src/share/vm/opto/subnode.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8856
ac27a9c85bea
child 9637
eef07cd490d4
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/connode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/mulnode.hpp"
    35 #include "opto/opcodes.hpp"
    36 #include "opto/phaseX.hpp"
    37 #include "opto/subnode.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 // Portions of code courtesy of Clifford Click
    42 // Optimization - Graph Style
    44 #include "math.h"
    46 //=============================================================================
    47 //------------------------------Identity---------------------------------------
    48 // If right input is a constant 0, return the left input.
    49 Node *SubNode::Identity( PhaseTransform *phase ) {
    50   assert(in(1) != this, "Must already have called Value");
    51   assert(in(2) != this, "Must already have called Value");
    53   // Remove double negation
    54   const Type *zero = add_id();
    55   if( phase->type( in(1) )->higher_equal( zero ) &&
    56       in(2)->Opcode() == Opcode() &&
    57       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
    58     return in(2)->in(2);
    59   }
    61   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
    62   if( in(1)->Opcode() == Op_AddI ) {
    63     if( phase->eqv(in(1)->in(2),in(2)) )
    64       return in(1)->in(1);
    65     if (phase->eqv(in(1)->in(1),in(2)))
    66       return in(1)->in(2);
    68     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
    69     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
    70     // are originally used, although the optimizer sometimes jiggers things).
    71     // This folding through an O2 removes a loop-exit use of a loop-varying
    72     // value and generally lowers register pressure in and around the loop.
    73     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
    74         phase->eqv(in(1)->in(2)->in(1),in(2)) )
    75       return in(1)->in(1);
    76   }
    78   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
    79 }
    81 //------------------------------Value------------------------------------------
    82 // A subtract node differences it's two inputs.
    83 const Type* SubNode::Value_common(PhaseTransform *phase) const {
    84   const Node* in1 = in(1);
    85   const Node* in2 = in(2);
    86   // Either input is TOP ==> the result is TOP
    87   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
    88   if( t1 == Type::TOP ) return Type::TOP;
    89   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
    90   if( t2 == Type::TOP ) return Type::TOP;
    92   // Not correct for SubFnode and AddFNode (must check for infinity)
    93   // Equal?  Subtract is zero
    94   if (in1->eqv_uncast(in2))  return add_id();
    96   // Either input is BOTTOM ==> the result is the local BOTTOM
    97   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    98     return bottom_type();
   100   return NULL;
   101 }
   103 const Type* SubNode::Value(PhaseTransform *phase) const {
   104   const Type* t = Value_common(phase);
   105   if (t != NULL) {
   106     return t;
   107   }
   108   const Type* t1 = phase->type(in(1));
   109   const Type* t2 = phase->type(in(2));
   110   return sub(t1,t2);            // Local flavor of type subtraction
   112 }
   114 //=============================================================================
   116 //------------------------------Helper function--------------------------------
   117 static bool ok_to_convert(Node* inc, Node* iv) {
   118     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
   119     // "-" is loop invariant and collapsing extends the live-range of "x"
   120     // to overlap with the "+", forcing another register to be used in
   121     // the loop.
   122     // This test will be clearer with '&&' (apply DeMorgan's rule)
   123     // but I like the early cutouts that happen here.
   124     const PhiNode *phi;
   125     if( ( !inc->in(1)->is_Phi() ||
   126           !(phi=inc->in(1)->as_Phi()) ||
   127           phi->is_copy() ||
   128           !phi->region()->is_CountedLoop() ||
   129           inc != phi->region()->as_CountedLoop()->incr() )
   130        &&
   131         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
   132         // because "x" maybe invariant.
   133         ( !iv->is_loop_iv() )
   134       ) {
   135       return true;
   136     } else {
   137       return false;
   138     }
   139 }
   140 //------------------------------Ideal------------------------------------------
   141 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
   142   Node *in1 = in(1);
   143   Node *in2 = in(2);
   144   uint op1 = in1->Opcode();
   145   uint op2 = in2->Opcode();
   147 #ifdef ASSERT
   148   // Check for dead loop
   149   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   150       ( op1 == Op_AddI || op1 == Op_SubI ) &&
   151       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   152         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
   153     assert(false, "dead loop in SubINode::Ideal");
   154 #endif
   156   const Type *t2 = phase->type( in2 );
   157   if( t2 == Type::TOP ) return NULL;
   158   // Convert "x-c0" into "x+ -c0".
   159   if( t2->base() == Type::Int ){        // Might be bottom or top...
   160     const TypeInt *i = t2->is_int();
   161     if( i->is_con() )
   162       return new (phase->C) AddINode(in1, phase->intcon(-i->get_con()));
   163   }
   165   // Convert "(x+c0) - y" into (x-y) + c0"
   166   // Do not collapse (x+c0)-y if "+" is a loop increment or
   167   // if "y" is a loop induction variable.
   168   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
   169     const Type *tadd = phase->type( in1->in(2) );
   170     if( tadd->singleton() && tadd != Type::TOP ) {
   171       Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 ));
   172       return new (phase->C) AddINode( sub2, in1->in(2) );
   173     }
   174   }
   177   // Convert "x - (y+c0)" into "(x-y) - c0"
   178   // Need the same check as in above optimization but reversed.
   179   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
   180     Node* in21 = in2->in(1);
   181     Node* in22 = in2->in(2);
   182     const TypeInt* tcon = phase->type(in22)->isa_int();
   183     if (tcon != NULL && tcon->is_con()) {
   184       Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) );
   185       Node* neg_c0 = phase->intcon(- tcon->get_con());
   186       return new (phase->C) AddINode(sub2, neg_c0);
   187     }
   188   }
   190   const Type *t1 = phase->type( in1 );
   191   if( t1 == Type::TOP ) return NULL;
   193 #ifdef ASSERT
   194   // Check for dead loop
   195   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
   196       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   197         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   198     assert(false, "dead loop in SubINode::Ideal");
   199 #endif
   201   // Convert "x - (x+y)" into "-y"
   202   if( op2 == Op_AddI &&
   203       phase->eqv( in1, in2->in(1) ) )
   204     return new (phase->C) SubINode( phase->intcon(0),in2->in(2));
   205   // Convert "(x-y) - x" into "-y"
   206   if( op1 == Op_SubI &&
   207       phase->eqv( in1->in(1), in2 ) )
   208     return new (phase->C) SubINode( phase->intcon(0),in1->in(2));
   209   // Convert "x - (y+x)" into "-y"
   210   if( op2 == Op_AddI &&
   211       phase->eqv( in1, in2->in(2) ) )
   212     return new (phase->C) SubINode( phase->intcon(0),in2->in(1));
   214   // Convert "0 - (x-y)" into "y-x"
   215   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
   216     return new (phase->C) SubINode( in2->in(2), in2->in(1) );
   218   // Convert "0 - (x+con)" into "-con-x"
   219   jint con;
   220   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
   221       (con = in2->in(2)->find_int_con(0)) != 0 )
   222     return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) );
   224   // Convert "(X+A) - (X+B)" into "A - B"
   225   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
   226     return new (phase->C) SubINode( in1->in(2), in2->in(2) );
   228   // Convert "(A+X) - (B+X)" into "A - B"
   229   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
   230     return new (phase->C) SubINode( in1->in(1), in2->in(1) );
   232   // Convert "(A+X) - (X+B)" into "A - B"
   233   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
   234     return new (phase->C) SubINode( in1->in(1), in2->in(2) );
   236   // Convert "(X+A) - (B+X)" into "A - B"
   237   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
   238     return new (phase->C) SubINode( in1->in(2), in2->in(1) );
   240   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
   241   // nicer to optimize than subtract.
