src/share/vm/opto/output.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8861
2a33b32dd03c
child 8863
5376ce0dc552
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "asm/assembler.inline.hpp"
    33 #include "code/compiledIC.hpp"
    34 #include "code/debugInfo.hpp"
    35 #include "code/debugInfoRec.hpp"
    36 #include "compiler/compileBroker.hpp"
    37 #include "compiler/oopMap.hpp"
    38 #include "memory/allocation.inline.hpp"
    39 #include "opto/callnode.hpp"
    40 #include "opto/cfgnode.hpp"
    41 #include "opto/locknode.hpp"
    42 #include "opto/machnode.hpp"
    43 #include "opto/output.hpp"
    44 #include "opto/regalloc.hpp"
    45 #include "opto/runtime.hpp"
    46 #include "opto/subnode.hpp"
    47 #include "opto/type.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "utilities/xmlstream.hpp"
    51 #ifndef PRODUCT
    52 #define DEBUG_ARG(x) , x
    53 #else
    54 #define DEBUG_ARG(x)
    55 #endif
    57 // Convert Nodes to instruction bits and pass off to the VM
    58 void Compile::Output() {
    59   // RootNode goes
    60   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
    62   // The number of new nodes (mostly MachNop) is proportional to
    63   // the number of java calls and inner loops which are aligned.
    64   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    65                             C->inner_loops()*(OptoLoopAlignment-1)),
    66                            "out of nodes before code generation" ) ) {
    67     return;
    68   }
    69   // Make sure I can find the Start Node
    70   Block *entry = _cfg->get_block(1);
    71   Block *broot = _cfg->get_root_block();
    73   const StartNode *start = entry->head()->as_Start();
    75   // Replace StartNode with prolog
    76   MachPrologNode *prolog = new (this) MachPrologNode();
    77   entry->map_node(prolog, 0);
    78   _cfg->map_node_to_block(prolog, entry);
    79   _cfg->unmap_node_from_block(start); // start is no longer in any block
    81   // Virtual methods need an unverified entry point
    83   if( is_osr_compilation() ) {
    84     if( PoisonOSREntry ) {
    85       // TODO: Should use a ShouldNotReachHereNode...
    86       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    87     }
    88   } else {
    89     if( _method && !_method->flags().is_static() ) {
    90       // Insert unvalidated entry point
    91       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    92     }
    94   }
    97   // Break before main entry point
    98   if( (_method && _method->break_at_execute())
    99 #ifndef PRODUCT
   100     ||(OptoBreakpoint && is_method_compilation())
   101     ||(OptoBreakpointOSR && is_osr_compilation())
   102     ||(OptoBreakpointC2R && !_method)
   103 #endif
   104     ) {
   105     // checking for _method means that OptoBreakpoint does not apply to
   106     // runtime stubs or frame converters
   107     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   108   }
   110   // Insert epilogs before every return
   111   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
   112     Block* block = _cfg->get_block(i);
   113     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
   114       Node* m = block->end();
   115       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
   116         MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   117         block->add_inst(epilog);
   118         _cfg->map_node_to_block(epilog, block);
   119       }
   120     }
   121   }
   123 # ifdef ENABLE_ZAP_DEAD_LOCALS
   124   if (ZapDeadCompiledLocals) {
   125     Insert_zap_nodes();
   126   }
   127 # endif
   129   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
   130   blk_starts[0] = 0;
   132   // Initialize code buffer and process short branches.
   133   CodeBuffer* cb = init_buffer(blk_starts);
   135   if (cb == NULL || failing()) {
   136     return;
   137   }
   139   ScheduleAndBundle();
   141 #ifndef PRODUCT
   142   if (trace_opto_output()) {
   143     tty->print("\n---- After ScheduleAndBundle ----\n");
   144     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
   145       tty->print("\nBB#%03d:\n", i);
   146       Block* block = _cfg->get_block(i);
   147       for (uint j = 0; j < block->number_of_nodes(); j++) {
   148         Node* n = block->get_node(j);
   149         OptoReg::Name reg = _regalloc->get_reg_first(n);
   150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   151         n->dump();
   152       }
   153     }
   154   }
   155 #endif
   157   if (failing()) {
   158     return;
   159   }
   161   BuildOopMaps();
   163   if (failing())  {
   164     return;
   165   }
   167   fill_buffer(cb, blk_starts);
   168 }
   170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   171   // Determine if we need to generate a stack overflow check.
   172   // Do it if the method is not a stub function and
   173   // has java calls or has frame size > vm_page_size/8.
   174   // The debug VM checks that deoptimization doesn't trigger an
   175   // unexpected stack overflow (compiled method stack banging should
   176   // guarantee it doesn't happen) so we always need the stack bang in
   177   // a debug VM.
   178   return (UseStackBanging && stub_function() == NULL &&
   179           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
   180            DEBUG_ONLY(|| true)));
   181 }
   183 bool Compile::need_register_stack_bang() const {
   184   // Determine if we need to generate a register stack overflow check.
   185   // This is only used on architectures which have split register
   186   // and memory stacks (ie. IA64).
   187   // Bang if the method is not a stub function and has java calls
   188   return (stub_function() == NULL && has_java_calls());
   189 }
   191 # ifdef ENABLE_ZAP_DEAD_LOCALS
   194 // In order to catch compiler oop-map bugs, we have implemented
   195 // a debugging mode called ZapDeadCompilerLocals.
   196 // This mode causes the compiler to insert a call to a runtime routine,
   197 // "zap_dead_locals", right before each place in compiled code
   198 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   199 // The runtime routine checks that locations mapped as oops are really
   200 // oops, that locations mapped as values do not look like oops,
   201 // and that locations mapped as dead are not used later
   202 // (by zapping them to an invalid address).
   204 int Compile::_CompiledZap_count = 0;
   206 void Compile::Insert_zap_nodes() {
   207   bool skip = false;
   210   // Dink with static counts because code code without the extra
   211   // runtime calls is MUCH faster for debugging purposes
   213        if ( CompileZapFirst  ==  0  ) ; // nothing special
   214   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   215   else if ( CompileZapFirst  == CompiledZap_count() )
   216     warning("starting zap compilation after skipping");
   218        if ( CompileZapLast  ==  -1  ) ; // nothing special
   219   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   220   else if ( CompileZapLast  ==  CompiledZap_count() )
   221     warning("about to compile last zap");
   223   ++_CompiledZap_count; // counts skipped zaps, too
   225   if ( skip )  return;
   228   if ( _method == NULL )
   229     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   231   // Insert call to zap runtime stub before every node with an oop map
   232   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
   233     Block *b = _cfg->get_block(i);
   234     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
   235       Node *n = b->get_node(j);
   237       // Determining if we should insert a zap-a-lot node in output.
   238       // We do that for all nodes that has oopmap info, except for calls
   239       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   240       // and expect the C code to reset it.  Hence, there can be no safepoints between
   241       // the inlined-allocation and the call to new_Java, etc.
   242       // We also cannot zap monitor calls, as they must hold the microlock
   243       // during the call to Zap, which also wants to grab the microlock.
   244       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   245       if ( insert ) { // it is MachSafePoint
   246         if ( !n->is_MachCall() ) {
   247           insert = false;
   248         } else if ( n->is_MachCall() ) {
   249           MachCallNode* call = n->as_MachCall();
   250           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   251               call->entry_point() == OptoRuntime::new_array_Java() ||
   252               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   253               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   254               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   255               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   256               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   257               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   258               ) {
   259             insert = false;
   260           }
   261         }
   262         if (insert) {
   263           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   264           b->insert_node(zap, j);
   265           _cfg->map_node_to_block(zap, b);
   266           ++j;
   267         }
   268       }
   269     }
   270   }
   271 }
   274 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   275   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   276   CallStaticJavaNode* ideal_node =
   277     new (this) CallStaticJavaNode( tf,
   278          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   279                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
   280   // We need to copy the OopMap from the site we're zapping at.
   281   // We have to make a copy, because the zap site might not be
   282   // a call site, and zap_dead is a call site.
   283   OopMap* clone = node_to_check->oop_map()->deep_copy();
   285   // Add the cloned OopMap to the zap node
   286   ideal_node->set_oop_map(clone);
   287   return _matcher->match_sfpt(ideal_node);
   288 }
   290 bool Compile::is_node_getting_a_safepoint( Node* n) {
   291   // This code duplicates the logic prior to the call of add_safepoint
   292   // below in this file.
   293   if( n->is_MachSafePoint() ) return true;
   294   return false;
   295 }
   297 # endif // ENABLE_ZAP_DEAD_LOCALS
   299 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   300 // of a loop. When aligning a loop we need to provide enough instructions
   301 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   302 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   303 // By default, the size is set to 999999 by Block's constructor so that
   304 // a loop will be aligned if the size is not reset here.
   305 //
   306 // Note: Mach instructions could contain several HW instructions
   307 // so the size is estimated only.
   308 //
   309 void Compile::compute_loop_first_inst_sizes() {
   310   // The next condition is used to gate the loop alignment optimization.
   311   // Don't aligned a loop if there are enough instructions at the head of a loop
   312   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   313   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   314   // equal to 11 bytes which is the largest address NOP instruction.
   315   if (MaxLoopPad < OptoLoopAlignment - 1) {
   316     uint last_block = _cfg->number_of_blocks() - 1;
   317     for (uint i = 1; i <= last_block; i++) {
   318       Block* block = _cfg->get_block(i);
   319       // Check the first loop's block which requires an alignment.
   320       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
   321         uint sum_size = 0;
   322         uint inst_cnt = NumberOfLoopInstrToAlign;
   323         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   325         // Check subsequent fallthrough blocks if the loop's first
   326         // block(s) does not have enough instructions.
   327         Block *nb = block;
   328         while(inst_cnt > 0 &&
   329               i < last_block &&
   330               !_cfg->get_block(i + 1)->has_loop_alignment() &&
   331               !nb->has_successor(block)) {
   332           i++;
   333           nb = _cfg->get_block(i);
   334           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   335         } // while( inst_cnt > 0 && i < last_block  )
   337         block->set_first_inst_size(sum_size);
   338       } // f( b->head()->is_Loop() )
   339     } // for( i <= last_block )
   340   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   341 }
   343 // The architecture description provides short branch variants for some long
   344 // branch instructions. Replace eligible long branches with short branches.
   345 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
   346   // Compute size of each block, method size, and relocation information size
   347   uint nblocks  = _cfg->number_of_blocks();
   349   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
   350   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
   351   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
   353   // Collect worst case block paddings
   354   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
   355   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
   357   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
   358   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
   360   bool has_short_branch_candidate = false;
   362   // Initialize the sizes to 0
   363   code_size  = 0;          // Size in bytes of generated code
   364   stub_size  = 0;          // Size in bytes of all stub entries
   365   // Size in bytes of all relocation entries, including those in local stubs.
   366   // Start with 2-bytes of reloc info for the unvalidated entry point
   367   reloc_size = 1;          // Number of relocation entries
   369   // Make three passes.  The first computes pessimistic blk_starts,
   370   // relative jmp_offset and reloc_size information.  The second performs
   371   // short branch substitution using the pessimistic sizing.  The
   372   // third inserts nops where needed.
   374   // Step one, perform a pessimistic sizing pass.
   375   uint last_call_adr = max_uint;
   376   uint last_avoid_back_to_back_adr = max_uint;
   377   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   378   for (uint i = 0; i < nblocks; i++) { // For all blocks
   379     Block* block = _cfg->get_block(i);
   381     // During short branch replacement, we store the relative (to blk_starts)
   382     // offset of jump in jmp_offset, rather than the absolute offset of jump.
   383     // This is so that we do not need to recompute sizes of all nodes when
   384     // we compute correct blk_starts in our next sizing pass.
   385     jmp_offset[i] = 0;
   386     jmp_size[i]   = 0;
   387     jmp_nidx[i]   = -1;
   388     DEBUG_ONLY( jmp_target[i] = 0; )
   389     DEBUG_ONLY( jmp_rule[i]   = 0; )
   391     // Sum all instruction sizes to compute block size
   392     uint last_inst = block->number_of_nodes();
   393     uint blk_size = 0;
   394     for (uint j = 0; j < last_inst; j++) {
   395       Node* nj = block->get_node(j);
   396       // Handle machine instruction nodes
   397       if (nj->is_Mach()) {
   398         MachNode *mach = nj->as_Mach();
   399         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   400         reloc_size += mach->reloc();
   401         if (mach->is_MachCall()) {
   402           // add size information for trampoline stub
   403           // class CallStubImpl is platform-specific and defined in the *.ad files.
