src/share/vm/opto/loopnode.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8856
ac27a9c85bea
child 9041
95a08233f46c
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if (n->in(0) && !n->is_expensive()) {
    92     early = n->in(0);
    93     if (!early->is_CFG()) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for (; i < n->req(); i++) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if (c_d > e_d) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if (c_d == e_d &&    // Same depth?
   111                early != cin) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while (1) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if (n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d)
   121           break;                // early is deeper; keep him
   122         if (n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   if (n->is_expensive()) {
   136     assert(n->in(0), "should have control input");
   137     early = get_early_ctrl_for_expensive(n, early);
   138   }
   140   return early;
   141 }
   143 //------------------------------get_early_ctrl_for_expensive---------------------------------
   144 // Move node up the dominator tree as high as legal while still beneficial
   145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
   146   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
   147   assert(OptimizeExpensiveOps, "optimization off?");
   149   Node* ctl = n->in(0);
   150   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
   151   uint min_dom_depth = dom_depth(earliest);
   152 #ifdef ASSERT
   153   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
   154     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
   155     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
   156   }
   157 #endif
   158   if (dom_depth(ctl) < min_dom_depth) {
   159     return earliest;
   160   }
   162   while (1) {
   163     Node *next = ctl;
   164     // Moving the node out of a loop on the projection of a If
   165     // confuses loop predication. So once we hit a Loop in a If branch
   166     // that doesn't branch to an UNC, we stop. The code that process
   167     // expensive nodes will notice the loop and skip over it to try to
   168     // move the node further up.
   169     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
   170       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   171         break;
   172       }
   173       next = idom(ctl->in(1)->in(0));
   174     } else if (ctl->is_Proj()) {
   175       // We only move it up along a projection if the projection is
   176       // the single control projection for its parent: same code path,
   177       // if it's a If with UNC or fallthrough of a call.
   178       Node* parent_ctl = ctl->in(0);
   179       if (parent_ctl == NULL) {
   180         break;
   181       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
   182         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
   183       } else if (parent_ctl->is_If()) {
   184         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   185           break;
   186         }
   187         assert(idom(ctl) == parent_ctl, "strange");
   188         next = idom(parent_ctl);
   189       } else if (ctl->is_CatchProj()) {
   190         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
   191           break;
   192         }
   193         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
   194         next = parent_ctl->in(0)->in(0)->in(0);
   195       } else {
   196         // Check if parent control has a single projection (this
   197         // control is the only possible successor of the parent
   198         // control). If so, we can try to move the node above the
   199         // parent control.
   200         int nb_ctl_proj = 0;
   201         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
   202           Node *p = parent_ctl->fast_out(i);
   203           if (p->is_Proj() && p->is_CFG()) {
   204             nb_ctl_proj++;
   205             if (nb_ctl_proj > 1) {
   206               break;
   207             }
   208           }
   209         }
   211         if (nb_ctl_proj > 1) {
   212           break;
   213         }
   214         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
   215         assert(idom(ctl) == parent_ctl, "strange");
   216         next = idom(parent_ctl);
   217       }
   218     } else {
   219       next = idom(ctl);
   220     }
   221     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
   222       break;
   223     }
   224     ctl = next;
   225   }
   227   if (ctl != n->in(0)) {
   228     _igvn.hash_delete(n);
   229     n->set_req(0, ctl);
   230     _igvn.hash_insert(n);
   231   }
   233   return ctl;
   234 }
   237 //------------------------------set_early_ctrl---------------------------------
   238 // Set earliest legal control
   239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   240   Node *early = get_early_ctrl(n);
   242   // Record earliest legal location
   243   set_ctrl(n, early);
   244 }
   246 //------------------------------set_subtree_ctrl-------------------------------
   247 // set missing _ctrl entries on new nodes
   248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   249   // Already set?  Get out.
   250   if( _nodes[n->_idx] ) return;
   251   // Recursively set _nodes array to indicate where the Node goes
   252   uint i;
   253   for( i = 0; i < n->req(); ++i ) {
   254     Node *m = n->in(i);
   255     if( m && m != C->root() )
   256       set_subtree_ctrl( m );
   257   }
   259   // Fixup self
   260   set_early_ctrl( n );
   261 }
   263 //------------------------------is_counted_loop--------------------------------
   264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   265   PhaseGVN *gvn = &_igvn;
   267   // Counted loop head must be a good RegionNode with only 3 not NULL
   268   // control input edges: Self, Entry, LoopBack.
   269   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
   270     return false;
   271   }
   272   Node *init_control = x->in(LoopNode::EntryControl);
   273   Node *back_control = x->in(LoopNode::LoopBackControl);
   274   if (init_control == NULL || back_control == NULL)    // Partially dead
   275     return false;
   276   // Must also check for TOP when looking for a dead loop
   277   if (init_control->is_top() || back_control->is_top())
   278     return false;
   280   // Allow funny placement of Safepoint
   281   if (back_control->Opcode() == Op_SafePoint) {
   282     if (UseCountedLoopSafepoints) {
   283       // Leaving the safepoint on the backedge and creating a
   284       // CountedLoop will confuse optimizations. We can't move the
   285       // safepoint around because its jvm state wouldn't match a new
   286       // location. Give up on that loop.