   242   if( op2 == Op_SubI && in2->outcnt() == 1) {
   243     Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) );
   244     return new (phase->C) SubINode( add1, in2->in(1) );
   245   }
   247   return NULL;
   248 }
   250 //------------------------------sub--------------------------------------------
   251 // A subtract node differences it's two inputs.
   252 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
   253   const TypeInt *r0 = t1->is_int(); // Handy access
   254   const TypeInt *r1 = t2->is_int();
   255   int32 lo = r0->_lo - r1->_hi;
   256   int32 hi = r0->_hi - r1->_lo;
   258   // We next check for 32-bit overflow.
   259   // If that happens, we just assume all integers are possible.
   260   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   261        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   262       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   263        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   264     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   265   else                          // Overflow; assume all integers
   266     return TypeInt::INT;
   267 }
   269 //=============================================================================
   270 //------------------------------Ideal------------------------------------------
   271 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   272   Node *in1 = in(1);
   273   Node *in2 = in(2);
   274   uint op1 = in1->Opcode();
   275   uint op2 = in2->Opcode();
   277 #ifdef ASSERT
   278   // Check for dead loop
   279   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   280       ( op1 == Op_AddL || op1 == Op_SubL ) &&
   281       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   282         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
   283     assert(false, "dead loop in SubLNode::Ideal");
   284 #endif
   286   if( phase->type( in2 ) == Type::TOP ) return NULL;
   287   const TypeLong *i = phase->type( in2 )->isa_long();
   288   // Convert "x-c0" into "x+ -c0".
   289   if( i &&                      // Might be bottom or top...
   290       i->is_con() )
   291     return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con()));
   293   // Convert "(x+c0) - y" into (x-y) + c0"
   294   // Do not collapse (x+c0)-y if "+" is a loop increment or
   295   // if "y" is a loop induction variable.
   296   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
   297     Node *in11 = in1->in(1);
   298     const Type *tadd = phase->type( in1->in(2) );
   299     if( tadd->singleton() && tadd != Type::TOP ) {
   300       Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 ));
   301       return new (phase->C) AddLNode( sub2, in1->in(2) );
   302     }
   303   }
   305   // Convert "x - (y+c0)" into "(x-y) - c0"
   306   // Need the same check as in above optimization but reversed.
   307   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
   308     Node* in21 = in2->in(1);
   309     Node* in22 = in2->in(2);
   310     const TypeLong* tcon = phase->type(in22)->isa_long();
   311     if (tcon != NULL && tcon->is_con()) {
   312       Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) );
   313       Node* neg_c0 = phase->longcon(- tcon->get_con());
   314       return new (phase->C) AddLNode(sub2, neg_c0);
   315     }
   316   }
   318   const Type *t1 = phase->type( in1 );
   319   if( t1 == Type::TOP ) return NULL;
   321 #ifdef ASSERT
   322   // Check for dead loop
   323   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
   324       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   325         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   326     assert(false, "dead loop in SubLNode::Ideal");
   327 #endif
   329   // Convert "x - (x+y)" into "-y"
   330   if( op2 == Op_AddL &&
   331       phase->eqv( in1, in2->in(1) ) )
   332     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
   333   // Convert "x - (y+x)" into "-y"
   334   if( op2 == Op_AddL &&
   335       phase->eqv( in1, in2->in(2) ) )
   336     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
   338   // Convert "0 - (x-y)" into "y-x"
   339   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
   340     return new (phase->C) SubLNode( in2->in(2), in2->in(1) );
   342   // Convert "(X+A) - (X+B)" into "A - B"
   343   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
   344     return new (phase->C) SubLNode( in1->in(2), in2->in(2) );
   346   // Convert "(A+X) - (B+X)" into "A - B"
   347   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
   348     return new (phase->C) SubLNode( in1->in(1), in2->in(1) );
   350   // Convert "A-(B-C)" into (A+C)-B"
   351   if( op2 == Op_SubL && in2->outcnt() == 1) {
   352     Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) );
   353     return new (phase->C) SubLNode( add1, in2->in(1) );
   354   }
   356   return NULL;
   357 }
   359 //------------------------------sub--------------------------------------------
   360 // A subtract node differences it's two inputs.
   361 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
   362   const TypeLong *r0 = t1->is_long(); // Handy access
   363   const TypeLong *r1 = t2->is_long();
   364   jlong lo = r0->_lo - r1->_hi;
   365   jlong hi = r0->_hi - r1->_lo;
   367   // We next check for 32-bit overflow.
   368   // If that happens, we just assume all integers are possible.
   369   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   370        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   371       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   372        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   373     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   374   else                          // Overflow; assume all integers
   375     return TypeLong::LONG;
   376 }
   378 //=============================================================================
   379 //------------------------------Value------------------------------------------
   380 // A subtract node differences its two inputs.
   381 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
   382   const Node* in1 = in(1);
   383   const Node* in2 = in(2);
   384   // Either input is TOP ==> the result is TOP
   385   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   386   if( t1 == Type::TOP ) return Type::TOP;
   387   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   388   if( t2 == Type::TOP ) return Type::TOP;
   390   // if both operands are infinity of same sign, the result is NaN; do
   391   // not replace with zero
   392   if( (t1->is_finite() && t2->is_finite()) ) {
   393     if( phase->eqv(in1, in2) ) return add_id();
   394   }
   396   // Either input is BOTTOM ==> the result is the local BOTTOM
   397   const Type *bot = bottom_type();
   398   if( (t1 == bot) || (t2 == bot) ||
   399       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   400     return bot;
   402   return sub(t1,t2);            // Local flavor of type subtraction
   403 }
   406 //=============================================================================
   407 //------------------------------Ideal------------------------------------------
   408 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   409   const Type *t2 = phase->type( in(2) );
   410   // Convert "x-c0" into "x+ -c0".
   411   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
   412     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
   413   }
   415   // Not associative because of boundary conditions (infinity)
   416   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   417     // Convert "x - (x+y)" into "-y"
   418     if( in(2)->is_Add() &&
   419         phase->eqv(in(1),in(2)->in(1) ) )
   420       return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
   421   }
   423   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
   424   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
   425   //if( phase->type(in(1)) == TypeF::ZERO )
   426   //return new (phase->C, 2) NegFNode(in(2));
   428   return NULL;
   429 }
   431 //------------------------------sub--------------------------------------------
   432 // A subtract node differences its two inputs.