   404           stub_size  += CallStubImpl::size_call_trampoline();
   405           reloc_size += CallStubImpl::reloc_call_trampoline();
   407           MachCallNode *mcall = mach->as_MachCall();
   408           // This destination address is NOT PC-relative
   410           mcall->method_set((intptr_t)mcall->entry_point());
   412           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
   413             stub_size  += CompiledStaticCall::to_interp_stub_size();
   414             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
   415           }
   416         } else if (mach->is_MachSafePoint()) {
   417           // If call/safepoint are adjacent, account for possible
   418           // nop to disambiguate the two safepoints.
   419           // ScheduleAndBundle() can rearrange nodes in a block,
   420           // check for all offsets inside this block.
   421           if (last_call_adr >= blk_starts[i]) {
   422             blk_size += nop_size;
   423           }
   424         }
   425         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
   426           // Nop is inserted between "avoid back to back" instructions.
   427           // ScheduleAndBundle() can rearrange nodes in a block,
   428           // check for all offsets inside this block.
   429           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
   430             blk_size += nop_size;
   431           }
   432         }
   433         if (mach->may_be_short_branch()) {
   434           if (!nj->is_MachBranch()) {
   435 #ifndef PRODUCT
   436             nj->dump(3);
   437 #endif
   438             Unimplemented();
   439           }
   440           assert(jmp_nidx[i] == -1, "block should have only one branch");
   441           jmp_offset[i] = blk_size;
   442           jmp_size[i]   = nj->size(_regalloc);
   443           jmp_nidx[i]   = j;
   444           has_short_branch_candidate = true;
   445         }
   446       }
   447       blk_size += nj->size(_regalloc);
   448       // Remember end of call offset
   449       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
   450         last_call_adr = blk_starts[i]+blk_size;
   451       }
   452       // Remember end of avoid_back_to_back offset
   453       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
   454         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
   455       }
   456     }
   458     // When the next block starts a loop, we may insert pad NOP
   459     // instructions.  Since we cannot know our future alignment,
   460     // assume the worst.
   461     if (i < nblocks - 1) {
   462       Block* nb = _cfg->get_block(i + 1);
   463       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   464       if (max_loop_pad > 0) {
   465         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   466         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
   467         // If either is the last instruction in this block, bump by
   468         // max_loop_pad in lock-step with blk_size, so sizing
   469         // calculations in subsequent blocks still can conservatively
   470         // detect that it may the last instruction in this block.
   471         if (last_call_adr == blk_starts[i]+blk_size) {
   472           last_call_adr += max_loop_pad;
   473         }
   474         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
   475           last_avoid_back_to_back_adr += max_loop_pad;
   476         }
   477         blk_size += max_loop_pad;
   478         block_worst_case_pad[i + 1] = max_loop_pad;
   479       }
   480     }
   482     // Save block size; update total method size
   483     blk_starts[i+1] = blk_starts[i]+blk_size;
   484   }
   486   // Step two, replace eligible long jumps.
   487   bool progress = true;
   488   uint last_may_be_short_branch_adr = max_uint;
   489   while (has_short_branch_candidate && progress) {
   490     progress = false;
   491     has_short_branch_candidate = false;
   492     int adjust_block_start = 0;
   493     for (uint i = 0; i < nblocks; i++) {
   494       Block* block = _cfg->get_block(i);
   495       int idx = jmp_nidx[i];
   496       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
   497       if (mach != NULL && mach->may_be_short_branch()) {
   498 #ifdef ASSERT
   499         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
   500         int j;
   501         // Find the branch; ignore trailing NOPs.
   502         for (j = block->number_of_nodes()-1; j>=0; j--) {
   503           Node* n = block->get_node(j);
   504           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
   505             break;
   506         }
   507         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
   508 #endif
   509         int br_size = jmp_size[i];
   510         int br_offs = blk_starts[i] + jmp_offset[i];
   512         // This requires the TRUE branch target be in succs[0]
   513         uint bnum = block->non_connector_successor(0)->_pre_order;
   514         int offset = blk_starts[bnum] - br_offs;
   515         if (bnum > i) { // adjust following block's offset
   516           offset -= adjust_block_start;
   517         }
   519         // This block can be a loop header, account for the padding
   520         // in the previous block.
   521         int block_padding = block_worst_case_pad[i];
   522         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
   523         // In the following code a nop could be inserted before
   524         // the branch which will increase the backward distance.
   525         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
   526         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
   528         if (needs_padding && offset <= 0)
   529           offset -= nop_size;
   531         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
   532           // We've got a winner.  Replace this branch.
   533           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
   535           // Update the jmp_size.
   536           int new_size = replacement->size(_regalloc);
   537           int diff     = br_size - new_size;
   538           assert(diff >= (int)nop_size, "short_branch size should be smaller");
   539           // Conservatively take into account padding between
   540           // avoid_back_to_back branches. Previous branch could be
   541           // converted into avoid_back_to_back branch during next
   542           // rounds.
   543           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
   544             jmp_offset[i] += nop_size;
   545             diff -= nop_size;
   546           }
   547           adjust_block_start += diff;
   548           block->map_node(replacement, idx);
   549           mach->subsume_by(replacement, C);
   550           mach = replacement;
   551           progress = true;
   553           jmp_size[i] = new_size;
   554           DEBUG_ONLY( jmp_target[i] = bnum; );
   555           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   556         } else {
   557           // The jump distance is not short, try again during next iteration.
   558           has_short_branch_candidate = true;
   559         }
   560       } // (mach->may_be_short_branch())
   561       if (mach != NULL && (mach->may_be_short_branch() ||
   562                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
   563         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
   564       }
   565       blk_starts[i+1] -= adjust_block_start;
   566     }
   567   }
   569 #ifdef ASSERT
   570   for (uint i = 0; i < nblocks; i++) { // For all blocks
   571     if (jmp_target[i] != 0) {
   572       int br_size = jmp_size[i];
   573       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
   574       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
   575         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
   576       }
   577       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
   578     }
   579   }
   580 #endif
   582   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
   583   // after ScheduleAndBundle().
   585   // ------------------
   586   // Compute size for code buffer
   587   code_size = blk_starts[nblocks];
   589   // Relocation records
   590   reloc_size += 1;              // Relo entry for exception handler
   592   // Adjust reloc_size to number of record of relocation info
   593   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   594   // a relocation index.
   595   // The CodeBuffer will expand the locs array if this estimate is too low.
   596   reloc_size *= 10 / sizeof(relocInfo);
   597 }
   599 //------------------------------FillLocArray-----------------------------------
   600 // Create a bit of debug info and append it to the array.  The mapping is from
   601 // Java local or expression stack to constant, register or stack-slot.  For
   602 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   603 // entry has been taken care of and caller should skip it).
   604 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   605   // This should never have accepted Bad before
   606   assert(OptoReg::is_valid(regnum), "location must be valid");
   607   return (OptoReg::is_reg(regnum))
   608     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   609     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   610 }
   613 ObjectValue*
   614 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   615   for (int i = 0; i < objs->length(); i++) {
   616     assert(objs->at(i)->is_object(), "corrupt object cache");
   617     ObjectValue* sv = (ObjectValue*) objs->at(i);
   618     if (sv->id() == id) {
   619       return sv;
   620     }
   621   }
   622   // Otherwise..
   623   return NULL;
   624 }
   626 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   627                                      ObjectValue* sv ) {
   628   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   629   objs->append(sv);
   630 }
   633 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   634                             GrowableArray<ScopeValue*> *array,
   635                             GrowableArray<ScopeValue*> *objs ) {
   636   assert( local, "use _top instead of null" );
   637   if (array->length() != idx) {
   638     assert(array->length() == idx + 1, "Unexpected array count");
   639     // Old functionality:
   640     //   return
   641     // New functionality:
   642     //   Assert if the local is not top. In product mode let the new node
   643     //   override the old entry.
   644     assert(local == top(), "LocArray collision");
   645     if (local == top()) {
   646       return;
   647     }
   648     array->pop();
   649   }
   650   const Type *t = local->bottom_type();
   652   // Is it a safepoint scalar object node?
   653   if (local->is_SafePointScalarObject()) {
   654     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   656     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   657     if (sv == NULL) {
   658       ciKlass* cik = t->is_oopptr()->klass();
   659       assert(cik->is_instance_klass() ||
   660              cik->is_array_klass(), "Not supported allocation.");
   661       sv = new ObjectValue(spobj->_idx,
   662                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   663       Compile::set_sv_for_object_node(objs, sv);
   665       uint first_ind = spobj->first_index(sfpt->jvms());
   666       for (uint i = 0; i < spobj->n_fields(); i++) {
   667         Node* fld_node = sfpt->in(first_ind+i);
   668         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   669       }
   670     }
   671     array->append(sv);
   672     return;
   673   }
   675   // Grab the register number for the local
   676   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   677   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   678     // Record the double as two float registers.
   679     // The register mask for such a value always specifies two adjacent
   680     // float registers, with the lower register number even.
   681     // Normally, the allocation of high and low words to these registers
   682     // is irrelevant, because nearly all operations on register pairs
   683     // (e.g., StoreD) treat them as a single unit.
   684     // Here, we assume in addition that the words in these two registers
   685     // stored "naturally" (by operations like StoreD and double stores
   686     // within the interpreter) such that the lower-numbered register
   687     // is written to the lower memory address.  This may seem like
   688     // a machine dependency, but it is not--it is a requirement on
   689     // the author of the <arch>.ad file to ensure that, for every
   690     // even/odd double-register pair to which a double may be allocated,
   691     // the word in the even single-register is stored to the first
   692     // memory word.  (Note that register numbers are completely
   693     // arbitrary, and are not tied to any machine-level encodings.)
   694 #ifdef _LP64
   695     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   696       array->append(new ConstantIntValue(0));
   697       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   698     } else if ( t->base() == Type::Long ) {
   699       array->append(new ConstantIntValue(0));
   700       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   701     } else if ( t->base() == Type::RawPtr ) {
   702       // jsr/ret return address which must be restored into a the full
   703       // width 64-bit stack slot.
   704       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   705     }
   706 #else //_LP64
   707 #ifdef SPARC
   708     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   709       // For SPARC we have to swap high and low words for
   710       // long values stored in a single-register (g0-g7).
   711       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   712       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   713     } else
   714 #endif //SPARC
   715     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   716       // Repack the double/long as two jints.
   717       // The convention the interpreter uses is that the second local
   718       // holds the first raw word of the native double representation.
   719       // This is actually reasonable, since locals and stack arrays
   720       // grow downwards in all implementations.
   721       // (If, on some machine, the interpreter's Java locals or stack
   722       // were to grow upwards, the embedded doubles would be word-swapped.)
   723       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   724       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   725     }
   726 #endif //_LP64
   727     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   728                OptoReg::is_reg(regnum) ) {
   729       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
   730                                    ? Location::float_in_dbl : Location::normal ));
   731     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   732       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   733                                    ? Location::int_in_long : Location::normal ));
   734     } else if( t->base() == Type::NarrowOop ) {
   735       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   736     } else {
   737       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   738     }
   739     return;
   740   }
   742   // No register.  It must be constant data.
   743   switch (t->base()) {
   744   case Type::Half:              // Second half of a double
   745     ShouldNotReachHere();       // Caller should skip 2nd halves
   746     break;
   747   case Type::AnyPtr:
   748     array->append(new ConstantOopWriteValue(NULL));
   749     break;
   750   case Type::AryPtr:
   751   case Type::InstPtr:          // fall through
   752     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   753     break;
   754   case Type::NarrowOop:
   755     if (t == TypeNarrowOop::NULL_PTR) {
   756       array->append(new ConstantOopWriteValue(NULL));
   757     } else {
   758       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   759     }
   760     break;
   761   case Type::Int:
   762     array->append(new ConstantIntValue(t->is_int()->get_con()));
   763     break;
   764   case Type::RawPtr:
   765     // A return address (T_ADDRESS).