   287       return false;
   288     }
   289     back_control = back_control->in(TypeFunc::Control);
   290   }
   292   // Controlling test for loop
   293   Node *iftrue = back_control;
   294   uint iftrue_op = iftrue->Opcode();
   295   if (iftrue_op != Op_IfTrue &&
   296       iftrue_op != Op_IfFalse)
   297     // I have a weird back-control.  Probably the loop-exit test is in
   298     // the middle of the loop and I am looking at some trailing control-flow
   299     // merge point.  To fix this I would have to partially peel the loop.
   300     return false; // Obscure back-control
   302   // Get boolean guarding loop-back test
   303   Node *iff = iftrue->in(0);
   304   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   305     return false;
   306   BoolNode *test = iff->in(1)->as_Bool();
   307   BoolTest::mask bt = test->_test._test;
   308   float cl_prob = iff->as_If()->_prob;
   309   if (iftrue_op == Op_IfFalse) {
   310     bt = BoolTest(bt).negate();
   311     cl_prob = 1.0 - cl_prob;
   312   }
   313   // Get backedge compare
   314   Node *cmp = test->in(1);
   315   int cmp_op = cmp->Opcode();
   316   if (cmp_op != Op_CmpI)
   317     return false;                // Avoid pointer & float compares
   319   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   320   Node *incr  = cmp->in(1);
   321   Node *limit = cmp->in(2);
   323   // ---------
   324   // need 'loop()' test to tell if limit is loop invariant
   325   // ---------
   327   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   328     Node *tmp = incr;            // Then reverse order into the CmpI
   329     incr = limit;
   330     limit = tmp;
   331     bt = BoolTest(bt).commute(); // And commute the exit test
   332   }
   333   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   334     return false;
   335   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   336     return false;
   338   Node* phi_incr = NULL;
   339   // Trip-counter increment must be commutative & associative.
   340   if (incr->is_Phi()) {
   341     if (incr->as_Phi()->region() != x || incr->req() != 3)
   342       return false; // Not simple trip counter expression
   343     phi_incr = incr;
   344     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   345     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   346       return false;
   347   }
   349   Node* trunc1 = NULL;
   350   Node* trunc2 = NULL;
   351   const TypeInt* iv_trunc_t = NULL;
   352   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   353     return false; // Funny increment opcode
   354   }
   355   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   357   // Get merge point
   358   Node *xphi = incr->in(1);
   359   Node *stride = incr->in(2);
   360   if (!stride->is_Con()) {     // Oops, swap these
   361     if (!xphi->is_Con())       // Is the other guy a constant?
   362       return false;             // Nope, unknown stride, bail out
   363     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   364     xphi = stride;
   365     stride = tmp;
   366   }
   367   // Stride must be constant
   368   int stride_con = stride->get_int();
   369   if (stride_con == 0)
   370     return false; // missed some peephole opt
   372   if (!xphi->is_Phi())
   373     return false; // Too much math on the trip counter
   374   if (phi_incr != NULL && phi_incr != xphi)
   375     return false;
   376   PhiNode *phi = xphi->as_Phi();
   378   // Phi must be of loop header; backedge must wrap to increment
   379   if (phi->region() != x)
   380     return false;
   381   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   382       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   383     return false;
   384   }
   385   Node *init_trip = phi->in(LoopNode::EntryControl);
   387   // If iv trunc type is smaller than int, check for possible wrap.
   388   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   389     assert(trunc1 != NULL, "must have found some truncation");
   391     // Get a better type for the phi (filtered thru if's)
   392     const TypeInt* phi_ft = filtered_type(phi);
   394     // Can iv take on a value that will wrap?
   395     //
   396     // Ensure iv's limit is not within "stride" of the wrap value.
   397     //
   398     // Example for "short" type
   399     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   400     //    If the stride is +10, then the last value of the induction
   401     //    variable before the increment (phi_ft->_hi) must be
   402     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   403     //    ensure no truncation occurs after the increment.
   405     if (stride_con > 0) {
   406       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   407           iv_trunc_t->_lo > phi_ft->_lo) {
   408         return false;  // truncation may occur
   409       }
   410     } else if (stride_con < 0) {
   411       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   412           iv_trunc_t->_hi < phi_ft->_hi) {
   413         return false;  // truncation may occur
   414       }
   415     }
   416     // No possibility of wrap so truncation can be discarded
   417     // Promote iv type to Int
   418   } else {
   419     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   420   }
   422   // If the condition is inverted and we will be rolling
   423   // through MININT to MAXINT, then bail out.