   433 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
   434   // no folding if one of operands is infinity or NaN, do not do constant folding
   435   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
   436     return TypeF::make( t1->getf() - t2->getf() );
   437   }
   438   else if( g_isnan(t1->getf()) ) {
   439     return t1;
   440   }
   441   else if( g_isnan(t2->getf()) ) {
   442     return t2;
   443   }
   444   else {
   445     return Type::FLOAT;
   446   }
   447 }
   449 //=============================================================================
   450 //------------------------------Ideal------------------------------------------
   451 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   452   const Type *t2 = phase->type( in(2) );
   453   // Convert "x-c0" into "x+ -c0".
   454   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
   455     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
   456   }
   458   // Not associative because of boundary conditions (infinity)
   459   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   460     // Convert "x - (x+y)" into "-y"
   461     if( in(2)->is_Add() &&
   462         phase->eqv(in(1),in(2)->in(1) ) )
   463       return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
   464   }
   466   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
   467   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
   468   //if( phase->type(in(1)) == TypeD::ZERO )
   469   //return new (phase->C, 2) NegDNode(in(2));
   471   return NULL;
   472 }
   474 //------------------------------sub--------------------------------------------
   475 // A subtract node differences its two inputs.
   476 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
   477   // no folding if one of operands is infinity or NaN, do not do constant folding
   478   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
   479     return TypeD::make( t1->getd() - t2->getd() );
   480   }
   481   else if( g_isnan(t1->getd()) ) {
   482     return t1;
   483   }
   484   else if( g_isnan(t2->getd()) ) {
   485     return t2;
   486   }
   487   else {
   488     return Type::DOUBLE;
   489   }
   490 }
   492 //=============================================================================
   493 //------------------------------Idealize---------------------------------------
   494 // Unlike SubNodes, compare must still flatten return value to the
   495 // range -1, 0, 1.
   496 // And optimizations like those for (X + Y) - X fail if overflow happens.
   497 Node *CmpNode::Identity( PhaseTransform *phase ) {
   498   return this;
   499 }
   501 //=============================================================================
   502 //------------------------------cmp--------------------------------------------
   503 // Simplify a CmpI (compare 2 integers) node, based on local information.
   504 // If both inputs are constants, compare them.
   505 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
   506   const TypeInt *r0 = t1->is_int(); // Handy access
   507   const TypeInt *r1 = t2->is_int();
   509   if( r0->_hi < r1->_lo )       // Range is always low?
   510     return TypeInt::CC_LT;
   511   else if( r0->_lo > r1->_hi )  // Range is always high?
   512     return TypeInt::CC_GT;
   514   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   515     assert(r0->get_con() == r1->get_con(), "must be equal");
   516     return TypeInt::CC_EQ;      // Equal results.
   517   } else if( r0->_hi == r1->_lo ) // Range is never high?
   518     return TypeInt::CC_LE;
   519   else if( r0->_lo == r1->_hi ) // Range is never low?
   520     return TypeInt::CC_GE;
   521   return TypeInt::CC;           // else use worst case results
   522 }
   524 // Simplify a CmpU (compare 2 integers) node, based on local information.
   525 // If both inputs are constants, compare them.
   526 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
   527   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
   529   // comparing two unsigned ints
   530   const TypeInt *r0 = t1->is_int();   // Handy access
   531   const TypeInt *r1 = t2->is_int();
   533   // Current installed version
   534   // Compare ranges for non-overlap
   535   juint lo0 = r0->_lo;
   536   juint hi0 = r0->_hi;
   537   juint lo1 = r1->_lo;
   538   juint hi1 = r1->_hi;
   540   // If either one has both negative and positive values,
   541   // it therefore contains both 0 and -1, and since [0..-1] is the
   542   // full unsigned range, the type must act as an unsigned bottom.
   543   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
   544   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
   546   if (bot0 || bot1) {
   547     // All unsigned values are LE -1 and GE 0.
   548     if (lo0 == 0 && hi0 == 0) {
   549       return TypeInt::CC_LE;            //   0 <= bot
   550     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
   551       return TypeInt::CC_GE;            // -1 >= bot
   552     } else if (lo1 == 0 && hi1 == 0) {
   553       return TypeInt::CC_GE;            // bot >= 0
   554     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
   555       return TypeInt::CC_LE;            // bot <= -1
   556     }
   557   } else {
   558     // We can use ranges of the form [lo..hi] if signs are the same.
   559     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
   560     // results are reversed, '-' > '+' for unsigned compare
   561     if (hi0 < lo1) {
   562       return TypeInt::CC_LT;            // smaller
   563     } else if (lo0 > hi1) {
   564       return TypeInt::CC_GT;            // greater
   565     } else if (hi0 == lo1 && lo0 == hi1) {
   566       return TypeInt::CC_EQ;            // Equal results
   567     } else if (lo0 >= hi1) {
   568       return TypeInt::CC_GE;
   569     } else if (hi0 <= lo1) {
   570       // Check for special case in Hashtable::get.  (See below.)
   571       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
   572         return TypeInt::CC_LT;
   573       return TypeInt::CC_LE;
   574     }
   575   }
   576   // Check for special case in Hashtable::get - the hash index is
   577   // mod'ed to the table size so the following range check is useless.
   578   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
   579   // to be positive.
   580   // (This is a gross hack, since the sub method never
   581   // looks at the structure of the node in any other case.)
   582   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
   583     return TypeInt::CC_LT;
   584   return TypeInt::CC;                   // else use worst case results
   585 }
   587 const Type* CmpUNode::Value(PhaseTransform *phase) const {
   588   const Type* t = SubNode::Value_common(phase);
   589   if (t != NULL) {
   590     return t;
   591   }
   592   const Node* in1 = in(1);
   593   const Node* in2 = in(2);
   594   const Type* t1 = phase->type(in1);
   595   const Type* t2 = phase->type(in2);
   596   assert(t1->isa_int(), "CmpU has only Int type inputs");
   597   if (t2 == TypeInt::INT) { // Compare to bottom?
   598     return bottom_type();
   599   }
   600   uint in1_op = in1->Opcode();
   601   if (in1_op == Op_AddI || in1_op == Op_SubI) {
   602     // The problem rise when result of AddI(SubI) may overflow
   603     // signed integer value. Let say the input type is
   604     // [256, maxint] then +128 will create 2 ranges due to
   605     // overflow: [minint, minint+127] and [384, maxint].
   606     // But C2 type system keep only 1 type range and as result
   607     // it use general [minint, maxint] for this case which we
   608     // can't optimize.
   609     //
   610     // Make 2 separate type ranges based on types of AddI(SubI) inputs
   611     // and compare results of their compare. If results are the same
   612     // CmpU node can be optimized.
