactive Reference");
   600     if (iter.is_referent_alive()) {
   601       if (TraceReferenceGC) {
   602         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   603                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   604       }
   605       // The referent is reachable after all.
   606       // Remove Reference object from list.
   607       iter.remove();
   608       // Update the referent pointer as necessary: Note that this
   609       // should not entail any recursive marking because the
   610       // referent must already have been traversed.
   611       iter.make_referent_alive();
   612       iter.move_to_next();
   613     } else {
   614       iter.next();
   615     }
   616   }
   617   NOT_PRODUCT(
   618     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   619       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   620         "Refs in discovered list " INTPTR_FORMAT,
   621         iter.removed(), iter.processed(), (address)refs_list.head());
   622     }
   623   )
   624 }
   626 void
   627 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   628                                                   BoolObjectClosure* is_alive,
   629                                                   OopClosure*        keep_alive,
   630                                                   VoidClosure*       complete_gc) {
   631   assert(!discovery_is_atomic(), "Error");
   632   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   633   while (iter.has_next()) {
   634     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   635     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   636     oop next = java_lang_ref_Reference::next(iter.obj());
   637     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   638          next != NULL)) {
   639       assert(next->is_oop_or_null(), "bad next field");
   640       // Remove Reference object from list
   641       iter.remove();
   642       // Trace the cohorts
   643       iter.make_referent_alive();
   644       if (UseCompressedOops) {
   645         keep_alive->do_oop((narrowOop*)next_addr);
   646       } else {
   647         keep_alive->do_oop((oop*)next_addr);
   648       }
   649       iter.move_to_next();
   650     } else {
   651       iter.next();
   652     }
   653   }
   654   // Now close the newly reachable set
   655   complete_gc->do_void();
   656   NOT_PRODUCT(
   657     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   658       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   659         "Refs in discovered list " INTPTR_FORMAT,
   660         iter.removed(), iter.processed(), (address)refs_list.head());
   661     }
   662   )
   663 }
   665 // Traverse the list and process the referents, by either
   666 // clearing them or keeping them (and their reachable
   667 // closure) alive.
   668 void
   669 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   670                                    bool               clear_referent,
   671                                    BoolObjectClosure* is_alive,
   672                                    OopClosure*        keep_alive,
   673                                    VoidClosure*       complete_gc) {
   674   ResourceMark rm;
   675   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   676   while (iter.has_next()) {
   677     iter.update_discovered();
   678     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   679     if (clear_referent) {
   680       // NULL out referent pointer
   681       iter.clear_referent();
   682     } else {
   683       // keep the referent around
   684       iter.make_referent_alive();
   685     }
   686     if (TraceReferenceGC) {
   687       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   688                              clear_referent ? "cleared " : "",
   689                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   690     }
   691     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   692     iter.next();
   693   }
   694   // Remember to update the next pointer of the last ref.
   695   iter.update_discovered();
   696   // Close the reachable set
   697   complete_gc->do_void();
   698 }
   700 void
   701 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   702   oop obj = NULL;
   703   oop next = refs_list.head();
   704   while (next != obj) {
   705     obj = next;
   706     next = java_lang_ref_Reference::discovered(obj);
   707     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   708   }
   709   refs_list.set_head(NULL);
   710   refs_list.set_length(0);
   711 }
   713 void
   714 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   715   clear_discovered_references(refs_list);
   716 }
   718 void ReferenceProcessor::abandon_partial_discovery() {
   719   // loop over the lists
   720   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   721     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   722       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   723     }
   724     abandon_partial_discovered_list(_discovered_refs[i]);
   725   }
   726 }
   728 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   729 public:
   730   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   731                     DiscoveredList      refs_lists[],
   732                     ReferencePolicy*    policy,
   733                     bool                marks_oops_alive)
   734     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   735       _policy(policy)
   736   { }
   737   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   738                     OopClosure& keep_alive,
   739                     VoidClosure& complete_gc)
   740   {
   741     Thread* thr = Thread::current();
   742     int refs_list_index = ((WorkerThread*)thr)->id();
   743     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   744                                   &is_alive, &keep_alive, &complete_gc);
   745   }
   746 private:
   747   ReferencePolicy* _policy;
   748 };
   750 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   751 public:
   752   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   753                     DiscoveredList      refs_lists[],
   754                     bool                marks_oops_alive)
   755     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   756   { }
   757   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   758                     OopClosure& keep_alive,
   759                     VoidClosure& complete_gc)
   760   {
   761     _ref_processor.process_phase2(_refs_lists[i],
   762                                   &is_alive, &keep_alive, &complete_gc);
   763   }
   764 };
   766 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   767 public:
   768   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   769                     DiscoveredList      refs_lists[],
   770                     bool                clear_referent,
   771                     bool                marks_oops_alive)
   772     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   773       _clear_referent(clear_referent)
   774   { }
   775   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   776                     OopClosure& keep_alive,
   777                     VoidClosure& complete_gc)
   778   {
   779     // Don't use "refs_list_index" calculated in this way because
   780     // balance_queues() has moved the Ref's into the first n queues.