   766     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   767 #ifdef _LP64
   768     // Must be restored to the full-width 64-bit stack slot.
   769     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   770 #else
   771     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   772 #endif
   773     break;
   774   case Type::FloatCon: {
   775     float f = t->is_float_constant()->getf();
   776     array->append(new ConstantIntValue(jint_cast(f)));
   777     break;
   778   }
   779   case Type::DoubleCon: {
   780     jdouble d = t->is_double_constant()->getd();
   781 #ifdef _LP64
   782     array->append(new ConstantIntValue(0));
   783     array->append(new ConstantDoubleValue(d));
   784 #else
   785     // Repack the double as two jints.
   786     // The convention the interpreter uses is that the second local
   787     // holds the first raw word of the native double representation.
   788     // This is actually reasonable, since locals and stack arrays
   789     // grow downwards in all implementations.
   790     // (If, on some machine, the interpreter's Java locals or stack
   791     // were to grow upwards, the embedded doubles would be word-swapped.)
   792     jlong_accessor acc;
   793     acc.long_value = jlong_cast(d);
   794     array->append(new ConstantIntValue(acc.words[1]));
   795     array->append(new ConstantIntValue(acc.words[0]));
   796 #endif
   797     break;
   798   }
   799   case Type::Long: {
   800     jlong d = t->is_long()->get_con();
   801 #ifdef _LP64
   802     array->append(new ConstantIntValue(0));
   803     array->append(new ConstantLongValue(d));
   804 #else
   805     // Repack the long as two jints.
   806     // The convention the interpreter uses is that the second local
   807     // holds the first raw word of the native double representation.
   808     // This is actually reasonable, since locals and stack arrays
   809     // grow downwards in all implementations.
   810     // (If, on some machine, the interpreter's Java locals or stack
   811     // were to grow upwards, the embedded doubles would be word-swapped.)
   812     jlong_accessor acc;
   813     acc.long_value = d;
   814     array->append(new ConstantIntValue(acc.words[1]));
   815     array->append(new ConstantIntValue(acc.words[0]));
   816 #endif
   817     break;
   818   }
   819   case Type::Top:               // Add an illegal value here
   820     array->append(new LocationValue(Location()));
   821     break;
   822   default:
   823     ShouldNotReachHere();
   824     break;
   825   }
   826 }
   828 // Determine if this node starts a bundle
   829 bool Compile::starts_bundle(const Node *n) const {
   830   return (_node_bundling_limit > n->_idx &&
   831           _node_bundling_base[n->_idx].starts_bundle());
   832 }
   834 //--------------------------Process_OopMap_Node--------------------------------
   835 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   837   // Handle special safepoint nodes for synchronization
   838   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   839   MachCallNode      *mcall;
   841 #ifdef ENABLE_ZAP_DEAD_LOCALS
   842   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   843 #endif
   845   int safepoint_pc_offset = current_offset;
   846   bool is_method_handle_invoke = false;
   847   bool return_oop = false;
   849   // Add the safepoint in the DebugInfoRecorder
   850   if( !mach->is_MachCall() ) {
   851     mcall = NULL;
   852 #ifdef MIPS64
   853 /*
   854         2013/10/30 Jin: safepoint_pc_offset should point to tha last instruction in safePoint.
   855                 In X86 and sparc, their safePoints only contain one instruction.
   856                 However, we should add current_offset with the size of safePoint in MIPS.
   857           0x2d6ff22c: lw s2, 0x14(s2)
   858         last_pd->pc_offset()=308, pc_offset=304, bci=64
   859         last_pd->pc_offset()=312, pc_offset=312, bci=64
   860         /mnt/openjdk6/hotspot/src/share/vm/code/debugInfoRec.cpp, 289 , assert(last_pd->pc_offset() == pc_offset,"must be last pc")
   862           ;; Safepoint:
   863         ---> pc_offset=304
   864           0x2d6ff230: lui at, 0x2b7a            ; OopMap{s2=Oop s5=Oop t4=Oop off=308}
   865                                                 ;*goto
   866                                                 ; - java.util.Hashtable::get@64 (line 353)
   867         ---> last_pd(308)
   868           0x2d6ff234: lw at, 0xffffc100(at)     ;*goto
   869                                                 ; - java.util.Hashtable::get@64 (line 353)
   870                                                 ;   {poll}
   871           0x2d6ff238: addiu s0, zero, 0x0
   872 */
   873     safepoint_pc_offset += sfn->size(_regalloc) - 4;
   874 #endif
   875     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   876   } else {
   877     mcall = mach->as_MachCall();
   879     // Is the call a MethodHandle call?
   880     if (mcall->is_MachCallJava()) {
   881       if (mcall->as_MachCallJava()->_method_handle_invoke) {
   882         assert(has_method_handle_invokes(), "must have been set during call generation");
   883         is_method_handle_invoke = true;
   884       }
   885     }
   887     // Check if a call returns an object.
   888     if (mcall->returns_pointer()) {
   889       return_oop = true;
   890     }
   891     safepoint_pc_offset += mcall->ret_addr_offset();
   892     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   893   }
   895   // Loop over the JVMState list to add scope information
   896   // Do not skip safepoints with a NULL method, they need monitor info
   897   JVMState* youngest_jvms = sfn->jvms();
   898   int max_depth = youngest_jvms->depth();
   900   // Allocate the object pool for scalar-replaced objects -- the map from
   901   // small-integer keys (which can be recorded in the local and ostack
   902   // arrays) to descriptions of the object state.
   903   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   905   // Visit scopes from oldest to youngest.
   906   for (int depth = 1; depth <= max_depth; depth++) {
   907     JVMState* jvms = youngest_jvms->of_depth(depth);
   908     int idx;
   909     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   910     // Safepoints that do not have method() set only provide oop-map and monitor info
   911     // to support GC; these do not support deoptimization.
   912     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   913     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   914     int num_mon  = jvms->nof_monitors();
   915     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   916            "JVMS local count must match that of the method");
   918     // Add Local and Expression Stack Information
   920     // Insert locals into the locarray
   921     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   922     for( idx = 0; idx < num_locs; idx++ ) {
   923       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   924     }
   926     // Insert expression stack entries into the exparray
   927     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   928     for( idx = 0; idx < num_exps; idx++ ) {
   929       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   930     }
   932     // Add in mappings of the monitors
   933     assert( !method ||
   934             !method->is_synchronized() ||
   935             method->is_native() ||
   936             num_mon > 0 ||
   937             !GenerateSynchronizationCode,
   938             "monitors must always exist for synchronized methods");
   940     // Build the growable array of ScopeValues for exp stack
   941     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   943     // Loop over monitors and insert into array
   944     for (idx = 0; idx < num_mon; idx++) {
   945       // Grab the node that defines this monitor
   946       Node* box_node = sfn->monitor_box(jvms, idx);
   947       Node* obj_node = sfn->monitor_obj(jvms, idx);
   949       // Create ScopeValue for object
   950       ScopeValue *scval = NULL;
   952       if (obj_node->is_SafePointScalarObject()) {
   953         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   954         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   955         if (scval == NULL) {
   956           const Type *t = spobj->bottom_type();
   957           ciKlass* cik = t->is_oopptr()->klass();
   958           assert(cik->is_instance_klass() ||
   959                  cik->is_array_klass(), "Not supported allocation.");
   960           ObjectValue* sv = new ObjectValue(spobj->_idx,
   961                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   962           Compile::set_sv_for_object_node(objs, sv);
   964           uint first_ind = spobj->first_index(youngest_jvms);
   965           for (uint i = 0; i < spobj->n_fields(); i++) {
   966             Node* fld_node = sfn->in(first_ind+i);
   967             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   968           }
   969           scval = sv;
   970         }
   971       } else if (!obj_node->is_Con()) {
   972         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   973         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   974           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   975         } else {
   976           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   977         }
   978       } else {
   979         const TypePtr *tp = obj_node->get_ptr_type();
   980         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
   981       }
   983       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
   984       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   985       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
   986       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
   987     }
   989     // We dump the object pool first, since deoptimization reads it in first.
   990     debug_info()->dump_object_pool(objs);
   992     // Build first class objects to pass to scope
   993     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   994     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   995     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   997     // Make method available for all Safepoints
   998     ciMethod* scope_method = method ? method : _method;
   999     // Describe the scope here
  1000     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
  1001     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
  1002     // Now we can describe the scope.
  1003     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
  1004   } // End jvms loop
  1006   // Mark the end of the scope set.
  1007   debug_info()->end_safepoint(safepoint_pc_offset);
  1012 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
  1013 class NonSafepointEmitter {
  1014   Compile*  C;
  1015   JVMState* _pending_jvms;
  1016   int       _pending_offset;
  1018   void emit_non_safepoint();
  1020  public:
  1021   NonSafepointEmitter(Compile* compile) {
  1022     this->C = compile;
  1023     _pending_jvms = NULL;
  1024     _pending_offset = 0;
  1027   void observe_instruction(Node* n, int pc_offset) {
  1028     if (!C->debug_info()->recording_non_safepoints())  return;
  1030     Node_Notes* nn = C->node_notes_at(n->_idx);
  1031     if (nn == NULL || nn->jvms() == NULL)  return;
  1032     if (_pending_jvms != NULL &&
  1033         _pending_jvms->same_calls_as(nn->jvms())) {
  1034       // Repeated JVMS?  Stretch it up here.
  1035       _pending_offset = pc_offset;
  1036     } else {
  1037       if (_pending_jvms != NULL &&
  1038           _pending_offset < pc_offset) {
  1039         emit_non_safepoint();
  1041       _pending_jvms = NULL;
  1042       if (pc_offset > C->debug_info()->last_pc_offset()) {
  1043         // This is the only way _pending_jvms can become non-NULL:
  1044         _pending_jvms = nn->jvms();
  1045         _pending_offset = pc_offset;
  1050   // Stay out of the way of real safepoints:
  1051   void observe_safepoint(JVMState* jvms, int pc_offset) {
  1052     if (_pending_jvms != NULL &&
  1053         !_pending_jvms->same_calls_as(jvms) &&
  1054         _pending_offset < pc_offset) {
  1055       emit_non_safepoint();
  1057     _pending_jvms = NULL;
  1060   void flush_at_end() {
  1061     if (_pending_jvms != NULL) {
  1062       emit_non_safepoint();
  1064     _pending_jvms = NULL;
  1066 };
  1068 void NonSafepointEmitter::emit_non_safepoint() {
  1069   JVMState* youngest_jvms = _pending_jvms;
  1070   int       pc_offset     = _pending_offset;
  1072   // Clear it now:
  1073   _pending_jvms = NULL;
  1075   DebugInformationRecorder* debug_info = C->debug_info();
  1076   assert(debug_info->recording_non_safepoints(), "sanity");
  1078   debug_info->add_non_safepoint(pc_offset);
  1079   int max_depth = youngest_jvms->depth();
  1081   // Visit scopes from oldest to youngest.
  1082   for (int depth = 1; depth <= max_depth; depth++) {
  1083     JVMState* jvms = youngest_jvms->of_depth(depth);
  1084     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1085     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1086     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1089   // Mark the end of the scope set.
  1090   debug_info->end_non_safepoint(pc_offset);
  1093 //------------------------------init_buffer------------------------------------
  1094 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
  1096   // Set the initially allocated size
  1097   int  code_req   = initial_code_capacity;
  1098   int  locs_req   = initial_locs_capacity;
  1099   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1100   int  const_req  = initial_const_capacity;
  1102   int  pad_req    = NativeCall::instruction_size;
  1103   // The extra spacing after the code is necessary on some platforms.
  1104   // Sometimes we need to patch in a jump after the last instruction,
  1105   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1107   // Compute the byte offset where we can store the deopt pc.
  1108   if (fixed_slots() != 0) {
  1109     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1112   // Compute prolog code size
  1113   _method_size = 0;
  1114   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1115 #if defined(IA64) && !defined(AIX)
  1116   if (save_argument_registers()) {
  1117     // 4815101: this is a stub with implicit and unknown precision fp args.
