src/share/vm/opto/phaseX.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8856
ac27a9c85bea
child 9041
95a08233f46c
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/idealGraphPrinter.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/regalloc.hpp"
    37 #include "opto/rootnode.hpp"
    39 //=============================================================================
    40 #define NODE_HASH_MINIMUM_SIZE    255
    41 //------------------------------NodeHash---------------------------------------
    42 NodeHash::NodeHash(uint est_max_size) :
    43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    44   _a(Thread::current()->resource_area()),
    45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
    46   _inserts(0), _insert_limit( insert_limit() ),
    47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    48   _total_insert_probes(0), _total_inserts(0),
    49   _insert_probes(0), _grows(0) {
    50   // _sentinel must be in the current node space
    51   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    52   memset(_table,0,sizeof(Node*)*_max);
    53 }
    55 //------------------------------NodeHash---------------------------------------
    56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
    57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    58   _a(arena),
    59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
    60   _inserts(0), _insert_limit( insert_limit() ),
    61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
    63   _total_insert_probes(0), _total_inserts(0),
    64   _insert_probes(0), _grows(0) {
    65   // _sentinel must be in the current node space
    66   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    67   memset(_table,0,sizeof(Node*)*_max);
    68 }
    70 //------------------------------NodeHash---------------------------------------
    71 NodeHash::NodeHash(NodeHash *nh) {
    72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    73   // just copy in all the fields
    74   *this = *nh;
    75   // nh->_sentinel must be in the current node space
    76 }
    78 void NodeHash::replace_with(NodeHash *nh) {
    79   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    80   // just copy in all the fields
    81   *this = *nh;
    82   // nh->_sentinel must be in the current node space
    83 }
    85 //------------------------------hash_find--------------------------------------
    86 // Find in hash table
    87 Node *NodeHash::hash_find( const Node *n ) {
    88   // ((Node*)n)->set_hash( n->hash() );
    89   uint hash = n->hash();
    90   if (hash == Node::NO_HASH) {
    91     debug_only( _lookup_misses++ );
    92     return NULL;
    93   }
    94   uint key = hash & (_max-1);
    95   uint stride = key | 0x01;
    96   debug_only( _look_probes++ );
    97   Node *k = _table[key];        // Get hashed value
    98   if( !k ) {                    // ?Miss?
    99     debug_only( _lookup_misses++ );
   100     return NULL;                // Miss!
   101   }
   103   int op = n->Opcode();
   104   uint req = n->req();
   105   while( 1 ) {                  // While probing hash table
   106     if( k->req() == req &&      // Same count of inputs
   107         k->Opcode() == op ) {   // Same Opcode
   108       for( uint i=0; i<req; i++ )
   109         if( n->in(i)!=k->in(i)) // Different inputs?
   110           goto collision;       // "goto" is a speed hack...
   111       if( n->cmp(*k) ) {        // Check for any special bits
   112         debug_only( _lookup_hits++ );
   113         return k;               // Hit!
   114       }
   115     }
   116   collision:
   117     debug_only( _look_probes++ );
   118     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
   119     k = _table[key];            // Get hashed value
   120     if( !k ) {                  // ?Miss?
   121       debug_only( _lookup_misses++ );
   122       return NULL;              // Miss!
   123     }
   124   }
   125   ShouldNotReachHere();
   126   return NULL;
   127 }
   129 //------------------------------hash_find_insert-------------------------------
   130 // Find in hash table, insert if not already present
   131 // Used to preserve unique entries in hash table
   132 Node *NodeHash::hash_find_insert( Node *n ) {
   133   // n->set_hash( );
   134   uint hash = n->hash();
   135   if (hash == Node::NO_HASH) {
   136     debug_only( _lookup_misses++ );
   137     return NULL;
   138   }
   139   uint key = hash & (_max-1);
   140   uint stride = key | 0x01;     // stride must be relatively prime to table siz
   141   uint first_sentinel = 0;      // replace a sentinel if seen.
   142   debug_only( _look_probes++ );
   143   Node *k = _table[key];        // Get hashed value
   144   if( !k ) {                    // ?Miss?
   145     debug_only( _lookup_misses++ );
   146     _table[key] = n;            // Insert into table!
   147     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   148     check_grow();               // Grow table if insert hit limit
   149     return NULL;                // Miss!
   150   }
   151   else if( k == _sentinel ) {
   152     first_sentinel = key;      // Can insert here
   153   }
   155   int op = n->Opcode();
   156   uint req = n->req();
   157   while( 1 ) {                  // While probing hash table
   158     if( k->req() == req &&      // Same count of inputs
   159         k->Opcode() == op ) {   // Same Opcode
   160       for( uint i=0; i<req; i++ )
   161         if( n->in(i)!=k->in(i)) // Different inputs?
   162           goto collision;       // "goto" is a speed hack...
   163       if( n->cmp(*k) ) {        // Check for any special bits
   164         debug_only( _lookup_hits++ );
   165         return k;               // Hit!
   166       }
   167     }
   168   collision:
   169     debug_only( _look_probes++ );
   170     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   171     k = _table[key];            // Get hashed value
   172     if( !k ) {                  // ?Miss?
   173       debug_only( _lookup_misses++ );
   174       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
   175       _table[key] = n;          // Insert into table!
   176       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   177       check_grow();             // Grow table if insert hit limit
   178       return NULL;              // Miss!
   179     }
   180     else if( first_sentinel == 0 && k == _sentinel ) {
   181       first_sentinel = key;    // Can insert here
   182     }
   184   }
   185   ShouldNotReachHere();
   186   return NULL;
   187 }
   189 //------------------------------hash_insert------------------------------------
   190 // Insert into hash table
   191 void NodeHash::hash_insert( Node *n ) {
   192   // // "conflict" comments -- print nodes that conflict
   193   // bool conflict = false;
   194   // n->set_hash();
   195   uint hash = n->hash();
   196   if (hash == Node::NO_HASH) {
   197     return;
   198   }
   199   check_grow();
   200   uint key = hash & (_max-1);
   201   uint stride = key | 0x01;
   203   while( 1 ) {                  // While probing hash table
   204     debug_only( _insert_probes++ );
   205     Node *k = _table[key];      // Get hashed value
   206     if( !k || (k == _sentinel) ) break;       // Found a slot
   207     assert( k != n, "already inserted" );
   208     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
   209     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   210   }
   211   _table[key] = n;              // Insert into table!
   212   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   213   // if( conflict ) { n->dump(); }
   214 }
   216 //------------------------------hash_delete------------------------------------
   217 // Replace in hash table with sentinel
   218 bool NodeHash::hash_delete( const Node *n ) {
   219   Node *k;
   220   uint hash = n->hash();
   221   if (hash == Node::NO_HASH) {
   222     debug_only( _delete_misses++ );
   223     return false;
   224   }
   225   uint key = hash & (_max-1);
   226   uint stride = key | 0x01;
   227   debug_only( uint counter = 0; );
   228   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
   229     debug_only( counter++ );
   230     debug_only( _delete_probes++ );
   231     k = _table[key];            // Get hashed value
   232     if( !k ) {                  // Miss?
   233       debug_only( _delete_misses++ );
   234 #ifdef ASSERT
   235       if( VerifyOpto ) {
   236         for( uint i=0; i < _max; i++ )
   237           assert( _table[i] != n, "changed edges with rehashing" );
   238       }
   239 #endif
   240       return false;             // Miss! Not in chain
   241     }
   242     else if( n == k ) {
   243       debug_only( _delete_hits++ );
   244       _table[key] = _sentinel;  // Hit! Label as deleted entry
   245       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
   246       return true;
   247     }
   248     else {
   249       // collision: move through table with prime offset
   250       key = (key + stride/*7*/) & (_max-1);
   251       assert( counter <= _insert_limit, "Cycle in hash-table");
   252     }
   253   }
   254   ShouldNotReachHere();
   255   return false;
   256 }
   258 //------------------------------round_up---------------------------------------
   259 // Round up to nearest power of 2
   260 uint NodeHash::round_up( uint x ) {
   261   x += (x>>2);                  // Add 25% slop
   262   if( x <16 ) return 16;        // Small stuff
   263   uint i=16;
   264   while( i < x ) i <<= 1;       // Double to fit
   265   return i;                     // Return hash table size
   266 }
   268 //------------------------------grow-------------------------------------------
   269 // Grow _table to next power of 2 and insert old entries
   270 void  NodeHash::grow() {
   271   // Record old state
   272   uint   old_max   = _max;
   273   Node **old_table = _table;
   274   // Construct new table with twice the space
   275   _grows++;
   276   _total_inserts       += _inserts;
   277   _total_insert_probes += _insert_probes;
   278   _inserts         = 0;
   279   _insert_probes   = 0;
   280   _max     = _max << 1;
   281   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
   282   memset(_table,0,sizeof(Node*)*_max);
   283   _insert_limit = insert_limit();
   284   // Insert old entries into the new table
   285   for( uint i = 0; i < old_max; i++ ) {
   286     Node *m = *old_table++;
   287     if( !m || m == _sentinel ) continue;
   288     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
   289     hash_insert(m);
   290   }
   291 }
   293 //------------------------------clear------------------------------------------
   294 // Clear all entries in _table to NULL but keep storage
   295 void  NodeHash::clear() {
   296 #ifdef ASSERT
   297   // Unlock all nodes upon removal from table.