   781     // Thread* thr = Thread::current();
   782     // int refs_list_index = ((WorkerThread*)thr)->id();
   783     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   784     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   785                                   &is_alive, &keep_alive, &complete_gc);
   786   }
   787 private:
   788   bool _clear_referent;
   789 };
   791 // Balances reference queues.
   792 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   793 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   794 // corresponding to the active workers will be processed.
   795 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   796 {
   797   // calculate total length
   798   size_t total_refs = 0;
   799   if (TraceReferenceGC && PrintGCDetails) {
   800     gclog_or_tty->print_cr("\nBalance ref_lists ");
   801   }
   803   for (uint i = 0; i < _max_num_q; ++i) {
   804     total_refs += ref_lists[i].length();
   805     if (TraceReferenceGC && PrintGCDetails) {
   806       gclog_or_tty->print("%d ", ref_lists[i].length());
   807     }
   808   }
   809   if (TraceReferenceGC && PrintGCDetails) {
   810     gclog_or_tty->print_cr(" = %d", total_refs);
   811   }
   812   size_t avg_refs = total_refs / _num_q + 1;
   813   uint to_idx = 0;
   814   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   815     bool move_all = false;
   816     if (from_idx >= _num_q) {
   817       move_all = ref_lists[from_idx].length() > 0;
   818     }
   819     while ((ref_lists[from_idx].length() > avg_refs) ||
   820            move_all) {
   821       assert(to_idx < _num_q, "Sanity Check!");
   822       if (ref_lists[to_idx].length() < avg_refs) {
   823         // move superfluous refs
   824         size_t refs_to_move;
   825         // Move all the Ref's if the from queue will not be processed.
   826         if (move_all) {
   827           refs_to_move = MIN2(ref_lists[from_idx].length(),
   828                               avg_refs - ref_lists[to_idx].length());
   829         } else {
   830           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   831                               avg_refs - ref_lists[to_idx].length());
   832         }
   834         assert(refs_to_move > 0, "otherwise the code below will fail");
   836         oop move_head = ref_lists[from_idx].head();
   837         oop move_tail = move_head;
   838         oop new_head  = move_head;
   839         // find an element to split the list on
   840         for (size_t j = 0; j < refs_to_move; ++j) {
   841           move_tail = new_head;
   842           new_head = java_lang_ref_Reference::discovered(new_head);
   843         }
   845         // Add the chain to the to list.
   846         if (ref_lists[to_idx].head() == NULL) {
   847           // to list is empty. Make a loop at the end.
   848           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
   849         } else {
   850           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
   851         }
   852         ref_lists[to_idx].set_head(move_head);
   853         ref_lists[to_idx].inc_length(refs_to_move);
   855         // Remove the chain from the from list.
   856         if (move_tail == new_head) {
   857           // We found the end of the from list.