  1118     // The usual spill mechanism can only generate stfd's in this case, which
  1119     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1120     // Instead, we hack around the normal spill mechanism using stfspill's and
  1121     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1122     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1123     //
  1124     // If we ever implement 16-byte 'registers' == stack slots, we can
  1125     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1126     // instead of stfd/stfs/ldfd/ldfs.
  1127     _frame_slots += 8*(16/BytesPerInt);
  1129 #endif
  1130   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
  1132   if (has_mach_constant_base_node()) {
  1133     uint add_size = 0;
  1134     // Fill the constant table.
  1135     // Note:  This must happen before shorten_branches.
  1136     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  1137       Block* b = _cfg->get_block(i);
  1139       for (uint j = 0; j < b->number_of_nodes(); j++) {
  1140         Node* n = b->get_node(j);
  1142         // If the node is a MachConstantNode evaluate the constant
  1143         // value section.
  1144         if (n->is_MachConstant()) {
  1145           MachConstantNode* machcon = n->as_MachConstant();
  1146           machcon->eval_constant(C);
  1147         } else if (n->is_Mach()) {
  1148           // On Power there are more nodes that issue constants.
  1149           add_size += (n->as_Mach()->ins_num_consts() * 8);
  1154     // Calculate the offsets of the constants and the size of the
  1155     // constant table (including the padding to the next section).
  1156     constant_table().calculate_offsets_and_size();
  1157     const_req = constant_table().size() + add_size;
  1160   // Initialize the space for the BufferBlob used to find and verify
  1161   // instruction size in MachNode::emit_size()
  1162   init_scratch_buffer_blob(const_req);
  1163   if (failing())  return NULL; // Out of memory
  1165   // Pre-compute the length of blocks and replace
  1166   // long branches with short if machine supports it.
  1167   shorten_branches(blk_starts, code_req, locs_req, stub_req);
  1169   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1170   // class HandlerImpl is platform-specific and defined in the *.ad files.
  1171   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
  1172   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
  1173   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1174   code_req += MAX_inst_size;    // ensure per-instruction margin
  1176   if (StressCodeBuffers)
  1177     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1179   int total_req =
  1180     const_req +
  1181     code_req +
  1182     pad_req +
  1183     stub_req +
  1184     exception_handler_req +
  1185     deopt_handler_req;               // deopt handler
  1187   if (has_method_handle_invokes())
  1188     total_req += deopt_handler_req;  // deopt MH handler
  1190   CodeBuffer* cb = code_buffer();
  1191   cb->initialize(total_req, locs_req);
  1193   // Have we run out of code space?
  1194   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1195     C->record_failure("CodeCache is full");
  1196     return NULL;
  1198   // Configure the code buffer.
  1199   cb->initialize_consts_size(const_req);
  1200   cb->initialize_stubs_size(stub_req);
  1201   cb->initialize_oop_recorder(env()->oop_recorder());
  1203   // fill in the nop array for bundling computations
  1204   MachNode *_nop_list[Bundle::_nop_count];
  1205   Bundle::initialize_nops(_nop_list, this);
  1207   return cb;
  1210 //------------------------------fill_buffer------------------------------------
  1211 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
  1212   // blk_starts[] contains offsets calculated during short branches processing,
  1213   // offsets should not be increased during following steps.
  1215   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
  1216   // of a loop. It is used to determine the padding for loop alignment.
  1217   compute_loop_first_inst_sizes();
  1219   // Create oopmap set.
  1220   _oop_map_set = new OopMapSet();
  1222   // !!!!! This preserves old handling of oopmaps for now
  1223   debug_info()->set_oopmaps(_oop_map_set);
  1225   uint nblocks  = _cfg->number_of_blocks();
  1226   // Count and start of implicit null check instructions
  1227   uint inct_cnt = 0;
  1228   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1230   // Count and start of calls
  1231   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1233   uint  return_offset = 0;
  1234   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1236   int previous_offset = 0;
  1237   int current_offset  = 0;
  1238   int last_call_offset = -1;
  1239   int last_avoid_back_to_back_offset = -1;
  1240 #ifdef ASSERT
  1241   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
  1242   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
  1243   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1244   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1245 #endif
  1247   // Create an array of unused labels, one for each basic block, if printing is enabled
  1248 #ifndef PRODUCT
  1249   int *node_offsets      = NULL;
  1250   uint node_offset_limit = unique();
  1252   if (print_assembly())
  1253     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1254 #endif
  1256   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1258   // Emit the constant table.
  1259   if (has_mach_constant_base_node()) {
  1260     constant_table().emit(*cb);
  1263   // Create an array of labels, one for each basic block
  1264   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
  1265   for (uint i=0; i <= nblocks; i++) {
  1266     blk_labels[i].init();
  1269   // ------------------
  1270   // Now fill in the code buffer
  1271   Node *delay_slot = NULL;
  1273   for (uint i = 0; i < nblocks; i++) {
  1274     Block* block = _cfg->get_block(i);
  1275     Node* head = block->head();
  1277     // If this block needs to start aligned (i.e, can be reached other
  1278     // than by falling-thru from the previous block), then force the
  1279     // start of a new bundle.
  1280     if (Pipeline::requires_bundling() && starts_bundle(head)) {
  1281       cb->flush_bundle(true);
  1284 #ifdef ASSERT
  1285     if (!block->is_connector()) {
  1286       stringStream st;
  1287       block->dump_head(_cfg, &st);
  1288       MacroAssembler(cb).block_comment(st.as_string());
  1290     jmp_target[i] = 0;
  1291     jmp_offset[i] = 0;
  1292     jmp_size[i]   = 0;
  1293     jmp_rule[i]   = 0;
  1294 #endif
  1295     int blk_offset = current_offset;
  1297     // Define the label at the beginning of the basic block
  1298     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
  1300     uint last_inst = block->number_of_nodes();
  1302     // Emit block normally, except for last instruction.
  1303     // Emit means "dump code bits into code buffer".
  1304     for (uint j = 0; j<last_inst; j++) {
  1306       // Get the node
  1307       Node* n = block->get_node(j);
  1309       // See if delay slots are supported
  1310       if (valid_bundle_info(n) &&
  1311           node_bundling(n)->used_in_unconditional_delay()) {
  1312         assert(delay_slot == NULL, "no use of delay slot node");
  1313         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1315         delay_slot = n;
  1316         continue;
  1319       // If this starts a new instruction group, then flush the current one
  1320       // (but allow split bundles)
  1321       if (Pipeline::requires_bundling() && starts_bundle(n))
  1322         cb->flush_bundle(false);
  1324       // The following logic is duplicated in the code ifdeffed for
  1325       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1326       // should be factored out.  Or maybe dispersed to the nodes?
  1328       // Special handling for SafePoint/Call Nodes
  1329       bool is_mcall = false;
  1330       if (n->is_Mach()) {
  1331         MachNode *mach = n->as_Mach();
  1332         is_mcall = n->is_MachCall();
  1333         bool is_sfn = n->is_MachSafePoint();
  1335         // If this requires all previous instructions be flushed, then do so
  1336         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
  1337           cb->flush_bundle(true);
  1338           current_offset = cb->insts_size();
  1341         // A padding may be needed again since a previous instruction
  1342         // could be moved to delay slot.
  1344         // align the instruction if necessary
  1345         int padding = mach->compute_padding(current_offset);
  1346         // Make sure safepoint node for polling is distinct from a call's
  1347         // return by adding a nop if needed.
  1348         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
  1349           padding = nop_size;
  1351         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
  1352             current_offset == last_avoid_back_to_back_offset) {
  1353           // Avoid back to back some instructions.
  1354           padding = nop_size;
  1357         if(padding > 0) {
  1358           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1359           int nops_cnt = padding / nop_size;
  1360           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1361           block->insert_node(nop, j++);
  1362           last_inst++;
  1363           _cfg->map_node_to_block(nop, block);
  1364           nop->emit(*cb, _regalloc);
  1365           cb->flush_bundle(true);
  1366           current_offset = cb->insts_size();
  1369         // Remember the start of the last call in a basic block
  1370         if (is_mcall) {
  1371           MachCallNode *mcall = mach->as_MachCall();
  1373           // This destination address is NOT PC-relative
  1374           mcall->method_set((intptr_t)mcall->entry_point());
  1376           // Save the return address
  1377           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
  1379           if (mcall->is_MachCallLeaf()) {
  1380             is_mcall = false;
  1381             is_sfn = false;
  1385         // sfn will be valid whenever mcall is valid now because of inheritance
  1386         if (is_sfn || is_mcall) {
  1388           // Handle special safepoint nodes for synchronization
  1389           if (!is_mcall) {
  1390             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1391             // !!!!! Stubs only need an oopmap right now, so bail out
  1392             if (sfn->jvms()->method() == NULL) {
  1393               // Write the oopmap directly to the code blob??!!
  1394 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1395               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1396 #             endif
  1397               continue;
  1399           } // End synchronization
  1401           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1402                                            current_offset);
  1403           Process_OopMap_Node(mach, current_offset);
  1404         } // End if safepoint
  1406         // If this is a null check, then add the start of the previous instruction to the list
  1407         else if( mach->is_MachNullCheck() ) {
  1408           inct_starts[inct_cnt++] = previous_offset;
  1411         // If this is a branch, then fill in the label with the target BB's label
  1412         else if (mach->is_MachBranch()) {
  1413           // This requires the TRUE branch target be in succs[0]
  1414           uint block_num = block->non_connector_successor(0)->_pre_order;
  1416           // Try to replace long branch if delay slot is not used,
  1417           // it is mostly for back branches since forward branch's
  1418           // distance is not updated yet.
  1419           bool delay_slot_is_used = valid_bundle_info(n) &&
  1420                                     node_bundling(n)->use_unconditional_delay();
  1421           if (!delay_slot_is_used && mach->may_be_short_branch()) {
  1422            assert(delay_slot == NULL, "not expecting delay slot node");
  1423            int br_size = n->size(_regalloc);
  1424             int offset = blk_starts[block_num] - current_offset;
  1425             if (block_num >= i) {
  1426               // Current and following block's offset are not
  1427               // finalized yet, adjust distance by the difference
  1428               // between calculated and final offsets of current block.
  1429               offset -= (blk_starts[i] - blk_offset);
  1431             // In the following code a nop could be inserted before
  1432             // the branch which will increase the backward distance.
  1433             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
  1434             if (needs_padding && offset <= 0)
  1435               offset -= nop_size;
  1437             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
  1438               // We've got a winner.  Replace this branch.
  1439               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
  1441               // Update the jmp_size.
  1442               int new_size = replacement->size(_regalloc);
  1443               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
  1444               // Insert padding between avoid_back_to_back branches.
  1445               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
  1446                 MachNode *nop = new (this) MachNopNode();
  1447                 block->insert_node(nop, j++);
  1448                 _cfg->map_node_to_block(nop, block);
  1449                 last_inst++;
  1450                 nop->emit(*cb, _regalloc);
  1451                 cb->flush_bundle(true);
  1452                 current_offset = cb->insts_size();
  1454 #ifdef ASSERT
  1455               jmp_target[i] = block_num;
  1456               jmp_offset[i] = current_offset - blk_offset;
  1457               jmp_size[i]   = new_size;
  1458               jmp_rule[i]   = mach->rule();
  1459 #endif
  1460               block->map_node(replacement, j);
  1461               mach->subsume_by(replacement, C);
  1462               n    = replacement;
  1463               mach = replacement;
  1466           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
  1467         } else if (mach->ideal_Opcode() == Op_Jump) {
  1468           for (uint h = 0; h < block->_num_succs; h++) {
  1469             Block* succs_block = block->_succs[h];
  1470             for (uint j = 1; j < succs_block->num_preds(); j++) {
  1471               Node* jpn = succs_block->pred(j);
  1472               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
  1473                 uint block_num = succs_block->non_connector()->_pre_order;
  1474                 Label *blkLabel = &blk_labels[block_num];
  1475                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1480 #ifdef ASSERT
  1481         // Check that oop-store precedes the card-mark
  1482         else if (mach->ideal_Opcode() == Op_StoreCM) {
  1483           uint storeCM_idx = j;
  1484           int count = 0;
  1485           for (uint prec = mach->req(); prec < mach->len(); prec++) {
  1486             Node *oop_store = mach->in(prec);  // Precedence edge
  1487             if (oop_store == NULL) continue;
  1488             count++;
  1489             uint i4;
  1490             for (i4 = 0; i4 < last_inst; ++i4) {
  1491               if (block->get_node(i4) == oop_store) {
  1492                 break;
  1495             // Note: This test can provide a false failure if other precedence
  1496             // edges have been added to the storeCMNode.