   298   for (uint i = 0; i < _max; i++) {
   299     Node* n = _table[i];
   300     if (!n || n == _sentinel)  continue;
   301     n->exit_hash_lock();
   302   }
   303 #endif
   305   memset( _table, 0, _max * sizeof(Node*) );
   306 }
   308 //-----------------------remove_useless_nodes----------------------------------
   309 // Remove useless nodes from value table,
   310 // implementation does not depend on hash function
   311 void NodeHash::remove_useless_nodes(VectorSet &useful) {
   313   // Dead nodes in the hash table inherited from GVN should not replace
   314   // existing nodes, remove dead nodes.
   315   uint max = size();
   316   Node *sentinel_node = sentinel();
   317   for( uint i = 0; i < max; ++i ) {
   318     Node *n = at(i);
   319     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
   320       debug_only(n->exit_hash_lock()); // Unlock the node when removed
   321       _table[i] = sentinel_node;       // Replace with placeholder
   322     }
   323   }
   324 }
   327 void NodeHash::check_no_speculative_types() {
   328 #ifdef ASSERT
   329   uint max = size();
   330   Node *sentinel_node = sentinel();
   331   for (uint i = 0; i < max; ++i) {
   332     Node *n = at(i);
   333     if(n != NULL && n != sentinel_node && n->is_Type()) {
   334       TypeNode* tn = n->as_Type();
   335       const Type* t = tn->type();
   336       const Type* t_no_spec = t->remove_speculative();
   337       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
   338     }
   339   }
   340 #endif
   341 }
   343 #ifndef PRODUCT
   344 //------------------------------dump-------------------------------------------
   345 // Dump statistics for the hash table
   346 void NodeHash::dump() {
   347   _total_inserts       += _inserts;
   348   _total_insert_probes += _insert_probes;
   349   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
   350     if (WizardMode) {
   351       for (uint i=0; i<_max; i++) {
   352         if (_table[i])
   353           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
   354       }
   355     }
   356     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
   357     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
   358     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
   359     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
   360     // sentinels increase lookup cost, but not insert cost
   361     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
   362     assert( _inserts+(_inserts>>3) < _max, "table too full" );
   363     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
   364   }
   365 }
   367 Node *NodeHash::find_index(uint idx) { // For debugging
   368   // Find an entry by its index value
   369   for( uint i = 0; i < _max; i++ ) {
   370     Node *m = _table[i];
   371     if( !m || m == _sentinel ) continue;
   372     if( m->_idx == (uint)idx ) return m;
   373   }
   374   return NULL;
   375 }
   376 #endif
   378 #ifdef ASSERT
   379 NodeHash::~NodeHash() {
   380   // Unlock all nodes upon destruction of table.
   381   if (_table != (Node**)badAddress)  clear();
   382 }
   384 void NodeHash::operator=(const NodeHash& nh) {
   385   // Unlock all nodes upon replacement of table.
   386   if (&nh == this)  return;
   387   if (_table != (Node**)badAddress)  clear();
   388   memcpy(this, &nh, sizeof(*this));
   389   // Do not increment hash_lock counts again.
   390   // Instead, be sure we never again use the source table.
   391   ((NodeHash*)&nh)->_table = (Node**)badAddress;
   392 }
   395 #endif
   398 //=============================================================================
   399 //------------------------------PhaseRemoveUseless-----------------------------
   400 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
   401 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
   402   _useful(Thread::current()->resource_area()) {
   404   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
   405   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
   406   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
   408   // Identify nodes that are reachable from below, useful.
   409   C->identify_useful_nodes(_useful);
   410   // Update dead node list
   411   C->update_dead_node_list(_useful);
   413   // Remove all useless nodes from PhaseValues' recorded types
   414   // Must be done before disconnecting nodes to preserve hash-table-invariant
   415   gvn->remove_useless_nodes(_useful.member_set());
   417   // Remove all useless nodes from future worklist
   418   worklist->remove_useless_nodes(_useful.member_set());
   420   // Disconnect 'useless' nodes that are adjacent to useful nodes
   421   C->remove_useless_nodes(_useful);
   423   // Remove edges from "root" to each SafePoint at a backward branch.
   424   // They were inserted during parsing (see add_safepoint()) to make infinite
   425   // loops without calls or exceptions visible to root, i.e., useful.
   426   Node *root = C->root();
   427   if( root != NULL ) {
   428     for( uint i = root->req(); i < root->len(); ++i ) {
   429       Node *n = root->in(i);
   430       if( n != NULL && n->is_SafePoint() ) {
   431         root->rm_prec(i);
   432         --i;
   433       }
   434     }
   435   }
   436 }
   438 //=============================================================================
   439 //------------------------------PhaseRenumberLive------------------------------
   440 // First, remove useless nodes (equivalent to identifying live nodes).
   441 // Then, renumber live nodes.
   442 //
   443 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
   444 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
   445 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
   446 // value in the range [0, x).
   447 //
   448 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
   449 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
   450 //
   451 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
   452 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
   453 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
   454 // (2) Type information (the field PhaseGVN::_types) maps type information to each
   455 // node ID. The mapping is updated to use the new node IDs as well. Updated type
   456 // information is returned in PhaseGVN::_types.
   457 //
   458 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
   459 //
   460 // Other data structures used by the compiler are not updated. The hash table for value
   461 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
   462 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
   463 // because it is empty wherever PhaseRenumberLive is used.
   464 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
   465                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
   466                                      PhaseNumber phase_num) :
   467   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
   469   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
   470   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
   471   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
   473   uint old_unique_count = C->unique();
   474   uint live_node_count = C->live_nodes();
   475   uint worklist_size = worklist->size();
   477   // Storage for the updated type information.
   478   Type_Array new_type_array(C->comp_arena());
   480   // Iterate over the set of live nodes.
   481   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
   482   for (uint i = 0; i < _useful.size(); i++) {
   483     Node* n = _useful.at(i);
   484     // Sanity check that fails if we ever decide to execute this phase after EA
   485     assert(!n->is_Phi() || n->as_Phi()->inst_mem_id() == -1, "should not be linked to data Phi");
   486     const Type* type = gvn->type_or_null(n);
   487     new_type_array.map(current_idx, type);
   489     bool in_worklist = false;
   490     if (worklist->member(n)) {
   491       in_worklist = true;
   492     }
   494     n->set_idx(current_idx); // Update node ID.
   496     if (in_worklist) {
   497       new_worklist->push(n);
   498     }
   500     current_idx++;
   501   }
   503   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
   504   assert(live_node_count == current_idx, "all live nodes must be processed");
   506   // Replace the compiler's type information with the updated type information.
   507   gvn->replace_types(new_type_array);
   509   // Update the unique node count of the compilation to the number of currently live nodes.
   510   C->set_unique(live_node_count);
   512   // Set the dead node count to 0 and reset dead node list.
