src/share/vm/opto/phaseX.hpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8604
04d83ba48607
child 9041
95a08233f46c
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_PHASEX_HPP
    26 #define SHARE_VM_OPTO_PHASEX_HPP
    28 #include "libadt/dict.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "opto/memnode.hpp"
    32 #include "opto/node.hpp"
    33 #include "opto/phase.hpp"
    34 #include "opto/type.hpp"
    36 class Compile;
    37 class ConINode;
    38 class ConLNode;
    39 class Node;
    40 class Type;
    41 class PhaseTransform;
    42 class   PhaseGVN;
    43 class     PhaseIterGVN;
    44 class       PhaseCCP;
    45 class   PhasePeephole;
    46 class   PhaseRegAlloc;
    49 //-----------------------------------------------------------------------------
    50 // Expandable closed hash-table of nodes, initialized to NULL.
    51 // Note that the constructor just zeros things
    52 // Storage is reclaimed when the Arena's lifetime is over.
    53 class NodeHash : public StackObj {
    54 protected:
    55   Arena *_a;                    // Arena to allocate in
    56   uint   _max;                  // Size of table (power of 2)
    57   uint   _inserts;              // For grow and debug, count of hash_inserts
    58   uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
    59   Node **_table;                // Hash table of Node pointers
    60   Node  *_sentinel;             // Replaces deleted entries in hash table
    62 public:
    63   NodeHash(uint est_max_size);
    64   NodeHash(Arena *arena, uint est_max_size);
    65   NodeHash(NodeHash *use_this_state);
    66 #ifdef ASSERT
    67   ~NodeHash();                  // Unlock all nodes upon destruction of table.
    68   void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
    69 #endif
    70   Node  *hash_find(const Node*);// Find an equivalent version in hash table
    71   Node  *hash_find_insert(Node*);// If not in table insert else return found node
    72   void   hash_insert(Node*);    // Insert into hash table
    73   bool   hash_delete(const Node*);// Replace with _sentinel in hash table
    74   void   check_grow() {
    75     _inserts++;
    76     if( _inserts == _insert_limit ) { grow(); }
    77     assert( _inserts <= _insert_limit, "hash table overflow");
    78     assert( _inserts < _max, "hash table overflow" );
    79   }
    80   static uint round_up(uint);   // Round up to nearest power of 2
    81   void   grow();                // Grow _table to next power of 2 and rehash
    82   // Return 75% of _max, rounded up.
    83   uint   insert_limit() const { return _max - (_max>>2); }
    85   void   clear();               // Set all entries to NULL, keep storage.
    86   // Size of hash table
    87   uint   size()         const { return _max; }
    88   // Return Node* at index in table
    89   Node  *at(uint table_index) {
    90     assert(table_index < _max, "Must be within table");
    91     return _table[table_index];
    92   }
    94   void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
    95   void   replace_with(NodeHash* nh);
    96   void   check_no_speculative_types(); // Check no speculative part for type nodes in table
    98   Node  *sentinel() { return _sentinel; }
   100 #ifndef PRODUCT
   101   Node  *find_index(uint idx);  // For debugging
   102   void   dump();                // For debugging, dump statistics
   103 #endif
   104   uint   _grows;                // For debugging, count of table grow()s
   105   uint   _look_probes;          // For debugging, count of hash probes
   106   uint   _lookup_hits;          // For debugging, count of hash_finds
   107   uint   _lookup_misses;        // For debugging, count of hash_finds
   108   uint   _insert_probes;        // For debugging, count of hash probes
   109   uint   _delete_probes;        // For debugging, count of hash probes for deletes
   110   uint   _delete_hits;          // For debugging, count of hash probes for deletes
   111   uint   _delete_misses;        // For debugging, count of hash probes for deletes
   112   uint   _total_inserts;        // For debugging, total inserts into hash table
   113   uint   _total_insert_probes;  // For debugging, total probes while inserting
   114 };
   117 //-----------------------------------------------------------------------------
   118 // Map dense integer indices to Types.  Uses classic doubling-array trick.
   119 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
   120 // Note that the constructor just zeros things, and since I use Arena
   121 // allocation I do not need a destructor to reclaim storage.
   122 // Despite the general name, this class is customized for use by PhaseTransform.