  1497             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1499           assert(count > 0, "storeCM expects at least one precedence edge");
  1501 #endif
  1502         else if (!n->is_Proj()) {
  1503           // Remember the beginning of the previous instruction, in case
  1504           // it's followed by a flag-kill and a null-check.  Happens on
  1505           // Intel all the time, with add-to-memory kind of opcodes.
  1506           previous_offset = current_offset;
  1509         // Not an else-if!
  1510         // If this is a trap based cmp then add its offset to the list.
  1511         if (mach->is_TrapBasedCheckNode()) {
  1512           inct_starts[inct_cnt++] = current_offset;
  1516       // Verify that there is sufficient space remaining
  1517       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1518       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1519         C->record_failure("CodeCache is full");
  1520         return;
  1523       // Save the offset for the listing
  1524 #ifndef PRODUCT
  1525       if (node_offsets && n->_idx < node_offset_limit)
  1526         node_offsets[n->_idx] = cb->insts_size();
  1527 #endif
  1529       // "Normal" instruction case
  1530       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
  1531       n->emit(*cb, _regalloc);
  1532       current_offset  = cb->insts_size();
  1533 #ifdef MIPS64
  1534       if (!n->is_Proj()) {
  1535         // For MIPS, the first instruction of the previous node (usually a instruction sequence) sometime
  1536         // is not the instruction which access memory. adjust is needed. previous_offset points to the
  1537         // instruction which access memory. Instruction size is 4. cb->insts_size() and
  1538         // cb->insts()->end() are the location of current instruction.
  1539         int adjust = 4;
  1540         NativeInstruction* inst = (NativeInstruction*) (cb->insts()->end() - 4);
  1541         if (inst->is_sync()) {
  1542           // a sync may be the last instruction, see store_B_immI_enc_sync
  1543           adjust += 4;
  1544           inst = (NativeInstruction*) (cb->insts()->end() - 8);
  1546         previous_offset = current_offset - adjust;
  1548 #endif
  1550       // Above we only verified that there is enough space in the instruction section.
  1551       // However, the instruction may emit stubs that cause code buffer expansion.
  1552       // Bail out here if expansion failed due to a lack of code cache space.
  1553       if (failing()) {
  1554         return;
  1557 #ifdef ASSERT
  1558       if (n->size(_regalloc) < (current_offset-instr_offset)) {
  1559         n->dump();
  1560         assert(false, "wrong size of mach node");
  1562 #endif
  1563       non_safepoints.observe_instruction(n, current_offset);
  1565       // mcall is last "call" that can be a safepoint
  1566       // record it so we can see if a poll will directly follow it
  1567       // in which case we'll need a pad to make the PcDesc sites unique
  1568       // see  5010568. This can be slightly inaccurate but conservative
  1569       // in the case that return address is not actually at current_offset.
  1570       // This is a small price to pay.
  1572       if (is_mcall) {
  1573         last_call_offset = current_offset;
  1576       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
  1577         // Avoid back to back some instructions.
  1578         last_avoid_back_to_back_offset = current_offset;
  1581       // See if this instruction has a delay slot
  1582       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1583         assert(delay_slot != NULL, "expecting delay slot node");
  1585         // Back up 1 instruction
  1586         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
  1588         // Save the offset for the listing
  1589 #ifndef PRODUCT
  1590         if (node_offsets && delay_slot->_idx < node_offset_limit)
  1591           node_offsets[delay_slot->_idx] = cb->insts_size();
  1592 #endif
  1594         // Support a SafePoint in the delay slot
  1595         if (delay_slot->is_MachSafePoint()) {
  1596           MachNode *mach = delay_slot->as_Mach();
  1597           // !!!!! Stubs only need an oopmap right now, so bail out
  1598           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
  1599             // Write the oopmap directly to the code blob??!!
  1600 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1601             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1602 #           endif
  1603             delay_slot = NULL;
  1604             continue;
  1607           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1608           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1609                                            adjusted_offset);
  1610           // Generate an OopMap entry
  1611           Process_OopMap_Node(mach, adjusted_offset);
  1614         // Insert the delay slot instruction
  1615         delay_slot->emit(*cb, _regalloc);
  1617         // Don't reuse it
  1618         delay_slot = NULL;
  1621     } // End for all instructions in block
  1623     // If the next block is the top of a loop, pad this block out to align
  1624     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1625     if (i < nblocks-1) {
  1626       Block *nb = _cfg->get_block(i + 1);
  1627       int padding = nb->alignment_padding(current_offset);
  1628       if( padding > 0 ) {
  1629         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1630         block->insert_node(nop, block->number_of_nodes());
  1631         _cfg->map_node_to_block(nop, block);
  1632         nop->emit(*cb, _regalloc);
  1633         current_offset = cb->insts_size();
  1636     // Verify that the distance for generated before forward
  1637     // short branches is still valid.
  1638     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
  1640     // Save new block start offset
  1641     blk_starts[i] = blk_offset;
  1642   } // End of for all blocks
  1643   blk_starts[nblocks] = current_offset;
  1645   non_safepoints.flush_at_end();
  1647   // Offset too large?
  1648   if (failing())  return;
  1650   // Define a pseudo-label at the end of the code
  1651   MacroAssembler(cb).bind( blk_labels[nblocks] );
  1653   // Compute the size of the first block
  1654   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1656   assert(cb->insts_size() < 500000, "method is unreasonably large");
  1658 #ifdef ASSERT
  1659   for (uint i = 0; i < nblocks; i++) { // For all blocks
  1660     if (jmp_target[i] != 0) {
  1661       int br_size = jmp_size[i];
  1662       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
  1663       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
  1664         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
  1665         assert(false, "Displacement too large for short jmp");
  1669 #endif
  1671 #ifndef PRODUCT
  1672   // Information on the size of the method, without the extraneous code
  1673   Scheduling::increment_method_size(cb->insts_size());
  1674 #endif
  1676   // ------------------
  1677   // Fill in exception table entries.
  1678   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1680   // Only java methods have exception handlers and deopt handlers
  1681   // class HandlerImpl is platform-specific and defined in the *.ad files.
  1682   if (_method) {
  1683     // Emit the exception handler code.
  1684     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
  1685     if (failing()) {
  1686       return; // CodeBuffer::expand failed
  1688     // Emit the deopt handler code.
  1689     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
  1691     // Emit the MethodHandle deopt handler code (if required).
  1692     if (has_method_handle_invokes() && !failing()) {
  1693       // We can use the same code as for the normal deopt handler, we
  1694       // just need a different entry point address.
  1695       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
  1699   // One last check for failed CodeBuffer::expand:
  1700   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1701     C->record_failure("CodeCache is full");
  1702     return;
  1705 #ifndef PRODUCT
  1706   // Dump the assembly code, including basic-block numbers
  1707   if (print_assembly()) {
  1708     ttyLocker ttyl;  // keep the following output all in one block
  1709     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1710       // This output goes directly to the tty, not the compiler log.
  1711       // To enable tools to match it up with the compilation activity,
  1712       // be sure to tag this tty output with the compile ID.
  1713       if (xtty != NULL) {
  1714         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1715                    is_osr_compilation()    ? " compile_kind='osr'" :
  1716                    "");
  1718       if (method() != NULL) {
  1719         method()->print_metadata();
  1721       dump_asm(node_offsets, node_offset_limit);
  1722       if (xtty != NULL) {
  1723         xtty->tail("opto_assembly");
  1727 #endif
  1731 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1732   _inc_table.set_size(cnt);
  1734   uint inct_cnt = 0;
  1735   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  1736     Block* block = _cfg->get_block(i);
  1737     Node *n = NULL;
  1738     int j;
  1740     // Find the branch; ignore trailing NOPs.
  1741     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
  1742       n = block->get_node(j);
  1743       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
  1744         break;
  1748     // If we didn't find anything, continue
  1749     if (j < 0) {
  1750       continue;
  1753     // Compute ExceptionHandlerTable subtable entry and add it
  1754     // (skip empty blocks)
  1755     if (n->is_Catch()) {
  1757       // Get the offset of the return from the call
  1758       uint call_return = call_returns[block->_pre_order];
  1759 #ifdef ASSERT
  1760       assert( call_return > 0, "no call seen for this basic block" );
  1761       while (block->get_node(--j)->is_MachProj()) ;
  1762       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
  1763 #endif
  1764       // last instruction is a CatchNode, find it's CatchProjNodes
  1765       int nof_succs = block->_num_succs;
  1766       // allocate space
  1767       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1768       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1769       // iterate through all successors
  1770       for (int j = 0; j < nof_succs; j++) {
  1771         Block* s = block->_succs[j];
  1772         bool found_p = false;
  1773         for (uint k = 1; k < s->num_preds(); k++) {
  1774           Node* pk = s->pred(k);
  1775           if (pk->is_CatchProj() && pk->in(0) == n) {
  1776             const CatchProjNode* p = pk->as_CatchProj();
  1777             found_p = true;
  1778             // add the corresponding handler bci & pco information
  1779             if (p->_con != CatchProjNode::fall_through_index) {
  1780               // p leads to an exception handler (and is not fall through)
  1781               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
  1782               // no duplicates, please
  1783               if (!handler_bcis.contains(p->handler_bci())) {
  1784                 uint block_num = s->non_connector()->_pre_order;
  1785                 handler_bcis.append(p->handler_bci());
  1786                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1791         assert(found_p, "no matching predecessor found");
  1792         // Note:  Due to empty block removal, one block may have
  1793         // several CatchProj inputs, from the same Catch.
  1796       // Set the offset of the return from the call
  1797       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1798       continue;
  1801     // Handle implicit null exception table updates
  1802     if (n->is_MachNullCheck()) {
  1803       uint block_num = block->non_connector_successor(0)->_pre_order;
  1804       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
  1805       continue;
  1807     // Handle implicit exception table updates: trap instructions.
  1808     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
  1809       uint block_num = block->non_connector_successor(0)->_pre_order;
  1810       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
  1811       continue;
  1813   } // End of for all blocks fill in exception table entries
  1816 // Static Variables
  1817 #ifndef PRODUCT
  1818 uint Scheduling::_total_nop_size = 0;
  1819 uint Scheduling::_total_method_size = 0;
  1820 uint Scheduling::_total_branches = 0;
  1821 uint Scheduling::_total_unconditional_delays = 0;
  1822 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1823 #endif
  1825 // Initializer for class Scheduling
  1827 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1828   : _arena(arena),
  1829     _cfg(compile.cfg()),
  1830     _regalloc(compile.regalloc()),
  1831     _reg_node(arena),
  1832     _bundle_instr_count(0),
  1833     _bundle_cycle_number(0),
  1834     _scheduled(arena),
  1835     _available(arena),
  1836     _next_node(NULL),
  1837     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1838     _pinch_free_list(arena)
  1839 #ifndef PRODUCT
  1840   , _branches(0)
  1841   , _unconditional_delays(0)
  1842 #endif
  1844   // Create a MachNopNode
  1845   _nop = new (&compile) MachNopNode();
  1847   // Now that the nops are in the array, save the count
  1848   // (but allow entries for the nops)
  1849   _node_bundling_limit = compile.unique();
  1850   uint node_max = _regalloc->node_regs_max_index();
  1852   compile.set_node_bundling_limit(_node_bundling_limit);
  1854   // This one is persistent within the Compile class
  1855   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1857   // Allocate space for fixed-size arrays
  1858   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1859   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1860   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1862   // Clear the arrays
  1863   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1864   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1865   memset(_uses,               0, node_max * sizeof(short));
  1866   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1868   // Clear the bundling information
  1869   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
  1871   // Get the last node
  1872   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
  1874   _next_node = block->get_node(block->number_of_nodes() - 1);
  1877 #ifndef PRODUCT
  1878 // Scheduling destructor
  1879 Scheduling::~Scheduling() {
  1880   _total_branches             += _branches;
  1881   _total_unconditional_delays += _unconditional_delays;
  1883 #endif
  1885 // Step ahead "i" cycles
  1886 void Scheduling::step(uint i) {
  1888   Bundle *bundle = node_bundling(_next_node);
  1889   bundle->set_starts_bundle();
  1891   // Update the bundle record, but leave the flags information alone
  1892   if (_bundle_instr_count > 0) {
  1893     bundle->set_instr_count(_bundle_instr_count);
  1894     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1897   // Update the state information
  1898   _bundle_instr_count = 0;
  1899   _bundle_cycle_number += i;
  1900   _bundle_use.step(i);
  1903 void Scheduling::step_and_clear() {
  1904   Bundle *bundle = node_bundling(_next_node);
  1905   bundle->set_starts_bundle();
  1907   // Update the bundle record
  1908   if (_bundle_instr_count > 0) {
  1909     bundle->set_instr_count(_bundle_instr_count);
  1910     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1912     _bundle_cycle_number += 1;
  1915   // Clear the bundling information
  1916   _bundle_instr_count = 0;
  1917   _bundle_use.reset();
  1919   memcpy(_bundle_use_elements,
  1920     Pipeline_Use::elaborated_elements,
  1921     sizeof(Pipeline_Use::elaborated_elements));
  1924 // Perform instruction scheduling and bundling over the sequence of
  1925 // instructions in backwards order.