   513   C->reset_dead_node_list();
   514 }
   517 //=============================================================================
   518 //------------------------------PhaseTransform---------------------------------
   519 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
   520   _arena(Thread::current()->resource_area()),
   521   _nodes(_arena),
   522   _types(_arena)
   523 {
   524   init_con_caches();
   525 #ifndef PRODUCT
   526   clear_progress();
   527   clear_transforms();
   528   set_allow_progress(true);
   529 #endif
   530   // Force allocation for currently existing nodes
   531   _types.map(C->unique(), NULL);
   532 }
   534 //------------------------------PhaseTransform---------------------------------
   535 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
   536   _arena(arena),
   537   _nodes(arena),
   538   _types(arena)
   539 {
   540   init_con_caches();
   541 #ifndef PRODUCT
   542   clear_progress();
   543   clear_transforms();
   544   set_allow_progress(true);
   545 #endif
   546   // Force allocation for currently existing nodes
   547   _types.map(C->unique(), NULL);
   548 }
   550 //------------------------------PhaseTransform---------------------------------
   551 // Initialize with previously generated type information
   552 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
   553   _arena(pt->_arena),
   554   _nodes(pt->_nodes),
   555   _types(pt->_types)
   556 {
   557   init_con_caches();
   558 #ifndef PRODUCT
   559   clear_progress();
   560   clear_transforms();
   561   set_allow_progress(true);
   562 #endif
   563 }
   565 void PhaseTransform::init_con_caches() {
   566   memset(_icons,0,sizeof(_icons));
   567   memset(_lcons,0,sizeof(_lcons));
   568   memset(_zcons,0,sizeof(_zcons));
   569 }
   572 //--------------------------------find_int_type--------------------------------
   573 const TypeInt* PhaseTransform::find_int_type(Node* n) {
   574   if (n == NULL)  return NULL;
   575   // Call type_or_null(n) to determine node's type since we might be in
   576   // parse phase and call n->Value() may return wrong type.
   577   // (For example, a phi node at the beginning of loop parsing is not ready.)
   578   const Type* t = type_or_null(n);
   579   if (t == NULL)  return NULL;
   580   return t->isa_int();
   581 }
   584 //-------------------------------find_long_type--------------------------------
   585 const TypeLong* PhaseTransform::find_long_type(Node* n) {
   586   if (n == NULL)  return NULL;
   587   // (See comment above on type_or_null.)
   588   const Type* t = type_or_null(n);
   589   if (t == NULL)  return NULL;
   590   return t->isa_long();
   591 }
   594 #ifndef PRODUCT
   595 void PhaseTransform::dump_old2new_map() const {
   596   _nodes.dump();
   597 }
   599 void PhaseTransform::dump_new( uint nidx ) const {
   600   for( uint i=0; i<_nodes.Size(); i++ )
   601     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
   602       _nodes[i]->dump();
   603       tty->cr();
   604       tty->print_cr("Old index= %d",i);
   605       return;
   606     }
   607   tty->print_cr("Node %d not found in the new indices", nidx);
   608 }
   610 //------------------------------dump_types-------------------------------------
   611 void PhaseTransform::dump_types( ) const {
   612   _types.dump();
   613 }
   615 //------------------------------dump_nodes_and_types---------------------------
   616 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
   617   VectorSet visited(Thread::current()->resource_area());
   618   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
   619 }
   621 //------------------------------dump_nodes_and_types_recur---------------------
   622 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
   623   if( !n ) return;
   624   if( depth == 0 ) return;
   625   if( visited.test_set(n->_idx) ) return;
   626   for( uint i=0; i<n->len(); i++ ) {
   627     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
   628     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
   629   }
   630   n->dump();
   631   if (type_or_null(n) != NULL) {
   632     tty->print("      "); type(n)->dump(); tty->cr();
   633   }
   634 }
   636 #endif
   639 //=============================================================================
   640 //------------------------------PhaseValues------------------------------------
   641 // Set minimum table size to "255"
   642 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
   643   NOT_PRODUCT( clear_new_values(); )
   644 }
   646 //------------------------------PhaseValues------------------------------------
   647 // Set minimum table size to "255"
   648 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
   649   _table(&ptv->_table) {
   650   NOT_PRODUCT( clear_new_values(); )
   651 }
   653 //------------------------------PhaseValues------------------------------------
   654 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
   655 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
   656   _table(ptv->arena(),ptv->_table.size()) {
   657   NOT_PRODUCT( clear_new_values(); )
   658 }
   660 //------------------------------~PhaseValues-----------------------------------
   661 #ifndef PRODUCT
   662 PhaseValues::~PhaseValues() {
   663   _table.dump();
   665   // Statistics for value progress and efficiency
   666   if( PrintCompilation && Verbose && WizardMode ) {
   667     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
   668       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
   669     if( made_transforms() != 0 ) {
   670       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
   671     } else {
   672       tty->cr();
   673     }
   674   }
   675 }
   676 #endif
   678 //------------------------------makecon----------------------------------------
   679 ConNode* PhaseTransform::makecon(const Type *t) {
   680   assert(t->singleton(), "must be a constant");
   681   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
   682   switch (t->base()) {  // fast paths
   683   case Type::Half:
   684   case Type::Top:  return (ConNode*) C->top();
   685   case Type::Int:  return intcon( t->is_int()->get_con() );
   686   case Type::Long: return longcon( t->is_long()->get_con() );
   687   }
   688   if (t->is_zero_type())
   689     return zerocon(t->basic_type());
   690   return uncached_makecon(t);
   691 }
   693 //--------------------------uncached_makecon-----------------------------------
   694 // Make an idealized constant - one of ConINode, ConPNode, etc.
   695 ConNode* PhaseValues::uncached_makecon(const Type *t) {
   696   assert(t->singleton(), "must be a constant");
   697   ConNode* x = ConNode::make(C, t);
   698   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
   699   if (k == NULL) {
   700     set_type(x, t);             // Missed, provide type mapping
   701     GrowableArray<Node_Notes*>* nna = C->node_note_array();
   702     if (nna != NULL) {
   703       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
   704       loc->clear(); // do not put debug info on constants
   705     }
   706   } else {
   707     x->destruct();              // Hit, destroy duplicate constant
   708     x = k;                      // use existing constant
   709   }
   710   return x;
   711 }
   713 //------------------------------intcon-----------------------------------------
   714 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
   715 ConINode* PhaseTransform::intcon(int i) {
   716   // Small integer?  Check cache! Check that cached node is not dead
   717   if (i >= _icon_min && i <= _icon_max) {
   718     ConINode* icon = _icons[i-_icon_min];
   719     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
   720       return icon;
   721   }
   722   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
   723   assert(icon->is_Con(), "");
   724   if (i >= _icon_min && i <= _icon_max)
   725     _icons[i-_icon_min] = icon;   // Cache small integers
   726   return icon;
   727 }
   729 //------------------------------longcon----------------------------------------
   730 // Fast long constant.
   731 ConLNode* PhaseTransform::longcon(jlong l) {
   732   // Small integer?  Check cache! Check that cached node is not dead
   733   if (l >= _lcon_min && l <= _lcon_max) {
   734     ConLNode* lcon = _lcons[l-_lcon_min];
   735     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
   736       return lcon;
   737   }
   738   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
   739   assert(lcon->is_Con(), "");
   740   if (l >= _lcon_min && l <= _lcon_max)
   741     _lcons[l-_lcon_min] = lcon;      // Cache small integers
   742   return lcon;
   743 }
   745 //------------------------------zerocon-----------------------------------------
   746 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
   747 ConNode* PhaseTransform::zerocon(BasicType bt) {
   748   assert((uint)bt <= _zcon_max, "domain check");
   749   ConNode* zcon = _zcons[bt];
   750   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
   751     return zcon;
   752   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
   753   _zcons[bt] = zcon;
   754   return zcon;
   755 }
   759 //=============================================================================
   760 //------------------------------transform--------------------------------------
   761 // Return a node which computes the same function as this node, but in a
   762 // faster or cheaper fashion.
   763 Node *PhaseGVN::transform( Node *n ) {
   764   return transform_no_reclaim(n);
   765 }
   767 //------------------------------transform--------------------------------------
   768 // Return a node which computes the same function as this node, but
   769 // in a faster or cheaper fashion.
   770 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
   771   NOT_PRODUCT( set_transforms(); )
   773   // Apply the Ideal call in a loop until it no longer applies
   774   Node *k = n;
   775   NOT_PRODUCT( uint loop_count = 0; )
   776   while( 1 ) {
   777     Node *i = k->Ideal(this, /*can_reshape=*/false);
   778     if( !i ) break;
   779     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
   780     k = i;
   781     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
   782   }
   783   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
   786   // If brand new node, make space in type array.