   424   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   425       // Odd stride
   426       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   427       // Count down loop rolls through MAXINT
   428       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   429       // Count up loop rolls through MININT
   430       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   431     return false; // Bail out
   432   }
   434   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   435   const TypeInt* limit_t = gvn->type(limit)->is_int();
   437   if (stride_con > 0) {
   438     jlong init_p = (jlong)init_t->_lo + stride_con;
   439     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
   440       return false; // cyclic loop or this loop trips only once
   441   } else {
   442     jlong init_p = (jlong)init_t->_hi + stride_con;
   443     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
   444       return false; // cyclic loop or this loop trips only once
   445   }
   447   if (phi_incr != NULL) {
   448     // check if there is a possiblity of IV overflowing after the first increment
   449     if (stride_con > 0) {
   450       if (init_t->_hi > max_jint - stride_con) {
   451         return false;
   452       }
   453     } else {
   454       if (init_t->_lo < min_jint - stride_con) {
   455         return false;
   456       }
   457     }
   458   }
   460   // =================================================
   461   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   462   //
   463   assert(x->Opcode() == Op_Loop, "regular loops only");
   464   C->print_method(PHASE_BEFORE_CLOOPS, 3);
   466   Node *hook = new (C) Node(6);
   468   if (LoopLimitCheck) {
   470   // ===================================================
   471   // Generate loop limit check to avoid integer overflow
   472   // in cases like next (cyclic loops):
   473   //
   474   // for (i=0; i <= max_jint; i++) {}
   475   // for (i=0; i <  max_jint; i+=2) {}
   476   //
   477   //
   478   // Limit check predicate depends on the loop test:
   479   //
   480   // for(;i != limit; i++)       --> limit <= (max_jint)
   481   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   482   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   483   //
   485   // Check if limit is excluded to do more precise int overflow check.
   486   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   487   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   489   // If compare points directly to the phi we need to adjust
   490   // the compare so that it points to the incr. Limit have
   491   // to be adjusted to keep trip count the same and the
   492   // adjusted limit should be checked for int overflow.
   493   if (phi_incr != NULL) {
   494     stride_m  += stride_con;
   495   }
   497   if (limit->is_Con()) {
   498     int limit_con = limit->get_int();
   499     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   500         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   501       // Bailout: it could be integer overflow.
   502       return false;
   503     }
   504   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   505              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   506       // Limit's type may satisfy the condition, for example,
   507       // when it is an array length.
   508   } else {
   509     // Generate loop's limit check.
   510     // Loop limit check predicate should be near the loop.
   511     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   512     if (!limit_check_proj) {
   513       // The limit check predicate is not generated if this method trapped here before.
   514 #ifdef ASSERT
   515       if (TraceLoopLimitCheck) {
   516         tty->print("missing loop limit check:");
   517         loop->dump_head();
   518         x->dump(1);
   519       }
   520 #endif
   521       return false;
   522     }
   524     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   525     Node* cmp_limit;
   526     Node* bol;
   528     if (stride_con > 0) {
   529       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   530       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
   531     } else {
   532       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   533       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
   534     }
   535     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   536     bol = _igvn.register_new_node_with_optimizer(bol);
   537     set_subtree_ctrl(bol);
   539     // Replace condition in original predicate but preserve Opaque node
   540     // so that previous predicates could be found.
   541     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   542            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   543     Node* opq = check_iff->in(1)->in(1);
   544     _igvn.hash_delete(opq);
   545     opq->set_req(1, bol);
   546     // Update ctrl.
   547     set_ctrl(opq, check_iff->in(0));
   548     set_ctrl(check_iff->in(1), check_iff->in(0));
   550 #ifndef PRODUCT
   551     // report that the loop predication has been actually performed
   552     // for this loop
   553     if (TraceLoopLimitCheck) {
   554       tty->print_cr("Counted Loop Limit Check generated:");
   555       debug_only( bol->dump(2); )
   556     }
   557 #endif
   558   }
   560   if (phi_incr != NULL) {
   561     // If compare points directly to the phi we need to adjust
   562     // the compare so that it points to the incr. Limit have
   563     // to be adjusted to keep trip count the same and we
   564     // should avoid int overflow.
   565     //
   566     //   i = init; do {} while(i++ < limit);
   567     // is converted to
   568     //   i = init; do {} while(++i < limit+1);
   569     //
   570     limit = gvn->transform(new (C) AddINode(limit, stride));
   571   }
   573   // Now we need to canonicalize loop condition.
   574   if (bt == BoolTest::ne) {
   575     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   576     // 'ne' can be replaced with 'lt' only when init < limit.
   577     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   578       bt = BoolTest::lt;
   579     // 'ne' can be replaced with 'gt' only when init > limit.
   580     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   581       bt = BoolTest::gt;
   582   }
   584   if (incl_limit) {
   585     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   586     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   587     //
   588     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   589     limit = gvn->transform(new (C) AddINode(limit, one));
   590     if (bt == BoolTest::le)
   591       bt = BoolTest::lt;
   592     else if (bt == BoolTest::ge)
   593       bt = BoolTest::gt;
   594     else
   595       ShouldNotReachHere();
   596   }
   597   set_subtree_ctrl( limit );
   599   } else { // LoopLimitCheck
   601   // If compare points to incr, we are ok.  Otherwise the compare
   602   // can directly point to the phi; in this case adjust the compare so that
   603   // it points to the incr by adjusting the limit.
   604   if (cmp->in(1) == phi || cmp->in(2) == phi)
   605     limit = gvn->transform(new (C) AddINode(limit,stride));
   607   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   608   // Final value for iterator should be: trip_count * stride + init_trip.