  1926 void Compile::ScheduleAndBundle() {
  1928   // Don't optimize this if it isn't a method
  1929   if (!_method)
  1930     return;
  1932   // Don't optimize this if scheduling is disabled
  1933   if (!do_scheduling())
  1934     return;
  1936   // Scheduling code works only with pairs (8 bytes) maximum.
  1937   if (max_vector_size() > 8)
  1938     return;
  1940   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1942   // Create a data structure for all the scheduling information
  1943   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1945   // Walk backwards over each basic block, computing the needed alignment
  1946   // Walk over all the basic blocks
  1947   scheduling.DoScheduling();
  1950 // Compute the latency of all the instructions.  This is fairly simple,
  1951 // because we already have a legal ordering.  Walk over the instructions
  1952 // from first to last, and compute the latency of the instruction based
  1953 // on the latency of the preceding instruction(s).
  1954 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1955 #ifndef PRODUCT
  1956   if (_cfg->C->trace_opto_output())
  1957     tty->print("# -> ComputeLocalLatenciesForward\n");
  1958 #endif
  1960   // Walk over all the schedulable instructions
  1961   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1963     // This is a kludge, forcing all latency calculations to start at 1.
  1964     // Used to allow latency 0 to force an instruction to the beginning
  1965     // of the bb
  1966     uint latency = 1;
  1967     Node *use = bb->get_node(j);
  1968     uint nlen = use->len();
  1970     // Walk over all the inputs
  1971     for ( uint k=0; k < nlen; k++ ) {
  1972       Node *def = use->in(k);
  1973       if (!def)
  1974         continue;
  1976       uint l = _node_latency[def->_idx] + use->latency(k);
  1977       if (latency < l)
  1978         latency = l;
  1981     _node_latency[use->_idx] = latency;
  1983 #ifndef PRODUCT
  1984     if (_cfg->C->trace_opto_output()) {
  1985       tty->print("# latency %4d: ", latency);
  1986       use->dump();
  1988 #endif
  1991 #ifndef PRODUCT
  1992   if (_cfg->C->trace_opto_output())
  1993     tty->print("# <- ComputeLocalLatenciesForward\n");
  1994 #endif
  1996 } // end ComputeLocalLatenciesForward
  1998 // See if this node fits into the present instruction bundle
  1999 bool Scheduling::NodeFitsInBundle(Node *n) {
  2000   uint n_idx = n->_idx;
  2002   // If this is the unconditional delay instruction, then it fits
  2003   if (n == _unconditional_delay_slot) {
  2004 #ifndef PRODUCT
  2005     if (_cfg->C->trace_opto_output())
  2006       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  2007 #endif
  2008     return (true);
  2011   // If the node cannot be scheduled this cycle, skip it
  2012   if (_current_latency[n_idx] > _bundle_cycle_number) {
  2013 #ifndef PRODUCT
  2014     if (_cfg->C->trace_opto_output())
  2015       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  2016         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  2017 #endif
  2018     return (false);
  2021   const Pipeline *node_pipeline = n->pipeline();
  2023   uint instruction_count = node_pipeline->instructionCount();
  2024   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2025     instruction_count = 0;
  2026   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2027     instruction_count++;
  2029   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  2030 #ifndef PRODUCT
  2031     if (_cfg->C->trace_opto_output())
  2032       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  2033         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  2034 #endif
  2035     return (false);
  2038   // Don't allow non-machine nodes to be handled this way
  2039   if (!n->is_Mach() && instruction_count == 0)
  2040     return (false);
  2042   // See if there is any overlap
  2043   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  2045   if (delay > 0) {
  2046 #ifndef PRODUCT
  2047     if (_cfg->C->trace_opto_output())
  2048       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  2049 #endif
  2050     return false;
  2053 #ifndef PRODUCT
  2054   if (_cfg->C->trace_opto_output())
  2055     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  2056 #endif
  2058   return true;
  2061 Node * Scheduling::ChooseNodeToBundle() {
  2062   uint siz = _available.size();
  2064   if (siz == 0) {
  2066 #ifndef PRODUCT
  2067     if (_cfg->C->trace_opto_output())
  2068       tty->print("#   ChooseNodeToBundle: NULL\n");
  2069 #endif
  2070     return (NULL);
  2073   // Fast path, if only 1 instruction in the bundle
  2074   if (siz == 1) {
  2075 #ifndef PRODUCT
  2076     if (_cfg->C->trace_opto_output()) {
  2077       tty->print("#   ChooseNodeToBundle (only 1): ");
  2078       _available[0]->dump();
  2080 #endif
  2081     return (_available[0]);
  2084   // Don't bother, if the bundle is already full
  2085   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  2086     for ( uint i = 0; i < siz; i++ ) {
  2087       Node *n = _available[i];
  2089       // Skip projections, we'll handle them another way
  2090       if (n->is_Proj())
  2091         continue;
  2093       // This presupposed that instructions are inserted into the
  2094       // available list in a legality order; i.e. instructions that
  2095       // must be inserted first are at the head of the list
  2096       if (NodeFitsInBundle(n)) {
  2097 #ifndef PRODUCT
  2098         if (_cfg->C->trace_opto_output()) {
  2099           tty->print("#   ChooseNodeToBundle: ");
  2100           n->dump();
  2102 #endif
  2103         return (n);
  2108   // Nothing fits in this bundle, choose the highest priority
  2109 #ifndef PRODUCT
  2110   if (_cfg->C->trace_opto_output()) {
  2111     tty->print("#   ChooseNodeToBundle: ");
  2112     _available[0]->dump();
  2114 #endif
  2116   return _available[0];
  2119 void Scheduling::AddNodeToAvailableList(Node *n) {
  2120   assert( !n->is_Proj(), "projections never directly made available" );
  2121 #ifndef PRODUCT
  2122   if (_cfg->C->trace_opto_output()) {
  2123     tty->print("#   AddNodeToAvailableList: ");
  2124     n->dump();
  2126 #endif
  2128   int latency = _current_latency[n->_idx];
  2130   // Insert in latency order (insertion sort)
  2131   uint i;
  2132   for ( i=0; i < _available.size(); i++ )
  2133     if (_current_latency[_available[i]->_idx] > latency)
  2134       break;
  2136   // Special Check for compares following branches
  2137   if( n->is_Mach() && _scheduled.size() > 0 ) {
  2138     int op = n->as_Mach()->ideal_Opcode();
  2139     Node *last = _scheduled[0];
  2140     if( last->is_MachIf() && last->in(1) == n &&
  2141         ( op == Op_CmpI ||
  2142           op == Op_CmpU ||
  2143           op == Op_CmpUL ||
  2144           op == Op_CmpP ||
  2145           op == Op_CmpF ||
  2146           op == Op_CmpD ||
  2147           op == Op_CmpL ) ) {
  2149       // Recalculate position, moving to front of same latency
  2150       for ( i=0 ; i < _available.size(); i++ )
  2151         if (_current_latency[_available[i]->_idx] >= latency)
  2152           break;
  2156   // Insert the node in the available list
  2157   _available.insert(i, n);
  2159 #ifndef PRODUCT
  2160   if (_cfg->C->trace_opto_output())
  2161     dump_available();
  2162 #endif
  2165 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  2166   for ( uint i=0; i < n->len(); i++ ) {
  2167     Node *def = n->in(i);
  2168     if (!def) continue;
  2169     if( def->is_Proj() )        // If this is a machine projection, then
  2170       def = def->in(0);         // propagate usage thru to the base instruction
  2172     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
  2173       continue;
  2176     // Compute the latency
  2177     uint l = _bundle_cycle_number + n->latency(i);
  2178     if (_current_latency[def->_idx] < l)
  2179       _current_latency[def->_idx] = l;
  2181     // If this does not have uses then schedule it
  2182     if ((--_uses[def->_idx]) == 0)
  2183       AddNodeToAvailableList(def);
  2187 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  2188 #ifndef PRODUCT
  2189   if (_cfg->C->trace_opto_output()) {
  2190     tty->print("#   AddNodeToBundle: ");
  2191     n->dump();
  2193 #endif
  2195   // Remove this from the available list
  2196   uint i;
  2197   for (i = 0; i < _available.size(); i++)
  2198     if (_available[i] == n)
  2199       break;
  2200   assert(i < _available.size(), "entry in _available list not found");
  2201   _available.remove(i);
  2203   // See if this fits in the current bundle
  2204   const Pipeline *node_pipeline = n->pipeline();
  2205   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  2207   // Check for instructions to be placed in the delay slot. We
  2208   // do this before we actually schedule the current instruction,
  2209   // because the delay slot follows the current instruction.
  2210   if (Pipeline::_branch_has_delay_slot &&
  2211       node_pipeline->hasBranchDelay() &&
  2212       !_unconditional_delay_slot) {
  2214     uint siz = _available.size();
  2216     // Conditional branches can support an instruction that
  2217     // is unconditionally executed and not dependent by the
  2218     // branch, OR a conditionally executed instruction if
  2219     // the branch is taken.  In practice, this means that
  2220     // the first instruction at the branch target is
  2221     // copied to the delay slot, and the branch goes to
  2222     // the instruction after that at the branch target
  2223     if ( n->is_MachBranch() ) {
  2225       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  2226       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  2228 #ifndef PRODUCT
  2229       _branches++;
  2230 #endif
  2232       // At least 1 instruction is on the available list
  2233       // that is not dependent on the branch
  2234       for (uint i = 0; i < siz; i++) {
  2235         Node *d = _available[i];
  2236         const Pipeline *avail_pipeline = d->pipeline();
  2238         // Don't allow safepoints in the branch shadow, that will
  2239         // cause a number of difficulties
  2240         if ( avail_pipeline->instructionCount() == 1 &&
  2241             !avail_pipeline->hasMultipleBundles() &&
  2242             !avail_pipeline->hasBranchDelay() &&
  2243             Pipeline::instr_has_unit_size() &&
  2244             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  2245             NodeFitsInBundle(d) &&
  2246             !node_bundling(d)->used_in_delay()) {
  2248           if (d->is_Mach() && !d->is_MachSafePoint()) {
  2249             // A node that fits in the delay slot was found, so we need to
  2250             // set the appropriate bits in the bundle pipeline information so
  2251             // that it correctly indicates resource usage.  Later, when we
  2252             // attempt to add this instruction to the bundle, we will skip
  2253             // setting the resource usage.
  2254             _unconditional_delay_slot = d;
  2255             node_bundling(n)->set_use_unconditional_delay();
  2256             node_bundling(d)->set_used_in_unconditional_delay();
  2257             _bundle_use.add_usage(avail_pipeline->resourceUse());
  2258             _current_latency[d->_idx] = _bundle_cycle_number;
  2259             _next_node = d;
  2260             ++_bundle_instr_count;
  2261 #ifndef PRODUCT
  2262             _unconditional_delays++;
  2263 #endif
  2264             break;
  2270     // No delay slot, add a nop to the usage
  2271     if (!_unconditional_delay_slot) {
  2272       // See if adding an instruction in the delay slot will overflow
  2273       // the bundle.
