src/share/vm/opto/subnode.hpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8856
ac27a9c85bea
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_SUBNODE_HPP
    26 #define SHARE_VM_OPTO_SUBNODE_HPP
    28 #include "opto/node.hpp"
    29 #include "opto/opcodes.hpp"
    30 #include "opto/type.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 //------------------------------SUBNode----------------------------------------
    35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
    36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
    37 // -float, and -double are all inherited from this class.  The compare
    38 // functions behave like subtract functions, except that all negative answers
    39 // are compressed into -1, and all positive answers compressed to 1.
    40 class SubNode : public Node {
    41 public:
    42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
    43     init_class_id(Class_Sub);
    44   }
    46   // Handle algebraic identities here.  If we have an identity, return the Node
    47   // we are equivalent to.  We look for "add of zero" as an identity.
    48   virtual Node *Identity( PhaseTransform *phase );
    50   // Compute a new Type for this node.  Basically we just do the pre-check,
    51   // then call the virtual add() to set the type.
    52   virtual const Type *Value( PhaseTransform *phase ) const;
    53   const Type* Value_common( PhaseTransform *phase ) const;
    55   // Supplied function returns the subtractend of the inputs.
    56   // This also type-checks the inputs for sanity.  Guaranteed never to
    57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
    58   virtual const Type *sub( const Type *, const Type * ) const = 0;
    60   // Supplied function to return the additive identity type.
    61   // This is returned whenever the subtracts inputs are the same.
    62   virtual const Type *add_id() const = 0;
    64 };
    67 // NOTE: SubINode should be taken away and replaced by add and negate
    68 //------------------------------SubINode---------------------------------------
    69 // Subtract 2 integers
    70 class SubINode : public SubNode {
    71 public:
    72   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    73   virtual int Opcode() const;
    74   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    75   virtual const Type *sub( const Type *, const Type * ) const;
    76   const Type *add_id() const { return TypeInt::ZERO; }
    77   const Type *bottom_type() const { return TypeInt::INT; }
    78   virtual uint ideal_reg() const { return Op_RegI; }
    79 };
    81 //------------------------------SubLNode---------------------------------------
    82 // Subtract 2 integers
    83 class SubLNode : public SubNode {
    84 public:
    85   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
    86   virtual int Opcode() const;
    87   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    88   virtual const Type *sub( const Type *, const Type * ) const;
    89   const Type *add_id() const { return TypeLong::ZERO; }
    90   const Type *bottom_type() const { return TypeLong::LONG; }
    91   virtual uint ideal_reg() const { return Op_RegL; }
    92 };
    94 // NOTE: SubFPNode should be taken away and replaced by add and negate
    95 //------------------------------SubFPNode--------------------------------------
    96 // Subtract 2 floats or doubles
    97 class SubFPNode : public SubNode {
    98 protected:
    99   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
   100 public:
   101   const Type *Value( PhaseTransform *phase ) const;
   102 };
   104 // NOTE: SubFNode should be taken away and replaced by add and negate
   105 //------------------------------SubFNode---------------------------------------
   106 // Subtract 2 doubles
   107 class SubFNode : public SubFPNode {
   108 public:
   109   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
   110   virtual int Opcode() const;
   111   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   112   virtual const Type *sub( const Type *, const Type * ) const;
   113   const Type   *add_id() const { return TypeF::ZERO; }
   114   const Type   *bottom_type() const { return Type::FLOAT; }
   115   virtual uint  ideal_reg() const { return Op_RegF; }
   116 };
   118 // NOTE: SubDNode should be taken away and replaced by add and negate
   119 //------------------------------SubDNode---------------------------------------
   120 // Subtract 2 doubles
   121 class SubDNode : public SubFPNode {
   122 public:
   123   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
   124   virtual int Opcode() const;
   125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   126   virtual const Type *sub( const Type *, const Type * ) const;
   127   const Type   *add_id() const { return TypeD::ZERO; }
   128   const Type   *bottom_type() const { return Type::DOUBLE; }
   129   virtual uint  ideal_reg() const { return Op_RegD; }
   130 };
   132 //------------------------------CmpNode---------------------------------------
   133 // Compare 2 values, returning condition codes (-1, 0 or 1).