   609   Node *one_p = gvn->intcon( 1);
   610   Node *one_m = gvn->intcon(-1);
   612   Node *trip_count = NULL;
   613   switch( bt ) {
   614   case BoolTest::eq:
   615     ShouldNotReachHere();
   616   case BoolTest::ne:            // Ahh, the case we desire
   617     if (stride_con == 1)
   618       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
   619     else if (stride_con == -1)
   620       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
   621     else
   622       ShouldNotReachHere();
   623     set_subtree_ctrl(trip_count);
   624     //_loop.map(trip_count->_idx,loop(limit));
   625     break;
   626   case BoolTest::le:            // Maybe convert to '<' case
   627     limit = gvn->transform(new (C) AddINode(limit,one_p));
   628     set_subtree_ctrl( limit );
   629     hook->init_req(4, limit);
   631     bt = BoolTest::lt;
   632     // Make the new limit be in the same loop nest as the old limit
   633     //_loop.map(limit->_idx,limit_loop);
   634     // Fall into next case
   635   case BoolTest::lt: {          // Maybe convert to '!=' case
   636     if (stride_con < 0) // Count down loop rolls through MAXINT
   637       ShouldNotReachHere();
   638     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   639     set_subtree_ctrl( range );
   640     hook->init_req(0, range);
   642     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   643     set_subtree_ctrl( bias );
   644     hook->init_req(1, bias);
   646     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
   647     set_subtree_ctrl( bias1 );
   648     hook->init_req(2, bias1);
   650     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   651     set_subtree_ctrl( trip_count );
   652     hook->init_req(3, trip_count);
   653     break;
   654   }
   656   case BoolTest::ge:            // Maybe convert to '>' case
   657     limit = gvn->transform(new (C) AddINode(limit,one_m));
   658     set_subtree_ctrl( limit );
   659     hook->init_req(4 ,limit);
   661     bt = BoolTest::gt;
   662     // Make the new limit be in the same loop nest as the old limit
   663     //_loop.map(limit->_idx,limit_loop);
   664     // Fall into next case
   665   case BoolTest::gt: {          // Maybe convert to '!=' case
   666     if (stride_con > 0) // count up loop rolls through MININT
   667       ShouldNotReachHere();
   668     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   669     set_subtree_ctrl( range );
   670     hook->init_req(0, range);
   672     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   673     set_subtree_ctrl( bias );
   674     hook->init_req(1, bias);
   676     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
   677     set_subtree_ctrl( bias1 );
   678     hook->init_req(2, bias1);
   680     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   681     set_subtree_ctrl( trip_count );
   682     hook->init_req(3, trip_count);
   683     break;
   684   }
   685   } // switch( bt )
   687   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
   688   set_subtree_ctrl( span );
   689   hook->init_req(5, span);
   691   limit = gvn->transform(new (C) AddINode(span,init_trip));
   692   set_subtree_ctrl( limit );
   694   } // LoopLimitCheck
   696   if (!UseCountedLoopSafepoints) {
   697     // Check for SafePoint on backedge and remove
   698     Node *sfpt = x->in(LoopNode::LoopBackControl);
   699     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   700       lazy_replace( sfpt, iftrue );
   701       if (loop->_safepts != NULL) {
   702         loop->_safepts->yank(sfpt);
   703       }
   704       loop->_tail = iftrue;
   705     }
   706   }
   708   // Build a canonical trip test.
   709   // Clone code, as old values may be in use.
   710   incr = incr->clone();
   711   incr->set_req(1,phi);
   712   incr->set_req(2,stride);
   713   incr = _igvn.register_new_node_with_optimizer(incr);
   714   set_early_ctrl( incr );
   715   _igvn.hash_delete(phi);
   716   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   718   // If phi type is more restrictive than Int, raise to
   719   // Int to prevent (almost) infinite recursion in igvn
   720   // which can only handle integer types for constants or minint..maxint.
   721   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   722     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   723     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   724     nphi = _igvn.register_new_node_with_optimizer(nphi);
   725     set_ctrl(nphi, get_ctrl(phi));
   726     _igvn.replace_node(phi, nphi);
   727     phi = nphi->as_Phi();
   728   }
   729   cmp = cmp->clone();
   730   cmp->set_req(1,incr);
   731   cmp->set_req(2,limit);
   732   cmp = _igvn.register_new_node_with_optimizer(cmp);
   733   set_ctrl(cmp, iff->in(0));
   735   test = test->clone()->as_Bool();
   736   (*(BoolTest*)&test->_test)._test = bt;
   737   test->set_req(1,cmp);
   738   _igvn.register_new_node_with_optimizer(test);
   739   set_ctrl(test, iff->in(0));
   741   // Replace the old IfNode with a new LoopEndNode
   742   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   743   IfNode *le = lex->as_If();
   744   uint dd = dom_depth(iff);
   745   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   746   set_loop(le, loop);
   748   // Get the loop-exit control
   749   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   751   // Need to swap loop-exit and loop-back control?
   752   if (iftrue_op == Op_IfFalse) {
   753     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
   754     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
   756     loop->_tail = back_control = ift2;
   757     set_loop(ift2, loop);
   758     set_loop(iff2, get_loop(iffalse));
   760     // Lazy update of 'get_ctrl' mechanism.