   123 class Type_Array : public StackObj {
   124   Arena *_a;                    // Arena to allocate in
   125   uint   _max;
   126   const Type **_types;
   127   void grow( uint i );          // Grow array node to fit
   128   const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
   129   { return (i<_max) ? _types[i] : (Type*)NULL; }
   130   friend class PhaseTransform;
   131 public:
   132   Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
   133   Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
   134   const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
   135   // Extend the mapping: index i maps to Type *n.
   136   void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
   137   uint Size() const { return _max; }
   138 #ifndef PRODUCT
   139   void dump() const;
   140 #endif
   141 };
   144 //------------------------------PhaseRemoveUseless-----------------------------
   145 // Remove useless nodes from GVN hash-table, worklist, and graph
   146 class PhaseRemoveUseless : public Phase {
   147 protected:
   148   Unique_Node_List _useful;   // Nodes reachable from root
   149                               // list is allocated from current resource area
   150 public:
   151   PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num = Remove_Useless);
   153   Unique_Node_List *get_useful() { return &_useful; }
   154 };
   156 //------------------------------PhaseRenumber----------------------------------
   157 // Phase that first performs a PhaseRemoveUseless, then it renumbers compiler
   158 // structures accordingly.
   159 class PhaseRenumberLive : public PhaseRemoveUseless {
   160 public:
   161   PhaseRenumberLive(PhaseGVN* gvn,
   162                     Unique_Node_List* worklist, Unique_Node_List* new_worklist,
   163                     PhaseNumber phase_num = Remove_Useless_And_Renumber_Live);
   164 };
   167 //------------------------------PhaseTransform---------------------------------
   168 // Phases that analyze, then transform.  Constructing the Phase object does any
   169 // global or slow analysis.  The results are cached later for a fast
   170 // transformation pass.  When the Phase object is deleted the cached analysis
   171 // results are deleted.
   172 class PhaseTransform : public Phase {
   173 protected:
   174   Arena*     _arena;
   175   Node_List  _nodes;           // Map old node indices to new nodes.
   176   Type_Array _types;           // Map old node indices to Types.
   178   // ConNode caches:
   179   enum { _icon_min = -1 * HeapWordSize,
   180          _icon_max = 16 * HeapWordSize,
   181          _lcon_min = _icon_min,
   182          _lcon_max = _icon_max,
   183          _zcon_max = (uint)T_CONFLICT
   184   };
   185   ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
   186   ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
   187   ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
   188   void init_con_caches();
   190   // Support both int and long caches because either might be an intptr_t,
   191   // so they show up frequently in address computations.
   193 public:
   194   PhaseTransform( PhaseNumber pnum );
   195   PhaseTransform( Arena *arena, PhaseNumber pnum );
   196   PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
   198   Arena*      arena()   { return _arena; }
   199   Type_Array& types()   { return _types; }
   200   void replace_types(Type_Array new_types) {
   201     _types = new_types;
   202   }
   203   // _nodes is used in varying ways by subclasses, which define local accessors
   204   uint nodes_size() {
   205     return _nodes.size();
   206   }
   208 public:
   209   // Get a previously recorded type for the node n.
   210   // This type must already have been recorded.
   211   // If you want the type of a very new (untransformed) node,
   212   // you must use type_or_null, and test the result for NULL.
   213   const Type* type(const Node* n) const {
   214     assert(n != NULL, "must not be null");
   215     const Type* t = _types.fast_lookup(n->_idx);
   216     assert(t != NULL, "must set before get");
   217     return t;
   218   }
   219   // Get a previously recorded type for the node n,
   220   // or else return NULL if there is none.
   221   const Type* type_or_null(const Node* n) const {
   222     return _types.fast_lookup(n->_idx);
   223   }
   224   // Record a type for a node.
   225   void    set_type(const Node* n, const Type *t) {
   226     assert(t != NULL, "type must not be null");
   227     _types.map(n->_idx, t);
   228   }
   229   // Record an initial type for a node, the node's bottom type.
   230   void    set_type_bottom(const Node* n) {
   231     // Use this for initialization when bottom_type() (or better) is not handy.
   232     // Usually the initialization shoudl be to n->Value(this) instead,
   233     // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
   234     assert(_types[n->_idx] == NULL, "must set the initial type just once");
   235     _types.map(n->_idx, n->bottom_type());
   236   }
   237   // Make sure the types array is big enough to record a size for the node n.
   238   // (In product builds, we never want to do range checks on the types array!)
   239   void ensure_type_or_null(const Node* n) {
   240     if (n->_idx >= _types.Size())
   241       _types.map(n->_idx, NULL);   // Grow the types array as needed.