   858           ref_lists[from_idx].set_head(NULL);
   859         } else {
   860           ref_lists[from_idx].set_head(new_head);
   861         }
   862         ref_lists[from_idx].dec_length(refs_to_move);
   863         if (ref_lists[from_idx].length() == 0) {
   864           break;
   865         }
   866       } else {
   867         to_idx = (to_idx + 1) % _num_q;
   868       }
   869     }
   870   }
   871 #ifdef ASSERT
   872   size_t balanced_total_refs = 0;
   873   for (uint i = 0; i < _max_num_q; ++i) {
   874     balanced_total_refs += ref_lists[i].length();
   875     if (TraceReferenceGC && PrintGCDetails) {
   876       gclog_or_tty->print("%d ", ref_lists[i].length());
   877     }
   878   }
   879   if (TraceReferenceGC && PrintGCDetails) {
   880     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   881     gclog_or_tty->flush();
   882   }
   883   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   884 #endif
   885 }
   887 void ReferenceProcessor::balance_all_queues() {
   888   balance_queues(_discoveredSoftRefs);
   889   balance_queues(_discoveredWeakRefs);
   890   balance_queues(_discoveredFinalRefs);
   891   balance_queues(_discoveredPhantomRefs);
   892   balance_queues(_discoveredCleanerRefs);
   893 }
   895 size_t
   896 ReferenceProcessor::process_discovered_reflist(
   897   DiscoveredList               refs_lists[],
   898   ReferencePolicy*             policy,
   899   bool                         clear_referent,
   900   BoolObjectClosure*           is_alive,
   901   OopClosure*                  keep_alive,
   902   VoidClosure*                 complete_gc,
   903   AbstractRefProcTaskExecutor* task_executor)
   904 {
   905   bool mt_processing = task_executor != NULL && _processing_is_mt;
   906   // If discovery used MT and a dynamic number of GC threads, then
   907   // the queues must be balanced for correctness if fewer than the
   908   // maximum number of queues were used.  The number of queue used
   909   // during discovery may be different than the number to be used
   910   // for processing so don't depend of _num_q < _max_num_q as part
   911   // of the test.
   912   bool must_balance = _discovery_is_mt;
   914   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   915       must_balance) {
   916     balance_queues(refs_lists);
   917   }
   919   size_t total_list_count = total_count(refs_lists);
   921   if (PrintReferenceGC && PrintGCDetails) {
   922     gclog_or_tty->print(", %u refs", total_list_count);
   923   }
   925   // Phase 1 (soft refs only):
   926   // . Traverse the list and remove any SoftReferences whose
   927   //   referents are not alive, but that should be kept alive for
   928   //   policy reasons. Keep alive the transitive closure of all
   929   //   such referents.
   930   if (policy != NULL) {
   931     if (mt_processing) {
   932       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   933       task_executor->execute(phase1);
   934     } else {
   935       for (uint i = 0; i < _max_num_q; i++) {
   936         process_phase1(refs_lists[i], policy,
   937                        is_alive, keep_alive, complete_gc);
   938       }
   939     }
   940   } else { // policy == NULL
   941     assert(refs_lists != _discoveredSoftRefs,
   942            "Policy must be specified for soft references.");
   943   }
   945   // Phase 2:
   946   // . Traverse the list and remove any refs whose referents are alive.
   947   if (mt_processing) {
   948     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   949     task_executor->execute(phase2);
   950   } else {
   951     for (uint i = 0; i < _max_num_q; i++) {
   952       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   953     }
   954   }
   956   // Phase 3:
   957   // . Traverse the list and process referents as appropriate.
   958   if (mt_processing) {
   959     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   960     task_executor->execute(phase3);
   961   } else {
   962     for (uint i = 0; i < _max_num_q; i++) {
   963       process_phase3(refs_lists[i], clear_referent,
   964                      is_alive, keep_alive, complete_gc);
   965     }
   966   }
   968   return total_list_count;
   969 }
   971 void ReferenceProcessor::clean_up_discovered_references() {
   972   // loop over the lists
   973   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   974     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   975       gclog_or_tty->print_cr(
   976         "\nScrubbing %s discovered list of Null referents",
   977         list_name(i));
   978     }
   979     clean_up_discovered_reflist(_discovered_refs[i]);
   980   }
   981 }
   983 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   984   assert(!discovery_is_atomic(), "Else why call this method?");
   985   DiscoveredListIterator iter(refs_list, NULL, NULL);
   986   while (iter.has_next()) {
   987     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   988     oop next = java_lang_ref_Reference::next(iter.obj());
   989     assert(next->is_oop_or_null(), "bad next field");
   990     // If referent has been cleared or Reference is not active,
   991     // drop it.
   992     if (iter.referent() == NULL || next != NULL) {
   993       debug_only(
   994         if (PrintGCDetails && TraceReferenceGC) {
   995           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   996             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   997             " and referent: " INTPTR_FORMAT,
   998             (void *)iter.obj(), (void *)next, (void *)iter.referent());
   999         }
  1001       // Remove Reference object from list
  1002       iter.remove();
  1003       iter.move_to_next();
  1004     } else {
  1005       iter.next();
  1008   NOT_PRODUCT(
  1009     if (PrintGCDetails && TraceReferenceGC) {
  1010       gclog_or_tty->print(
  1011         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1012         iter.removed(), iter.processed());
  1017 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1018   uint id = 0;
  1019   // Determine the queue index to use for this object.
