src/share/vm/opto/parse1.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8856
ac27a9c85bea
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "interpreter/linkResolver.hpp"
    28 #include "oops/method.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/idealGraphPrinter.hpp"
    32 #include "opto/locknode.hpp"
    33 #include "opto/memnode.hpp"
    34 #include "opto/parse.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "runtime/arguments.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    40 #include "utilities/copy.hpp"
    42 // Static array so we can figure out which bytecodes stop us from compiling
    43 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
    44 // and eventually should be encapsulated in a proper class (gri 8/18/98).
    46 int nodes_created              = 0;
    47 int methods_parsed             = 0;
    48 int methods_seen               = 0;
    49 int blocks_parsed              = 0;
    50 int blocks_seen                = 0;
    52 int explicit_null_checks_inserted = 0;
    53 int explicit_null_checks_elided   = 0;
    54 int all_null_checks_found         = 0, implicit_null_checks              = 0;
    55 int implicit_null_throws          = 0;
    57 int reclaim_idx  = 0;
    58 int reclaim_in   = 0;
    59 int reclaim_node = 0;
    61 #ifndef PRODUCT
    62 bool Parse::BytecodeParseHistogram::_initialized = false;
    63 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
    64 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
    65 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
    66 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
    67 #endif
    69 //------------------------------print_statistics-------------------------------
    70 #ifndef PRODUCT
    71 void Parse::print_statistics() {
    72   tty->print_cr("--- Compiler Statistics ---");
    73   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
    74   tty->print("  Nodes created: %d", nodes_created);
    75   tty->cr();
    76   if (methods_seen != methods_parsed)
    77     tty->print_cr("Reasons for parse failures (NOT cumulative):");
    78   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
    80   if( explicit_null_checks_inserted )
    81     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
    82   if( all_null_checks_found )
    83     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
    84                   (100*implicit_null_checks)/all_null_checks_found);
    85   if( implicit_null_throws )
    86     tty->print_cr("%d implicit null exceptions at runtime",
    87                   implicit_null_throws);
    89   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
    90     BytecodeParseHistogram::print();
    91   }
    92 }
    93 #endif
    95 //------------------------------ON STACK REPLACEMENT---------------------------
    97 // Construct a node which can be used to get incoming state for
    98 // on stack replacement.
    99 Node *Parse::fetch_interpreter_state(int index,
   100                                      BasicType bt,
   101                                      Node *local_addrs,
   102                                      Node *local_addrs_base) {
   103   Node *mem = memory(Compile::AliasIdxRaw);
   104   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
   105   Node *ctl = control();
   107   // Very similar to LoadNode::make, except we handle un-aligned longs and
   108   // doubles on Sparc.  Intel can handle them just fine directly.
   109   Node *l = NULL;
   110   switch (bt) {                // Signature is flattened
   111   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
   112   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
   113   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
   114   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
   115   case T_LONG:
   116   case T_DOUBLE: {
   117     // Since arguments are in reverse order, the argument address 'adr'
   118     // refers to the back half of the long/double.  Recompute adr.
   119     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
   120     if (Matcher::misaligned_doubles_ok) {
   121       l = (bt == T_DOUBLE)
   122         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
   123         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
   124     } else {
   125       l = (bt == T_DOUBLE)
   126         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
   127         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
   128     }
   129     break;
   130   }
   131   default: ShouldNotReachHere();
   132   }
   133   return _gvn.transform(l);
   134 }
   136 // Helper routine to prevent the interpreter from handing
   137 // unexpected typestate to an OSR method.
   138 // The Node l is a value newly dug out of the interpreter frame.
   139 // The type is the type predicted by ciTypeFlow.  Note that it is
   140 // not a general type, but can only come from Type::get_typeflow_type.
   141 // The safepoint is a map which will feed an uncommon trap.
   142 Node* Parse::check_interpreter_type(Node* l, const Type* type,
   143                                     SafePointNode* &bad_type_exit) {
   145   const TypeOopPtr* tp = type->isa_oopptr();
   147   // TypeFlow may assert null-ness if a type appears unloaded.
   148   if (type == TypePtr::NULL_PTR ||
   149       (tp != NULL && !tp->klass()->is_loaded())) {
   150     // Value must be null, not a real oop.
   151     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
   152     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
   153     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
   154     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
   155     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
   156     bad_type_exit->control()->add_req(bad_type);
   157     l = null();
   158   }
   160   // Typeflow can also cut off paths from the CFG, based on
   161   // types which appear unloaded, or call sites which appear unlinked.
   162   // When paths are cut off, values at later merge points can rise
   163   // toward more specific classes.  Make sure these specific classes
   164   // are still in effect.
   165   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
   166     // TypeFlow asserted a specific object type.  Value must have that type.
   167     Node* bad_type_ctrl = NULL;
   168     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
   169     bad_type_exit->control()->add_req(bad_type_ctrl);
   170   }
   172   BasicType bt_l = _gvn.type(l)->basic_type();
   173   BasicType bt_t = type->basic_type();
   174   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
   175   return l;
   176 }
   178 // Helper routine which sets up elements of the initial parser map when
   179 // performing a parse for on stack replacement.  Add values into map.
   180 // The only parameter contains the address of a interpreter arguments.
   181 void Parse::load_interpreter_state(Node* osr_buf) {
   182   int index;
   183   int max_locals = jvms()->loc_size();
   184   int max_stack  = jvms()->stk_size();
   187   // Mismatch between method and jvms can occur since map briefly held
   188   // an OSR entry state (which takes up one RawPtr word).
   189   assert(max_locals == method()->max_locals(), "sanity");
   190   assert(max_stack  >= method()->max_stack(),  "sanity");
   191   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
   192   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
   194   // Find the start block.
   195   Block* osr_block = start_block();
   196   assert(osr_block->start() == osr_bci(), "sanity");
   198   // Set initial BCI.
   199   set_parse_bci(osr_block->start());
   201   // Set initial stack depth.
   202   set_sp(osr_block->start_sp());
   204   // Check bailouts.  We currently do not perform on stack replacement
   205   // of loops in catch blocks or loops which branch with a non-empty stack.
   206   if (sp() != 0) {
   207     C->record_method_not_compilable("OSR starts with non-empty stack");
   208     return;
   209   }
   210   // Do not OSR inside finally clauses:
   211   if (osr_block->has_trap_at(osr_block->start())) {
   212     C->record_method_not_compilable("OSR starts with an immediate trap");
   213     return;
   214   }
   216   // Commute monitors from interpreter frame to compiler frame.
   217   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
   218   int mcnt = osr_block->flow()->monitor_count();
   219   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
   220   for (index = 0; index < mcnt; index++) {
   221     // Make a BoxLockNode for the monitor.
   222     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
   225     // Displaced headers and locked objects are interleaved in the
   226     // temp OSR buffer.  We only copy the locked objects out here.
   227     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
   228     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
   229     // Try and copy the displaced header to the BoxNode
   230     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
   233     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
   235     // Build a bogus FastLockNode (no code will be generated) and push the
   236     // monitor into our debug info.
   237     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
   238     map()->push_monitor(flock);
   240     // If the lock is our method synchronization lock, tuck it away in
   241     // _sync_lock for return and rethrow exit paths.
   242     if (index == 0 && method()->is_synchronized()) {
   243       _synch_lock = flock;
   244     }
   245   }
   247   // Use the raw liveness computation to make sure that unexpected
   248   // values don't propagate into the OSR frame.
   249   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
   250   if (!live_locals.is_valid()) {
   251     // Degenerate or breakpointed method.
   252     C->record_method_not_compilable("OSR in empty or breakpointed method");
   253     return;
   254   }
   256   // Extract the needed locals from the interpreter frame.
   257   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
   259   // find all the locals that the interpreter thinks contain live oops
   260   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
   261   for (index = 0; index < max_locals; index++) {
   263     if (!live_locals.at(index)) {
   264       continue;
   265     }
   267     const Type *type = osr_block->local_type_at(index);
   269     if (type->isa_oopptr() != NULL) {
   271       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
   272       // else we might load a stale oop if the MethodLiveness disagrees with the
   273       // result of the interpreter. If the interpreter says it is dead we agree
   274       // by making the value go to top.
   275       //
   277       if (!live_oops.at(index)) {
   278         if (C->log() != NULL) {
   279           C->log()->elem("OSR_mismatch local_index='%d'",index);
   280         }
   281         set_local(index, null());
   282         // and ignore it for the loads
   283         continue;
   284       }
   285     }
   287     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
   288     if (type == Type::TOP || type == Type::HALF) {
   289       continue;
   290     }
   291     // If the type falls to bottom, then this must be a local that
   292     // is mixing ints and oops or some such.  Forcing it to top
   293     // makes it go dead.
   294     if (type == Type::BOTTOM) {
   295       continue;
   296     }
   297     // Construct code to access the appropriate local.
   298     BasicType bt = type->basic_type();
   299     if (type == TypePtr::NULL_PTR) {
   300       // Ptr types are mixed together with T_ADDRESS but NULL is
   301       // really for T_OBJECT types so correct it.
   302       bt = T_OBJECT;
   303     }
   304     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
   305     set_local(index, value);
   306   }
   308   // Extract the needed stack entries from the interpreter frame.
   309   for (index = 0; index < sp(); index++) {
   310     const Type *type = osr_block->stack_type_at(index);
   311     if (type != Type::TOP) {
   312       // Currently the compiler bails out when attempting to on stack replace
   313       // at a bci with a non-empty stack.  We should not reach here.