   242   }
   244   // Utility functions:
   245   const TypeInt*  find_int_type( Node* n);
   246   const TypeLong* find_long_type(Node* n);
   247   jint  find_int_con( Node* n, jint  value_if_unknown) {
   248     const TypeInt* t = find_int_type(n);
   249     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   250   }
   251   jlong find_long_con(Node* n, jlong value_if_unknown) {
   252     const TypeLong* t = find_long_type(n);
   253     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   254   }
   256   // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
   257   // Same as transform(ConNode::make(t)).
   258   ConNode* makecon(const Type* t);
   259   virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
   260   { ShouldNotCallThis(); return NULL; }
   262   // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
   263   ConINode* intcon(jint i);
   264   ConLNode* longcon(jlong l);
   266   // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
   267   ConNode* zerocon(BasicType bt);
   269   // Return a node which computes the same function as this node, but
   270   // in a faster or cheaper fashion.
   271   virtual Node *transform( Node *n ) = 0;
   273   // Return whether two Nodes are equivalent.
   274   // Must not be recursive, since the recursive version is built from this.
   275   // For pessimistic optimizations this is simply pointer equivalence.
   276   bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
   278   // For pessimistic passes, the return type must monotonically narrow.
   279   // For optimistic  passes, the return type must monotonically widen.
   280   // It is possible to get into a "death march" in either type of pass,
   281   // where the types are continually moving but it will take 2**31 or
   282   // more steps to converge.  This doesn't happen on most normal loops.
   283   //
   284   // Here is an example of a deadly loop for an optimistic pass, along
   285   // with a partial trace of inferred types:
   286   //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
   287   //    0                 1                join([0..max], 1)
   288   //    [0..1]            [1..2]           join([0..max], [1..2])
   289   //    [0..2]            [1..3]           join([0..max], [1..3])
   290   //      ... ... ...
   291   //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
   292   //    [0..max] ==> fixpoint
   293   // We would have proven, the hard way, that the iteration space is all
   294   // non-negative ints, with the loop terminating due to 32-bit overflow.
   295   //
   296   // Here is the corresponding example for a pessimistic pass:
   297   //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
   298   //    int               int              join([0..max], int)
   299   //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
   300   //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
   301   //      ... ... ...
   302   //    [0..1]            [-1..0]          join([0..max], [-1..0])
   303   //    0                 -1               join([0..max], -1)
   304   //    0 == fixpoint
   305   // We would have proven, the hard way, that the iteration space is {0}.
   306   // (Usually, other optimizations will make the "if (x >= 0)" fold up
   307   // before we get into trouble.  But not always.)
   308   //
   309   // It's a pleasant thing to observe that the pessimistic pass
   310   // will make short work of the optimistic pass's deadly loop,
   311   // and vice versa.  That is a good example of the complementary
   312   // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
   313   //
   314   // In any case, only widen or narrow a few times before going to the
   315   // correct flavor of top or bottom.
   316   //
   317   // This call only needs to be made once as the data flows around any
   318   // given cycle.  We do it at Phis, and nowhere else.
   319   // The types presented are the new type of a phi (computed by PhiNode::Value)
   320   // and the previously computed type, last time the phi was visited.
   321   //
   322   // The third argument is upper limit for the saturated value,
   323   // if the phase wishes to widen the new_type.
   324   // If the phase is narrowing, the old type provides a lower limit.
   325   // Caller guarantees that old_type and new_type are no higher than limit_type.