  2274       if (!NodeFitsInBundle(_nop)) {
  2275 #ifndef PRODUCT
  2276         if (_cfg->C->trace_opto_output())
  2277           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2278 #endif
  2279         step(1);
  2282       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2283       _next_node = _nop;
  2284       ++_bundle_instr_count;
  2287     // See if the instruction in the delay slot requires a
  2288     // step of the bundles
  2289     if (!NodeFitsInBundle(n)) {
  2290 #ifndef PRODUCT
  2291         if (_cfg->C->trace_opto_output())
  2292           tty->print("#  *** STEP(branch won't fit) ***\n");
  2293 #endif
  2294         // Update the state information
  2295         _bundle_instr_count = 0;
  2296         _bundle_cycle_number += 1;
  2297         _bundle_use.step(1);
  2301   // Get the number of instructions
  2302   uint instruction_count = node_pipeline->instructionCount();
  2303   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2304     instruction_count = 0;
  2306   // Compute the latency information
  2307   uint delay = 0;
  2309   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2310     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2311     if (relative_latency < 0)
  2312       relative_latency = 0;
  2314     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2316     // Does not fit in this bundle, start a new one
  2317     if (delay > 0) {
  2318       step(delay);
  2320 #ifndef PRODUCT
  2321       if (_cfg->C->trace_opto_output())
  2322         tty->print("#  *** STEP(%d) ***\n", delay);
  2323 #endif
  2327   // If this was placed in the delay slot, ignore it
  2328   if (n != _unconditional_delay_slot) {
  2330     if (delay == 0) {
  2331       if (node_pipeline->hasMultipleBundles()) {
  2332 #ifndef PRODUCT
  2333         if (_cfg->C->trace_opto_output())
  2334           tty->print("#  *** STEP(multiple instructions) ***\n");
  2335 #endif
  2336         step(1);
  2339       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2340 #ifndef PRODUCT
  2341         if (_cfg->C->trace_opto_output())
  2342           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2343             instruction_count + _bundle_instr_count,
  2344             Pipeline::_max_instrs_per_cycle);
  2345 #endif
  2346         step(1);
  2350     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2351       _bundle_instr_count++;
  2353     // Set the node's latency
  2354     _current_latency[n->_idx] = _bundle_cycle_number;
  2356     // Now merge the functional unit information
  2357     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2358       _bundle_use.add_usage(node_usage);
  2360     // Increment the number of instructions in this bundle
  2361     _bundle_instr_count += instruction_count;
  2363     // Remember this node for later
  2364     if (n->is_Mach())
  2365       _next_node = n;
  2368   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2369   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2370   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2371   // into the block.  All other scheduled nodes get put in the schedule here.
  2372   int op = n->Opcode();
  2373   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2374       (op != Op_Node &&         // Not an unused antidepedence node and
  2375        // not an unallocated boxlock
  2376        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2378     // Push any trailing projections
  2379     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
  2380       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2381         Node *foi = n->fast_out(i);
  2382         if( foi->is_Proj() )
  2383           _scheduled.push(foi);
  2387     // Put the instruction in the schedule list
  2388     _scheduled.push(n);
  2391 #ifndef PRODUCT
  2392   if (_cfg->C->trace_opto_output())
  2393     dump_available();
  2394 #endif
  2396   // Walk all the definitions, decrementing use counts, and
  2397   // if a definition has a 0 use count, place it in the available list.
  2398   DecrementUseCounts(n,bb);
  2401 // This method sets the use count within a basic block.  We will ignore all
  2402 // uses outside the current basic block.  As we are doing a backwards walk,
  2403 // any node we reach that has a use count of 0 may be scheduled.  This also
  2404 // avoids the problem of cyclic references from phi nodes, as long as phi
  2405 // nodes are at the front of the basic block.  This method also initializes
  2406 // the available list to the set of instructions that have no uses within this
  2407 // basic block.
  2408 void Scheduling::ComputeUseCount(const Block *bb) {
  2409 #ifndef PRODUCT
  2410   if (_cfg->C->trace_opto_output())
  2411     tty->print("# -> ComputeUseCount\n");
  2412 #endif
  2414   // Clear the list of available and scheduled instructions, just in case
  2415   _available.clear();
  2416   _scheduled.clear();
  2418   // No delay slot specified
  2419   _unconditional_delay_slot = NULL;
  2421 #ifdef ASSERT
  2422   for( uint i=0; i < bb->number_of_nodes(); i++ )
  2423     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
  2424 #endif
  2426   // Force the _uses count to never go to zero for unscheduable pieces
  2427   // of the block
  2428   for( uint k = 0; k < _bb_start; k++ )
  2429     _uses[bb->get_node(k)->_idx] = 1;
  2430   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
  2431     _uses[bb->get_node(l)->_idx] = 1;
  2433   // Iterate backwards over the instructions in the block.  Don't count the
  2434   // branch projections at end or the block header instructions.
  2435   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2436     Node *n = bb->get_node(j);
  2437     if( n->is_Proj() ) continue; // Projections handled another way
  2439     // Account for all uses
  2440     for ( uint k = 0; k < n->len(); k++ ) {
  2441       Node *inp = n->in(k);
  2442       if (!inp) continue;
  2443       assert(inp != n, "no cycles allowed" );
  2444       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
  2445         if (inp->is_Proj()) { // Skip through Proj's
  2446           inp = inp->in(0);
  2448         ++_uses[inp->_idx];     // Count 1 block-local use
  2452     // If this instruction has a 0 use count, then it is available
  2453     if (!_uses[n->_idx]) {
  2454       _current_latency[n->_idx] = _bundle_cycle_number;
  2455       AddNodeToAvailableList(n);
  2458 #ifndef PRODUCT
  2459     if (_cfg->C->trace_opto_output()) {
  2460       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2461       n->dump();
  2463 #endif
  2466 #ifndef PRODUCT
  2467   if (_cfg->C->trace_opto_output())
  2468     tty->print("# <- ComputeUseCount\n");
  2469 #endif
  2472 // This routine performs scheduling on each basic block in reverse order,
  2473 // using instruction latencies and taking into account function unit
  2474 // availability.
  2475 void Scheduling::DoScheduling() {
  2476 #ifndef PRODUCT
  2477   if (_cfg->C->trace_opto_output())
  2478     tty->print("# -> DoScheduling\n");
  2479 #endif
  2481   Block *succ_bb = NULL;
  2482   Block *bb;
  2484   // Walk over all the basic blocks in reverse order
  2485   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
  2486     bb = _cfg->get_block(i);
  2488 #ifndef PRODUCT
  2489     if (_cfg->C->trace_opto_output()) {
  2490       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2491       for (uint j = 0; j < bb->number_of_nodes(); j++) {
  2492         bb->get_node(j)->dump();
  2495 #endif
  2497     // On the head node, skip processing
  2498     if (bb == _cfg->get_root_block()) {
  2499       continue;
  2502     // Skip empty, connector blocks
  2503     if (bb->is_connector())
  2504       continue;
  2506     // If the following block is not the sole successor of
  2507     // this one, then reset the pipeline information
  2508     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2509 #ifndef PRODUCT
  2510       if (_cfg->C->trace_opto_output()) {
  2511         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2512                    _next_node->_idx, _bundle_instr_count);
  2514 #endif
  2515       step_and_clear();
  2518     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2519     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
  2520     _bb_end = bb->number_of_nodes()-1;
  2521     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2522       Node *n = bb->get_node(_bb_start);
  2523       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2524       // Also, MachIdealNodes do not get scheduled
  2525       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2526       MachNode *mach = n->as_Mach();
  2527       int iop = mach->ideal_Opcode();
  2528       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2529       if( iop == Op_Con ) continue;      // Do not schedule Top
  2530       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2531           mach->pipeline() == MachNode::pipeline_class() &&
  2532           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
  2533         continue;
  2534       break;                    // Funny loop structure to be sure...
  2536     // Compute last "interesting" instruction in block - last instruction we
  2537     // might schedule.  _bb_end points just after last schedulable inst.  We
  2538     // normally schedule conditional branches (despite them being forced last
  2539     // in the block), because they have delay slots we can fill.  Calls all
  2540     // have their delay slots filled in the template expansions, so we don't
  2541     // bother scheduling them.
  2542     Node *last = bb->get_node(_bb_end);
  2543     // Ignore trailing NOPs.
  2544     while (_bb_end > 0 && last->is_Mach() &&
  2545            last->as_Mach()->ideal_Opcode() == Op_Con) {
  2546       last = bb->get_node(--_bb_end);
  2548     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
  2549     if( last->is_Catch() ||
  2550        // Exclude unreachable path case when Halt node is in a separate block.
  2551        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2552       // There must be a prior call.  Skip it.
  2553       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
  2554         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
  2556     } else if( last->is_MachNullCheck() ) {
  2557       // Backup so the last null-checked memory instruction is
  2558       // outside the schedulable range. Skip over the nullcheck,
  2559       // projection, and the memory nodes.
  2560       Node *mem = last->in(1);
  2561       do {
  2562         _bb_end--;
  2563       } while (mem != bb->get_node(_bb_end));
  2564     } else {
  2565       // Set _bb_end to point after last schedulable inst.
  2566       _bb_end++;
  2569     assert( _bb_start <= _bb_end, "inverted block ends" );
  2571     // Compute the register antidependencies for the basic block
  2572     ComputeRegisterAntidependencies(bb);
  2573     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2575     // Compute intra-bb latencies for the nodes
  2576     ComputeLocalLatenciesForward(bb);
  2578     // Compute the usage within the block, and set the list of all nodes
  2579     // in the block that have no uses within the block.
  2580     ComputeUseCount(bb);
  2582     // Schedule the remaining instructions in the block
  2583     while ( _available.size() > 0 ) {
  2584       Node *n = ChooseNodeToBundle();
  2585       guarantee(n != NULL, "no nodes available");
  2586       AddNodeToBundle(n,bb);
  2589     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2590 #ifdef ASSERT
  2591     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2592       Node *n = bb->get_node(l);
  2593       uint m;
  2594       for( m = 0; m < _bb_end-_bb_start; m++ )
  2595         if( _scheduled[m] == n )
  2596           break;
  2597       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2599 #endif
  2601     // Now copy the instructions (in reverse order) back to the block
  2602     for ( uint k = _bb_start; k < _bb_end; k++ )
  2603       bb->map_node(_scheduled[_bb_end-k-1], k);
  2605 #ifndef PRODUCT
  2606     if (_cfg->C->trace_opto_output()) {
  2607       tty->print("#  Schedule BB#%03d (final)\n", i);
  2608       uint current = 0;
  2609       for (uint j = 0; j < bb->number_of_nodes(); j++) {
  2610         Node *n = bb->get_node(j);
  2611         if( valid_bundle_info(n) ) {
  2612           Bundle *bundle = node_bundling(n);
  2613           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2614             tty->print("*** Bundle: ");
  2615             bundle->dump();
  2617           n->dump();
  2621 #endif
  2622 #ifdef ASSERT
  2623   verify_good_schedule(bb,"after block local scheduling");
  2624 #endif
  2627 #ifndef PRODUCT
  2628   if (_cfg->C->trace_opto_output())
  2629     tty->print("# <- DoScheduling\n");
  2630 #endif
  2632   // Record final node-bundling array location
  2633   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2635 } // end DoScheduling
  2637 // Verify that no live-range used in the block is killed in the block by a
  2638 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2640 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2641 static bool edge_from_to( Node *from, Node *to ) {
  2642   for( uint i=0; i<from->len(); i++ )
  2643     if( from->in(i) == to )
  2644       return true;
  2645   return false;
  2648 #ifdef ASSERT
  2649 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2650   // Check for bad kills
  2651   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2652     Node *prior_use = _reg_node[def];
  2653     if( prior_use && !edge_from_to(prior_use,n) ) {
  2654       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2655       n->dump();
  2656       tty->print_cr("...");
  2657       prior_use->dump();
  2658       assert(edge_from_to(prior_use,n),msg);
  2660     _reg_node.map(def,NULL); // Kill live USEs
  2664 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2666   // Zap to something reasonable for the verify code
  2667   _reg_node.clear();
  2669   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2670   // kill a live value (other than the one it's supposed to).  Add each
  2671   // USE to the live set.