   314       ShouldNotReachHere();
   315     }
   316   }
   318   // End the OSR migration
   319   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
   320                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
   321                     "OSR_migration_end", TypeRawPtr::BOTTOM,
   322                     osr_buf);
   324   // Now that the interpreter state is loaded, make sure it will match
   325   // at execution time what the compiler is expecting now:
   326   SafePointNode* bad_type_exit = clone_map();
   327   bad_type_exit->set_control(new (C) RegionNode(1));
   329   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
   330   for (index = 0; index < max_locals; index++) {
   331     if (stopped())  break;
   332     Node* l = local(index);
   333     if (l->is_top())  continue;  // nothing here
   334     const Type *type = osr_block->local_type_at(index);
   335     if (type->isa_oopptr() != NULL) {
   336       if (!live_oops.at(index)) {
   337         // skip type check for dead oops
   338         continue;
   339       }
   340     }
   341     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
   342       // In our current system it's illegal for jsr addresses to be
   343       // live into an OSR entry point because the compiler performs
   344       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
   345       // case and aborts the compile if addresses are live into an OSR
   346       // entry point.  Because of that we can assume that any address
   347       // locals at the OSR entry point are dead.  Method liveness
   348       // isn't precise enought to figure out that they are dead in all
   349       // cases so simply skip checking address locals all
   350       // together. Any type check is guaranteed to fail since the
   351       // interpreter type is the result of a load which might have any
   352       // value and the expected type is a constant.
   353       continue;
   354     }
   355     set_local(index, check_interpreter_type(l, type, bad_type_exit));
   356   }
   358   for (index = 0; index < sp(); index++) {
   359     if (stopped())  break;
   360     Node* l = stack(index);
   361     if (l->is_top())  continue;  // nothing here
   362     const Type *type = osr_block->stack_type_at(index);
   363     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
   364   }
   366   if (bad_type_exit->control()->req() > 1) {
   367     // Build an uncommon trap here, if any inputs can be unexpected.
   368     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
   369     record_for_igvn(bad_type_exit->control());
   370     SafePointNode* types_are_good = map();
   371     set_map(bad_type_exit);
   372     // The unexpected type happens because a new edge is active
   373     // in the CFG, which typeflow had previously ignored.
   374     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
   375     // This x will be typed as Integer if notReached is not yet linked.
   376     // It could also happen due to a problem in ciTypeFlow analysis.
   377     uncommon_trap(Deoptimization::Reason_constraint,
   378                   Deoptimization::Action_reinterpret);
   379     set_map(types_are_good);
   380   }
   381 }
   383 //------------------------------Parse------------------------------------------
   384 // Main parser constructor.
   385 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
   386   : _exits(caller)
   387 {
   388   // Init some variables
   389   _caller = caller;
   390   _method = parse_method;
   391   _expected_uses = expected_uses;
   392   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
   393   _wrote_final = false;
   394   _wrote_volatile = false;
   395   _alloc_with_final = NULL;
   396   _entry_bci = InvocationEntryBci;
   397   _tf = NULL;
   398   _block = NULL;
   399   _first_return = true;
   400   _replaced_nodes_for_exceptions = false;
   401   _new_idx = C->unique();
   402   debug_only(_block_count = -1);
   403   debug_only(_blocks = (Block*)-1);
   404 #ifndef PRODUCT
   405   if (PrintCompilation || PrintOpto) {
   406     // Make sure I have an inline tree, so I can print messages about it.
   407     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
   408     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
   409   }
   410   _max_switch_depth = 0;
   411   _est_switch_depth = 0;
   412 #endif
   414   _tf = TypeFunc::make(method());
   415   _iter.reset_to_method(method());
   416   _flow = method()->get_flow_analysis();
   417   if (_flow->failing()) {
   418     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
   419   }
   421 #ifndef PRODUCT
   422   if (_flow->has_irreducible_entry()) {
   423     C->set_parsed_irreducible_loop(true);
   424   }
   425 #endif
   427   if (_expected_uses <= 0) {
   428     _prof_factor = 1;
   429   } else {
   430     float prof_total = parse_method->interpreter_invocation_count();
   431     if (prof_total <= _expected_uses) {
   432       _prof_factor = 1;
   433     } else {
   434       _prof_factor = _expected_uses / prof_total;
   435     }
   436   }
   438   CompileLog* log = C->log();
   439   if (log != NULL) {
   440     log->begin_head("parse method='%d' uses='%g'",
   441                     log->identify(parse_method), expected_uses);
   442     if (depth() == 1 && C->is_osr_compilation()) {
   443       log->print(" osr_bci='%d'", C->entry_bci());
   444     }
   445     log->stamp();
   446     log->end_head();
   447   }
   449   // Accumulate deoptimization counts.
   450   // (The range_check and store_check counts are checked elsewhere.)
   451   ciMethodData* md = method()->method_data();
   452   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
   453     uint md_count = md->trap_count(reason);
   454     if (md_count != 0) {
   455       if (md_count == md->trap_count_limit())
   456         md_count += md->overflow_trap_count();
   457       uint total_count = C->trap_count(reason);
   458       uint old_count   = total_count;
   459       total_count += md_count;
   460       // Saturate the add if it overflows.
   461       if (total_count < old_count || total_count < md_count)
   462         total_count = (uint)-1;
   463       C->set_trap_count(reason, total_count);
   464       if (log != NULL)
   465         log->elem("observe trap='%s' count='%d' total='%d'",
   466                   Deoptimization::trap_reason_name(reason),
   467                   md_count, total_count);
   468     }
   469   }
   470   // Accumulate total sum of decompilations, also.
   471   C->set_decompile_count(C->decompile_count() + md->decompile_count());
   473   _count_invocations = C->do_count_invocations();
   474   _method_data_update = C->do_method_data_update();
   476   if (log != NULL && method()->has_exception_handlers()) {
   477     log->elem("observe that='has_exception_handlers'");
   478   }
   480   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
   481   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
   483   // Always register dependence if JVMTI is enabled, because
   484   // either breakpoint setting or hotswapping of methods may
   485   // cause deoptimization.
   486   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
   487     C->dependencies()->assert_evol_method(method());
   488   }
   490   methods_seen++;
   492   // Do some special top-level things.
   493   if (depth() == 1 && C->is_osr_compilation()) {
   494     _entry_bci = C->entry_bci();
   495     _flow = method()->get_osr_flow_analysis(osr_bci());
   496     if (_flow->failing()) {
   497       C->record_method_not_compilable(_flow->failure_reason());
   498 #ifndef PRODUCT
   499       if (PrintOpto && (Verbose || WizardMode)) {
   500         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
   501         if (Verbose) {
   502           method()->print();
   503           method()->print_codes();
   504           _flow->print();
   505         }
   506       }
   507 #endif
   508     }
   509     _tf = C->tf();     // the OSR entry type is different
   510   }
   512 #ifdef ASSERT
   513   if (depth() == 1) {
   514     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
   515     if (C->tf() != tf()) {
   516       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
   517       assert(C->env()->system_dictionary_modification_counter_changed(),
   518              "Must invalidate if TypeFuncs differ");
   519     }
   520   } else {
   521     assert(!this->is_osr_parse(), "no recursive OSR");
   522   }
   523 #endif
   525   methods_parsed++;
   526 #ifndef PRODUCT
   527   // add method size here to guarantee that inlined methods are added too
   528   if (TimeCompiler)
   529     _total_bytes_compiled += method()->code_size();
   531   show_parse_info();
   532 #endif
   534   if (failing()) {
   535     if (log)  log->done("parse");
   536     return;
   537   }
   539   gvn().set_type(root(), root()->bottom_type());
   540   gvn().transform(top());
   542   // Import the results of the ciTypeFlow.
   543   init_blocks();
   545   // Merge point for all normal exits
   546   build_exits();
   548   // Setup the initial JVM state map.
   549   SafePointNode* entry_map = create_entry_map();
   551   // Check for bailouts during map initialization
   552   if (failing() || entry_map == NULL) {
   553     if (log)  log->done("parse");
   554     return;
   555   }
   557   Node_Notes* caller_nn = C->default_node_notes();
   558   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
   559   if (DebugInlinedCalls || depth() == 1) {
   560     C->set_default_node_notes(make_node_notes(caller_nn));
   561   }
   563   if (is_osr_parse()) {
   564     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
   565     entry_map->set_req(TypeFunc::Parms+0, top());
   566     set_map(entry_map);
   567     load_interpreter_state(osr_buf);
   568   } else {
   569     set_map(entry_map);
   570     do_method_entry();
   571   }
   573   if (depth() == 1 && !failing()) {
   574     // Add check to deoptimize the nmethod if RTM state was changed
   575     rtm_deopt();
   576   }
   578   // Check for bailouts during method entry or RTM state check setup.
   579   if (failing()) {
   580     if (log)  log->done("parse");
   581     C->set_default_node_notes(caller_nn);
   582     return;
   583   }
   585   entry_map = map();  // capture any changes performed by method setup code
   586   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
   588   // We begin parsing as if we have just encountered a jump to the
   589   // method entry.
   590   Block* entry_block = start_block();
   591   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
   592   set_map_clone(entry_map);
   593   merge_common(entry_block, entry_block->next_path_num());
   595 #ifndef PRODUCT
   596   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
   597   set_parse_histogram( parse_histogram_obj );
   598 #endif
   600   // Parse all the basic blocks.
   601   do_all_blocks();
   603   C->set_default_node_notes(caller_nn);
   605   // Check for bailouts during conversion to graph
   606   if (failing()) {
   607     if (log)  log->done("parse");
   608     return;
   609   }
   611   // Fix up all exiting control flow.
   612   set_map(entry_map);
   613   do_exits();
   615   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
   616                       C->unique(), C->live_nodes(), C->node_arena()->used());
   617 }
   619 //---------------------------do_all_blocks-------------------------------------
   620 void Parse::do_all_blocks() {
   621   bool has_irreducible = flow()->has_irreducible_entry();
   623   // Walk over all blocks in Reverse Post-Order.
   624   while (true) {
   625     bool progress = false;
   626     for (int rpo = 0; rpo < block_count(); rpo++) {
   627       Block* block = rpo_at(rpo);
   629       if (block->is_parsed()) continue;
   631       if (!block->is_merged()) {
   632         // Dead block, no state reaches this block
   633         continue;
   634       }
   636       // Prepare to parse this block.