   613     const Node* in11 = in1->in(1);
   614     const Node* in12 = in1->in(2);
   615     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
   616     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
   617     // Skip cases when input types are top or bottom.
   618     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
   619         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
   620       const TypeInt *r0 = t11->is_int();
   621       const TypeInt *r1 = t12->is_int();
   622       jlong lo_r0 = r0->_lo;
   623       jlong hi_r0 = r0->_hi;
   624       jlong lo_r1 = r1->_lo;
   625       jlong hi_r1 = r1->_hi;
   626       if (in1_op == Op_SubI) {
   627         jlong tmp = hi_r1;
   628         hi_r1 = -lo_r1;
   629         lo_r1 = -tmp;
   630         // Note, for substructing [minint,x] type range
   631         // long arithmetic provides correct overflow answer.
   632         // The confusion come from the fact that in 32-bit
   633         // -minint == minint but in 64-bit -minint == maxint+1.
   634       }
   635       jlong lo_long = lo_r0 + lo_r1;
   636       jlong hi_long = hi_r0 + hi_r1;
   637       int lo_tr1 = min_jint;
   638       int hi_tr1 = (int)hi_long;
   639       int lo_tr2 = (int)lo_long;
   640       int hi_tr2 = max_jint;
   641       bool underflow = lo_long != (jlong)lo_tr2;
   642       bool overflow  = hi_long != (jlong)hi_tr1;
   643       // Use sub(t1, t2) when there is no overflow (one type range)
   644       // or when both overflow and underflow (too complex).
   645       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
   646         // Overflow only on one boundary, compare 2 separate type ranges.
   647         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
   648         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
   649         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
   650         const Type* cmp1 = sub(tr1, t2);
   651         const Type* cmp2 = sub(tr2, t2);
   652         if (cmp1 == cmp2) {
   653           return cmp1; // Hit!
   654         }
   655       }
   656     }
   657   }
   659   return sub(t1, t2);            // Local flavor of type subtraction
   660 }
   662 bool CmpUNode::is_index_range_check() const {
   663   // Check for the "(X ModI Y) CmpU Y" shape
   664   return (in(1)->Opcode() == Op_ModI &&
   665           in(1)->in(2)->eqv_uncast(in(2)));
   666 }
   668 //------------------------------Idealize---------------------------------------
   669 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   670   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
   671     switch (in(1)->Opcode()) {
   672     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
   673       return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2));
   674     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
   675       return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2));
   676     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
   677       return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2));
   678     //case Op_SubI:
   679       // If (x - y) cannot overflow, then ((x - y) <?> 0)
   680       // can be turned into (x <?> y).
   681       // This is handled (with more general cases) by Ideal_sub_algebra.
   682     }
   683   }
   684   return NULL;                  // No change
   685 }
   688 //=============================================================================
   689 // Simplify a CmpL (compare 2 longs ) node, based on local information.
   690 // If both inputs are constants, compare them.
   691 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
   692   const TypeLong *r0 = t1->is_long(); // Handy access
   693   const TypeLong *r1 = t2->is_long();
   695   if( r0->_hi < r1->_lo )       // Range is always low?
   696     return TypeInt::CC_LT;
   697   else if( r0->_lo > r1->_hi )  // Range is always high?
   698     return TypeInt::CC_GT;
   700   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   701     assert(r0->get_con() == r1->get_con(), "must be equal");
   702     return TypeInt::CC_EQ;      // Equal results.
   703   } else if( r0->_hi == r1->_lo ) // Range is never high?
   704     return TypeInt::CC_LE;
   705   else if( r0->_lo == r1->_hi ) // Range is never low?
   706     return TypeInt::CC_GE;
   707   return TypeInt::CC;           // else use worst case results
   708 }
   711 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
   712 // If both inputs are constants, compare them.
   713 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
   714   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
   716   // comparing two unsigned longs
   717   const TypeLong* r0 = t1->is_long();   // Handy access
   718   const TypeLong* r1 = t2->is_long();
   720   // Current installed version
   721   // Compare ranges for non-overlap
   722   julong lo0 = r0->_lo;
   723   julong hi0 = r0->_hi;
   724   julong lo1 = r1->_lo;
   725   julong hi1 = r1->_hi;
   727   // If either one has both negative and positive values,
   728   // it therefore contains both 0 and -1, and since [0..-1] is the
   729   // full unsigned range, the type must act as an unsigned bottom.
   730   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
   731   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
   733   if (bot0 || bot1) {
   734     // All unsigned values are LE -1 and GE 0.
   735     if (lo0 == 0 && hi0 == 0) {
   736       return TypeInt::CC_LE;            //   0 <= bot
   737     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
   738       return TypeInt::CC_GE;            // -1 >= bot
   739     } else if (lo1 == 0 && hi1 == 0) {
   740       return TypeInt::CC_GE;            // bot >= 0
   741     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
   742       return TypeInt::CC_LE;            // bot <= -1
   743     }
   744   } else {
   745     // We can use ranges of the form [lo..hi] if signs are the same.
   746     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
   747     // results are reversed, '-' > '+' for unsigned compare
   748     if (hi0 < lo1) {
   749       return TypeInt::CC_LT;            // smaller
   750     } else if (lo0 > hi1) {
   751       return TypeInt::CC_GT;            // greater
   752     } else if (hi0 == lo1 && lo0 == hi1) {
   753       return TypeInt::CC_EQ;            // Equal results
   754     } else if (lo0 >= hi1) {
   755       return TypeInt::CC_GE;
   756     } else if (hi0 <= lo1) {
   757       return TypeInt::CC_LE;
   758     }
   759   }
   761   return TypeInt::CC;                   // else use worst case results
   762 }
   764 //=============================================================================
   765 //------------------------------sub--------------------------------------------
   766 // Simplify an CmpP (compare 2 pointers) node, based on local information.
   767 // If both inputs are constants, compare them.
   768 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
   769   const TypePtr *r0 = t1->is_ptr(); // Handy access
   770   const TypePtr *r1 = t2->is_ptr();
   772   // Undefined inputs makes for an undefined result
   773   if( TypePtr::above_centerline(r0->_ptr) ||
   774       TypePtr::above_centerline(r1->_ptr) )
   775     return Type::TOP;
   777   if (r0 == r1 && r0->singleton()) {
   778     // Equal pointer constants (klasses, nulls, etc.)
   779     return TypeInt::CC_EQ;
   780   }
   782   // See if it is 2 unrelated classes.