  2672   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
  2673     Node *n = b->get_node(i);
  2674     int n_op = n->Opcode();
  2675     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2676       // Fat-proj kills a slew of registers
  2677       RegMask rm = n->out_RegMask();// Make local copy
  2678       while( rm.is_NotEmpty() ) {
  2679         OptoReg::Name kill = rm.find_first_elem();
  2680         rm.Remove(kill);
  2681         verify_do_def( n, kill, msg );
  2683     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2684       // Get DEF'd registers the normal way
  2685       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2686       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2689     // Now make all USEs live
  2690     for( uint i=1; i<n->req(); i++ ) {
  2691       Node *def = n->in(i);
  2692       assert(def != 0, "input edge required");
  2693       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2694       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2695       if( OptoReg::is_valid(reg_lo) ) {
  2696         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
  2697         _reg_node.map(reg_lo,n);
  2699       if( OptoReg::is_valid(reg_hi) ) {
  2700         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
  2701         _reg_node.map(reg_hi,n);
  2707   // Zap to something reasonable for the Antidependence code
  2708   _reg_node.clear();
  2710 #endif
  2712 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2713 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2714   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2715     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2716     from = from->in(0);
  2718   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2719       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2720     from->add_prec(to);
  2723 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2724   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2725     return;
  2727   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2728   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
  2729       is_def ) {    // Check for a true def (not a kill)
  2730     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2731     return;
  2734   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2735   debug_only( def = (Node*)0xdeadbeef; )
  2737   // After some number of kills there _may_ be a later def
  2738   Node *later_def = NULL;
  2740   // Finding a kill requires a real pinch-point.
  2741   // Check for not already having a pinch-point.
  2742   // Pinch points are Op_Node's.
  2743   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2744     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2745     if ( _pinch_free_list.size() > 0) {
  2746       pinch = _pinch_free_list.pop();
  2747     } else {
  2748       pinch = new (_cfg->C) Node(1); // Pinch point to-be
  2750     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2751       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2752       return;
  2754     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
  2755     _reg_node.map(def_reg,pinch); // Record pinch-point
  2756     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2757     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2758       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2759       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2760       later_def = NULL;           // and no later def
  2762     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2763   } else {                        // Else have valid pinch point
  2764     if( pinch->in(0) )            // If there is a later-def
  2765       later_def = pinch->in(0);   // Get it
  2768   // Add output-dependence edge from later def to kill
  2769   if( later_def )               // If there is some original def
  2770     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2772   // See if current kill is also a use, and so is forced to be the pinch-point.
  2773   if( pinch->Opcode() == Op_Node ) {
  2774     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2775     for( uint i=1; i<uses->req(); i++ ) {
  2776       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2777           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2778         // Yes, found a use/kill pinch-point
  2779         pinch->set_req(0,NULL);  //
  2780         pinch->replace_by(kill); // Move anti-dep edges up
  2781         pinch = kill;
  2782         _reg_node.map(def_reg,pinch);
  2783         return;
  2788   // Add edge from kill to pinch-point
  2789   add_prec_edge_from_to(kill,pinch);
  2792 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2793   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2794     return;
  2795   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2796   // Check for no later def_reg/kill in block
  2797   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
  2798       // Use has to be block-local as well
  2799       _cfg->get_block_for_node(use) == b) {
  2800     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2801         pinch->req() == 1 ) {   // pinch not yet in block?
  2802       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2803       // Insert the pinch-point in the block just after the last use
  2804       b->insert_node(pinch, b->find_node(use) + 1);
  2805       _bb_end++;                // Increase size scheduled region in block
  2808     add_prec_edge_from_to(pinch,use);
  2812 // We insert antidependences between the reads and following write of
  2813 // allocated registers to prevent illegal code motion. Hopefully, the
  2814 // number of added references should be fairly small, especially as we
  2815 // are only adding references within the current basic block.
  2816 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2818 #ifdef ASSERT
  2819   verify_good_schedule(b,"before block local scheduling");
  2820 #endif
  2822   // A valid schedule, for each register independently, is an endless cycle
  2823   // of: a def, then some uses (connected to the def by true dependencies),
  2824   // then some kills (defs with no uses), finally the cycle repeats with a new
  2825   // def.  The uses are allowed to float relative to each other, as are the
  2826   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2827   // antidependencies between all uses of a single def and all kills that
  2828   // follow, up to the next def.  More edges are redundant, because later defs
  2829   // & kills are already serialized with true or antidependencies.  To keep
  2830   // the edge count down, we add a 'pinch point' node if there's more than
  2831   // one use or more than one kill/def.
  2833   // We add dependencies in one bottom-up pass.
  2835   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2837   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2838   // register.  If not, we record the DEF/KILL in _reg_node, the
  2839   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2840   // "pinch point", a new Node that's in the graph but not in the block.
  2841   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2842   // We put the pinch point in _reg_node.  If there's already a pinch point
  2843   // we merely add an edge from the current DEF/KILL to the pinch point.
  2845   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2846   // put an edge from the pinch point to the USE.
  2848   // To be expedient, the _reg_node array is pre-allocated for the whole
  2849   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2850   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2851   // block.  Leftover node from some prior block is treated like a NULL (no
  2852   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2853   // it being in the current block.
  2854   bool fat_proj_seen = false;
  2855   uint last_safept = _bb_end-1;
  2856   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
  2857   Node* last_safept_node = end_node;
  2858   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2859     Node *n = b->get_node(i);
  2860     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2861     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
  2862       // Fat-proj kills a slew of registers
  2863       // This can add edges to 'n' and obscure whether or not it was a def,
  2864       // hence the is_def flag.
  2865       fat_proj_seen = true;
  2866       RegMask rm = n->out_RegMask();// Make local copy
  2867       while( rm.is_NotEmpty() ) {
  2868         OptoReg::Name kill = rm.find_first_elem();
  2869         rm.Remove(kill);
  2870         anti_do_def( b, n, kill, is_def );
  2872     } else {
  2873       // Get DEF'd registers the normal way
  2874       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2875       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2878     // Kill projections on a branch should appear to occur on the
  2879     // branch, not afterwards, so grab the masks from the projections
  2880     // and process them.
  2881     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
  2882       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2883         Node* use = n->fast_out(i);
  2884         if (use->is_Proj()) {
  2885           RegMask rm = use->out_RegMask();// Make local copy
  2886           while( rm.is_NotEmpty() ) {
  2887             OptoReg::Name kill = rm.find_first_elem();
  2888             rm.Remove(kill);
  2889             anti_do_def( b, n, kill, false );
  2895     // Check each register used by this instruction for a following DEF/KILL
  2896     // that must occur afterward and requires an anti-dependence edge.
  2897     for( uint j=0; j<n->req(); j++ ) {
  2898       Node *def = n->in(j);
  2899       if( def ) {
  2900         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2901         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2902         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2905     // Do not allow defs of new derived values to float above GC
  2906     // points unless the base is definitely available at the GC point.
  2908     Node *m = b->get_node(i);
  2910     // Add precedence edge from following safepoint to use of derived pointer
  2911     if( last_safept_node != end_node &&
  2912         m != last_safept_node) {
  2913       for (uint k = 1; k < m->req(); k++) {
  2914         const Type *t = m->in(k)->bottom_type();
  2915         if( t->isa_oop_ptr() &&
  2916             t->is_ptr()->offset() != 0 ) {
  2917           last_safept_node->add_prec( m );
  2918           break;
  2923     if( n->jvms() ) {           // Precedence edge from derived to safept
  2924       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2925       if( b->get_node(last_safept) != last_safept_node ) {
  2926         last_safept = b->find_node(last_safept_node);
  2928       for( uint j=last_safept; j > i; j-- ) {
  2929         Node *mach = b->get_node(j);
  2930         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2931           mach->add_prec( n );
  2933       last_safept = i;
  2934       last_safept_node = m;
  2938   if (fat_proj_seen) {
  2939     // Garbage collect pinch nodes that were not consumed.
  2940     // They are usually created by a fat kill MachProj for a call.
  2941     garbage_collect_pinch_nodes();
  2945 // Garbage collect pinch nodes for reuse by other blocks.
  2946 //
  2947 // The block scheduler's insertion of anti-dependence
  2948 // edges creates many pinch nodes when the block contains
  2949 // 2 or more Calls.  A pinch node is used to prevent a
  2950 // combinatorial explosion of edges.  If a set of kills for a
  2951 // register is anti-dependent on a set of uses (or defs), rather
  2952 // than adding an edge in the graph between each pair of kill
  2953 // and use (or def), a pinch is inserted between them:
  2954 //
  2955 //            use1   use2  use3
  2956 //                \   |   /
  2957 //                 \  |  /
  2958 //                  pinch
  2959 //                 /  |  \
  2960 //                /   |   \
  2961 //            kill1 kill2 kill3
  2962 //
  2963 // One pinch node is created per register killed when
  2964 // the second call is encountered during a backwards pass
  2965 // over the block.  Most of these pinch nodes are never
  2966 // wired into the graph because the register is never
  2967 // used or def'ed in the block.
  2968 //
  2969 void Scheduling::garbage_collect_pinch_nodes() {
  2970 #ifndef PRODUCT
  2971     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2972 #endif
  2973     int trace_cnt = 0;
  2974     for (uint k = 0; k < _reg_node.Size(); k++) {
  2975       Node* pinch = _reg_node[k];
  2976       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
  2977           // no predecence input edges
  2978           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2979         cleanup_pinch(pinch);
  2980         _pinch_free_list.push(pinch);
  2981         _reg_node.map(k, NULL);
  2982 #ifndef PRODUCT
  2983         if (_cfg->C->trace_opto_output()) {
  2984           trace_cnt++;
  2985           if (trace_cnt > 40) {
  2986             tty->print("\n");
  2987             trace_cnt = 0;
  2989           tty->print(" %d", pinch->_idx);
  2991 #endif
  2994 #ifndef PRODUCT
  2995     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2996 #endif
  2999 // Clean up a pinch node for reuse.
  3000 void Scheduling::cleanup_pinch( Node *pinch ) {
  3001   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  3003   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  3004     Node* use = pinch->last_out(i);
  3005     uint uses_found = 0;
  3006     for (uint j = use->req(); j < use->len(); j++) {
  3007       if (use->in(j) == pinch) {
  3008         use->rm_prec(j);
  3009         uses_found++;
  3012     assert(uses_found > 0, "must be a precedence edge");
  3013     i -= uses_found;    // we deleted 1 or more copies of this edge
  3015   // May have a later_def entry
  3016   pinch->set_req(0, NULL);
  3019 #ifndef PRODUCT
  3021 void Scheduling::dump_available() const {
  3022   tty->print("#Availist  ");
  3023   for (uint i = 0; i < _available.size(); i++)
  3024     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  3025   tty->cr();
  3028 // Print Scheduling Statistics
  3029 void Scheduling::print_statistics() {
  3030   // Print the size added by nops for bundling
  3031   tty->print("Nops added %d bytes to total of %d bytes",
  3032     _total_nop_size, _total_method_size);
  3033   if (_total_method_size > 0)
  3034     tty->print(", for %.2f%%",
  3035       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  3036   tty->print("\n");
  3038   // Print the number of branch shadows filled
  3039   if (Pipeline::_branch_has_delay_slot) {
  3040     tty->print("Of %d branches, %d had unconditional delay slots filled",
  3041       _total_branches, _total_unconditional_delays);
  3042     if (_total_branches > 0)
  3043       tty->print(", for %.2f%%",
  3044         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  3045     tty->print("\n");
  3048   uint total_instructions = 0, total_bundles = 0;
  3050   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  3051     uint bundle_count   = _total_instructions_per_bundle[i];
  3052     total_instructions += bundle_count * i;
  3053     total_bundles      += bundle_count;
  3056   if (total_bundles > 0)
  3057     tty->print("Average ILP (excluding nops) is %.2f\n",
  3058       ((double)total_instructions) / ((double)total_bundles));
  3060 #endif

mercurial