   637       load_state_from(block);
   639       if (stopped()) {
   640         // Block is dead.
   641         continue;
   642       }
   644       blocks_parsed++;
   646       progress = true;
   647       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
   648         // Not all preds have been parsed.  We must build phis everywhere.
   649         // (Note that dead locals do not get phis built, ever.)
   650         ensure_phis_everywhere();
   652         if (block->is_SEL_head() &&
   653             (UseLoopPredicate || LoopLimitCheck)) {
   654           // Add predicate to single entry (not irreducible) loop head.
   655           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
   656           // Need correct bci for predicate.
   657           // It is fine to set it here since do_one_block() will set it anyway.
   658           set_parse_bci(block->start());
   659           add_predicate();
   660           // Add new region for back branches.
   661           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
   662           RegionNode *r = new (C) RegionNode(edges+1);
   663           _gvn.set_type(r, Type::CONTROL);
   664           record_for_igvn(r);
   665           r->init_req(edges, control());
   666           set_control(r);
   667           // Add new phis.
   668           ensure_phis_everywhere();
   669         }
   671         // Leave behind an undisturbed copy of the map, for future merges.
   672         set_map(clone_map());
   673       }
   675       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
   676         // In the absence of irreducible loops, the Region and Phis
   677         // associated with a merge that doesn't involve a backedge can
   678         // be simplified now since the RPO parsing order guarantees
   679         // that any path which was supposed to reach here has already
   680         // been parsed or must be dead.
   681         Node* c = control();
   682         Node* result = _gvn.transform_no_reclaim(control());
   683         if (c != result && TraceOptoParse) {
   684           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
   685         }
   686         if (result != top()) {
   687           record_for_igvn(result);
   688         }
   689       }
   691       // Parse the block.
   692       do_one_block();
   694       // Check for bailouts.
   695       if (failing())  return;
   696     }
   698     // with irreducible loops multiple passes might be necessary to parse everything
   699     if (!has_irreducible || !progress) {
   700       break;
   701     }
   702   }
   704   blocks_seen += block_count();
   706 #ifndef PRODUCT
   707   // Make sure there are no half-processed blocks remaining.
   708   // Every remaining unprocessed block is dead and may be ignored now.
   709   for (int rpo = 0; rpo < block_count(); rpo++) {
   710     Block* block = rpo_at(rpo);
   711     if (!block->is_parsed()) {
   712       if (TraceOptoParse) {
   713         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
   714       }
   715       assert(!block->is_merged(), "no half-processed blocks");
   716     }
   717   }
   718 #endif
   719 }
   721 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
   722   Compile* C = gvn->C;
   723   switch (bt) {
   724   case T_BYTE:
   725     v = gvn->transform(new (C) LShiftINode(v, gvn->intcon(24)));
   726     v = gvn->transform(new (C) RShiftINode(v, gvn->intcon(24)));
   727     break;
   728   case T_SHORT:
   729     v = gvn->transform(new (C) LShiftINode(v, gvn->intcon(16)));
   730     v = gvn->transform(new (C) RShiftINode(v, gvn->intcon(16)));
   731     break;
   732   case T_CHAR:
   733     v = gvn->transform(new (C) AndINode(v, gvn->intcon(0xFFFF)));
   734     break;
   735   case T_BOOLEAN:
   736     v = gvn->transform(new (C) AndINode(v, gvn->intcon(0x1)));
   737     break;
   738   }
   739   return v;
   740 }
   742 //-------------------------------build_exits----------------------------------
   743 // Build normal and exceptional exit merge points.
   744 void Parse::build_exits() {
   745   // make a clone of caller to prevent sharing of side-effects
   746   _exits.set_map(_exits.clone_map());
   747   _exits.clean_stack(_exits.sp());
   748   _exits.sync_jvms();
   750   RegionNode* region = new (C) RegionNode(1);
   751   record_for_igvn(region);
   752   gvn().set_type_bottom(region);
   753   _exits.set_control(region);
   755   // Note:  iophi and memphi are not transformed until do_exits.
   756   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
   757   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
   758   gvn().set_type_bottom(iophi);
   759   gvn().set_type_bottom(memphi);
   760   _exits.set_i_o(iophi);
   761   _exits.set_all_memory(memphi);
   763   // Add a return value to the exit state.  (Do not push it yet.)
   764   if (tf()->range()->cnt() > TypeFunc::Parms) {
   765     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
   766     if (ret_type->isa_int()) {
   767       BasicType ret_bt = method()->return_type()->basic_type();
   768       if (ret_bt == T_BOOLEAN ||
   769           ret_bt == T_CHAR ||
   770           ret_bt == T_BYTE ||
   771           ret_bt == T_SHORT) {
   772         ret_type = TypeInt::INT;
   773       }
   774     }
   776     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
   777     // becomes loaded during the subsequent parsing, the loaded and unloaded
   778     // types will not join when we transform and push in do_exits().
   779     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
   780     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
   781       ret_type = TypeOopPtr::BOTTOM;
   782     }
   783     int         ret_size = type2size[ret_type->basic_type()];
   784     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
   785     gvn().set_type_bottom(ret_phi);
   786     _exits.ensure_stack(ret_size);
   787     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
   788     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
   789     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
   790     // Note:  ret_phi is not yet pushed, until do_exits.
   791   }
   792 }
   795 //----------------------------build_start_state-------------------------------
   796 // Construct a state which contains only the incoming arguments from an
   797 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
   798 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
   799   int        arg_size = tf->domain()->cnt();
   800   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
   801   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
   802   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
   803   record_for_igvn(map);
   804   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
   805   Node_Notes* old_nn = default_node_notes();
   806   if (old_nn != NULL && has_method()) {
   807     Node_Notes* entry_nn = old_nn->clone(this);
   808     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
   809     entry_jvms->set_offsets(0);
   810     entry_jvms->set_bci(entry_bci());
   811     entry_nn->set_jvms(entry_jvms);
   812     set_default_node_notes(entry_nn);
   813   }
   814   uint i;
   815   for (i = 0; i < (uint)arg_size; i++) {
   816     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
   817     map->init_req(i, parm);
   818     // Record all these guys for later GVN.
   819     record_for_igvn(parm);
   820   }
   821   for (; i < map->req(); i++) {
   822     map->init_req(i, top());
   823   }
   824   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
   825   set_default_node_notes(old_nn);
   826   map->set_jvms(jvms);
   827   jvms->set_map(map);
   828   return jvms;
   829 }
   831 //-----------------------------make_node_notes---------------------------------
   832 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
   833   if (caller_nn == NULL)  return NULL;
   834   Node_Notes* nn = caller_nn->clone(C);
   835   JVMState* caller_jvms = nn->jvms();
   836   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
   837   jvms->set_offsets(0);
   838   jvms->set_bci(_entry_bci);
   839   nn->set_jvms(jvms);
   840   return nn;
   841 }
   844 //--------------------------return_values--------------------------------------
   845 void Compile::return_values(JVMState* jvms) {
   846   GraphKit kit(jvms);
   847   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
   848                              kit.control(),
   849                              kit.i_o(),
   850                              kit.reset_memory(),
   851                              kit.frameptr(),
   852                              kit.returnadr());
   853   // Add zero or 1 return values
   854   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
   855   if (ret_size > 0) {
   856     kit.inc_sp(-ret_size);  // pop the return value(s)
   857     kit.sync_jvms();
   858     ret->add_req(kit.argument(0));
   859     // Note:  The second dummy edge is not needed by a ReturnNode.
   860   }
   861   // bind it to root
   862   root()->add_req(ret);
   863   record_for_igvn(ret);
   864   initial_gvn()->transform_no_reclaim(ret);
   865 }
   867 //------------------------rethrow_exceptions-----------------------------------
   868 // Bind all exception states in the list into a single RethrowNode.
   869 void Compile::rethrow_exceptions(JVMState* jvms) {
   870   GraphKit kit(jvms);
   871   if (!kit.has_exceptions())  return;  // nothing to generate
   872   // Load my combined exception state into the kit, with all phis transformed:
   873   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
   874   Node* ex_oop = kit.use_exception_state(ex_map);
   875   RethrowNode* exit = new (this) RethrowNode(kit.control(),
   876                                       kit.i_o(), kit.reset_memory(),
   877                                       kit.frameptr(), kit.returnadr(),
   878                                       // like a return but with exception input
   879                                       ex_oop);
   880   // bind to root
   881   root()->add_req(exit);
   882   record_for_igvn(exit);
   883   initial_gvn()->transform_no_reclaim(exit);
   884 }
   886 //---------------------------do_exceptions-------------------------------------
   887 // Process exceptions arising from the current bytecode.
   888 // Send caught exceptions to the proper handler within this method.
   889 // Unhandled exceptions feed into _exit.
   890 void Parse::do_exceptions() {
   891   if (!has_exceptions())  return;
   893   if (failing()) {
   894     // Pop them all off and throw them away.
   895     while (pop_exception_state() != NULL) ;
   896     return;
   897   }
   899   PreserveJVMState pjvms(this, false);
   901   SafePointNode* ex_map;
   902   while ((ex_map = pop_exception_state()) != NULL) {
   903     if (!method()->has_exception_handlers()) {
   904       // Common case:  Transfer control outward.
   905       // Doing it this early allows the exceptions to common up
   906       // even between adjacent method calls.
   907       throw_to_exit(ex_map);
   908     } else {
   909       // Have to look at the exception first.
   910       assert(stopped(), "catch_inline_exceptions trashes the map");
   911       catch_inline_exceptions(ex_map);
   912       stop_and_kill_map();      // we used up this exception state; kill it
   913     }
   914   }
   916   // We now return to our regularly scheduled program:
   917 }
   919 //---------------------------throw_to_exit-------------------------------------
   920 // Merge the given map into an exception exit from this method.
   921 // The exception exit will handle any unlocking of receiver.