   787   ensure_type_or_null(k);
   789   // Since I just called 'Value' to compute the set of run-time values
   790   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
   791   // cache Value.  Later requests for the local phase->type of this Node can
   792   // use the cached Value instead of suffering with 'bottom_type'.
   793   const Type *t = k->Value(this); // Get runtime Value set
   794   assert(t != NULL, "value sanity");
   795   if (type_or_null(k) != t) {
   796 #ifndef PRODUCT
   797     // Do not count initial visit to node as a transformation
   798     if (type_or_null(k) == NULL) {
   799       inc_new_values();
   800       set_progress();
   801     }
   802 #endif
   803     set_type(k, t);
   804     // If k is a TypeNode, capture any more-precise type permanently into Node
   805     k->raise_bottom_type(t);
   806   }
   808   if( t->singleton() && !k->is_Con() ) {
   809     NOT_PRODUCT( set_progress(); )
   810     return makecon(t);          // Turn into a constant
   811   }
   813   // Now check for Identities
   814   Node *i = k->Identity(this);  // Look for a nearby replacement
   815   if( i != k ) {                // Found? Return replacement!
   816     NOT_PRODUCT( set_progress(); )
   817     return i;
   818   }
   820   // Global Value Numbering
   821   i = hash_find_insert(k);      // Insert if new
   822   if( i && (i != k) ) {
   823     // Return the pre-existing node
   824     NOT_PRODUCT( set_progress(); )
   825     return i;
   826   }
   828   // Return Idealized original
   829   return k;
   830 }
   832 #ifdef ASSERT
   833 //------------------------------dead_loop_check--------------------------------
   834 // Check for a simple dead loop when a data node references itself directly
   835 // or through an other data node excluding cons and phis.
   836 void PhaseGVN::dead_loop_check( Node *n ) {
   837   // Phi may reference itself in a loop
   838   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
   839     // Do 2 levels check and only data inputs.
   840     bool no_dead_loop = true;
   841     uint cnt = n->req();
   842     for (uint i = 1; i < cnt && no_dead_loop; i++) {
   843       Node *in = n->in(i);
   844       if (in == n) {
   845         no_dead_loop = false;
   846       } else if (in != NULL && !in->is_dead_loop_safe()) {
   847         uint icnt = in->req();
   848         for (uint j = 1; j < icnt && no_dead_loop; j++) {
   849           if (in->in(j) == n || in->in(j) == in)
   850             no_dead_loop = false;
   851         }
   852       }
   853     }
   854     if (!no_dead_loop) n->dump(3);
   855     assert(no_dead_loop, "dead loop detected");
   856   }
   857 }
   858 #endif
   860 //=============================================================================
   861 //------------------------------PhaseIterGVN-----------------------------------
   862 // Initialize hash table to fresh and clean for +VerifyOpto
   863 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
   864                                                                       _stack(C->live_nodes() >> 1),
   865                                                                       _delay_transform(false) {
   866 }
   868 //------------------------------PhaseIterGVN-----------------------------------
   869 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
   870 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
   871                                                    _worklist( igvn->_worklist ),
   872                                                    _stack( igvn->_stack ),
   873                                                    _delay_transform(igvn->_delay_transform)
   874 {
   875 }
   877 //------------------------------PhaseIterGVN-----------------------------------
   878 // Initialize with previous PhaseGVN info from Parser
   879 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
   880                                               _worklist(*C->for_igvn()),
   881 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
   882 //       the constructor is used in incremental inlining, this consumes too much memory:
   883 //                                            _stack(C->live_nodes() >> 1),
   884 //       So, as a band-aid, we replace this by:
   885                                               _stack(C->comp_arena(), 32),
   886                                               _delay_transform(false)
   887 {
   888   uint max;
   890   // Dead nodes in the hash table inherited from GVN were not treated as
   891   // roots during def-use info creation; hence they represent an invisible
   892   // use.  Clear them out.
   893   max = _table.size();
   894   for( uint i = 0; i < max; ++i ) {
   895     Node *n = _table.at(i);
   896     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
   897       if( n->is_top() ) continue;
   898       assert( false, "Parse::remove_useless_nodes missed this node");
   899       hash_delete(n);
   900     }
   901   }
   903   // Any Phis or Regions on the worklist probably had uses that could not
   904   // make more progress because the uses were made while the Phis and Regions
   905   // were in half-built states.  Put all uses of Phis and Regions on worklist.
   906   max = _worklist.size();
   907   for( uint j = 0; j < max; j++ ) {
   908     Node *n = _worklist.at(j);
   909     uint uop = n->Opcode();
   910     if( uop == Op_Phi || uop == Op_Region ||
   911         n->is_Type() ||
   912         n->is_Mem() )
   913       add_users_to_worklist(n);
   914   }
   915 }
   918 #ifndef PRODUCT
   919 void PhaseIterGVN::verify_step(Node* n) {
   920   _verify_window[_verify_counter % _verify_window_size] = n;
   921   ++_verify_counter;
   922   ResourceMark rm;
   923   ResourceArea *area = Thread::current()->resource_area();
   924   VectorSet old_space(area), new_space(area);
   925   if (C->unique() < 1000 ||
   926       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
   927     ++_verify_full_passes;
   928     Node::verify_recur(C->root(), -1, old_space, new_space);
   929   }
   930   const int verify_depth = 4;
   931   for ( int i = 0; i < _verify_window_size; i++ ) {
   932     Node* n = _verify_window[i];
   933     if ( n == NULL )  continue;
   934     if( n->in(0) == NodeSentinel ) {  // xform_idom
   935       _verify_window[i] = n->in(1);
   936       --i; continue;
   937     }
   938     // Typical fanout is 1-2, so this call visits about 6 nodes.
   939     Node::verify_recur(n, verify_depth, old_space, new_space);
   940   }
   941 }
   942 #endif
   945 //------------------------------init_worklist----------------------------------
   946 // Initialize worklist for each node.
   947 void PhaseIterGVN::init_worklist( Node *n ) {
   948   if( _worklist.member(n) ) return;
   949   _worklist.push(n);
   950   uint cnt = n->req();
   951   for( uint i =0 ; i < cnt; i++ ) {
   952     Node *m = n->in(i);
   953     if( m ) init_worklist(m);
   954   }
   955 }
   957 //------------------------------optimize---------------------------------------
   958 void PhaseIterGVN::optimize() {
   959   debug_only(uint num_processed  = 0;);
   960 #ifndef PRODUCT
   961   {
   962     _verify_counter = 0;
   963     _verify_full_passes = 0;
   964     for ( int i = 0; i < _verify_window_size; i++ ) {
   965       _verify_window[i] = NULL;
   966     }
   967   }
   968 #endif
   970 #ifdef ASSERT
   971   Node* prev = NULL;
   972   uint rep_cnt = 0;
   973 #endif
   974   uint loop_count = 0;
   976   // Pull from worklist; transform node;
   977   // If node has changed: update edge info and put uses on worklist.