   134 class CmpNode : public SubNode {
   135 public:
   136   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
   137     init_class_id(Class_Cmp);
   138   }
   139   virtual Node *Identity( PhaseTransform *phase );
   140   const Type *add_id() const { return TypeInt::ZERO; }
   141   const Type *bottom_type() const { return TypeInt::CC; }
   142   virtual uint ideal_reg() const { return Op_RegFlags; }
   143 };
   145 //------------------------------CmpINode---------------------------------------
   146 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
   147 class CmpINode : public CmpNode {
   148 public:
   149   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   150   virtual int Opcode() const;
   151   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   152   virtual const Type *sub( const Type *, const Type * ) const;
   153 };
   155 //------------------------------CmpUNode---------------------------------------
   156 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
   157 class CmpUNode : public CmpNode {
   158 public:
   159   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   160   virtual int Opcode() const;
   161   virtual const Type *sub( const Type *, const Type * ) const;
   162   const Type *Value( PhaseTransform *phase ) const;
   163   bool is_index_range_check() const;
   164 };
   166 //------------------------------CmpPNode---------------------------------------
   167 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
   168 class CmpPNode : public CmpNode {
   169 public:
   170   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   171   virtual int Opcode() const;
   172   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   173   virtual const Type *sub( const Type *, const Type * ) const;
   174 };
   176 //------------------------------CmpNNode--------------------------------------
   177 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
   178 class CmpNNode : public CmpNode {
   179 public:
   180   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   181   virtual int Opcode() const;
   182   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   183   virtual const Type *sub( const Type *, const Type * ) const;
   184 };
   186 //------------------------------CmpLNode---------------------------------------
   187 // Compare 2 long values, returning condition codes (-1, 0 or 1).
   188 class CmpLNode : public CmpNode {
   189 public:
   190   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   191   virtual int    Opcode() const;
   192   virtual const Type *sub( const Type *, const Type * ) const;
   193 };
   195 //------------------------------CmpULNode---------------------------------------
   196 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
   197 class CmpULNode : public CmpNode {
   198 public:
   199   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
   200   virtual int Opcode() const;
   201   virtual const Type* sub(const Type*, const Type*) const;
   202 };
   204 //------------------------------CmpL3Node--------------------------------------
   205 // Compare 2 long values, returning integer value (-1, 0 or 1).
   206 class CmpL3Node : public CmpLNode {
   207 public:
   208   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
   209     // Since it is not consumed by Bools, it is not really a Cmp.
   210     init_class_id(Class_Sub);
   211   }
   212   virtual int    Opcode() const;
   213   virtual uint ideal_reg() const { return Op_RegI; }
   214 };
   216 //------------------------------CmpFNode---------------------------------------
   217 // Compare 2 float values, returning condition codes (-1, 0 or 1).
   218 // This implements the Java bytecode fcmpl, so unordered returns -1.
   219 // Operands may not commute.
   220 class CmpFNode : public CmpNode {
   221 public:
   222   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   223   virtual int Opcode() const;
   224   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
   225   const Type *Value( PhaseTransform *phase ) const;
   226 };
   228 //------------------------------CmpF3Node--------------------------------------
   229 // Compare 2 float values, returning integer value (-1, 0 or 1).
   230 // This implements the Java bytecode fcmpl, so unordered returns -1.
   231 // Operands may not commute.
   232 class CmpF3Node : public CmpFNode {
   233 public:
   234   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
   235     // Since it is not consumed by Bools, it is not really a Cmp.
   236     init_class_id(Class_Sub);
   237   }
   238   virtual int Opcode() const;
   239   // Since it is not consumed by Bools, it is not really a Cmp.
   240   virtual uint ideal_reg() const { return Op_RegI; }
   241 };
   244 //------------------------------CmpDNode---------------------------------------
   245 // Compare 2 double values, returning condition codes (-1, 0 or 1).
   246 // This implements the Java bytecode dcmpl, so unordered returns -1.
   247 // Operands may not commute.