   783   const TypeOopPtr* p0 = r0->isa_oopptr();
   784   const TypeOopPtr* p1 = r1->isa_oopptr();
   785   if (p0 && p1) {
   786     Node* in1 = in(1)->uncast();
   787     Node* in2 = in(2)->uncast();
   788     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
   789     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
   790     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
   791       return TypeInt::CC_GT;  // different pointers
   792     }
   793     ciKlass* klass0 = p0->klass();
   794     bool    xklass0 = p0->klass_is_exact();
   795     ciKlass* klass1 = p1->klass();
   796     bool    xklass1 = p1->klass_is_exact();
   797     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   798     if (klass0 && klass1 &&
   799         kps != 1 &&             // both or neither are klass pointers
   800         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
   801         klass1->is_loaded() && !klass1->is_interface() &&
   802         (!klass0->is_obj_array_klass() ||
   803          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
   804         (!klass1->is_obj_array_klass() ||
   805          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
   806       bool unrelated_classes = false;
   807       // See if neither subclasses the other, or if the class on top
   808       // is precise.  In either of these cases, the compare is known
   809       // to fail if at least one of the pointers is provably not null.
   810       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
   811         // Do nothing; we know nothing for imprecise types
   812       } else if (klass0->is_subtype_of(klass1)) {
   813         // If klass1's type is PRECISE, then classes are unrelated.
   814         unrelated_classes = xklass1;
   815       } else if (klass1->is_subtype_of(klass0)) {
   816         // If klass0's type is PRECISE, then classes are unrelated.
   817         unrelated_classes = xklass0;
   818       } else {                  // Neither subtypes the other
   819         unrelated_classes = true;
   820       }
   821       if (unrelated_classes) {
   822         // The oops classes are known to be unrelated. If the joined PTRs of
   823         // two oops is not Null and not Bottom, then we are sure that one
   824         // of the two oops is non-null, and the comparison will always fail.
   825         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   826         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   827           return TypeInt::CC_GT;
   828         }
   829       }
   830     }
   831   }
   833   // Known constants can be compared exactly
   834   // Null can be distinguished from any NotNull pointers
   835   // Unknown inputs makes an unknown result
   836   if( r0->singleton() ) {
   837     intptr_t bits0 = r0->get_con();
   838     if( r1->singleton() )
   839       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   840     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   841   } else if( r1->singleton() ) {
   842     intptr_t bits1 = r1->get_con();
   843     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   844   } else
   845     return TypeInt::CC;
   846 }
   848 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
   849   // Return the klass node for
   850   //   LoadP(AddP(foo:Klass, #java_mirror))
   851   //   or NULL if not matching.
   852   if (n->Opcode() != Op_LoadP) return NULL;
   854   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
   855   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
   857   Node* adr = n->in(MemNode::Address);
   858   intptr_t off = 0;
   859   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
   860   if (k == NULL)  return NULL;
   861   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
   862   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
   864   // We've found the klass node of a Java mirror load.
   865   return k;
   866 }
   868 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
   869   // for ConP(Foo.class) return ConP(Foo.klass)
   870   // otherwise return NULL
   871   if (!n->is_Con()) return NULL;
   873   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
   874   if (!tp) return NULL;
   876   ciType* mirror_type = tp->java_mirror_type();
   877   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
   878   // time Class constants only.
   879   if (!mirror_type) return NULL;
   881   // x.getClass() == int.class can never be true (for all primitive types)
   882   // Return a ConP(NULL) node for this case.
   883   if (mirror_type->is_classless()) {
   884     return phase->makecon(TypePtr::NULL_PTR);
   885   }
   887   // return the ConP(Foo.klass)
   888   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
   889   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
   890 }
   892 //------------------------------Ideal------------------------------------------
   893 // Normalize comparisons between Java mirror loads to compare the klass instead.
   894 //
   895 // Also check for the case of comparing an unknown klass loaded from the primary
   896 // super-type array vs a known klass with no subtypes.  This amounts to
   897 // checking to see an unknown klass subtypes a known klass with no subtypes;
   898 // this only happens on an exact match.  We can shorten this test by 1 load.
   899 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   900   // Normalize comparisons between Java mirrors into comparisons of the low-
   901   // level klass, where a dependent load could be shortened.
   902   //
   903   // The new pattern has a nice effect of matching the same pattern used in the
   904   // fast path of instanceof/checkcast/Class.isInstance(), which allows
   905   // redundant exact type check be optimized away by GVN.
   906   // For example, in
   907   //   if (x.getClass() == Foo.class) {
   908   //     Foo foo = (Foo) x;
   909   //     // ... use a ...
   910   //   }
   911   // a CmpPNode could be shared between if_acmpne and checkcast
   912   {
   913     Node* k1 = isa_java_mirror_load(phase, in(1));
   914     Node* k2 = isa_java_mirror_load(phase, in(2));
   915     Node* conk2 = isa_const_java_mirror(phase, in(2));
   917     if (k1 && (k2 || conk2)) {
   918       Node* lhs = k1;
   919       Node* rhs = (k2 != NULL) ? k2 : conk2;
   920       this->set_req(1, lhs);
   921       this->set_req(2, rhs);
   922       return this;
   923     }
   924   }
   926   // Constant pointer on right?
   927   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
   928   if (t2 == NULL || !t2->klass_is_exact())
   929     return NULL;
   930   // Get the constant klass we are comparing to.
   931   ciKlass* superklass = t2->klass();
   933   // Now check for LoadKlass on left.
   934   Node* ldk1 = in(1);
   935   if (ldk1->is_DecodeNKlass()) {
   936     ldk1 = ldk1->in(1);
   937     if (ldk1->Opcode() != Op_LoadNKlass )
   938       return NULL;
   939   } else if (ldk1->Opcode() != Op_LoadKlass )
   940     return NULL;
   941   // Take apart the address of the LoadKlass:
   942   Node* adr1 = ldk1->in(MemNode::Address);
   943   intptr_t con2 = 0;
   944   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
   945   if (ldk2 == NULL)
   946     return NULL;
   947   if (con2 == oopDesc::klass_offset_in_bytes()) {
   948     // We are inspecting an object's concrete class.
   949     // Short-circuit the check if the query is abstract.
   950     if (superklass->is_interface() ||
   951         superklass->is_abstract()) {
   952       // Make it come out always false:
   953       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
   954       return this;
   955     }
   956   }
   958   // Check for a LoadKlass from primary supertype array.
   959   // Any nested loadklass from loadklass+con must be from the p.s. array.
   960   if (ldk2->is_DecodeNKlass()) {
   961     // Keep ldk2 as DecodeN since it could be used in CmpP below.
   962     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
   963       return NULL;
   964   } else if (ldk2->Opcode() != Op_LoadKlass)
   965     return NULL;
   967   // Verify that we understand the situation
   968   if (con2 != (intptr_t) superklass->super_check_offset())
   969     return NULL;                // Might be element-klass loading from array klass
   971   // If 'superklass' has no subklasses and is not an interface, then we are
   972   // assured that the only input which will pass the type check is
   973   // 'superklass' itself.
   974   //
   975   // We could be more liberal here, and allow the optimization on interfaces
   976   // which have a single implementor.  This would require us to increase the
   977   // expressiveness of the add_dependency() mechanism.