   978   while( _worklist.size() ) {
   979     if (C->check_node_count(NodeLimitFudgeFactor * 2,
   980                             "out of nodes optimizing method")) {
   981       return;
   982     }
   983     Node *n  = _worklist.pop();
   984     if (++loop_count >= K * C->live_nodes()) {
   985       debug_only(n->dump(4);)
   986       assert(false, "infinite loop in PhaseIterGVN::optimize");
   987       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
   988       return;
   989     }
   990 #ifdef ASSERT
   991     if (n == prev) {
   992       if (++rep_cnt > 3) {
   993         n->dump(4);
   994         assert(false, "loop in Ideal transformation");
   995       }
   996     } else {
   997       rep_cnt = 0;
   998     }
   999     prev = n;
  1000 #endif
  1001     if (TraceIterativeGVN && Verbose) {
  1002       tty->print("  Pop ");
  1003       NOT_PRODUCT( n->dump(); )
  1004       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
  1007     if (n->outcnt() != 0) {
  1009 #ifndef PRODUCT
  1010       uint wlsize = _worklist.size();
  1011       const Type* oldtype = type_or_null(n);
  1012 #endif //PRODUCT
  1014       Node *nn = transform_old(n);
  1016 #ifndef PRODUCT
  1017       if (TraceIterativeGVN) {
  1018         const Type* newtype = type_or_null(n);
  1019         if (nn != n) {
  1020           // print old node
  1021           tty->print("< ");
  1022           if (oldtype != newtype && oldtype != NULL) {
  1023             oldtype->dump();
  1025           do { tty->print("\t"); } while (tty->position() < 16);
  1026           tty->print("<");
  1027           n->dump();
  1029         if (oldtype != newtype || nn != n) {
  1030           // print new node and/or new type
  1031           if (oldtype == NULL) {
  1032             tty->print("* ");
  1033           } else if (nn != n) {
  1034             tty->print("> ");
  1035           } else {
  1036             tty->print("= ");
  1038           if (newtype == NULL) {
  1039             tty->print("null");
  1040           } else {
  1041             newtype->dump();
  1043           do { tty->print("\t"); } while (tty->position() < 16);
  1044           nn->dump();
  1046         if (Verbose && wlsize < _worklist.size()) {
  1047           tty->print("  Push {");
  1048           while (wlsize != _worklist.size()) {
  1049             Node* pushed = _worklist.at(wlsize++);
  1050             tty->print(" %d", pushed->_idx);
  1052           tty->print_cr(" }");
  1055       if( VerifyIterativeGVN && nn != n ) {
  1056         verify_step((Node*) NULL);  // ignore n, it might be subsumed
  1058 #endif
  1059     } else if (!n->is_top()) {
  1060       remove_dead_node(n);
  1064 #ifndef PRODUCT
  1065   C->verify_graph_edges();
  1066   if( VerifyOpto && allow_progress() ) {
  1067     // Must turn off allow_progress to enable assert and break recursion
  1068     C->root()->verify();
  1069     { // Check if any progress was missed using IterGVN
  1070       // Def-Use info enables transformations not attempted in wash-pass
  1071       // e.g. Region/Phi cleanup, ...
  1072       // Null-check elision -- may not have reached fixpoint
  1073       //                       do not propagate to dominated nodes
  1074       ResourceMark rm;
  1075       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
  1076       // Fill worklist completely
  1077       igvn2.init_worklist(C->root());
  1079       igvn2.set_allow_progress(false);
  1080       igvn2.optimize();
  1081       igvn2.set_allow_progress(true);
  1084   if ( VerifyIterativeGVN && PrintOpto ) {
  1085     if ( _verify_counter == _verify_full_passes )
  1086       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
  1087                     (int) _verify_full_passes);
  1088     else
  1089       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
  1090                   (int) _verify_counter, (int) _verify_full_passes);
  1092 #endif
  1096 //------------------register_new_node_with_optimizer---------------------------
  1097 // Register a new node with the optimizer.  Update the types array, the def-use
  1098 // info.  Put on worklist.
  1099 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
  1100   set_type_bottom(n);
  1101   _worklist.push(n);
  1102   if (orig != NULL)  C->copy_node_notes_to(n, orig);
  1103   return n;
  1106 //------------------------------transform--------------------------------------
  1107 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
  1108 Node *PhaseIterGVN::transform( Node *n ) {
  1109   if (_delay_transform) {
  1110     // Register the node but don't optimize for now
  1111     register_new_node_with_optimizer(n);
  1112     return n;
  1115   // If brand new node, make space in type array, and give it a type.
  1116   ensure_type_or_null(n);
  1117   if (type_or_null(n) == NULL) {
  1118     set_type_bottom(n);
  1121   return transform_old(n);
  1124 //------------------------------transform_old----------------------------------
  1125 Node *PhaseIterGVN::transform_old( Node *n ) {
  1126 #ifndef PRODUCT
  1127   debug_only(uint loop_count = 0;);
  1128   set_transforms();
  1129 #endif
  1130   // Remove 'n' from hash table in case it gets modified
  1131   _table.hash_delete(n);
  1132   if( VerifyIterativeGVN ) {
  1133    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
  1136   // Apply the Ideal call in a loop until it no longer applies
  1137   Node *k = n;
  1138   DEBUG_ONLY(dead_loop_check(k);)
  1139   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
  1140   Node *i = k->Ideal(this, /*can_reshape=*/true);
  1141   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1142 #ifndef PRODUCT
  1143   if( VerifyIterativeGVN )
  1144     verify_step(k);
  1145   if( i && VerifyOpto ) {
  1146     if( !allow_progress() ) {
  1147       if (i->is_Add() && i->outcnt() == 1) {
  1148         // Switched input to left side because this is the only use
  1149       } else if( i->is_If() && (i->in(0) == NULL) ) {
  1150         // This IF is dead because it is dominated by an equivalent IF When
  1151         // dominating if changed, info is not propagated sparsely to 'this'
  1152         // Propagating this info further will spuriously identify other
  1153         // progress.
  1154         return i;
  1155       } else
  1156         set_progress();
  1157     } else
  1158       set_progress();
  1160 #endif
  1162   while( i ) {
  1163 #ifndef PRODUCT
  1164     debug_only( if( loop_count >= K ) i->dump(4); )
  1165     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
  1166     debug_only( loop_count++; )
  1167 #endif
  1168     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
  1169     // Made a change; put users of original Node on worklist
  1170     add_users_to_worklist( k );
  1171     // Replacing root of transform tree?
  1172     if( k != i ) {
  1173       // Make users of old Node now use new.
  1174       subsume_node( k, i );
  1175       k = i;
  1177     DEBUG_ONLY(dead_loop_check(k);)
  1178     // Try idealizing again
  1179     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
  1180     i = k->Ideal(this, /*can_reshape=*/true);
  1181     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1182 #ifndef PRODUCT
  1183     if( VerifyIterativeGVN )
  1184       verify_step(k);
  1185     if( i && VerifyOpto ) set_progress();
  1186 #endif
  1189   // If brand new node, make space in type array.
  1190   ensure_type_or_null(k);
  1192   // See what kind of values 'k' takes on at runtime
  1193   const Type *t = k->Value(this);
  1194   assert(t != NULL, "value sanity");
  1196   // Since I just called 'Value' to compute the set of run-time values
  1197   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
  1198   // cache Value.  Later requests for the local phase->type of this Node can
  1199   // use the cached Value instead of suffering with 'bottom_type'.
  1200   if (t != type_or_null(k)) {
  1201     NOT_PRODUCT( set_progress(); )
  1202     NOT_PRODUCT( inc_new_values();)
  1203     set_type(k, t);
  1204     // If k is a TypeNode, capture any more-precise type permanently into Node
  1205     k->raise_bottom_type(t);
  1206     // Move users of node to worklist
  1207     add_users_to_worklist( k );
  1210   // If 'k' computes a constant, replace it with a constant
  1211   if( t->singleton() && !k->is_Con() ) {
  1212     NOT_PRODUCT( set_progress(); )
  1213     Node *con = makecon(t);     // Make a constant
  1214     add_users_to_worklist( k );
  1215     subsume_node( k, con );     // Everybody using k now uses con
  1216     return con;
  1219   // Now check for Identities
  1220   i = k->Identity(this);        // Look for a nearby replacement
  1221   if( i != k ) {                // Found? Return replacement!
  1222     NOT_PRODUCT( set_progress(); )
  1223     add_users_to_worklist( k );
  1224     subsume_node( k, i );       // Everybody using k now uses i
  1225     return i;
  1228   // Global Value Numbering
  1229   i = hash_find_insert(k);      // Check for pre-existing node
  1230   if( i && (i != k) ) {
  1231     // Return the pre-existing node if it isn't dead
  1232     NOT_PRODUCT( set_progress(); )
  1233     add_users_to_worklist( k );
  1234     subsume_node( k, i );       // Everybody using k now uses i
  1235     return i;
  1238   // Return Idealized original
  1239   return k;
  1242 //---------------------------------saturate------------------------------------
  1243 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
  1244                                    const Type* limit_type) const {
  1245   return new_type->narrow(old_type);
  1248 //------------------------------remove_globally_dead_node----------------------
  1249 // Kill a globally dead Node.  All uses are also globally dead and are
  1250 // aggressively trimmed.