   922 // The ex_oop must be saved within the ex_map, unlike merge_exception.
   923 void Parse::throw_to_exit(SafePointNode* ex_map) {
   924   // Pop the JVMS to (a copy of) the caller.
   925   GraphKit caller;
   926   caller.set_map_clone(_caller->map());
   927   caller.set_bci(_caller->bci());
   928   caller.set_sp(_caller->sp());
   929   // Copy out the standard machine state:
   930   for (uint i = 0; i < TypeFunc::Parms; i++) {
   931     caller.map()->set_req(i, ex_map->in(i));
   932   }
   933   if (ex_map->has_replaced_nodes()) {
   934     _replaced_nodes_for_exceptions = true;
   935   }
   936   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
   937   // ...and the exception:
   938   Node*          ex_oop        = saved_ex_oop(ex_map);
   939   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
   940   // Finally, collect the new exception state in my exits:
   941   _exits.add_exception_state(caller_ex_map);
   942 }
   944 //------------------------------do_exits---------------------------------------
   945 void Parse::do_exits() {
   946   set_parse_bci(InvocationEntryBci);
   948   // Now peephole on the return bits
   949   Node* region = _exits.control();
   950   _exits.set_control(gvn().transform(region));
   952   Node* iophi = _exits.i_o();
   953   _exits.set_i_o(gvn().transform(iophi));
   955   // On PPC64, also add MemBarRelease for constructors which write
   956   // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
   957   // is set on PPC64, no sync instruction is issued after volatile
   958   // stores. We want to quarantee the same behaviour as on platforms
   959   // with total store order, although this is not required by the Java
   960   // memory model. So as with finals, we add a barrier here.
   961   if (wrote_final() PPC64_ONLY(|| (wrote_volatile() && method()->is_initializer()))) {
   962     // This method (which must be a constructor by the rules of Java)
   963     // wrote a final.  The effects of all initializations must be
   964     // committed to memory before any code after the constructor
   965     // publishes the reference to the newly constructor object.
   966     // Rather than wait for the publication, we simply block the
   967     // writes here.  Rather than put a barrier on only those writes
   968     // which are required to complete, we force all writes to complete.
   969     //
   970     // "All bets are off" unless the first publication occurs after a
   971     // normal return from the constructor.  We do not attempt to detect
   972     // such unusual early publications.  But no barrier is needed on
   973     // exceptional returns, since they cannot publish normally.
   974     //
   975     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
   976 #ifndef PRODUCT
   977     if (PrintOpto && (Verbose || WizardMode)) {
   978       method()->print_name();
   979       tty->print_cr(" writes finals and needs a memory barrier");
   980     }
   981 #endif
   982   }
   984   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
   985     // transform each slice of the original memphi:
   986     mms.set_memory(_gvn.transform(mms.memory()));
   987   }
   989   if (tf()->range()->cnt() > TypeFunc::Parms) {
   990     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
   991     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
   992     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
   993       // In case of concurrent class loading, the type we set for the
   994       // ret_phi in build_exits() may have been too optimistic and the
   995       // ret_phi may be top now.
   996       // Otherwise, we've encountered an error and have to mark the method as
   997       // not compilable. Just using an assertion instead would be dangerous
   998       // as this could lead to an infinite compile loop in non-debug builds.
   999       {
  1000         MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  1001         if (C->env()->system_dictionary_modification_counter_changed()) {
  1002           C->record_failure(C2Compiler::retry_class_loading_during_parsing());
  1003         } else {
  1004           C->record_method_not_compilable("Can't determine return type.");
  1007       return;
  1009     if (ret_type->isa_int()) {
  1010       BasicType ret_bt = method()->return_type()->basic_type();
  1011       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
  1013     _exits.push_node(ret_type->basic_type(), ret_phi);
  1016   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
  1018   // Unlock along the exceptional paths.
  1019   // This is done late so that we can common up equivalent exceptions
  1020   // (e.g., null checks) arising from multiple points within this method.
  1021   // See GraphKit::add_exception_state, which performs the commoning.
  1022   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
  1024   // record exit from a method if compiled while Dtrace is turned on.
  1025   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
  1026     // First move the exception list out of _exits:
  1027     GraphKit kit(_exits.transfer_exceptions_into_jvms());
  1028     SafePointNode* normal_map = kit.map();  // keep this guy safe
  1029     // Now re-collect the exceptions into _exits:
  1030     SafePointNode* ex_map;
  1031     while ((ex_map = kit.pop_exception_state()) != NULL) {
  1032       Node* ex_oop = kit.use_exception_state(ex_map);
  1033       // Force the exiting JVM state to have this method at InvocationEntryBci.
  1034       // The exiting JVM state is otherwise a copy of the calling JVMS.
  1035       JVMState* caller = kit.jvms();
  1036       JVMState* ex_jvms = caller->clone_shallow(C);
  1037       ex_jvms->set_map(kit.clone_map());
  1038       ex_jvms->map()->set_jvms(ex_jvms);
  1039       ex_jvms->set_bci(   InvocationEntryBci);
  1040       kit.set_jvms(ex_jvms);
  1041       if (do_synch) {
  1042         // Add on the synchronized-method box/object combo
  1043         kit.map()->push_monitor(_synch_lock);
  1044         // Unlock!
  1045         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
  1047       if (C->env()->dtrace_method_probes()) {
  1048         kit.make_dtrace_method_exit(method());
  1050       if (_replaced_nodes_for_exceptions) {
  1051         kit.map()->apply_replaced_nodes(_new_idx);
  1053       // Done with exception-path processing.
  1054       ex_map = kit.make_exception_state(ex_oop);
  1055       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
  1056       // Pop the last vestige of this method:
  1057       ex_map->set_jvms(caller->clone_shallow(C));
  1058       ex_map->jvms()->set_map(ex_map);
  1059       _exits.push_exception_state(ex_map);
  1061     assert(_exits.map() == normal_map, "keep the same return state");
  1065     // Capture very early exceptions (receiver null checks) from caller JVMS
  1066     GraphKit caller(_caller);
  1067     SafePointNode* ex_map;
  1068     while ((ex_map = caller.pop_exception_state()) != NULL) {
  1069       _exits.add_exception_state(ex_map);
  1072   _exits.map()->apply_replaced_nodes(_new_idx);
  1075 //-----------------------------create_entry_map-------------------------------
  1076 // Initialize our parser map to contain the types at method entry.
  1077 // For OSR, the map contains a single RawPtr parameter.
  1078 // Initial monitor locking for sync. methods is performed by do_method_entry.
  1079 SafePointNode* Parse::create_entry_map() {
  1080   // Check for really stupid bail-out cases.
  1081   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
  1082   if (len >= 32760) {
  1083     C->record_method_not_compilable_all_tiers("too many local variables");
  1084     return NULL;
  1087   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
  1088   _caller->map()->delete_replaced_nodes();
  1090   // If this is an inlined method, we may have to do a receiver null check.
  1091   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
  1092     GraphKit kit(_caller);
  1093     kit.null_check_receiver_before_call(method());
  1094     _caller = kit.transfer_exceptions_into_jvms();
  1095     if (kit.stopped()) {
  1096       _exits.add_exception_states_from(_caller);
  1097       _exits.set_jvms(_caller);
  1098       return NULL;
  1102   assert(method() != NULL, "parser must have a method");
  1104   // Create an initial safepoint to hold JVM state during parsing
  1105   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
  1106   set_map(new (C) SafePointNode(len, jvms));
  1107   jvms->set_map(map());
  1108   record_for_igvn(map());
  1109   assert(jvms->endoff() == len, "correct jvms sizing");
  1111   SafePointNode* inmap = _caller->map();
  1112   assert(inmap != NULL, "must have inmap");
  1113   // In case of null check on receiver above
  1114   map()->transfer_replaced_nodes_from(inmap, _new_idx);
  1116   uint i;
  1118   // Pass thru the predefined input parameters.
  1119   for (i = 0; i < TypeFunc::Parms; i++) {
  1120     map()->init_req(i, inmap->in(i));
  1123   if (depth() == 1) {
  1124     assert(map()->memory()->Opcode() == Op_Parm, "");
  1125     // Insert the memory aliasing node
  1126     set_all_memory(reset_memory());
  1128   assert(merged_memory(), "");
  1130   // Now add the locals which are initially bound to arguments:
  1131   uint arg_size = tf()->domain()->cnt();
  1132   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
  1133   for (i = TypeFunc::Parms; i < arg_size; i++) {
  1134     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
  1137   // Clear out the rest of the map (locals and stack)
  1138   for (i = arg_size; i < len; i++) {
  1139     map()->init_req(i, top());
  1142   SafePointNode* entry_map = stop();
  1143   return entry_map;
  1146 //-----------------------------do_method_entry--------------------------------
  1147 // Emit any code needed in the pseudo-block before BCI zero.
  1148 // The main thing to do is lock the receiver of a synchronized method.
  1149 void Parse::do_method_entry() {
  1150   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
  1151   set_sp(0);                      // Java Stack Pointer
  1153   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
  1155   if (C->env()->dtrace_method_probes()) {
  1156     make_dtrace_method_entry(method());
  1159   // If the method is synchronized, we need to construct a lock node, attach
  1160   // it to the Start node, and pin it there.
  1161   if (method()->is_synchronized()) {
  1162     // Insert a FastLockNode right after the Start which takes as arguments
  1163     // the current thread pointer, the "this" pointer & the address of the
  1164     // stack slot pair used for the lock.  The "this" pointer is a projection
  1165     // off the start node, but the locking spot has to be constructed by
  1166     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
  1167     // becomes the second argument to the FastLockNode call.  The
  1168     // FastLockNode becomes the new control parent to pin it to the start.