   978   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
   980   // Object arrays must have their base element have no subtypes
   981   while (superklass->is_obj_array_klass()) {
   982     ciType* elem = superklass->as_obj_array_klass()->element_type();
   983     superklass = elem->as_klass();
   984   }
   985   if (superklass->is_instance_klass()) {
   986     ciInstanceKlass* ik = superklass->as_instance_klass();
   987     if (ik->has_subklass() || ik->is_interface())  return NULL;
   988     // Add a dependency if there is a chance that a subclass will be added later.
   989     if (!ik->is_final()) {
   990       phase->C->dependencies()->assert_leaf_type(ik);
   991     }
   992   }
   994   // Bypass the dependent load, and compare directly
   995   this->set_req(1,ldk2);
   997   return this;
   998 }
  1000 //=============================================================================
  1001 //------------------------------sub--------------------------------------------
  1002 // Simplify an CmpN (compare 2 pointers) node, based on local information.
  1003 // If both inputs are constants, compare them.
  1004 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
  1005   const TypePtr *r0 = t1->make_ptr(); // Handy access
  1006   const TypePtr *r1 = t2->make_ptr();
  1008   // Undefined inputs makes for an undefined result
  1009   if ((r0 == NULL) || (r1 == NULL) ||
  1010       TypePtr::above_centerline(r0->_ptr) ||
  1011       TypePtr::above_centerline(r1->_ptr)) {
  1012     return Type::TOP;
  1014   if (r0 == r1 && r0->singleton()) {
  1015     // Equal pointer constants (klasses, nulls, etc.)
  1016     return TypeInt::CC_EQ;
  1019   // See if it is 2 unrelated classes.
  1020   const TypeOopPtr* p0 = r0->isa_oopptr();
  1021   const TypeOopPtr* p1 = r1->isa_oopptr();
  1022   if (p0 && p1) {
  1023     ciKlass* klass0 = p0->klass();
  1024     bool    xklass0 = p0->klass_is_exact();
  1025     ciKlass* klass1 = p1->klass();
  1026     bool    xklass1 = p1->klass_is_exact();
  1027     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
  1028     if (klass0 && klass1 &&
  1029         kps != 1 &&             // both or neither are klass pointers
  1030         !klass0->is_interface() && // do not trust interfaces
  1031         !klass1->is_interface()) {
  1032       bool unrelated_classes = false;
  1033       // See if neither subclasses the other, or if the class on top
  1034       // is precise.  In either of these cases, the compare is known
  1035       // to fail if at least one of the pointers is provably not null.
  1036       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
  1037         // Do nothing; we know nothing for imprecise types
  1038       } else if (klass0->is_subtype_of(klass1)) {
  1039         // If klass1's type is PRECISE, then classes are unrelated.
  1040         unrelated_classes = xklass1;
  1041       } else if (klass1->is_subtype_of(klass0)) {
  1042         // If klass0's type is PRECISE, then classes are unrelated.
  1043         unrelated_classes = xklass0;
  1044       } else {                  // Neither subtypes the other
  1045         unrelated_classes = true;
  1047       if (unrelated_classes) {
  1048         // The oops classes are known to be unrelated. If the joined PTRs of
  1049         // two oops is not Null and not Bottom, then we are sure that one
  1050         // of the two oops is non-null, and the comparison will always fail.
  1051         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
  1052         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
  1053           return TypeInt::CC_GT;
  1059   // Known constants can be compared exactly
  1060   // Null can be distinguished from any NotNull pointers
  1061   // Unknown inputs makes an unknown result
  1062   if( r0->singleton() ) {
  1063     intptr_t bits0 = r0->get_con();
  1064     if( r1->singleton() )
  1065       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
  1066     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  1067   } else if( r1->singleton() ) {
  1068     intptr_t bits1 = r1->get_con();
  1069     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  1070   } else
  1071     return TypeInt::CC;
  1074 //------------------------------Ideal------------------------------------------
  1075 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
  1076   return NULL;
  1079 //=============================================================================
  1080 //------------------------------Value------------------------------------------
  1081 // Simplify an CmpF (compare 2 floats ) node, based on local information.
  1082 // If both inputs are constants, compare them.
  1083 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
  1084   const Node* in1 = in(1);
  1085   const Node* in2 = in(2);
  1086   // Either input is TOP ==> the result is TOP
  1087   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  1088   if( t1 == Type::TOP ) return Type::TOP;
  1089   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  1090   if( t2 == Type::TOP ) return Type::TOP;
  1092   // Not constants?  Don't know squat - even if they are the same
  1093   // value!  If they are NaN's they compare to LT instead of EQ.
  1094   const TypeF *tf1 = t1->isa_float_constant();
  1095   const TypeF *tf2 = t2->isa_float_constant();
  1096   if( !tf1 || !tf2 ) return TypeInt::CC;
  1098   // This implements the Java bytecode fcmpl, so unordered returns -1.
  1099   if( tf1->is_nan() || tf2->is_nan() )
  1100     return TypeInt::CC_LT;
  1102   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
  1103   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
  1104   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
  1105   return TypeInt::CC_EQ;
  1109 //=============================================================================
  1110 //------------------------------Value------------------------------------------
  1111 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
  1112 // If both inputs are constants, compare them.
  1113 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
  1114   const Node* in1 = in(1);
  1115   const Node* in2 = in(2);
  1116   // Either input is TOP ==> the result is TOP
  1117   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  1118   if( t1 == Type::TOP ) return Type::TOP;
  1119   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  1120   if( t2 == Type::TOP ) return Type::TOP;
  1122   // Not constants?  Don't know squat - even if they are the same
  1123   // value!  If they are NaN's they compare to LT instead of EQ.
  1124   const TypeD *td1 = t1->isa_double_constant();
  1125   const TypeD *td2 = t2->isa_double_constant();
  1126   if( !td1 || !td2 ) return TypeInt::CC;
  1128   // This implements the Java bytecode dcmpl, so unordered returns -1.
  1129   if( td1->is_nan() || td2->is_nan() )
  1130     return TypeInt::CC_LT;
  1132   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
  1133   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
  1134   assert( td1->_d == td2->_d, "do not understand FP behavior" );
  1135   return TypeInt::CC_EQ;
  1138 //------------------------------Ideal------------------------------------------
  1139 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1140   // Check if we can change this to a CmpF and remove a ConvD2F operation.
  1141   // Change  (CMPD (F2D (float)) (ConD value))
  1142   // To      (CMPF      (float)  (ConF value))
  1143   // Valid when 'value' does not lose precision as a float.
  1144   // Benefits: eliminates conversion, does not require 24-bit mode
  1146   // NaNs prevent commuting operands.  This transform works regardless of the
  1147   // order of ConD and ConvF2D inputs by preserving the original order.
  1148   int idx_f2d = 1;              // ConvF2D on left side?