   761     lazy_replace(iffalse, iff2);
   762     lazy_replace(iftrue,  ift2);
   764     // Swap names
   765     iffalse = iff2;
   766     iftrue  = ift2;
   767   } else {
   768     _igvn.hash_delete(iffalse);
   769     _igvn.hash_delete(iftrue);
   770     iffalse->set_req_X( 0, le, &_igvn );
   771     iftrue ->set_req_X( 0, le, &_igvn );
   772   }
   774   set_idom(iftrue,  le, dd+1);
   775   set_idom(iffalse, le, dd+1);
   776   assert(iff->outcnt() == 0, "should be dead now");
   777   lazy_replace( iff, le ); // fix 'get_ctrl'
   779   // Now setup a new CountedLoopNode to replace the existing LoopNode
   780   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
   781   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   782   // The following assert is approximately true, and defines the intention
   783   // of can_be_counted_loop.  It fails, however, because phase->type
   784   // is not yet initialized for this loop and its parts.
   785   //assert(l->can_be_counted_loop(this), "sanity");
   786   _igvn.register_new_node_with_optimizer(l);
   787   set_loop(l, loop);
   788   loop->_head = l;
   789   // Fix all data nodes placed at the old loop head.
   790   // Uses the lazy-update mechanism of 'get_ctrl'.
   791   lazy_replace( x, l );
   792   set_idom(l, init_control, dom_depth(x));
   794   if (!UseCountedLoopSafepoints) {
   795     // Check for immediately preceding SafePoint and remove
   796     Node *sfpt2 = le->in(0);
   797     if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
   798       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   799       if (loop->_safepts != NULL) {
   800         loop->_safepts->yank(sfpt2);
   801       }
   802     }
   803   }
   805   // Free up intermediate goo
   806   _igvn.remove_dead_node(hook);
   808 #ifdef ASSERT
   809   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   810   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   811 #endif
   812 #ifndef PRODUCT
   813   if (TraceLoopOpts) {
   814     tty->print("Counted      ");
   815     loop->dump_head();
   816   }
   817 #endif
   819   C->print_method(PHASE_AFTER_CLOOPS, 3);
   821   return true;
   822 }
   824 //----------------------exact_limit-------------------------------------------
   825 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   826   assert(loop->_head->is_CountedLoop(), "");
   827   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   828   assert(cl->is_valid_counted_loop(), "");
   830   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   831       cl->limit()->Opcode() == Op_LoopLimit) {
   832     // Old code has exact limit (it could be incorrect in case of int overflow).
   833     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   834     return cl->limit();
   835   }
   836   Node *limit = NULL;
   837 #ifdef ASSERT
   838   BoolTest::mask bt = cl->loopexit()->test_trip();
   839   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   840 #endif
   841   if (cl->has_exact_trip_count()) {
   842     // Simple case: loop has constant boundaries.
   843     // Use jlongs to avoid integer overflow.
   844     int stride_con = cl->stride_con();
   845     jlong  init_con = cl->init_trip()->get_int();
   846     jlong limit_con = cl->limit()->get_int();
   847     julong trip_cnt = cl->trip_count();
   848     jlong final_con = init_con + trip_cnt*stride_con;
   849     int final_int = (int)final_con;
   850     // The final value should be in integer range since the loop
   851     // is counted and the limit was checked for overflow.
   852     assert(final_con == (jlong)final_int, "final value should be integer");
   853     limit = _igvn.intcon(final_int);
   854   } else {
   855     // Create new LoopLimit node to get exact limit (final iv value).
   856     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   857     register_new_node(limit, cl->in(LoopNode::EntryControl));
   858   }
   859   assert(limit != NULL, "sanity");
   860   return limit;
   861 }
   863 //------------------------------Ideal------------------------------------------
   864 // Return a node which is more "ideal" than the current node.
   865 // Attempt to convert into a counted-loop.
   866 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   867   if (!can_be_counted_loop(phase)) {
   868     phase->C->set_major_progress();
   869   }
   870   return RegionNode::Ideal(phase, can_reshape);
   871 }
   874 //=============================================================================
   875 //------------------------------Ideal------------------------------------------
   876 // Return a node which is more "ideal" than the current node.
   877 // Attempt to convert into a counted-loop.
   878 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   879   return RegionNode::Ideal(phase, can_reshape);
   880 }
   882 //------------------------------dump_spec--------------------------------------
   883 // Dump special per-node info
   884 #ifndef PRODUCT
   885 void CountedLoopNode::dump_spec(outputStream *st) const {
   886   LoopNode::dump_spec(st);
   887   if (stride_is_con()) {
   888     st->print("stride: %d ",stride_con());
   889   }
   890   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   891   if (is_main_loop()) st->print("main of N%d", _idx);
   892   if (is_post_loop()) st->print("post of N%d", _main_idx);
   893 }
   894 #endif
   896 //=============================================================================
   897 int CountedLoopEndNode::stride_con() const {
   898   return stride()->bottom_type()->is_int()->get_con();
   899 }
   901 //=============================================================================
   902 //------------------------------Value-----------------------------------------
   903 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   904   const Type* init_t   = phase->type(in(Init));
   905   const Type* limit_t  = phase->type(in(Limit));
   906   const Type* stride_t = phase->type(in(Stride));
   907   // Either input is TOP ==> the result is TOP
   908   if (init_t   == Type::TOP) return Type::TOP;
   909   if (limit_t  == Type::TOP) return Type::TOP;
   910   if (stride_t == Type::TOP) return Type::TOP;
   912   int stride_con = stride_t->is_int()->get_con();
   913   if (stride_con == 1)
   914     return NULL;  // Identity
   916   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   917     // Use jlongs to avoid integer overflow.