  1020   if (_discovery_is_mt) {
  1021     // During a multi-threaded discovery phase,
  1022     // each thread saves to its "own" list.
  1023     Thread* thr = Thread::current();
  1024     id = thr->as_Worker_thread()->id();
  1025   } else {
  1026     // single-threaded discovery, we save in round-robin
  1027     // fashion to each of the lists.
  1028     if (_processing_is_mt) {
  1029       id = next_id();
  1032   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1034   // Get the discovered queue to which we will add
  1035   DiscoveredList* list = NULL;
  1036   switch (rt) {
  1037     case REF_OTHER:
  1038       // Unknown reference type, no special treatment
  1039       break;
  1040     case REF_SOFT:
  1041       list = &_discoveredSoftRefs[id];
  1042       break;
  1043     case REF_WEAK:
  1044       list = &_discoveredWeakRefs[id];
  1045       break;
  1046     case REF_FINAL:
  1047       list = &_discoveredFinalRefs[id];
  1048       break;
  1049     case REF_PHANTOM:
  1050       list = &_discoveredPhantomRefs[id];
  1051       break;
  1052     case REF_CLEANER:
  1053       list = &_discoveredCleanerRefs[id];
  1054       break;
  1055     case REF_NONE:
  1056       // we should not reach here if we are an InstanceRefKlass
  1057     default:
  1058       ShouldNotReachHere();
  1060   if (TraceReferenceGC && PrintGCDetails) {
  1061     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1063   return list;
  1066 inline void
  1067 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1068                                               oop             obj,
  1069                                               HeapWord*       discovered_addr) {
  1070   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1071   // First we must make sure this object is only enqueued once. CAS in a non null
  1072   // discovered_addr.
  1073   oop current_head = refs_list.head();
  1074   // The last ref must have its discovered field pointing to itself.
  1075   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1077   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1078                                                     NULL);
  1079   if (retest == NULL) {
  1080     // This thread just won the right to enqueue the object.
  1081     // We have separate lists for enqueueing, so no synchronization
  1082     // is necessary.
  1083     refs_list.set_head(obj);
  1084     refs_list.inc_length(1);
  1086     if (TraceReferenceGC) {
  1087       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1088                              (void *)obj, obj->klass()->internal_name());
  1090   } else {
  1091     // If retest was non NULL, another thread beat us to it:
  1092     // The reference has already been discovered...
  1093     if (TraceReferenceGC) {
  1094       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1095                              (void *)obj, obj->klass()->internal_name());
  1100 #ifndef PRODUCT
  1101 // Non-atomic (i.e. concurrent) discovery might allow us
  1102 // to observe j.l.References with NULL referents, being those
  1103 // cleared concurrently by mutators during (or after) discovery.
  1104 void ReferenceProcessor::verify_referent(oop obj) {
  1105   bool da = discovery_is_atomic();
  1106   oop referent = java_lang_ref_Reference::referent(obj);
  1107   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1108          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1109                  INTPTR_FORMAT " during %satomic discovery ",
  1110                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1112 #endif
  1114 // We mention two of several possible choices here:
  1115 // #0: if the reference object is not in the "originating generation"
  1116 //     (or part of the heap being collected, indicated by our "span"
  1117 //     we don't treat it specially (i.e. we scan it as we would
  1118 //     a normal oop, treating its references as strong references).
  1119 //     This means that references can't be discovered unless their
  1120 //     referent is also in the same span. This is the simplest,
  1121 //     most "local" and most conservative approach, albeit one
  1122 //     that may cause weak references to be enqueued least promptly.
  1123 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1124 // #1: the reference object may be in any generation (span), but if
  1125 //     the referent is in the generation (span) being currently collected
  1126 //     then we can discover the reference object, provided
  1127 //     the object has not already been discovered by
  1128 //     a different concurrently running collector (as may be the
  1129 //     case, for instance, if the reference object is in CMS and
  1130 //     the referent in DefNewGeneration), and provided the processing
  1131 //     of this reference object by the current collector will
  1132 //     appear atomic to every other collector in the system.