   248 class CmpDNode : public CmpNode {
   249 public:
   250   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
   251   virtual int Opcode() const;
   252   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
   253   const Type *Value( PhaseTransform *phase ) const;
   254   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
   255 };
   257 //------------------------------CmpD3Node--------------------------------------
   258 // Compare 2 double values, returning integer value (-1, 0 or 1).
   259 // This implements the Java bytecode dcmpl, so unordered returns -1.
   260 // Operands may not commute.
   261 class CmpD3Node : public CmpDNode {
   262 public:
   263   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
   264     // Since it is not consumed by Bools, it is not really a Cmp.
   265     init_class_id(Class_Sub);
   266   }
   267   virtual int Opcode() const;
   268   virtual uint ideal_reg() const { return Op_RegI; }
   269 };
   272 //------------------------------BoolTest---------------------------------------
   273 // Convert condition codes to a boolean test value (0 or -1).
   274 // We pick the values as 3 bits; the low order 2 bits we compare against the
   275 // condition codes, the high bit flips the sense of the result.
   276 struct BoolTest VALUE_OBJ_CLASS_SPEC {
   277   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 };
   278   mask _test;
   279   BoolTest( mask btm ) : _test(btm) {}
   280   const Type *cc2logical( const Type *CC ) const;
   281   // Commute the test.  I use a small table lookup.  The table is created as
   282   // a simple char array where each element is the ASCII version of a 'mask'
   283   // enum from above.
   284   mask commute( ) const { return mask("032147658"[_test]-'0'); }
   285   mask negate( ) const { return mask(_test^4); }
   286   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
   287   void dump_on(outputStream *st) const;
   288 };
   290 //------------------------------BoolNode---------------------------------------
   291 // A Node to convert a Condition Codes to a Logical result.
   292 class BoolNode : public Node {
   293   virtual uint hash() const;
   294   virtual uint cmp( const Node &n ) const;
   295   virtual uint size_of() const;
   296 public:
   297   const BoolTest _test;
   298   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
   299     init_class_id(Class_Bool);
   300   }
   301   // Convert an arbitrary int value to a Bool or other suitable predicate.
   302   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
   303   // Convert self back to an integer value.
   304   Node* as_int_value(PhaseGVN* phase);
   305   // Invert sense of self, returning new Bool.
   306   BoolNode* negate(PhaseGVN* phase);
   307   virtual int Opcode() const;
   308   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   309   virtual const Type *Value( PhaseTransform *phase ) const;
   310   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   311   uint match_edge(uint idx) const { return 0; }
   312   virtual uint ideal_reg() const { return Op_RegI; }
   314   bool is_counted_loop_exit_test();
   315 #ifndef PRODUCT
   316   virtual void dump_spec(outputStream *st) const;
   317 #endif
   318 };
   320 //------------------------------AbsNode----------------------------------------
   321 // Abstract class for absolute value.  Mostly used to get a handy wrapper
   322 // for finding this pattern in the graph.
   323 class AbsNode : public Node {
   324 public:
   325   AbsNode( Node *value ) : Node(0,value) {}
   326 };
   328 //------------------------------AbsINode---------------------------------------
   329 // Absolute value an integer.  Since a naive graph involves control flow, we
   330 // "match" it in the ideal world (so the control flow can be removed).
   331 class AbsINode : public AbsNode {
   332 public:
   333   AbsINode( Node *in1 ) : AbsNode(in1) {}
   334   virtual int Opcode() const;
   335   const Type *bottom_type() const { return TypeInt::INT; }
   336   virtual uint ideal_reg() const { return Op_RegI; }
   337 };
   339 //------------------------------AbsFNode---------------------------------------
   340 // Absolute value a float, a common float-point idiom with a cheap hardware
   341 // implemention on most chips.  Since a naive graph involves control flow, we
   342 // "match" it in the ideal world (so the control flow can be removed).
   343 class AbsFNode : public AbsNode {
   344 public:
   345   AbsFNode( Node *in1 ) : AbsNode(in1) {}
   346   virtual int Opcode() const;
   347   const Type *bottom_type() const { return Type::FLOAT; }
   348   virtual uint ideal_reg() const { return Op_RegF; }
   349 };
   351 //------------------------------AbsDNode---------------------------------------
   352 // Absolute value a double, a common float-point idiom with a cheap hardware
   353 // implemention on most chips.  Since a naive graph involves control flow, we
   354 // "match" it in the ideal world (so the control flow can be removed).