  1251 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
  1252   enum DeleteProgress {
  1253     PROCESS_INPUTS,
  1254     PROCESS_OUTPUTS
  1255   };
  1256   assert(_stack.is_empty(), "not empty");
  1257   _stack.push(dead, PROCESS_INPUTS);
  1259   while (_stack.is_nonempty()) {
  1260     dead = _stack.node();
  1261     uint progress_state = _stack.index();
  1262     assert(dead != C->root(), "killing root, eh?");
  1263     assert(!dead->is_top(), "add check for top when pushing");
  1264     NOT_PRODUCT( set_progress(); )
  1265     if (progress_state == PROCESS_INPUTS) {
  1266       // After following inputs, continue to outputs
  1267       _stack.set_index(PROCESS_OUTPUTS);
  1268       if (!dead->is_Con()) { // Don't kill cons but uses
  1269         bool recurse = false;
  1270         // Remove from hash table
  1271         _table.hash_delete( dead );
  1272         // Smash all inputs to 'dead', isolating him completely
  1273         for (uint i = 0; i < dead->req(); i++) {
  1274           Node *in = dead->in(i);
  1275           if (in != NULL && in != C->top()) {  // Points to something?
  1276             int nrep = dead->replace_edge(in, NULL);  // Kill edges
  1277             assert((nrep > 0), "sanity");
  1278             if (in->outcnt() == 0) { // Made input go dead?
  1279               _stack.push(in, PROCESS_INPUTS); // Recursively remove
  1280               recurse = true;
  1281             } else if (in->outcnt() == 1 &&
  1282                        in->has_special_unique_user()) {
  1283               _worklist.push(in->unique_out());
  1284             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
  1285               if (in->Opcode() == Op_Region) {
  1286                 _worklist.push(in);
  1287               } else if (in->is_Store()) {
  1288                 DUIterator_Fast imax, i = in->fast_outs(imax);
  1289                 _worklist.push(in->fast_out(i));
  1290                 i++;
  1291                 if (in->outcnt() == 2) {
  1292                   _worklist.push(in->fast_out(i));
  1293                   i++;
  1295                 assert(!(i < imax), "sanity");
  1298             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
  1299                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
  1300               // A Load that directly follows an InitializeNode is
  1301               // going away. The Stores that follow are candidates
  1302               // again to be captured by the InitializeNode.
  1303               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
  1304                 Node *n = in->fast_out(j);
  1305                 if (n->is_Store()) {
  1306                   _worklist.push(n);
  1310           } // if (in != NULL && in != C->top())
  1311         } // for (uint i = 0; i < dead->req(); i++)
  1312         if (recurse) {
  1313           continue;
  1315       } // if (!dead->is_Con())
  1316     } // if (progress_state == PROCESS_INPUTS)
  1318     // Aggressively kill globally dead uses
  1319     // (Rather than pushing all the outs at once, we push one at a time,
  1320     // plus the parent to resume later, because of the indefinite number
  1321     // of edge deletions per loop trip.)
  1322     if (dead->outcnt() > 0) {
  1323       // Recursively remove output edges
  1324       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
  1325     } else {
  1326       // Finished disconnecting all input and output edges.
  1327       _stack.pop();
  1328       // Remove dead node from iterative worklist
  1329       _worklist.remove(dead);
  1330       // Constant node that has no out-edges and has only one in-edge from
  1331       // root is usually dead. However, sometimes reshaping walk makes
  1332       // it reachable by adding use edges. So, we will NOT count Con nodes
  1333       // as dead to be conservative about the dead node count at any
  1334       // given time.
  1335       if (!dead->is_Con()) {
  1336         C->record_dead_node(dead->_idx);
  1338       if (dead->is_macro()) {
  1339         C->remove_macro_node(dead);
  1341       if (dead->is_expensive()) {
  1342         C->remove_expensive_node(dead);
  1344       CastIINode* cast = dead->isa_CastII();
  1345       if (cast != NULL && cast->has_range_check()) {
  1346         C->remove_range_check_cast(cast);
  1349   } // while (_stack.is_nonempty())
  1352 //------------------------------subsume_node-----------------------------------
  1353 // Remove users from node 'old' and add them to node 'nn'.
  1354 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
  1355   assert( old != hash_find(old), "should already been removed" );
  1356   assert( old != C->top(), "cannot subsume top node");
  1357   // Copy debug or profile information to the new version:
  1358   C->copy_node_notes_to(nn, old);
  1359   // Move users of node 'old' to node 'nn'
  1360   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
  1361     Node* use = old->last_out(i);  // for each use...
  1362     // use might need re-hashing (but it won't if it's a new node)
  1363     bool is_in_table = _table.hash_delete( use );
  1364     // Update use-def info as well
  1365     // We remove all occurrences of old within use->in,
  1366     // so as to avoid rehashing any node more than once.
  1367     // The hash table probe swamps any outer loop overhead.
  1368     uint num_edges = 0;
  1369     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
  1370       if (use->in(j) == old) {
  1371         use->set_req(j, nn);
  1372         ++num_edges;
  1375     // Insert into GVN hash table if unique
  1376     // If a duplicate, 'use' will be cleaned up when pulled off worklist
  1377     if( is_in_table ) {
  1378       hash_find_insert(use);
  1380     i -= num_edges;    // we deleted 1 or more copies of this edge
  1383   // Search for instance field data PhiNodes in the same region pointing to the old
  1384   // memory PhiNode and update their instance memory ids to point to the new node.
  1385   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
  1386     Node* region = old->in(0);
  1387     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1388       PhiNode* phi = region->fast_out(i)->isa_Phi();
  1389       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
  1390         phi->set_inst_mem_id((int)nn->_idx);
  1395   // Smash all inputs to 'old', isolating him completely
  1396   Node *temp = new (C) Node(1);
  1397   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
  1398   remove_dead_node( old );
  1399   temp->del_req(0);         // Yank bogus edge
  1400 #ifndef PRODUCT
  1401   if( VerifyIterativeGVN ) {
  1402     for ( int i = 0; i < _verify_window_size; i++ ) {
  1403       if ( _verify_window[i] == old )
  1404         _verify_window[i] = nn;
  1407 #endif
  1408   _worklist.remove(temp);   // this can be necessary
  1409   temp->destruct();         // reuse the _idx of this little guy
  1412 //------------------------------add_users_to_worklist--------------------------
  1413 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
  1414   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1415     _worklist.push(n->fast_out(i));  // Push on worklist
  1419 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
  1420   add_users_to_worklist0(n);
  1422   // Move users of node to worklist
  1423   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1424     Node* use = n->fast_out(i); // Get use
  1426     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
  1427         use->is_Store() )       // Enable store/load same address
  1428       add_users_to_worklist0(use);
  1430     // If we changed the receiver type to a call, we need to revisit
  1431     // the Catch following the call.  It's looking for a non-NULL
  1432     // receiver to know when to enable the regular fall-through path
  1433     // in addition to the NullPtrException path.
  1434     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
  1435       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
  1436       if (p != NULL) {
  1437         add_users_to_worklist0(p);
  1441     uint use_op = use->Opcode();
  1442     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
  1443       add_users_to_worklist(use); // Put Bool on worklist
  1444       if (use->outcnt() > 0) {
  1445         Node* bol = use->raw_out(0);
  1446         if (bol->outcnt() > 0) {
  1447           Node* iff = bol->raw_out(0);
  1448           if (use_op == Op_CmpI &&
  1449               iff->is_CountedLoopEnd()) {
  1450             CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
  1451             if (cle->limit() == n && cle->phi() != NULL) {
  1452               // If an opaque node feeds into the limit condition of a
  1453               // CountedLoop, we need to process the Phi node for the
  1454               // induction variable when the opaque node is removed:
  1455               // the range of values taken by the Phi is now known and
  1456               // so its type is also known.
  1457               _worklist.push(cle->phi());
  1459           } else if (iff->outcnt() == 2) {
  1460             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
  1461             // phi merging either 0 or 1 onto the worklist
  1462             Node* ifproj0 = iff->raw_out(0);
  1463             Node* ifproj1 = iff->raw_out(1);
  1464             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
  1465               Node* region0 = ifproj0->raw_out(0);
  1466               Node* region1 = ifproj1->raw_out(0);
  1467               if( region0 == region1 )
  1468                 add_users_to_worklist0(region0);
  1473       if (use_op == Op_CmpI) {
  1474         Node* in1 = use->in(1);
  1475         for (uint i = 0; i < in1->outcnt(); i++) {
  1476           if (in1->raw_out(i)->Opcode() == Op_CastII) {
  1477             Node* castii = in1->raw_out(i);
  1478             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
  1479               Node* ifnode = castii->in(0)->in(0);
  1480               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
  1481                 // Reprocess a CastII node that may depend on an
  1482                 // opaque node value when the opaque node is
  1483                 // removed. In case it carries a dependency we can do
  1484                 // a better job of computing its type.