  1133 //     (Thus, for instance, a concurrent collector may not
  1134 //     discover references in other generations even if the
  1135 //     referent is in its own generation). This policy may,
  1136 //     in certain cases, enqueue references somewhat sooner than
  1137 //     might Policy #0 above, but at marginally increased cost
  1138 //     and complexity in processing these references.
  1139 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1140 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1141   // Make sure we are discovering refs (rather than processing discovered refs).
  1142   if (!_discovering_refs || !RegisterReferences) {
  1143     return false;
  1145   // We only discover active references.
  1146   oop next = java_lang_ref_Reference::next(obj);
  1147   if (next != NULL) {   // Ref is no longer active
  1148     return false;
  1151   HeapWord* obj_addr = (HeapWord*)obj;
  1152   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1153       !_span.contains(obj_addr)) {
  1154     // Reference is not in the originating generation;
  1155     // don't treat it specially (i.e. we want to scan it as a normal
  1156     // object with strong references).
  1157     return false;
  1160   // We only discover references whose referents are not (yet)
  1161   // known to be strongly reachable.
  1162   if (is_alive_non_header() != NULL) {
  1163     verify_referent(obj);
  1164     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1165       return false;  // referent is reachable
  1168   if (rt == REF_SOFT) {
  1169     // For soft refs we can decide now if these are not
  1170     // current candidates for clearing, in which case we
  1171     // can mark through them now, rather than delaying that
  1172     // to the reference-processing phase. Since all current
  1173     // time-stamp policies advance the soft-ref clock only
  1174     // at a major collection cycle, this is always currently
  1175     // accurate.
  1176     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1177       return false;
  1181   ResourceMark rm;      // Needed for tracing.
  1183   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1184   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1185   assert(discovered->is_oop_or_null(), "bad discovered field");
  1186   if (discovered != NULL) {
  1187     // The reference has already been discovered...
  1188     if (TraceReferenceGC) {
  1189       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1190                              (void *)obj, obj->klass()->internal_name());
  1192     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1193       // assumes that an object is not processed twice;
  1194       // if it's been already discovered it must be on another
  1195       // generation's discovered list; so we won't discover it.
  1196       return false;
  1197     } else {
  1198       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1199              "Unrecognized policy");
  1200       // Check assumption that an object is not potentially
  1201       // discovered twice except by concurrent collectors that potentially
  1202       // trace the same Reference object twice.
  1203       assert(UseConcMarkSweepGC || UseG1GC,
  1204              "Only possible with a concurrent marking collector");
  1205       return true;
  1209   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1210     verify_referent(obj);
  1211     // Discover if and only if EITHER:
  1212     // .. reference is in our span, OR
  1213     // .. we are an atomic collector and referent is in our span
  1214     if (_span.contains(obj_addr) ||
  1215         (discovery_is_atomic() &&
  1216          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1217       // should_enqueue = true;
  1218     } else {
  1219       return false;
  1221   } else {
  1222     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1223            _span.contains(obj_addr), "code inconsistency");
  1226   // Get the right type of discovered queue head.
  1227   DiscoveredList* list = get_discovered_list(rt);
  1228   if (list == NULL) {
  1229     return false;   // nothing special needs to be done
  1232   if (_discovery_is_mt) {
  1233     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1234   } else {
  1235     // We do a raw store here: the field will be visited later when processing
  1236     // the discovered references.
  1237     oop current_head = list->head();
  1238     // The last ref must have its discovered field pointing to itself.
  1239     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1241     assert(discovered == NULL, "control point invariant");
  1242     oop_store_raw(discovered_addr, next_discovered);
  1243     list->set_head(obj);
  1244     list->inc_length(1);
  1246     if (TraceReferenceGC) {
  1247       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1248                                 (void *)obj, obj->klass()->internal_name());
  1251   assert(obj->is_oop(), "Discovered a bad reference");
  1252   verify_referent(obj);
  1253   return true;
  1256 // Preclean the discovered references by removing those
  1257 // whose referents are alive, and by marking from those that
  1258 // are not active. These lists can be handled here
  1259 // in any order and, indeed, concurrently.