   355 class AbsDNode : public AbsNode {
   356 public:
   357   AbsDNode( Node *in1 ) : AbsNode(in1) {}
   358   virtual int Opcode() const;
   359   const Type *bottom_type() const { return Type::DOUBLE; }
   360   virtual uint ideal_reg() const { return Op_RegD; }
   361 };
   364 //------------------------------CmpLTMaskNode----------------------------------
   365 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
   366 class CmpLTMaskNode : public Node {
   367 public:
   368   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
   369   virtual int Opcode() const;
   370   const Type *bottom_type() const { return TypeInt::INT; }
   371   virtual uint ideal_reg() const { return Op_RegI; }
   372 };
   375 //------------------------------NegNode----------------------------------------
   376 class NegNode : public Node {
   377 public:
   378   NegNode( Node *in1 ) : Node(0,in1) {}
   379 };
   381 //------------------------------NegFNode---------------------------------------
   382 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
   383 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
   384 // cannot be used to replace negation we have to implement negation as ideal
   385 // node; note that negation and addition can replace subtraction.
   386 class NegFNode : public NegNode {
   387 public:
   388   NegFNode( Node *in1 ) : NegNode(in1) {}
   389   virtual int Opcode() const;
   390   const Type *bottom_type() const { return Type::FLOAT; }
   391   virtual uint ideal_reg() const { return Op_RegF; }
   392 };
   394 //------------------------------NegDNode---------------------------------------
   395 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
   396 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
   397 // cannot be used to replace negation we have to implement negation as ideal
   398 // node; note that negation and addition can replace subtraction.
   399 class NegDNode : public NegNode {
   400 public:
   401   NegDNode( Node *in1 ) : NegNode(in1) {}
   402   virtual int Opcode() const;
   403   const Type *bottom_type() const { return Type::DOUBLE; }
   404   virtual uint ideal_reg() const { return Op_RegD; }
   405 };
   407 //------------------------------CosDNode---------------------------------------
   408 // Cosinus of a double
   409 class CosDNode : public Node {
   410 public:
   411   CosDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   412     init_flags(Flag_is_expensive);
   413     C->add_expensive_node(this);
   414   }
   415   virtual int Opcode() const;
   416   const Type *bottom_type() const { return Type::DOUBLE; }
   417   virtual uint ideal_reg() const { return Op_RegD; }
   418   virtual const Type *Value( PhaseTransform *phase ) const;
   419 };
   421 //------------------------------CosDNode---------------------------------------
   422 // Sinus of a double
   423 class SinDNode : public Node {
   424 public:
   425   SinDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   426     init_flags(Flag_is_expensive);
   427     C->add_expensive_node(this);
   428   }
   429   virtual int Opcode() const;
   430   const Type *bottom_type() const { return Type::DOUBLE; }
   431   virtual uint ideal_reg() const { return Op_RegD; }
   432   virtual const Type *Value( PhaseTransform *phase ) const;
   433 };
   436 //------------------------------TanDNode---------------------------------------
   437 // tangens of a double
   438 class TanDNode : public Node {
   439 public:
   440   TanDNode(Compile* C, Node *c,Node *in1) : Node(c, in1) {
   441     init_flags(Flag_is_expensive);
   442     C->add_expensive_node(this);
   443   }
   444   virtual int Opcode() const;
   445   const Type *bottom_type() const { return Type::DOUBLE; }
   446   virtual uint ideal_reg() const { return Op_RegD; }
   447   virtual const Type *Value( PhaseTransform *phase ) const;
   448 };
   451 //------------------------------AtanDNode--------------------------------------
   452 // arcus tangens of a double
   453 class AtanDNode : public Node {
   454 public:
   455   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
   456   virtual int Opcode() const;
   457   const Type *bottom_type() const { return Type::DOUBLE; }
   458   virtual uint ideal_reg() const { return Op_RegD; }
   459 };
   462 //------------------------------SqrtDNode--------------------------------------
   463 // square root a double
   464 class SqrtDNode : public Node {
   465 public:
   466   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   467     init_flags(Flag_is_expensive);
   468     C->add_expensive_node(this);
   469   }
   470   virtual int Opcode() const;
   471   const Type *bottom_type() const { return Type::DOUBLE; }
   472   virtual uint ideal_reg() const { return Op_RegD; }
   473   virtual const Type *Value( PhaseTransform *phase ) const;
   474 };
   476 //------------------------------ExpDNode---------------------------------------
   477 //  Exponentiate a double
   478 class ExpDNode : public Node {
   479 public:
   480   ExpDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   481     init_flags(Flag_is_expensive);
   482     C->add_expensive_node(this);
   483   }
   484   virtual int Opcode() const;
   485   const Type *bottom_type() const { return Type::DOUBLE; }
   486   virtual uint ideal_reg() const { return Op_RegD; }
   487   virtual const Type *Value( PhaseTransform *phase ) const;
   488 };
   490 //------------------------------LogDNode---------------------------------------
   491 // Log_e of a double
   492 class LogDNode : public Node {
   493 public:
   494   LogDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   495     init_flags(Flag_is_expensive);
   496     C->add_expensive_node(this);
   497   }
   498   virtual int Opcode() const;
   499   const Type *bottom_type() const { return Type::DOUBLE; }
   500   virtual uint ideal_reg() const { return Op_RegD; }
   501   virtual const Type *Value( PhaseTransform *phase ) const;
   502 };
   504 //------------------------------Log10DNode---------------------------------------
   505 // Log_10 of a double
   506 class Log10DNode : public Node {
   507 public:
   508   Log10DNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
   509     init_flags(Flag_is_expensive);
   510     C->add_expensive_node(this);
   511   }
   512   virtual int Opcode() const;
   513   const Type *bottom_type() const { return Type::DOUBLE; }
   514   virtual uint ideal_reg() const { return Op_RegD; }
   515   virtual const Type *Value( PhaseTransform *phase ) const;
   516 };
   518 //------------------------------PowDNode---------------------------------------
   519 // Raise a double to a double power
   520 class PowDNode : public Node {
   521 public:
   522   PowDNode(Compile* C, Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {
   523     init_flags(Flag_is_expensive);
   524     C->add_expensive_node(this);
   525   }
   526   virtual int Opcode() const;
   527   const Type *bottom_type() const { return Type::DOUBLE; }
   528   virtual uint ideal_reg() const { return Op_RegD; }
   529   virtual const Type *Value( PhaseTransform *phase ) const;
   530 };
   532 //-------------------------------ReverseBytesINode--------------------------------
   533 // reverse bytes of an integer
   534 class ReverseBytesINode : public Node {
   535 public:
   536   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
   537   virtual int Opcode() const;
   538   const Type *bottom_type() const { return TypeInt::INT; }
   539   virtual uint ideal_reg() const { return Op_RegI; }
   540 };
   542 //-------------------------------ReverseBytesLNode--------------------------------
   543 // reverse bytes of a long
   544 class ReverseBytesLNode : public Node {
   545 public:
   546   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
   547   virtual int Opcode() const;
   548   const Type *bottom_type() const { return TypeLong::LONG; }
   549   virtual uint ideal_reg() const { return Op_RegL; }
   550 };
   552 //-------------------------------ReverseBytesUSNode--------------------------------
   553 // reverse bytes of an unsigned short / char
   554 class ReverseBytesUSNode : public Node {
   555 public:
   556   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
   557   virtual int Opcode() const;
   558   const Type *bottom_type() const { return TypeInt::CHAR; }
   559   virtual uint ideal_reg() const { return Op_RegI; }
   560 };
   562 //-------------------------------ReverseBytesSNode--------------------------------
   563 // reverse bytes of a short
   564 class ReverseBytesSNode : public Node {
   565 public:
   566   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
   567   virtual int Opcode() const;
   568   const Type *bottom_type() const { return TypeInt::SHORT; }
   569   virtual uint ideal_reg() const { return Op_RegI; }
   570 };
   572 #endif // SHARE_VM_OPTO_SUBNODE_HPP

mercurial