  1170     // Setup Object Pointer
  1171     Node *lock_obj = NULL;
  1172     if(method()->is_static()) {
  1173       ciInstance* mirror = _method->holder()->java_mirror();
  1174       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
  1175       lock_obj = makecon(t_lock);
  1176     } else {                  // Else pass the "this" pointer,
  1177       lock_obj = local(0);    // which is Parm0 from StartNode
  1179     // Clear out dead values from the debug info.
  1180     kill_dead_locals();
  1181     // Build the FastLockNode
  1182     _synch_lock = shared_lock(lock_obj);
  1185   // Feed profiling data for parameters to the type system so it can
  1186   // propagate it as speculative types
  1187   record_profiled_parameters_for_speculation();
  1189   if (depth() == 1) {
  1190     increment_and_test_invocation_counter(Tier2CompileThreshold);
  1194 //------------------------------init_blocks------------------------------------
  1195 // Initialize our parser map to contain the types/monitors at method entry.
  1196 void Parse::init_blocks() {
  1197   // Create the blocks.
  1198   _block_count = flow()->block_count();
  1199   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
  1200   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
  1202   int rpo;
  1204   // Initialize the structs.
  1205   for (rpo = 0; rpo < block_count(); rpo++) {
  1206     Block* block = rpo_at(rpo);
  1207     block->init_node(this, rpo);
  1210   // Collect predecessor and successor information.
  1211   for (rpo = 0; rpo < block_count(); rpo++) {
  1212     Block* block = rpo_at(rpo);
  1213     block->init_graph(this);
  1217 //-------------------------------init_node-------------------------------------
  1218 void Parse::Block::init_node(Parse* outer, int rpo) {
  1219   _flow = outer->flow()->rpo_at(rpo);
  1220   _pred_count = 0;
  1221   _preds_parsed = 0;
  1222   _count = 0;
  1223   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
  1224   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
  1225   assert(_live_locals.size() == 0, "sanity");
  1227   // entry point has additional predecessor
  1228   if (flow()->is_start())  _pred_count++;
  1229   assert(flow()->is_start() == (this == outer->start_block()), "");
  1232 //-------------------------------init_graph------------------------------------
  1233 void Parse::Block::init_graph(Parse* outer) {
  1234   // Create the successor list for this parser block.
  1235   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
  1236   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
  1237   int ns = tfs->length();
  1238   int ne = tfe->length();
  1239   _num_successors = ns;
  1240   _all_successors = ns+ne;
  1241   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
  1242   int p = 0;
  1243   for (int i = 0; i < ns+ne; i++) {
  1244     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
  1245     Block* block2 = outer->rpo_at(tf2->rpo());
  1246     _successors[i] = block2;
  1248     // Accumulate pred info for the other block, too.
  1249     if (i < ns) {
  1250       block2->_pred_count++;
  1251     } else {
  1252       block2->_is_handler = true;
  1255     #ifdef ASSERT
  1256     // A block's successors must be distinguishable by BCI.
  1257     // That is, no bytecode is allowed to branch to two different
  1258     // clones of the same code location.
  1259     for (int j = 0; j < i; j++) {
  1260       Block* block1 = _successors[j];
  1261       if (block1 == block2)  continue;  // duplicates are OK
  1262       assert(block1->start() != block2->start(), "successors have unique bcis");
  1264     #endif
  1267   // Note: We never call next_path_num along exception paths, so they
  1268   // never get processed as "ready".  Also, the input phis of exception
  1269   // handlers get specially processed, so that
  1272 //---------------------------successor_for_bci---------------------------------
  1273 Parse::Block* Parse::Block::successor_for_bci(int bci) {
  1274   for (int i = 0; i < all_successors(); i++) {
  1275     Block* block2 = successor_at(i);
  1276     if (block2->start() == bci)  return block2;
  1278   // We can actually reach here if ciTypeFlow traps out a block
  1279   // due to an unloaded class, and concurrently with compilation the
  1280   // class is then loaded, so that a later phase of the parser is
  1281   // able to see more of the bytecode CFG.  Or, the flow pass and
  1282   // the parser can have a minor difference of opinion about executability
  1283   // of bytecodes.  For example, "obj.field = null" is executable even
  1284   // if the field's type is an unloaded class; the flow pass used to
  1285   // make a trap for such code.
  1286   return NULL;
  1290 //-----------------------------stack_type_at-----------------------------------
  1291 const Type* Parse::Block::stack_type_at(int i) const {
  1292   return get_type(flow()->stack_type_at(i));
  1296 //-----------------------------local_type_at-----------------------------------
  1297 const Type* Parse::Block::local_type_at(int i) const {
  1298   // Make dead locals fall to bottom.
  1299   if (_live_locals.size() == 0) {
  1300     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
  1301     // This bitmap can be zero length if we saw a breakpoint.
  1302     // In such cases, pretend they are all live.
  1303     ((Block*)this)->_live_locals = live_locals;
  1305   if (_live_locals.size() > 0 && !_live_locals.at(i))
  1306     return Type::BOTTOM;
  1308   return get_type(flow()->local_type_at(i));
  1312 #ifndef PRODUCT
  1314 //----------------------------name_for_bc--------------------------------------
  1315 // helper method for BytecodeParseHistogram
  1316 static const char* name_for_bc(int i) {
  1317   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
  1320 //----------------------------BytecodeParseHistogram------------------------------------
  1321 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
  1322   _parser   = p;
  1323   _compiler = c;
  1324   if( ! _initialized ) { _initialized = true; reset(); }
  1327 //----------------------------current_count------------------------------------
  1328 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
  1329   switch( bph_type ) {
  1330   case BPH_transforms: { return _parser->gvn().made_progress(); }
  1331   case BPH_values:     { return _parser->gvn().made_new_values(); }
  1332   default: { ShouldNotReachHere(); return 0; }
  1336 //----------------------------initialized--------------------------------------
  1337 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
  1339 //----------------------------reset--------------------------------------------
  1340 void Parse::BytecodeParseHistogram::reset() {
  1341   int i = Bytecodes::number_of_codes;
  1342   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
  1345 //----------------------------set_initial_state--------------------------------
  1346 // Record info when starting to parse one bytecode
  1347 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
  1348   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
  1349     _initial_bytecode    = bc;
  1350     _initial_node_count  = _compiler->unique();
  1351     _initial_transforms  = current_count(BPH_transforms);
  1352     _initial_values      = current_count(BPH_values);
  1356 //----------------------------record_change--------------------------------
  1357 // Record results of parsing one bytecode
  1358 void Parse::BytecodeParseHistogram::record_change() {
  1359   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
  1360     ++_bytecodes_parsed[_initial_bytecode];
  1361     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
  1362     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
  1363     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
  1368 //----------------------------print--------------------------------------------
  1369 void Parse::BytecodeParseHistogram::print(float cutoff) {
  1370   ResourceMark rm;
  1371   // print profile
  1372   int total  = 0;
  1373   int i      = 0;
  1374   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
  1375   int abs_sum = 0;
  1376   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
  1377   tty->print_cr("Histogram of %d parsed bytecodes:", total);
  1378   if( total == 0 ) { return; }
  1379   tty->cr();
  1380   tty->print_cr("absolute:  count of compiled bytecodes of this type");
  1381   tty->print_cr("relative:  percentage contribution to compiled nodes");
  1382   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
  1383   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
  1384   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
  1385   tty->print_cr("values  :  Average number of node values improved per bytecode");
  1386   tty->print_cr("name    :  Bytecode name");
  1387   tty->cr();
  1388   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
  1389   tty->print_cr("----------------------------------------------------------------------");
  1390   while (--i > 0) {
  1391     int       abs = _bytecodes_parsed[i];
  1392     float     rel = abs * 100.0F / total;
  1393     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
  1394     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
  1395     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
  1396     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
  1397     if (cutoff <= rel) {
  1398       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
  1399       abs_sum += abs;
  1402   tty->print_cr("----------------------------------------------------------------------");
  1403   float rel_sum = abs_sum * 100.0F / total;
  1404   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
  1405   tty->print_cr("----------------------------------------------------------------------");
  1406   tty->cr();
  1408 #endif
  1410 //----------------------------load_state_from----------------------------------
  1411 // Load block/map/sp.  But not do not touch iter/bci.
  1412 void Parse::load_state_from(Block* block) {
  1413   set_block(block);
  1414   // load the block's JVM state:
  1415   set_map(block->start_map());
  1416   set_sp( block->start_sp());
  1420 //-----------------------------record_state------------------------------------
  1421 void Parse::Block::record_state(Parse* p) {
  1422   assert(!is_merged(), "can only record state once, on 1st inflow");
  1423   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
  1424   set_start_map(p->stop());
  1428 //------------------------------do_one_block-----------------------------------
  1429 void Parse::do_one_block() {
  1430   if (TraceOptoParse) {
  1431     Block *b = block();
  1432     int ns = b->num_successors();
  1433     int nt = b->all_successors();
  1435     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
  1436                   block()->rpo(), block()->start(), block()->limit());
  1437     for (int i = 0; i < nt; i++) {
  1438       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
  1440     if (b->is_loop_head()) tty->print("  lphd");
  1441     tty->cr();
  1444   assert(block()->is_merged(), "must be merged before being parsed");
  1445   block()->mark_parsed();
  1446   ++_blocks_parsed;
  1448   // Set iterator to start of block.
  1449   iter().reset_to_bci(block()->start());
  1451   CompileLog* log = C->log();
  1453   // Parse bytecodes
  1454   while (!stopped() && !failing()) {
  1455     iter().next();
  1457     // Learn the current bci from the iterator:
  1458     set_parse_bci(iter().cur_bci());
  1460     if (bci() == block()->limit()) {
  1461       // Do not walk into the next block until directed by do_all_blocks.
  1462       merge(bci());
  1463       break;
  1465     assert(bci() < block()->limit(), "bci still in block");
  1467     if (log != NULL) {
  1468       // Output an optional context marker, to help place actions
  1469       // that occur during parsing of this BC.  If there is no log
  1470       // output until the next context string, this context string
  1471       // will be silently ignored.