  1260 void ReferenceProcessor::preclean_discovered_references(
  1261   BoolObjectClosure* is_alive,
  1262   OopClosure* keep_alive,
  1263   VoidClosure* complete_gc,
  1264   YieldClosure* yield,
  1265   GCTimer* gc_timer,
  1266   GCId     gc_id) {
  1268   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1270   // Soft references
  1272     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1273               false, gc_timer, gc_id);
  1274     for (uint i = 0; i < _max_num_q; i++) {
  1275       if (yield->should_return()) {
  1276         return;
  1278       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1279                                   keep_alive, complete_gc, yield);
  1283   // Weak references
  1285     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1286               false, gc_timer, gc_id);
  1287     for (uint i = 0; i < _max_num_q; i++) {
  1288       if (yield->should_return()) {
  1289         return;
  1291       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1292                                   keep_alive, complete_gc, yield);
  1296   // Final references
  1298     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1299               false, gc_timer, gc_id);
  1300     for (uint i = 0; i < _max_num_q; i++) {
  1301       if (yield->should_return()) {
  1302         return;
  1304       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1305                                   keep_alive, complete_gc, yield);
  1309   // Phantom references
  1311     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1312               false, gc_timer, gc_id);
  1313     for (uint i = 0; i < _max_num_q; i++) {
  1314       if (yield->should_return()) {
  1315         return;
  1317       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1318                                   keep_alive, complete_gc, yield);
  1321     // Cleaner references.  Included in timing for phantom references.  We
  1322     // expect Cleaner references to be temporary, and don't want to deal with
  1323     // possible incompatibilities arising from making it more visible.
  1324     for (uint i = 0; i < _max_num_q; i++) {
  1325       if (yield->should_return()) {
  1326         return;
  1328       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
  1329                                   keep_alive, complete_gc, yield);
  1334 // Walk the given discovered ref list, and remove all reference objects
  1335 // whose referents are still alive, whose referents are NULL or which
  1336 // are not active (have a non-NULL next field). NOTE: When we are
  1337 // thus precleaning the ref lists (which happens single-threaded today),
  1338 // we do not disable refs discovery to honour the correct semantics of
  1339 // java.lang.Reference. As a result, we need to be careful below
  1340 // that ref removal steps interleave safely with ref discovery steps
  1341 // (in this thread).
  1342 void
  1343 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1344                                                 BoolObjectClosure* is_alive,
  1345                                                 OopClosure*        keep_alive,
  1346                                                 VoidClosure*       complete_gc,
  1347                                                 YieldClosure*      yield) {
  1348   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1349   while (iter.has_next()) {
  1350     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1351     oop obj = iter.obj();
  1352     oop next = java_lang_ref_Reference::next(obj);
  1353     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1354         next != NULL) {
  1355       // The referent has been cleared, or is alive, or the Reference is not
  1356       // active; we need to trace and mark its cohort.
  1357       if (TraceReferenceGC) {
  1358         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1359                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1361       // Remove Reference object from list
  1362       iter.remove();
  1363       // Keep alive its cohort.
  1364       iter.make_referent_alive();
  1365       if (UseCompressedOops) {
  1366         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1367         keep_alive->do_oop(next_addr);
  1368       } else {
  1369         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1370         keep_alive->do_oop(next_addr);
  1372       iter.move_to_next();
  1373     } else {
  1374       iter.next();
  1377   // Close the reachable set
  1378   complete_gc->do_void();
  1380   NOT_PRODUCT(
  1381     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1382       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1383         "Refs in discovered list " INTPTR_FORMAT,
  1384         iter.removed(), iter.processed(), (address)refs_list.head());
  1389 const char* ReferenceProcessor::list_name(uint i) {
  1390    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1391           "Out of bounds index");
  1393    int j = i / _max_num_q;
  1394    switch (j) {
  1395      case 0: return "SoftRef";
  1396      case 1: return "WeakRef";
  1397      case 2: return "FinalRef";
  1398      case 3: return "PhantomRef";
  1399      case 4: return "CleanerRef";
  1401    ShouldNotReachHere();
  1402    return NULL;
  1405 #ifndef PRODUCT
  1406 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1407   // empty for now
  1409 #endif
  1411 #ifndef PRODUCT
  1412 void ReferenceProcessor::clear_discovered_references() {
  1413   guarantee(!_discovering_refs, "Discovering refs?");
  1414   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1415     clear_discovered_references(_discovered_refs[i]);
  1419 #endif // PRODUCT

mercurial