   326   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   327                                const Type* limit_type) const
   328   { ShouldNotCallThis(); return NULL; }
   330 #ifndef PRODUCT
   331   void dump_old2new_map() const;
   332   void dump_new( uint new_lidx ) const;
   333   void dump_types() const;
   334   void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
   335   void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
   337   uint   _count_progress;       // For profiling, count transforms that make progress
   338   void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
   339   void   clear_progress()      { _count_progress = 0; }
   340   uint   made_progress() const { return _count_progress; }
   342   uint   _count_transforms;     // For profiling, count transforms performed
   343   void   set_transforms()      { ++_count_transforms; }
   344   void   clear_transforms()    { _count_transforms = 0; }
   345   uint   made_transforms() const{ return _count_transforms; }
   347   bool   _allow_progress;      // progress not allowed during verification pass
   348   void   set_allow_progress(bool allow) { _allow_progress = allow; }
   349   bool   allow_progress()               { return _allow_progress; }
   350 #endif
   351 };
   353 //------------------------------PhaseValues------------------------------------
   354 // Phase infrastructure to support values
   355 class PhaseValues : public PhaseTransform {
   356 protected:
   357   NodeHash  _table;             // Hash table for value-numbering
   359 public:
   360   PhaseValues( Arena *arena, uint est_max_size );
   361   PhaseValues( PhaseValues *pt );
   362   PhaseValues( PhaseValues *ptv, const char *dummy );
   363   NOT_PRODUCT( ~PhaseValues(); )
   364   virtual PhaseIterGVN *is_IterGVN() { return 0; }
   366   // Some Ideal and other transforms delete --> modify --> insert values
   367   bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
   368   void   hash_insert(Node *n)     { _table.hash_insert(n); }
   369   Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
   370   Node  *hash_find(const Node *n) { return _table.hash_find(n); }
   372   // Used after parsing to eliminate values that are no longer in program
   373   void   remove_useless_nodes(VectorSet &useful) {
   374     _table.remove_useless_nodes(useful);
   375     // this may invalidate cached cons so reset the cache
   376     init_con_caches();
   377   }
   379   virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
   381   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   382                                const Type* limit_type) const
   383   { return new_type; }
   385 #ifndef PRODUCT
   386   uint   _count_new_values;     // For profiling, count new values produced
   387   void    inc_new_values()        { ++_count_new_values; }
   388   void    clear_new_values()      { _count_new_values = 0; }
   389   uint    made_new_values() const { return _count_new_values; }
   390 #endif
   391 };
   394 //------------------------------PhaseGVN---------------------------------------
   395 // Phase for performing local, pessimistic GVN-style optimizations.
   396 class PhaseGVN : public PhaseValues {
   397 public:
   398   PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
   399   PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
   400   PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
   402   // Return a node which computes the same function as this node, but
   403   // in a faster or cheaper fashion.
   404   Node  *transform( Node *n );
   405   Node  *transform_no_reclaim( Node *n );
   407   void replace_with(PhaseGVN* gvn) {
   408     _table.replace_with(&gvn->_table);
   409     _types = gvn->_types;
   410   }
   412   // Check for a simple dead loop when a data node references itself.
   413   DEBUG_ONLY(void dead_loop_check(Node *n);)
   414 };
   416 //------------------------------PhaseIterGVN-----------------------------------
   417 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
   418 // and ideal transformations on the graph.
   419 class PhaseIterGVN : public PhaseGVN {
   420  private:
   421   bool _delay_transform;  // When true simply register the node when calling transform
   422                           // instead of actually optimizing it
   424   // Idealize old Node 'n' with respect to its inputs and its value
   425   virtual Node *transform_old( Node *a_node );
   427   // Subsume users of node 'old' into node 'nn'
   428   void subsume_node( Node *old, Node *nn );
   430   Node_Stack _stack;      // Stack used to avoid recursion
   432 protected:
   434   // Idealize new Node 'n' with respect to its inputs and its value
   435   virtual Node *transform( Node *a_node );
   437   // Warm up hash table, type table and initial worklist
   438   void init_worklist( Node *a_root );
   440   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   441                                const Type* limit_type) const;
   442   // Usually returns new_type.  Returns old_type if new_type is only a slight
   443   // improvement, such that it would take many (>>10) steps to reach 2**32.
   445 public:
   446   PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
   447   PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
   448   PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
   450   virtual PhaseIterGVN *is_IterGVN() { return this; }
   452   Unique_Node_List _worklist;       // Iterative worklist
   454   // Given def-use info and an initial worklist, apply Node::Ideal,
   455   // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
   456   // and dominator info to a fixed point.
   457   void optimize();
   459   // Register a new node with the iter GVN pass without transforming it.
   460   // Used when we need to restructure a Region/Phi area and all the Regions
   461   // and Phis need to complete this one big transform before any other
   462   // transforms can be triggered on the region.
   463   // Optional 'orig' is an earlier version of this node.
   464   // It is significant only for debugging and profiling.
   465   Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
   467   // Kill a globally dead Node.  All uses are also globally dead and are
   468   // aggressively trimmed.
   469   void remove_globally_dead_node( Node *dead );
   471   // Kill all inputs to a dead node, recursively making more dead nodes.
   472   // The Node must be dead locally, i.e., have no uses.