  1472       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
  1475     if (block()->has_trap_at(bci())) {
  1476       // We must respect the flow pass's traps, because it will refuse
  1477       // to produce successors for trapping blocks.
  1478       int trap_index = block()->flow()->trap_index();
  1479       assert(trap_index != 0, "trap index must be valid");
  1480       uncommon_trap(trap_index);
  1481       break;
  1484     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
  1486 #ifdef ASSERT
  1487     int pre_bc_sp = sp();
  1488     int inputs, depth;
  1489     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
  1490     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
  1491 #endif //ASSERT
  1493     do_one_bytecode();
  1495     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
  1496            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
  1498     do_exceptions();
  1500     NOT_PRODUCT( parse_histogram()->record_change(); );
  1502     if (log != NULL)
  1503       log->clear_context();  // skip marker if nothing was printed
  1505     // Fall into next bytecode.  Each bytecode normally has 1 sequential
  1506     // successor which is typically made ready by visiting this bytecode.
  1507     // If the successor has several predecessors, then it is a merge
  1508     // point, starts a new basic block, and is handled like other basic blocks.
  1513 //------------------------------merge------------------------------------------
  1514 void Parse::set_parse_bci(int bci) {
  1515   set_bci(bci);
  1516   Node_Notes* nn = C->default_node_notes();
  1517   if (nn == NULL)  return;
  1519   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
  1520   if (!DebugInlinedCalls && depth() > 1) {
  1521     return;
  1524   // Update the JVMS annotation, if present.
  1525   JVMState* jvms = nn->jvms();
  1526   if (jvms != NULL && jvms->bci() != bci) {
  1527     // Update the JVMS.
  1528     jvms = jvms->clone_shallow(C);
  1529     jvms->set_bci(bci);
  1530     nn->set_jvms(jvms);
  1534 //------------------------------merge------------------------------------------
  1535 // Merge the current mapping into the basic block starting at bci
  1536 void Parse::merge(int target_bci) {
  1537   Block* target = successor_for_bci(target_bci);
  1538   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1539   assert(!target->is_ready(), "our arrival must be expected");
  1540   int pnum = target->next_path_num();
  1541   merge_common(target, pnum);
  1544 //-------------------------merge_new_path--------------------------------------
  1545 // Merge the current mapping into the basic block, using a new path
  1546 void Parse::merge_new_path(int target_bci) {
  1547   Block* target = successor_for_bci(target_bci);
  1548   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1549   assert(!target->is_ready(), "new path into frozen graph");
  1550   int pnum = target->add_new_path();
  1551   merge_common(target, pnum);
  1554 //-------------------------merge_exception-------------------------------------
  1555 // Merge the current mapping into the basic block starting at bci
  1556 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
  1557 void Parse::merge_exception(int target_bci) {
  1558   assert(sp() == 1, "must have only the throw exception on the stack");
  1559   Block* target = successor_for_bci(target_bci);
  1560   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1561   assert(target->is_handler(), "exceptions are handled by special blocks");
  1562   int pnum = target->add_new_path();
  1563   merge_common(target, pnum);
  1566 //--------------------handle_missing_successor---------------------------------
  1567 void Parse::handle_missing_successor(int target_bci) {
  1568 #ifndef PRODUCT
  1569   Block* b = block();
  1570   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
  1571   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
  1572 #endif
  1573   ShouldNotReachHere();
  1576 //--------------------------merge_common---------------------------------------
  1577 void Parse::merge_common(Parse::Block* target, int pnum) {
  1578   if (TraceOptoParse) {
  1579     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
  1582   // Zap extra stack slots to top
  1583   assert(sp() == target->start_sp(), "");
  1584   clean_stack(sp());
  1586   if (!target->is_merged()) {   // No prior mapping at this bci
  1587     if (TraceOptoParse) { tty->print(" with empty state");  }
  1589     // If this path is dead, do not bother capturing it as a merge.
  1590     // It is "as if" we had 1 fewer predecessors from the beginning.
  1591     if (stopped()) {
  1592       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
  1593       return;
  1596     // Record that a new block has been merged.
  1597     ++_blocks_merged;
  1599     // Make a region if we know there are multiple or unpredictable inputs.
  1600     // (Also, if this is a plain fall-through, we might see another region,
  1601     // which must not be allowed into this block's map.)
  1602     if (pnum > PhiNode::Input         // Known multiple inputs.
  1603         || target->is_handler()       // These have unpredictable inputs.
  1604         || target->is_loop_head()     // Known multiple inputs
  1605         || control()->is_Region()) {  // We must hide this guy.
  1607       int current_bci = bci();
  1608       set_parse_bci(target->start()); // Set target bci
  1609       if (target->is_SEL_head()) {
  1610         DEBUG_ONLY( target->mark_merged_backedge(block()); )
  1611         if (target->start() == 0) {
  1612           // Add loop predicate for the special case when
  1613           // there are backbranches to the method entry.
  1614           add_predicate();
  1617       // Add a Region to start the new basic block.  Phis will be added
  1618       // later lazily.
  1619       int edges = target->pred_count();
  1620       if (edges < pnum)  edges = pnum;  // might be a new path!
  1621       RegionNode *r = new (C) RegionNode(edges+1);
  1622       gvn().set_type(r, Type::CONTROL);
  1623       record_for_igvn(r);
  1624       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
  1625       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
  1626       r->init_req(pnum, control());
  1627       set_control(r);
  1628       set_parse_bci(current_bci); // Restore bci
  1631     // Convert the existing Parser mapping into a mapping at this bci.
  1632     store_state_to(target);
  1633     assert(target->is_merged(), "do not come here twice");
  1635   } else {                      // Prior mapping at this bci
  1636     if (TraceOptoParse) {  tty->print(" with previous state"); }
  1637 #ifdef ASSERT
  1638     if (target->is_SEL_head()) {
  1639       target->mark_merged_backedge(block());
  1641 #endif
  1642     // We must not manufacture more phis if the target is already parsed.
  1643     bool nophi = target->is_parsed();
  1645     SafePointNode* newin = map();// Hang on to incoming mapping
  1646     Block* save_block = block(); // Hang on to incoming block;
  1647     load_state_from(target);    // Get prior mapping
  1649     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
  1650     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
  1651     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
  1652     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
  1654     // Iterate over my current mapping and the old mapping.
  1655     // Where different, insert Phi functions.
  1656     // Use any existing Phi functions.
  1657     assert(control()->is_Region(), "must be merging to a region");
  1658     RegionNode* r = control()->as_Region();
  1660     // Compute where to merge into
  1661     // Merge incoming control path
  1662     r->init_req(pnum, newin->control());
  1664     if (pnum == 1) {            // Last merge for this Region?
  1665       if (!block()->flow()->is_irreducible_entry()) {
  1666         Node* result = _gvn.transform_no_reclaim(r);
  1667         if (r != result && TraceOptoParse) {
  1668           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
  1671       record_for_igvn(r);
  1674     // Update all the non-control inputs to map:
  1675     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
  1676     bool check_elide_phi = target->is_SEL_backedge(save_block);
  1677     for (uint j = 1; j < newin->req(); j++) {
  1678       Node* m = map()->in(j);   // Current state of target.
  1679       Node* n = newin->in(j);   // Incoming change to target state.
  1680       PhiNode* phi;
  1681       if (m->is_Phi() && m->as_Phi()->region() == r)
  1682         phi = m->as_Phi();
  1683       else
  1684         phi = NULL;
  1685       if (m != n) {             // Different; must merge
  1686         switch (j) {
  1687         // Frame pointer and Return Address never changes
  1688         case TypeFunc::FramePtr:// Drop m, use the original value
  1689         case TypeFunc::ReturnAdr:
  1690           break;
  1691         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
  1692           assert(phi == NULL, "the merge contains phis, not vice versa");
  1693           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
  1694           continue;
  1695         default:                // All normal stuff
  1696           if (phi == NULL) {
  1697             const JVMState* jvms = map()->jvms();
  1698             if (EliminateNestedLocks &&
  1699                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
  1700               // BoxLock nodes are not commoning.
  1701               // Use old BoxLock node as merged box.
  1702               assert(newin->jvms()->is_monitor_box(j), "sanity");
  1703               // This assert also tests that nodes are BoxLock.
  1704               assert(BoxLockNode::same_slot(n, m), "sanity");
  1705               C->gvn_replace_by(n, m);
  1706             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
  1707               phi = ensure_phi(j, nophi);
  1710           break;
  1713       // At this point, n might be top if:
  1714       //  - there is no phi (because TypeFlow detected a conflict), or
  1715       //  - the corresponding control edges is top (a dead incoming path)
  1716       // It is a bug if we create a phi which sees a garbage value on a live path.
  1718       if (phi != NULL) {
  1719         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
  1720         assert(phi->region() == r, "");
  1721         phi->set_req(pnum, n);  // Then add 'n' to the merge
  1722         if (pnum == PhiNode::Input) {
  1723           // Last merge for this Phi.
  1724           // So far, Phis have had a reasonable type from ciTypeFlow.
  1725           // Now _gvn will join that with the meet of current inputs.
  1726           // BOTTOM is never permissible here, 'cause pessimistically
  1727           // Phis of pointers cannot lose the basic pointer type.
  1728           debug_only(const Type* bt1 = phi->bottom_type());
  1729           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
  1730           map()->set_req(j, _gvn.transform_no_reclaim(phi));
  1731           debug_only(const Type* bt2 = phi->bottom_type());
  1732           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
  1733           record_for_igvn(phi);
  1736     } // End of for all values to be merged
  1738     if (pnum == PhiNode::Input &&
  1739         !r->in(0)) {         // The occasional useless Region
  1740       assert(control() == r, "");
  1741       set_control(r->nonnull_req());
  1744     map()->merge_replaced_nodes_with(newin);
  1746     // newin has been subsumed into the lazy merge, and is now dead.