   918     jlong init_con   =  init_t->is_int()->get_con();
   919     jlong limit_con  = limit_t->is_int()->get_con();
   920     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   921     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
   922     jlong final_con  = init_con + stride_con*trip_count;
   923     int final_int = (int)final_con;
   924     // The final value should be in integer range since the loop
   925     // is counted and the limit was checked for overflow.
   926     assert(final_con == (jlong)final_int, "final value should be integer");
   927     return TypeInt::make(final_int);
   928   }
   930   return bottom_type(); // TypeInt::INT
   931 }
   933 //------------------------------Ideal------------------------------------------
   934 // Return a node which is more "ideal" than the current node.
   935 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   936   if (phase->type(in(Init))   == Type::TOP ||
   937       phase->type(in(Limit))  == Type::TOP ||
   938       phase->type(in(Stride)) == Type::TOP)
   939     return NULL;  // Dead
   941   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   942   if (stride_con == 1)
   943     return NULL;  // Identity
   945   if (in(Init)->is_Con() && in(Limit)->is_Con())
   946     return NULL;  // Value
   948   // Delay following optimizations until all loop optimizations
   949   // done to keep Ideal graph simple.
   950   if (!can_reshape || phase->C->major_progress())
   951     return NULL;
   953   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   954   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   955   int stride_p;
   956   jlong lim, ini;
   957   julong max;
   958   if (stride_con > 0) {
   959     stride_p = stride_con;
   960     lim = limit_t->_hi;
   961     ini = init_t->_lo;
   962     max = (julong)max_jint;
   963   } else {
   964     stride_p = -stride_con;
   965     lim = init_t->_hi;
   966     ini = limit_t->_lo;
   967     max = (julong)min_jint;
   968   }
   969   julong range = lim - ini + stride_p;
   970   if (range <= max) {
   971     // Convert to integer expression if it is not overflow.
   972     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   973     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
   974     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
   975     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
   976     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
   977     return new (phase->C) AddINode(span, in(Init)); // exact limit
   978   }
   980   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   981       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   982     // Convert to long expression to avoid integer overflow
   983     // and let igvn optimizer convert this division.
   984     //
   985     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
   986     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
   987     Node* stride   = phase->longcon(stride_con);
   988     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   990     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
   991     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
   992     Node *span;
   993     if (stride_con > 0 && is_power_of_2(stride_p)) {
   994       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   995       // and avoid generating rounding for division. Zero trip guard should
   996       // guarantee that init < limit but sometimes the guard is missing and
   997       // we can get situation when init > limit. Note, for the empty loop
   998       // optimization zero trip guard is generated explicitly which leaves
   999       // only RCE predicate where exact limit is used and the predicate
  1000       // will simply fail forcing recompilation.
  1001       Node* neg_stride   = phase->longcon(-stride_con);
  1002       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
  1003     } else {
  1004       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
  1005       span = phase->transform(new (phase->C) MulLNode(trip, stride));
  1007     // Convert back to int
  1008     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
  1009     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
  1012   return NULL;    // No progress
  1015 //------------------------------Identity---------------------------------------
  1016 // If stride == 1 return limit node.
  1017 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
  1018   int stride_con = phase->type(in(Stride))->is_int()->get_con();
  1019   if (stride_con == 1 || stride_con == -1)
  1020     return in(Limit);
  1021   return this;
  1024 //=============================================================================
  1025 //----------------------match_incr_with_optional_truncation--------------------
  1026 // Match increment with optional truncation:
  1027 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
  1028 // Return NULL for failure. Success returns the increment node.
  1029 Node* CountedLoopNode::match_incr_with_optional_truncation(
  1030                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
  1031   // Quick cutouts:
  1032   if (expr == NULL || expr->req() != 3)  return NULL;
  1034   Node *t1 = NULL;
  1035   Node *t2 = NULL;
  1036   const TypeInt* trunc_t = TypeInt::INT;
  1037   Node* n1 = expr;
  1038   int   n1op = n1->Opcode();
  1040   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
  1041   if (n1op == Op_AndI &&
  1042       n1->in(2)->is_Con() &&
  1043       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
  1044     // %%% This check should match any mask of 2**K-1.
  1045     t1 = n1;
  1046     n1 = t1->in(1);
  1047     n1op = n1->Opcode();
  1048     trunc_t = TypeInt::CHAR;
  1049   } else if (n1op == Op_RShiftI &&
  1050              n1->in(1) != NULL &&
  1051              n1->in(1)->Opcode() == Op_LShiftI &&
  1052              n1->in(2) == n1->in(1)->in(2) &&
  1053              n1->in(2)->is_Con()) {
  1054     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
  1055     // %%% This check should match any shift in [1..31].