  1485                 _worklist.push(castii);
  1493     // If changed Cast input, check Phi users for simple cycles
  1494     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
  1495       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1496         Node* u = use->fast_out(i2);
  1497         if (u->is_Phi())
  1498           _worklist.push(u);
  1501     // If changed LShift inputs, check RShift users for useless sign-ext
  1502     if( use_op == Op_LShiftI ) {
  1503       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1504         Node* u = use->fast_out(i2);
  1505         if (u->Opcode() == Op_RShiftI)
  1506           _worklist.push(u);
  1509     // If changed AddI/SubI inputs, check CmpU for range check optimization.
  1510     if (use_op == Op_AddI || use_op == Op_SubI) {
  1511       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1512         Node* u = use->fast_out(i2);
  1513         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
  1514           _worklist.push(u);
  1518     // If changed AddP inputs, check Stores for loop invariant
  1519     if( use_op == Op_AddP ) {
  1520       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1521         Node* u = use->fast_out(i2);
  1522         if (u->is_Mem())
  1523           _worklist.push(u);
  1526     // If changed initialization activity, check dependent Stores
  1527     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
  1528       InitializeNode* init = use->as_Allocate()->initialization();
  1529       if (init != NULL) {
  1530         Node* imem = init->proj_out(TypeFunc::Memory);
  1531         if (imem != NULL)  add_users_to_worklist0(imem);
  1534     if (use_op == Op_Initialize) {
  1535       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
  1536       if (imem != NULL)  add_users_to_worklist0(imem);
  1541 /**
  1542  * Remove the speculative part of all types that we know of
  1543  */
  1544 void PhaseIterGVN::remove_speculative_types()  {
  1545   assert(UseTypeSpeculation, "speculation is off");
  1546   for (uint i = 0; i < _types.Size(); i++)  {
  1547     const Type* t = _types.fast_lookup(i);
  1548     if (t != NULL) {
  1549       _types.map(i, t->remove_speculative());
  1552   _table.check_no_speculative_types();
  1555 //=============================================================================
  1556 #ifndef PRODUCT
  1557 uint PhaseCCP::_total_invokes   = 0;
  1558 uint PhaseCCP::_total_constants = 0;
  1559 #endif
  1560 //------------------------------PhaseCCP---------------------------------------
  1561 // Conditional Constant Propagation, ala Wegman & Zadeck
  1562 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
  1563   NOT_PRODUCT( clear_constants(); )
  1564   assert( _worklist.size() == 0, "" );
  1565   // Clear out _nodes from IterGVN.  Must be clear to transform call.
  1566   _nodes.clear();               // Clear out from IterGVN
  1567   analyze();
  1570 #ifndef PRODUCT
  1571 //------------------------------~PhaseCCP--------------------------------------
  1572 PhaseCCP::~PhaseCCP() {
  1573   inc_invokes();
  1574   _total_constants += count_constants();
  1576 #endif
  1579 #ifdef ASSERT
  1580 static bool ccp_type_widens(const Type* t, const Type* t0) {
  1581   assert(t->meet(t0) == t, "Not monotonic");
  1582   switch (t->base() == t0->base() ? t->base() : Type::Top) {
  1583   case Type::Int:
  1584     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
  1585     break;
  1586   case Type::Long:
  1587     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
  1588     break;
  1590   return true;
  1592 #endif //ASSERT
  1594 //------------------------------analyze----------------------------------------
  1595 void PhaseCCP::analyze() {
  1596   // Initialize all types to TOP, optimistic analysis
  1597   for (int i = C->unique() - 1; i >= 0; i--)  {
  1598     _types.map(i,Type::TOP);
  1601   // Push root onto worklist
  1602   Unique_Node_List worklist;
  1603   worklist.push(C->root());
  1605   // Pull from worklist; compute new value; push changes out.
  1606   // This loop is the meat of CCP.
  1607   while( worklist.size() ) {
  1608     Node *n = worklist.pop();
  1609     const Type *t = n->Value(this);
  1610     if (t != type(n)) {
  1611       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
  1612 #ifndef PRODUCT
  1613       if( TracePhaseCCP ) {
  1614         t->dump();
  1615         do { tty->print("\t"); } while (tty->position() < 16);
  1616         n->dump();
  1618 #endif
  1619       set_type(n, t);
  1620       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1621         Node* m = n->fast_out(i);   // Get user
  1622         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
  1623           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1624             Node* p = m->fast_out(i2); // Propagate changes to uses
  1625             if (p->bottom_type() != type(p)) { // If not already bottomed out
  1626               worklist.push(p); // Propagate change to user
  1630         // If we changed the receiver type to a call, we need to revisit
  1631         // the Catch following the call.  It's looking for a non-NULL
  1632         // receiver to know when to enable the regular fall-through path
  1633         // in addition to the NullPtrException path
  1634         if (m->is_Call()) {
  1635           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1636             Node* p = m->fast_out(i2);  // Propagate changes to uses
  1637             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
  1638               worklist.push(p->unique_out());
  1642         if (m->bottom_type() != type(m)) { // If not already bottomed out
  1643           worklist.push(m);     // Propagate change to user
  1646         // CmpU nodes can get their type information from two nodes up in the
  1647         // graph (instead of from the nodes immediately above). Make sure they
  1648         // are added to the worklist if nodes they depend on are updated, since
  1649         // they could be missed and get wrong types otherwise.
  1650         uint m_op = m->Opcode();
  1651         if (m_op == Op_AddI || m_op == Op_SubI) {
  1652           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1653             Node* p = m->fast_out(i2); // Propagate changes to uses
  1654             if (p->Opcode() == Op_CmpU) {
  1655               // Got a CmpU which might need the new type information from node n.
  1656               if(p->bottom_type() != type(p)) { // If not already bottomed out
  1657                 worklist.push(p); // Propagate change to user
  1667 //------------------------------do_transform-----------------------------------
  1668 // Top level driver for the recursive transformer
  1669 void PhaseCCP::do_transform() {
  1670   // Correct leaves of new-space Nodes; they point to old-space.
  1671   C->set_root( transform(C->root())->as_Root() );
  1672   assert( C->top(),  "missing TOP node" );
  1673   assert( C->root(), "missing root" );
  1676 //------------------------------transform--------------------------------------
  1677 // Given a Node in old-space, clone him into new-space.
  1678 // Convert any of his old-space children into new-space children.
  1679 Node *PhaseCCP::transform( Node *n ) {
  1680   Node *new_node = _nodes[n->_idx]; // Check for transformed node
  1681   if( new_node != NULL )
  1682     return new_node;                // Been there, done that, return old answer
  1683   new_node = transform_once(n);     // Check for constant
  1684   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
  1686   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
  1687   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
  1689   trstack.push(new_node);           // Process children of cloned node
  1690   while ( trstack.is_nonempty() ) {
  1691     Node *clone = trstack.pop();
  1692     uint cnt = clone->req();
  1693     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
  1694       Node *input = clone->in(i);
  1695       if( input != NULL ) {                    // Ignore NULLs
  1696         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
  1697         if( new_input == NULL ) {
  1698           new_input = transform_once(input);   // Check for constant
  1699           _nodes.map( input->_idx, new_input );// Flag as having been cloned
  1700           trstack.push(new_input);
  1702         assert( new_input == clone->in(i), "insanity check");
  1706   return new_node;
  1710 //------------------------------transform_once---------------------------------
  1711 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
  1712 Node *PhaseCCP::transform_once( Node *n ) {
  1713   const Type *t = type(n);
  1714   // Constant?  Use constant Node instead
  1715   if( t->singleton() ) {
  1716     Node *nn = n;               // Default is to return the original constant
  1717     if( t == Type::TOP ) {
  1718       // cache my top node on the Compile instance
  1719       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
  1720         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
  1721         set_type(C->top(), Type::TOP);
  1723       nn = C->top();
  1725     if( !n->is_Con() ) {
  1726       if( t != Type::TOP ) {
  1727         nn = makecon(t);        // ConNode::make(t);
  1728         NOT_PRODUCT( inc_constants(); )
  1729       } else if( n->is_Region() ) { // Unreachable region
  1730         // Note: nn == C->top()
  1731         n->set_req(0, NULL);        // Cut selfreference
  1732         // Eagerly remove dead phis to avoid phis copies creation.