  1747     set_block(save_block);
  1749     stop();                     // done with this guy, for now
  1752   if (TraceOptoParse) {
  1753     tty->print_cr(" on path %d", pnum);
  1756   // Done with this parser state.
  1757   assert(stopped(), "");
  1761 //--------------------------merge_memory_edges---------------------------------
  1762 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
  1763   // (nophi means we must not create phis, because we already parsed here)
  1764   assert(n != NULL, "");
  1765   // Merge the inputs to the MergeMems
  1766   MergeMemNode* m = merged_memory();
  1768   assert(control()->is_Region(), "must be merging to a region");
  1769   RegionNode* r = control()->as_Region();
  1771   PhiNode* base = NULL;
  1772   MergeMemNode* remerge = NULL;
  1773   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
  1774     Node *p = mms.force_memory();
  1775     Node *q = mms.memory2();
  1776     if (mms.is_empty() && nophi) {
  1777       // Trouble:  No new splits allowed after a loop body is parsed.
  1778       // Instead, wire the new split into a MergeMem on the backedge.
  1779       // The optimizer will sort it out, slicing the phi.
  1780       if (remerge == NULL) {
  1781         assert(base != NULL, "");
  1782         assert(base->in(0) != NULL, "should not be xformed away");
  1783         remerge = MergeMemNode::make(C, base->in(pnum));
  1784         gvn().set_type(remerge, Type::MEMORY);
  1785         base->set_req(pnum, remerge);
  1787       remerge->set_memory_at(mms.alias_idx(), q);
  1788       continue;
  1790     assert(!q->is_MergeMem(), "");
  1791     PhiNode* phi;
  1792     if (p != q) {
  1793       phi = ensure_memory_phi(mms.alias_idx(), nophi);
  1794     } else {
  1795       if (p->is_Phi() && p->as_Phi()->region() == r)
  1796         phi = p->as_Phi();
  1797       else
  1798         phi = NULL;
  1800     // Insert q into local phi
  1801     if (phi != NULL) {
  1802       assert(phi->region() == r, "");
  1803       p = phi;
  1804       phi->set_req(pnum, q);
  1805       if (mms.at_base_memory()) {
  1806         base = phi;  // delay transforming it
  1807       } else if (pnum == 1) {
  1808         record_for_igvn(phi);
  1809         p = _gvn.transform_no_reclaim(phi);
  1811       mms.set_memory(p);// store back through the iterator
  1814   // Transform base last, in case we must fiddle with remerging.
  1815   if (base != NULL && pnum == 1) {
  1816     record_for_igvn(base);
  1817     m->set_base_memory( _gvn.transform_no_reclaim(base) );
  1822 //------------------------ensure_phis_everywhere-------------------------------
  1823 void Parse::ensure_phis_everywhere() {
  1824   ensure_phi(TypeFunc::I_O);
  1826   // Ensure a phi on all currently known memories.
  1827   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
  1828     ensure_memory_phi(mms.alias_idx());
  1829     debug_only(mms.set_memory());  // keep the iterator happy
  1832   // Note:  This is our only chance to create phis for memory slices.
  1833   // If we miss a slice that crops up later, it will have to be
  1834   // merged into the base-memory phi that we are building here.
  1835   // Later, the optimizer will comb out the knot, and build separate
  1836   // phi-loops for each memory slice that matters.
  1838   // Monitors must nest nicely and not get confused amongst themselves.
  1839   // Phi-ify everything up to the monitors, though.
  1840   uint monoff = map()->jvms()->monoff();
  1841   uint nof_monitors = map()->jvms()->nof_monitors();
  1843   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
  1844   bool check_elide_phi = block()->is_SEL_head();
  1845   for (uint i = TypeFunc::Parms; i < monoff; i++) {
  1846     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
  1847       ensure_phi(i);
  1851   // Even monitors need Phis, though they are well-structured.
  1852   // This is true for OSR methods, and also for the rare cases where
  1853   // a monitor object is the subject of a replace_in_map operation.
  1854   // See bugs 4426707 and 5043395.
  1855   for (uint m = 0; m < nof_monitors; m++) {
  1856     ensure_phi(map()->jvms()->monitor_obj_offset(m));
  1861 //-----------------------------add_new_path------------------------------------
  1862 // Add a previously unaccounted predecessor to this block.
  1863 int Parse::Block::add_new_path() {
  1864   // If there is no map, return the lowest unused path number.
  1865   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
  1867   SafePointNode* map = start_map();
  1868   if (!map->control()->is_Region())
  1869     return pred_count()+1;  // there may be a region some day
  1870   RegionNode* r = map->control()->as_Region();
  1872   // Add new path to the region.
  1873   uint pnum = r->req();
  1874   r->add_req(NULL);
  1876   for (uint i = 1; i < map->req(); i++) {
  1877     Node* n = map->in(i);
  1878     if (i == TypeFunc::Memory) {
  1879       // Ensure a phi on all currently known memories.
  1880       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
  1881         Node* phi = mms.memory();
  1882         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
  1883           assert(phi->req() == pnum, "must be same size as region");
  1884           phi->add_req(NULL);
  1887     } else {
  1888       if (n->is_Phi() && n->as_Phi()->region() == r) {
  1889         assert(n->req() == pnum, "must be same size as region");
  1890         n->add_req(NULL);
  1895   return pnum;
  1898 //------------------------------ensure_phi-------------------------------------
  1899 // Turn the idx'th entry of the current map into a Phi
  1900 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
  1901   SafePointNode* map = this->map();
  1902   Node* region = map->control();
  1903   assert(region->is_Region(), "");
  1905   Node* o = map->in(idx);
  1906   assert(o != NULL, "");
  1908   if (o == top())  return NULL; // TOP always merges into TOP
  1910   if (o->is_Phi() && o->as_Phi()->region() == region) {
  1911     return o->as_Phi();
  1914   // Now use a Phi here for merging
  1915   assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1916   const JVMState* jvms = map->jvms();
  1917   const Type* t = NULL;
  1918   if (jvms->is_loc(idx)) {
  1919     t = block()->local_type_at(idx - jvms->locoff());
  1920   } else if (jvms->is_stk(idx)) {
  1921     t = block()->stack_type_at(idx - jvms->stkoff());
  1922   } else if (jvms->is_mon(idx)) {
  1923     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
  1924     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
  1925   } else if ((uint)idx < TypeFunc::Parms) {
  1926     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
  1927   } else {
  1928     assert(false, "no type information for this phi");
  1931   // If the type falls to bottom, then this must be a local that
  1932   // is mixing ints and oops or some such.  Forcing it to top
  1933   // makes it go dead.
  1934   if (t == Type::BOTTOM) {
  1935     map->set_req(idx, top());
  1936     return NULL;
  1939   // Do not create phis for top either.
  1940   // A top on a non-null control flow must be an unused even after the.phi.
  1941   if (t == Type::TOP || t == Type::HALF) {
  1942     map->set_req(idx, top());
  1943     return NULL;
  1946   PhiNode* phi = PhiNode::make(region, o, t);
  1947   gvn().set_type(phi, t);
  1948   if (C->do_escape_analysis()) record_for_igvn(phi);
  1949   map->set_req(idx, phi);
  1950   return phi;
  1953 //--------------------------ensure_memory_phi----------------------------------
  1954 // Turn the idx'th slice of the current memory into a Phi
  1955 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
  1956   MergeMemNode* mem = merged_memory();
  1957   Node* region = control();
  1958   assert(region->is_Region(), "");
  1960   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
  1961   assert(o != NULL && o != top(), "");
  1963   PhiNode* phi;
  1964   if (o->is_Phi() && o->as_Phi()->region() == region) {
  1965     phi = o->as_Phi();
  1966     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
  1967       // clone the shared base memory phi to make a new memory split
  1968       assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1969       const Type* t = phi->bottom_type();
  1970       const TypePtr* adr_type = C->get_adr_type(idx);
  1971       phi = phi->slice_memory(adr_type);
  1972       gvn().set_type(phi, t);
  1974     return phi;
  1977   // Now use a Phi here for merging
  1978   assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1979   const Type* t = o->bottom_type();
  1980   const TypePtr* adr_type = C->get_adr_type(idx);
  1981   phi = PhiNode::make(region, o, t, adr_type);
  1982   gvn().set_type(phi, t);
  1983   if (idx == Compile::AliasIdxBot)
  1984     mem->set_base_memory(phi);
  1985   else
  1986     mem->set_memory_at(idx, phi);
  1987   return phi;
  1990 //------------------------------call_register_finalizer-----------------------
  1991 // Check the klass of the receiver and call register_finalizer if the
  1992 // class need finalization.
  1993 void Parse::call_register_finalizer() {
  1994   Node* receiver = local(0);
  1995   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
  1996          "must have non-null instance type");
  1998   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
  1999   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
  2000     // The type isn't known exactly so see if CHA tells us anything.
  2001     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  2002     if (!Dependencies::has_finalizable_subclass(ik)) {
  2003       // No finalizable subclasses so skip the dynamic check.
  2004       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
  2005       return;
  2009   // Insert a dynamic test for whether the instance needs
  2010   // finalization.  In general this will fold up since the concrete
  2011   // class is often visible so the access flags are constant.
  2012   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
  2013   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
  2015   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
  2016   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
  2018   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
  2019   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
  2020   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
  2022   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
  2024   RegionNode* result_rgn = new (C) RegionNode(3);
  2025   record_for_igvn(result_rgn);
  2027   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
  2028   result_rgn->init_req(1, skip_register);
  2030   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
  2031   set_control(needs_register);
  2032   if (stopped()) {
  2033     // There is no slow path.