  1149   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
  1150     idx_f2d = 2;                // No, swap to check for reversed args
  1151   int idx_con = 3-idx_f2d;      // Check for the constant on other input
  1153   if( ConvertCmpD2CmpF &&
  1154       in(idx_f2d)->Opcode() == Op_ConvF2D &&
  1155       in(idx_con)->Opcode() == Op_ConD ) {
  1156     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
  1157     double t2_value_as_double = t2->_d;
  1158     float  t2_value_as_float  = (float)t2_value_as_double;
  1159     if( t2_value_as_double == (double)t2_value_as_float ) {
  1160       // Test value can be represented as a float
  1161       // Eliminate the conversion to double and create new comparison
  1162       Node *new_in1 = in(idx_f2d)->in(1);
  1163       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
  1164       if( idx_f2d != 1 ) {      // Must flip args to match original order
  1165         Node *tmp = new_in1;
  1166         new_in1 = new_in2;
  1167         new_in2 = tmp;
  1169       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
  1170         ? new (phase->C) CmpF3Node( new_in1, new_in2 )
  1171         : new (phase->C) CmpFNode ( new_in1, new_in2 ) ;
  1172       return new_cmp;           // Changed to CmpFNode
  1174     // Testing value required the precision of a double
  1176   return NULL;                  // No change
  1180 //=============================================================================
  1181 //------------------------------cc2logical-------------------------------------
  1182 // Convert a condition code type to a logical type
  1183 const Type *BoolTest::cc2logical( const Type *CC ) const {
  1184   if( CC == Type::TOP ) return Type::TOP;
  1185   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
  1186   const TypeInt *ti = CC->is_int();
  1187   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
  1188     // Match low order 2 bits
  1189     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
  1190     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
  1191     return TypeInt::make(tmp);       // Boolean result
  1194   if( CC == TypeInt::CC_GE ) {
  1195     if( _test == ge ) return TypeInt::ONE;
  1196     if( _test == lt ) return TypeInt::ZERO;
  1198   if( CC == TypeInt::CC_LE ) {
  1199     if( _test == le ) return TypeInt::ONE;
  1200     if( _test == gt ) return TypeInt::ZERO;
  1203   return TypeInt::BOOL;
  1206 //------------------------------dump_spec-------------------------------------
  1207 // Print special per-node info
  1208 void BoolTest::dump_on(outputStream *st) const {
  1209   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
  1210   st->print("%s", msg[_test]);
  1213 //=============================================================================
  1214 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
  1215 uint BoolNode::size_of() const { return sizeof(BoolNode); }
  1217 //------------------------------operator==-------------------------------------
  1218 uint BoolNode::cmp( const Node &n ) const {
  1219   const BoolNode *b = (const BoolNode *)&n; // Cast up
  1220   return (_test._test == b->_test._test);
  1223 //-------------------------------make_predicate--------------------------------
  1224 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
  1225   if (test_value->is_Con())   return test_value;
  1226   if (test_value->is_Bool())  return test_value;
  1227   Compile* C = phase->C;
  1228   if (test_value->is_CMove() &&
  1229       test_value->in(CMoveNode::Condition)->is_Bool()) {
  1230     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
  1231     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
  1232     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
  1233     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
  1234       return bol;
  1235     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
  1236       return phase->transform( bol->negate(phase) );
  1238     // Else fall through.  The CMove gets in the way of the test.
  1239     // It should be the case that make_predicate(bol->as_int_value()) == bol.
  1241   Node* cmp = new (C) CmpINode(test_value, phase->intcon(0));
  1242   cmp = phase->transform(cmp);
  1243   Node* bol = new (C) BoolNode(cmp, BoolTest::ne);
  1244   return phase->transform(bol);
  1247 //--------------------------------as_int_value---------------------------------
  1248 Node* BoolNode::as_int_value(PhaseGVN* phase) {
  1249   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
  1250   Node* cmov = CMoveNode::make(phase->C, NULL, this,
  1251                                phase->intcon(0), phase->intcon(1),
  1252                                TypeInt::BOOL);
  1253   return phase->transform(cmov);
  1256 //----------------------------------negate-------------------------------------
  1257 BoolNode* BoolNode::negate(PhaseGVN* phase) {
  1258   Compile* C = phase->C;
  1259   return new (C) BoolNode(in(1), _test.negate());
  1263 //------------------------------Ideal------------------------------------------
  1264 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1265   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
  1266   // This moves the constant to the right.  Helps value-numbering.
  1267   Node *cmp = in(1);
  1268   if( !cmp->is_Sub() ) return NULL;
  1269   int cop = cmp->Opcode();
  1270   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
  1271   Node *cmp1 = cmp->in(1);
  1272   Node *cmp2 = cmp->in(2);
  1273   if( !cmp1 ) return NULL;
  1275   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
  1276     return NULL;
  1279   // Constant on left?
  1280   Node *con = cmp1;
  1281   uint op2 = cmp2->Opcode();
  1282   // Move constants to the right of compare's to canonicalize.
  1283   // Do not muck with Opaque1 nodes, as this indicates a loop
  1284   // guard that cannot change shape.
  1285   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
  1286       // Because of NaN's, CmpD and CmpF are not commutative
  1287       cop != Op_CmpD && cop != Op_CmpF &&
  1288       // Protect against swapping inputs to a compare when it is used by a
  1289       // counted loop exit, which requires maintaining the loop-limit as in(2)
  1290       !is_counted_loop_exit_test() ) {
  1291     // Ok, commute the constant to the right of the cmp node.
  1292     // Clone the Node, getting a new Node of the same class
  1293     cmp = cmp->clone();
  1294     // Swap inputs to the clone
  1295     cmp->swap_edges(1, 2);
  1296     cmp = phase->transform( cmp );
  1297     return new (phase->C) BoolNode( cmp, _test.commute() );
  1300   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
  1301   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
  1302   // test instead.
  1303   int cmp1_op = cmp1->Opcode();
  1304   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
  1305   if (cmp2_type == NULL)  return NULL;
  1306   Node* j_xor = cmp1;
  1307   if( cmp2_type == TypeInt::ZERO &&
  1308       cmp1_op == Op_XorI &&
  1309       j_xor->in(1) != j_xor &&          // An xor of itself is dead
  1310       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
  1311       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
  1312       (_test._test == BoolTest::eq ||
  1313        _test._test == BoolTest::ne) ) {
  1314     Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2));
  1315     return new (phase->C) BoolNode( ncmp, _test.negate() );
  1318   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
  1319   // This is a standard idiom for branching on a boolean value.
  1320   Node *c2b = cmp1;
  1321   if( cmp2_type == TypeInt::ZERO &&
  1322       cmp1_op == Op_Conv2B &&
  1323       (_test._test == BoolTest::eq ||
  1324        _test._test == BoolTest::ne) ) {
  1325     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
  1326        ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2)
  1327        : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
  1328     );
  1329     return new (phase->C) BoolNode( ncmp, _test._test );
  1332   // Comparing a SubI against a zero is equal to comparing the SubI
  1333   // arguments directly.  This only works for eq and ne comparisons
  1334   // due to possible integer overflow.