  1733         for (DUIterator i = n->outs(); n->has_out(i); i++) {
  1734           Node* m = n->out(i);
  1735           if( m->is_Phi() ) {
  1736             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
  1737             replace_node(m, nn);
  1738             --i; // deleted this phi; rescan starting with next position
  1742       replace_node(n,nn);       // Update DefUse edges for new constant
  1744     return nn;
  1747   // If x is a TypeNode, capture any more-precise type permanently into Node
  1748   if (t != n->bottom_type()) {
  1749     hash_delete(n);             // changing bottom type may force a rehash
  1750     n->raise_bottom_type(t);
  1751     _worklist.push(n);          // n re-enters the hash table via the worklist
  1754   // Idealize graph using DU info.  Must clone() into new-space.
  1755   // DU info is generally used to show profitability, progress or safety
  1756   // (but generally not needed for correctness).
  1757   Node *nn = n->Ideal_DU_postCCP(this);
  1759   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
  1760   switch( n->Opcode() ) {
  1761   case Op_FastLock:      // Revisit FastLocks for lock coarsening
  1762   case Op_If:
  1763   case Op_CountedLoopEnd:
  1764   case Op_Region:
  1765   case Op_Loop:
  1766   case Op_CountedLoop:
  1767   case Op_Conv2B:
  1768   case Op_Opaque1:
  1769   case Op_Opaque2:
  1770     _worklist.push(n);
  1771     break;
  1772   default:
  1773     break;
  1775   if( nn ) {
  1776     _worklist.push(n);
  1777     // Put users of 'n' onto worklist for second igvn transform
  1778     add_users_to_worklist(n);
  1779     return nn;
  1782   return  n;
  1785 //---------------------------------saturate------------------------------------
  1786 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
  1787                                const Type* limit_type) const {
  1788   const Type* wide_type = new_type->widen(old_type, limit_type);
  1789   if (wide_type != new_type) {          // did we widen?
  1790     // If so, we may have widened beyond the limit type.  Clip it back down.
  1791     new_type = wide_type->filter(limit_type);
  1793   return new_type;
  1796 //------------------------------print_statistics-------------------------------
  1797 #ifndef PRODUCT
  1798 void PhaseCCP::print_statistics() {
  1799   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
  1801 #endif
  1804 //=============================================================================
  1805 #ifndef PRODUCT
  1806 uint PhasePeephole::_total_peepholes = 0;
  1807 #endif
  1808 //------------------------------PhasePeephole----------------------------------
  1809 // Conditional Constant Propagation, ala Wegman & Zadeck
  1810 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
  1811   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
  1812   NOT_PRODUCT( clear_peepholes(); )
  1815 #ifndef PRODUCT
  1816 //------------------------------~PhasePeephole---------------------------------
  1817 PhasePeephole::~PhasePeephole() {
  1818   _total_peepholes += count_peepholes();
  1820 #endif
  1822 //------------------------------transform--------------------------------------
  1823 Node *PhasePeephole::transform( Node *n ) {
  1824   ShouldNotCallThis();
  1825   return NULL;
  1828 //------------------------------do_transform-----------------------------------
  1829 void PhasePeephole::do_transform() {
  1830   bool method_name_not_printed = true;
  1832   // Examine each basic block
  1833   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
  1834     Block* block = _cfg.get_block(block_number);
  1835     bool block_not_printed = true;
  1837     // and each instruction within a block
  1838     uint end_index = block->number_of_nodes();
  1839     // block->end_idx() not valid after PhaseRegAlloc
  1840     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
  1841       Node     *n = block->get_node(instruction_index);
  1842       if( n->is_Mach() ) {
  1843         MachNode *m = n->as_Mach();
  1844         int deleted_count = 0;
  1845         // check for peephole opportunities
  1846         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
  1847         if( m2 != NULL ) {
  1848 #ifndef PRODUCT
  1849           if( PrintOptoPeephole ) {
  1850             // Print method, first time only
  1851             if( C->method() && method_name_not_printed ) {
  1852               C->method()->print_short_name(); tty->cr();
  1853               method_name_not_printed = false;
  1855             // Print this block
  1856             if( Verbose && block_not_printed) {
  1857               tty->print_cr("in block");
  1858               block->dump();
  1859               block_not_printed = false;
  1861             // Print instructions being deleted
  1862             for( int i = (deleted_count - 1); i >= 0; --i ) {
  1863               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
  1865             tty->print_cr("replaced with");
  1866             // Print new instruction
  1867             m2->format(_regalloc);
  1868             tty->print("\n\n");
  1870 #endif
  1871           // Remove old nodes from basic block and update instruction_index
  1872           // (old nodes still exist and may have edges pointing to them
  1873           //  as register allocation info is stored in the allocator using
  1874           //  the node index to live range mappings.)
  1875           uint safe_instruction_index = (instruction_index - deleted_count);
  1876           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
  1877             block->remove_node( instruction_index );
  1879           // install new node after safe_instruction_index
  1880           block->insert_node(m2, safe_instruction_index + 1);
  1881           end_index = block->number_of_nodes() - 1; // Recompute new block size
  1882           NOT_PRODUCT( inc_peepholes(); )
  1889 //------------------------------print_statistics-------------------------------
  1890 #ifndef PRODUCT
  1891 void PhasePeephole::print_statistics() {
  1892   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
  1894 #endif
  1897 //=============================================================================
  1898 //------------------------------set_req_X--------------------------------------
  1899 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
  1900   assert( is_not_dead(n), "can not use dead node");
  1901   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
  1902   Node *old = in(i);
  1903   set_req(i, n);
  1905   // old goes dead?
  1906   if( old ) {
  1907     switch (old->outcnt()) {
  1908     case 0:
  1909       // Put into the worklist to kill later. We do not kill it now because the
  1910       // recursive kill will delete the current node (this) if dead-loop exists
  1911       if (!old->is_top())
  1912         igvn->_worklist.push( old );
  1913       break;
  1914     case 1:
  1915       if( old->is_Store() || old->has_special_unique_user() )
  1916         igvn->add_users_to_worklist( old );
  1917       break;
  1918     case 2:
  1919       if( old->is_Store() )
  1920         igvn->add_users_to_worklist( old );
  1921       if( old->Opcode() == Op_Region )
  1922         igvn->_worklist.push(old);
  1923       break;
  1924     case 3:
  1925       if( old->Opcode() == Op_Region ) {
  1926         igvn->_worklist.push(old);
  1927         igvn->add_users_to_worklist( old );
  1929       break;
  1930     default:
  1931       break;
  1937 //-------------------------------replace_by-----------------------------------
  1938 // Using def-use info, replace one node for another.  Follow the def-use info
  1939 // to all users of the OLD node.  Then make all uses point to the NEW node.
  1940 void Node::replace_by(Node *new_node) {
  1941   assert(!is_top(), "top node has no DU info");
  1942   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
  1943     Node* use = last_out(i);
  1944     uint uses_found = 0;
  1945     for (uint j = 0; j < use->len(); j++) {
  1946       if (use->in(j) == this) {
  1947         if (j < use->req())
  1948               use->set_req(j, new_node);
  1949         else  use->set_prec(j, new_node);
  1950         uses_found++;
  1953     i -= uses_found;    // we deleted 1 or more copies of this edge
  1957 //=============================================================================
  1958 //-----------------------------------------------------------------------------
  1959 void Type_Array::grow( uint i ) {
  1960   if( !_max ) {
  1961     _max = 1;
  1962     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
  1963     _types[0] = NULL;
  1965   uint old = _max;
  1966   while( i >= _max ) _max <<= 1;        // Double to fit
  1967   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
  1968   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
  1971 //------------------------------dump-------------------------------------------
  1972 #ifndef PRODUCT
  1973 void Type_Array::dump() const {
  1974   uint max = Size();
  1975   for( uint i = 0; i < max; i++ ) {
  1976     if( _types[i] != NULL ) {
  1977       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
  1981 #endif

mercurial