  2034     result_rgn->init_req(2, top());
  2035   } else {
  2036     Node *call = make_runtime_call(RC_NO_LEAF,
  2037                                    OptoRuntime::register_finalizer_Type(),
  2038                                    OptoRuntime::register_finalizer_Java(),
  2039                                    NULL, TypePtr::BOTTOM,
  2040                                    receiver);
  2041     make_slow_call_ex(call, env()->Throwable_klass(), true);
  2043     Node* fast_io  = call->in(TypeFunc::I_O);
  2044     Node* fast_mem = call->in(TypeFunc::Memory);
  2045     // These two phis are pre-filled with copies of of the fast IO and Memory
  2046     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2047     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2049     result_rgn->init_req(2, control());
  2050     io_phi    ->init_req(2, i_o());
  2051     mem_phi   ->init_req(2, reset_memory());
  2053     set_all_memory( _gvn.transform(mem_phi) );
  2054     set_i_o(        _gvn.transform(io_phi) );
  2057   set_control( _gvn.transform(result_rgn) );
  2060 // Add check to deoptimize if RTM state is not ProfileRTM
  2061 void Parse::rtm_deopt() {
  2062 #if INCLUDE_RTM_OPT
  2063   if (C->profile_rtm()) {
  2064     assert(C->method() != NULL, "only for normal compilations");
  2065     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
  2066     assert(depth() == 1, "generate check only for main compiled method");
  2068     // Set starting bci for uncommon trap.
  2069     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
  2071     // Load the rtm_state from the MethodData.
  2072     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
  2073     Node* mdo = makecon(adr_type);
  2074     int offset = MethodData::rtm_state_offset_in_bytes();
  2075     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
  2076     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  2078     // Separate Load from Cmp by Opaque.
  2079     // In expand_macro_nodes() it will be replaced either
  2080     // with this load when there are locks in the code
  2081     // or with ProfileRTM (cmp->in(2)) otherwise so that
  2082     // the check will fold.
  2083     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
  2084     Node* opq   = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
  2085     Node* chk   = _gvn.transform( new (C) CmpINode(opq, profile_state) );
  2086     Node* tst   = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
  2087     // Branch to failure if state was changed
  2088     { BuildCutout unless(this, tst, PROB_ALWAYS);
  2089       uncommon_trap(Deoptimization::Reason_rtm_state_change,
  2090                     Deoptimization::Action_make_not_entrant);
  2093 #endif
  2096 //------------------------------return_current---------------------------------
  2097 // Append current _map to _exit_return
  2098 void Parse::return_current(Node* value) {
  2099   if (RegisterFinalizersAtInit &&
  2100       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
  2101     call_register_finalizer();
  2104   // Do not set_parse_bci, so that return goo is credited to the return insn.
  2105   set_bci(InvocationEntryBci);
  2106   if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2107     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
  2109   if (C->env()->dtrace_method_probes()) {
  2110     make_dtrace_method_exit(method());
  2112   SafePointNode* exit_return = _exits.map();
  2113   exit_return->in( TypeFunc::Control  )->add_req( control() );
  2114   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
  2115   Node *mem = exit_return->in( TypeFunc::Memory   );
  2116   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
  2117     if (mms.is_empty()) {
  2118       // get a copy of the base memory, and patch just this one input
  2119       const TypePtr* adr_type = mms.adr_type(C);
  2120       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
  2121       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
  2122       gvn().set_type_bottom(phi);
  2123       phi->del_req(phi->req()-1);  // prepare to re-patch
  2124       mms.set_memory(phi);
  2126     mms.memory()->add_req(mms.memory2());
  2129   // frame pointer is always same, already captured
  2130   if (value != NULL) {
  2131     // If returning oops to an interface-return, there is a silent free
  2132     // cast from oop to interface allowed by the Verifier.  Make it explicit
  2133     // here.
  2134     Node* phi = _exits.argument(0);
  2135     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
  2136     if (tr && tr->klass()->is_loaded() &&
  2137         tr->klass()->is_interface()) {
  2138       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
  2139       if (tp && tp->klass()->is_loaded() &&
  2140           !tp->klass()->is_interface()) {
  2141         // sharpen the type eagerly; this eases certain assert checking
  2142         if (tp->higher_equal(TypeInstPtr::NOTNULL))
  2143           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
  2144         value = _gvn.transform(new (C) CheckCastPPNode(0, value, tr));
  2146     } else {
  2147       // Also handle returns of oop-arrays to an arrays-of-interface return
  2148       const TypeInstPtr* phi_tip;
  2149       const TypeInstPtr* val_tip;
  2150       Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
  2151       if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
  2152           val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
  2153          value = _gvn.transform(new (C) CheckCastPPNode(0, value, phi->bottom_type()));
  2156     phi->add_req(value);
  2159   if (_first_return) {
  2160     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
  2161     _first_return = false;
  2162   } else {
  2163     _exits.map()->merge_replaced_nodes_with(map());
  2166   stop_and_kill_map();          // This CFG path dies here
  2170 //------------------------------add_safepoint----------------------------------
  2171 void Parse::add_safepoint() {
  2172   // See if we can avoid this safepoint.  No need for a SafePoint immediately
  2173   // after a Call (except Leaf Call) or another SafePoint.
  2174   Node *proj = control();
  2175   bool add_poll_param = SafePointNode::needs_polling_address_input();
  2176   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
  2177   if( proj->is_Proj() ) {
  2178     Node *n0 = proj->in(0);
  2179     if( n0->is_Catch() ) {
  2180       n0 = n0->in(0)->in(0);
  2181       assert( n0->is_Call(), "expect a call here" );
  2183     if( n0->is_Call() ) {
  2184       if( n0->as_Call()->guaranteed_safepoint() )
  2185         return;
  2186     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
  2187       return;
  2191   // Clear out dead values from the debug info.
  2192   kill_dead_locals();
  2194   // Clone the JVM State
  2195   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
  2197   // Capture memory state BEFORE a SafePoint.  Since we can block at a
  2198   // SafePoint we need our GC state to be safe; i.e. we need all our current
  2199   // write barriers (card marks) to not float down after the SafePoint so we
  2200   // must read raw memory.  Likewise we need all oop stores to match the card
  2201   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
  2202   // state on a deopt).
  2204   // We do not need to WRITE the memory state after a SafePoint.  The control
  2205   // edge will keep card-marks and oop-stores from floating up from below a
  2206   // SafePoint and our true dependency added here will keep them from floating
  2207   // down below a SafePoint.
  2209   // Clone the current memory state
  2210   Node* mem = MergeMemNode::make(C, map()->memory());
  2212   mem = _gvn.transform(mem);
  2214   // Pass control through the safepoint
  2215   sfpnt->init_req(TypeFunc::Control  , control());
  2216   // Fix edges normally used by a call
  2217   sfpnt->init_req(TypeFunc::I_O      , top() );
  2218   sfpnt->init_req(TypeFunc::Memory   , mem   );
  2219   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
  2220   sfpnt->init_req(TypeFunc::FramePtr , top() );
  2222   // Create a node for the polling address
  2223   if( add_poll_param ) {
  2224     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
  2225     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
  2228   // Fix up the JVM State edges
  2229   add_safepoint_edges(sfpnt);
  2230   Node *transformed_sfpnt = _gvn.transform(sfpnt);
  2231   set_control(transformed_sfpnt);
  2233   // Provide an edge from root to safepoint.  This makes the safepoint
  2234   // appear useful until the parse has completed.
  2235   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
  2236     assert(C->root() != NULL, "Expect parse is still valid");
  2237     C->root()->add_prec(transformed_sfpnt);
  2241 #ifndef PRODUCT
  2242 //------------------------show_parse_info--------------------------------------
  2243 void Parse::show_parse_info() {
  2244   InlineTree* ilt = NULL;
  2245   if (C->ilt() != NULL) {
  2246     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
  2247     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
  2249   if (PrintCompilation && Verbose) {
  2250     if (depth() == 1) {
  2251       if( ilt->count_inlines() ) {
  2252         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
  2253                      ilt->count_inline_bcs());
  2254         tty->cr();
  2256     } else {
  2257       if (method()->is_synchronized())         tty->print("s");
  2258       if (method()->has_exception_handlers())  tty->print("!");
  2259       // Check this is not the final compiled version
  2260       if (C->trap_can_recompile()) {
  2261         tty->print("-");
  2262       } else {
  2263         tty->print(" ");
  2265       method()->print_short_name();
  2266       if (is_osr_parse()) {
  2267         tty->print(" @ %d", osr_bci());
  2269       tty->print(" (%d bytes)",method()->code_size());
  2270       if (ilt->count_inlines()) {
  2271         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
  2272                    ilt->count_inline_bcs());
  2274       tty->cr();
  2277   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
  2278     // Print that we succeeded; suppress this message on the first osr parse.
  2280     if (method()->is_synchronized())         tty->print("s");
  2281     if (method()->has_exception_handlers())  tty->print("!");
  2282     // Check this is not the final compiled version
  2283     if (C->trap_can_recompile() && depth() == 1) {
  2284       tty->print("-");
  2285     } else {
  2286       tty->print(" ");
  2288     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
  2289     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
  2290     method()->print_short_name();
  2291     if (is_osr_parse()) {
  2292       tty->print(" @ %d", osr_bci());
  2294     if (ilt->caller_bci() != -1) {
  2295       tty->print(" @ %d", ilt->caller_bci());
  2297     tty->print(" (%d bytes)",method()->code_size());
  2298     if (ilt->count_inlines()) {
  2299       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
  2300                  ilt->count_inline_bcs());
  2302     tty->cr();
  2307 //------------------------------dump-------------------------------------------
  2308 // Dump information associated with the bytecodes of current _method
  2309 void Parse::dump() {
  2310   if( method() != NULL ) {
  2311     // Iterate over bytecodes
  2312     ciBytecodeStream iter(method());
  2313     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
  2314       dump_bci( iter.cur_bci() );
  2315       tty->cr();
  2320 // Dump information associated with a byte code index, 'bci'
  2321 void Parse::dump_bci(int bci) {
  2322   // Output info on merge-points, cloning, and within _jsr..._ret
  2323   // NYI
  2324   tty->print(" bci:%d", bci);
  2327 #endif

mercurial