  1056     if (shift == 16 || shift == 8) {
  1057       t1 = n1;
  1058       t2 = t1->in(1);
  1059       n1 = t2->in(1);
  1060       n1op = n1->Opcode();
  1061       if (shift == 16) {
  1062         trunc_t = TypeInt::SHORT;
  1063       } else if (shift == 8) {
  1064         trunc_t = TypeInt::BYTE;
  1069   // If (maybe after stripping) it is an AddI, we won:
  1070   if (n1op == Op_AddI) {
  1071     *trunc1 = t1;
  1072     *trunc2 = t2;
  1073     *trunc_type = trunc_t;
  1074     return n1;
  1077   // failed
  1078   return NULL;
  1082 //------------------------------filtered_type--------------------------------
  1083 // Return a type based on condition control flow
  1084 // A successful return will be a type that is restricted due
  1085 // to a series of dominating if-tests, such as:
  1086 //    if (i < 10) {
  1087 //       if (i > 0) {
  1088 //          here: "i" type is [1..10)
  1089 //       }
  1090 //    }
  1091 // or a control flow merge
  1092 //    if (i < 10) {
  1093 //       do {
  1094 //          phi( , ) -- at top of loop type is [min_int..10)
  1095 //         i = ?
  1096 //       } while ( i < 10)
  1097 //
  1098 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
  1099   assert(n && n->bottom_type()->is_int(), "must be int");
  1100   const TypeInt* filtered_t = NULL;
  1101   if (!n->is_Phi()) {
  1102     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
  1103     filtered_t = filtered_type_from_dominators(n, n_ctrl);
  1105   } else {
  1106     Node* phi    = n->as_Phi();
  1107     Node* region = phi->in(0);
  1108     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
  1109     if (region && region != C->top()) {
  1110       for (uint i = 1; i < phi->req(); i++) {
  1111         Node* val   = phi->in(i);
  1112         Node* use_c = region->in(i);
  1113         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
  1114         if (val_t != NULL) {
  1115           if (filtered_t == NULL) {
  1116             filtered_t = val_t;
  1117           } else {
  1118             filtered_t = filtered_t->meet(val_t)->is_int();
  1124   const TypeInt* n_t = _igvn.type(n)->is_int();
  1125   if (filtered_t != NULL) {
  1126     n_t = n_t->join(filtered_t)->is_int();
  1128   return n_t;
  1132 //------------------------------filtered_type_from_dominators--------------------------------
  1133 // Return a possibly more restrictive type for val based on condition control flow of dominators
  1134 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
  1135   if (val->is_Con()) {
  1136      return val->bottom_type()->is_int();
  1138   uint if_limit = 10; // Max number of dominating if's visited
  1139   const TypeInt* rtn_t = NULL;
  1141   if (use_ctrl && use_ctrl != C->top()) {
  1142     Node* val_ctrl = get_ctrl(val);
  1143     uint val_dom_depth = dom_depth(val_ctrl);
  1144     Node* pred = use_ctrl;
  1145     uint if_cnt = 0;
  1146     while (if_cnt < if_limit) {
  1147       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1148         if_cnt++;
  1149         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1150         if (if_t != NULL) {
  1151           if (rtn_t == NULL) {
  1152             rtn_t = if_t;
  1153           } else {
  1154             rtn_t = rtn_t->join(if_t)->is_int();
  1158       pred = idom(pred);
  1159       if (pred == NULL || pred == C->top()) {
  1160         break;
  1162       // Stop if going beyond definition block of val
  1163       if (dom_depth(pred) < val_dom_depth) {
  1164         break;
  1168   return rtn_t;
  1172 //------------------------------dump_spec--------------------------------------
  1173 // Dump special per-node info
  1174 #ifndef PRODUCT
  1175 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1176   if( in(TestValue)->is_Bool() ) {
  1177     BoolTest bt( test_trip()); // Added this for g++.
  1179     st->print("[");
  1180     bt.dump_on(st);
  1181     st->print("]");
  1183   st->print(" ");
  1184   IfNode::dump_spec(st);
  1186 #endif
  1188 //=============================================================================
  1189 //------------------------------is_member--------------------------------------
  1190 // Is 'l' a member of 'this'?
  1191 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1192   while( l->_nest > _nest ) l = l->_parent;
  1193   return l == this;
  1196 //------------------------------set_nest---------------------------------------
  1197 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1198 int IdealLoopTree::set_nest( uint depth ) {
  1199   _nest = depth;
  1200   int bits = _has_call;
  1201   if( _child ) bits |= _child->set_nest(depth+1);
  1202   if( bits ) _has_call = 1;
  1203   if( _next  ) bits |= _next ->set_nest(depth  );
  1204   return bits;
  1207 //------------------------------split_fall_in----------------------------------
  1208 // Split out multiple fall-in edges from the loop header.  Move them to a
  1209 // private RegionNode before the loop.  This becomes the loop landing pad.
  1210 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1211   PhaseIterGVN &igvn = phase->_igvn;
  1212   uint i;
  1214   // Make a new RegionNode to be the landing pad.