   473   void remove_dead_node( Node *dead ) {
   474     assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
   475     remove_globally_dead_node(dead);
   476   }
   478   // Add users of 'n' to worklist
   479   void add_users_to_worklist0( Node *n );
   480   void add_users_to_worklist ( Node *n );
   482   // Replace old node with new one.
   483   void replace_node( Node *old, Node *nn ) {
   484     add_users_to_worklist(old);
   485     hash_delete(old); // Yank from hash before hacking edges
   486     subsume_node(old, nn);
   487   }
   489   // Delayed node rehash: remove a node from the hash table and rehash it during
   490   // next optimizing pass
   491   void rehash_node_delayed(Node* n) {
   492     hash_delete(n);
   493     _worklist.push(n);
   494   }
   496   // Replace ith edge of "n" with "in"
   497   void replace_input_of(Node* n, int i, Node* in) {
   498     rehash_node_delayed(n);
   499     n->set_req(i, in);
   500   }
   502   // Delete ith edge of "n"
   503   void delete_input_of(Node* n, int i) {
   504     rehash_node_delayed(n);
   505     n->del_req(i);
   506   }
   508   bool delay_transform() const { return _delay_transform; }
   510   void set_delay_transform(bool delay) {
   511     _delay_transform = delay;
   512   }
   514   // Clone loop predicates. Defined in loopTransform.cpp.
   515   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
   516   // Create a new if below new_entry for the predicate to be cloned
   517   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
   518                                         Deoptimization::DeoptReason reason);
   520   void remove_speculative_types();
   521   void check_no_speculative_types() {
   522     _table.check_no_speculative_types();
   523   }
   525 #ifndef PRODUCT
   526 protected:
   527   // Sub-quadratic implementation of VerifyIterativeGVN.
   528   julong _verify_counter;
   529   julong _verify_full_passes;
   530   enum { _verify_window_size = 30 };
   531   Node* _verify_window[_verify_window_size];
   532   void verify_step(Node* n);
   533 #endif
   534 };
   536 //------------------------------PhaseCCP---------------------------------------
   537 // Phase for performing global Conditional Constant Propagation.
   538 // Should be replaced with combined CCP & GVN someday.
   539 class PhaseCCP : public PhaseIterGVN {
   540   // Non-recursive.  Use analysis to transform single Node.
   541   virtual Node *transform_once( Node *n );
   543 public:
   544   PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
   545   NOT_PRODUCT( ~PhaseCCP(); )
   547   // Worklist algorithm identifies constants
   548   void analyze();
   549   // Recursive traversal of program.  Used analysis to modify program.
   550   virtual Node *transform( Node *n );
   551   // Do any transformation after analysis
   552   void          do_transform();
   554   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   555                                const Type* limit_type) const;
   556   // Returns new_type->widen(old_type), which increments the widen bits until
   557   // giving up with TypeInt::INT or TypeLong::LONG.
   558   // Result is clipped to limit_type if necessary.
   560 #ifndef PRODUCT
   561   static uint _total_invokes;    // For profiling, count invocations
   562   void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
   564   static uint _total_constants;  // For profiling, count constants found
   565   uint   _count_constants;
   566   void    clear_constants()      { _count_constants = 0; }
   567   void    inc_constants()        { ++_count_constants; }
   568   uint    count_constants() const { return _count_constants; }
   570   static void print_statistics();
   571 #endif
   572 };
   575 //------------------------------PhasePeephole----------------------------------
   576 // Phase for performing peephole optimizations on register allocated basic blocks.
   577 class PhasePeephole : public PhaseTransform {
   578   PhaseRegAlloc *_regalloc;
   579   PhaseCFG     &_cfg;
   580   // Recursive traversal of program.  Pure function is unused in this phase
   581   virtual Node *transform( Node *n );
   583 public:
   584   PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
   585   NOT_PRODUCT( ~PhasePeephole(); )
   587   // Do any transformation after analysis
   588   void          do_transform();
   590 #ifndef PRODUCT
   591   static uint _total_peepholes;  // For profiling, count peephole rules applied
   592   uint   _count_peepholes;
   593   void    clear_peepholes()      { _count_peepholes = 0; }
   594   void    inc_peepholes()        { ++_count_peepholes; }
   595   uint    count_peepholes() const { return _count_peepholes; }
   597   static void print_statistics();
   598 #endif
   599 };
   601 #endif // SHARE_VM_OPTO_PHASEX_HPP

mercurial