  1335   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
  1336         (cop == Op_CmpI) &&
  1337         (cmp1->Opcode() == Op_SubI) &&
  1338         ( cmp2_type == TypeInt::ZERO ) ) {
  1339     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2)));
  1340     return new (phase->C) BoolNode( ncmp, _test._test );
  1343   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
  1344   // most general case because negating 0x80000000 does nothing.  Needed for
  1345   // the CmpF3/SubI/CmpI idiom.
  1346   if( cop == Op_CmpI &&
  1347       cmp1->Opcode() == Op_SubI &&
  1348       cmp2_type == TypeInt::ZERO &&
  1349       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
  1350       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
  1351     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2));
  1352     return new (phase->C) BoolNode( ncmp, _test.commute() );
  1355   //  The transformation below is not valid for either signed or unsigned
  1356   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
  1357   //  This transformation can be resurrected when we are able to
  1358   //  make inferences about the range of values being subtracted from
  1359   //  (or added to) relative to the wraparound point.
  1360   //
  1361   //    // Remove +/-1's if possible.
  1362   //    // "X <= Y-1" becomes "X <  Y"
  1363   //    // "X+1 <= Y" becomes "X <  Y"
  1364   //    // "X <  Y+1" becomes "X <= Y"
  1365   //    // "X-1 <  Y" becomes "X <= Y"
  1366   //    // Do not this to compares off of the counted-loop-end.  These guys are
  1367   //    // checking the trip counter and they want to use the post-incremented
  1368   //    // counter.  If they use the PRE-incremented counter, then the counter has
  1369   //    // to be incremented in a private block on a loop backedge.
  1370   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
  1371   //      return NULL;
  1372   //  #ifndef PRODUCT
  1373   //    // Do not do this in a wash GVN pass during verification.
  1374   //    // Gets triggered by too many simple optimizations to be bothered with
  1375   //    // re-trying it again and again.
  1376   //    if( !phase->allow_progress() ) return NULL;
  1377   //  #endif
  1378   //    // Not valid for unsigned compare because of corner cases in involving zero.
  1379   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
  1380   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
  1381   //    // "0 <=u Y" is always true).
  1382   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
  1383   //    int cmp2_op = cmp2->Opcode();
  1384   //    if( _test._test == BoolTest::le ) {
  1385   //      if( cmp1_op == Op_AddI &&
  1386   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
  1387   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
  1388   //      else if( cmp2_op == Op_AddI &&
  1389   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
  1390   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
  1391   //    } else if( _test._test == BoolTest::lt ) {
  1392   //      if( cmp1_op == Op_AddI &&
  1393   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
  1394   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
  1395   //      else if( cmp2_op == Op_AddI &&
  1396   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
  1397   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
  1398   //    }
  1400   return NULL;
  1403 //------------------------------Value------------------------------------------
  1404 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
  1405 // based on local information.   If the input is constant, do it.
  1406 const Type *BoolNode::Value( PhaseTransform *phase ) const {
  1407   return _test.cc2logical( phase->type( in(1) ) );
  1410 //------------------------------dump_spec--------------------------------------
  1411 // Dump special per-node info
  1412 #ifndef PRODUCT
  1413 void BoolNode::dump_spec(outputStream *st) const {
  1414   st->print("[");
  1415   _test.dump_on(st);
  1416   st->print("]");
  1418 #endif
  1420 //------------------------------is_counted_loop_exit_test--------------------------------------
  1421 // Returns true if node is used by a counted loop node.
  1422 bool BoolNode::is_counted_loop_exit_test() {
  1423   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  1424     Node* use = fast_out(i);
  1425     if (use->is_CountedLoopEnd()) {
  1426       return true;
  1429   return false;
  1432 //=============================================================================
  1433 //------------------------------Value------------------------------------------
  1434 // Compute sqrt
  1435 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
  1436   const Type *t1 = phase->type( in(1) );
  1437   if( t1 == Type::TOP ) return Type::TOP;
  1438   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1439   double d = t1->getd();
  1440   if( d < 0.0 ) return Type::DOUBLE;
  1441   return TypeD::make( sqrt( d ) );
  1444 //=============================================================================
  1445 //------------------------------Value------------------------------------------
  1446 // Compute cos
  1447 const Type *CosDNode::Value( PhaseTransform *phase ) const {
  1448   const Type *t1 = phase->type( in(1) );
  1449   if( t1 == Type::TOP ) return Type::TOP;
  1450   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1451   double d = t1->getd();
  1452   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
  1455 //=============================================================================
  1456 //------------------------------Value------------------------------------------
  1457 // Compute sin
  1458 const Type *SinDNode::Value( PhaseTransform *phase ) const {
  1459   const Type *t1 = phase->type( in(1) );
  1460   if( t1 == Type::TOP ) return Type::TOP;
  1461   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1462   double d = t1->getd();
  1463   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
  1466 //=============================================================================
  1467 //------------------------------Value------------------------------------------
  1468 // Compute tan
  1469 const Type *TanDNode::Value( PhaseTransform *phase ) const {
  1470   const Type *t1 = phase->type( in(1) );
  1471   if( t1 == Type::TOP ) return Type::TOP;
  1472   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1473   double d = t1->getd();
  1474   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
  1477 //=============================================================================
  1478 //------------------------------Value------------------------------------------
  1479 // Compute log
  1480 const Type *LogDNode::Value( PhaseTransform *phase ) const {
  1481   const Type *t1 = phase->type( in(1) );
  1482   if( t1 == Type::TOP ) return Type::TOP;
  1483   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1484   double d = t1->getd();
  1485   return TypeD::make( StubRoutines::intrinsic_log( d ) );
  1488 //=============================================================================
  1489 //------------------------------Value------------------------------------------
  1490 // Compute log10
  1491 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
  1492   const Type *t1 = phase->type( in(1) );
  1493   if( t1 == Type::TOP ) return Type::TOP;
  1494   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1495   double d = t1->getd();
  1496   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
  1499 //=============================================================================
  1500 //------------------------------Value------------------------------------------
  1501 // Compute exp
  1502 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
  1503   const Type *t1 = phase->type( in(1) );
  1504   if( t1 == Type::TOP ) return Type::TOP;
  1505   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1506   double d = t1->getd();
  1507   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
  1511 //=============================================================================
  1512 //------------------------------Value------------------------------------------
  1513 // Compute pow
  1514 const Type *PowDNode::Value( PhaseTransform *phase ) const {
  1515   const Type *t1 = phase->type( in(1) );
  1516   if( t1 == Type::TOP ) return Type::TOP;
  1517   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1518   const Type *t2 = phase->type( in(2) );
  1519   if( t2 == Type::TOP ) return Type::TOP;
  1520   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
  1521   double d1 = t1->getd();
  1522   double d2 = t2->getd();
  1523   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );

mercurial