  1215   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
  1216   phase->set_loop(landing_pad,_parent);
  1217   // Gather all the fall-in control paths into the landing pad
  1218   uint icnt = fall_in_cnt;
  1219   uint oreq = _head->req();
  1220   for( i = oreq-1; i>0; i-- )
  1221     if( !phase->is_member( this, _head->in(i) ) )
  1222       landing_pad->set_req(icnt--,_head->in(i));
  1224   // Peel off PhiNode edges as well
  1225   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1226     Node *oj = _head->fast_out(j);
  1227     if( oj->is_Phi() ) {
  1228       PhiNode* old_phi = oj->as_Phi();
  1229       assert( old_phi->region() == _head, "" );
  1230       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1231       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1232       uint icnt = fall_in_cnt;
  1233       for( i = oreq-1; i>0; i-- ) {
  1234         if( !phase->is_member( this, _head->in(i) ) ) {
  1235           p->init_req(icnt--, old_phi->in(i));
  1236           // Go ahead and clean out old edges from old phi
  1237           old_phi->del_req(i);
  1240       // Search for CSE's here, because ZKM.jar does a lot of
  1241       // loop hackery and we need to be a little incremental
  1242       // with the CSE to avoid O(N^2) node blow-up.
  1243       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1244       if( p2 ) {                // Found CSE
  1245         p->destruct();          // Recover useless new node
  1246         p = p2;                 // Use old node
  1247       } else {
  1248         igvn.register_new_node_with_optimizer(p, old_phi);
  1250       // Make old Phi refer to new Phi.
  1251       old_phi->add_req(p);
  1252       // Check for the special case of making the old phi useless and
  1253       // disappear it.  In JavaGrande I have a case where this useless
  1254       // Phi is the loop limit and prevents recognizing a CountedLoop
  1255       // which in turn prevents removing an empty loop.
  1256       Node *id_old_phi = old_phi->Identity( &igvn );
  1257       if( id_old_phi != old_phi ) { // Found a simple identity?
  1258         // Note that I cannot call 'replace_node' here, because
  1259         // that will yank the edge from old_phi to the Region and
  1260         // I'm mid-iteration over the Region's uses.
  1261         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1262           Node* use = old_phi->last_out(i);
  1263           igvn.rehash_node_delayed(use);
  1264           uint uses_found = 0;
  1265           for (uint j = 0; j < use->len(); j++) {
  1266             if (use->in(j) == old_phi) {
  1267               if (j < use->req()) use->set_req (j, id_old_phi);
  1268               else                use->set_prec(j, id_old_phi);
  1269               uses_found++;
  1272           i -= uses_found;    // we deleted 1 or more copies of this edge
  1275       igvn._worklist.push(old_phi);
  1278   // Finally clean out the fall-in edges from the RegionNode
  1279   for( i = oreq-1; i>0; i-- ) {
  1280     if( !phase->is_member( this, _head->in(i) ) ) {
  1281       _head->del_req(i);
  1284   // Transform landing pad
  1285   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1286   // Insert landing pad into the header
  1287   _head->add_req(landing_pad);
  1290 //------------------------------split_outer_loop-------------------------------
  1291 // Split out the outermost loop from this shared header.
  1292 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1293   PhaseIterGVN &igvn = phase->_igvn;
  1295   // Find index of outermost loop; it should also be my tail.
  1296   uint outer_idx = 1;
  1297   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1299   // Make a LoopNode for the outermost loop.
  1300   Node *ctl = _head->in(LoopNode::EntryControl);
  1301   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
  1302   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1303   phase->set_created_loop_node();
  1305   // Outermost loop falls into '_head' loop
  1306   _head->set_req(LoopNode::EntryControl, outer);
  1307   _head->del_req(outer_idx);
  1308   // Split all the Phis up between '_head' loop and 'outer' loop.
  1309   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1310     Node *out = _head->fast_out(j);
  1311     if( out->is_Phi() ) {
  1312       PhiNode *old_phi = out->as_Phi();
  1313       assert( old_phi->region() == _head, "" );
  1314       Node *phi = PhiNode::make_blank(outer, old_phi);
  1315       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1316       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1317       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1318       // Make old Phi point to new Phi on the fall-in path
  1319       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
  1320       old_phi->del_req(outer_idx);
  1324   // Use the new loop head instead of the old shared one
  1325   _head = outer;
  1326   phase->set_loop(_head, this);
  1329 //------------------------------fix_parent-------------------------------------
  1330 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1331   loop->_parent = parent;
  1332   if( loop->_child ) fix_parent( loop->_child, loop   );
  1333   if( loop->_next  ) fix_parent( loop->_next , parent );
  1336 //------------------------------estimate_path_freq-----------------------------
  1337 static float estimate_path_freq( Node *n ) {
  1338   // Try to extract some path frequency info
  1339   IfNode *iff;
  1340   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1341     uint nop = n->Opcode();
  1342     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1343       n = n->in(0);
  1344       continue;
  1346     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1347       // Assume call does not always throw exceptions: means the call-site
  1348       // count is also the frequency of the fall-through path.
  1349       assert( n->is_CatchProj(), "" );
  1350       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1351         return 0.0f;            // Assume call exception path is rare
  1352       Node *call = n->in(0)->in(0)->in(0);
  1353       assert( call->is_Call(), "expect a call here" );
  1354       const JVMState *jvms = ((CallNode*)call)->jvms();
  1355       ciMethodData* methodData = jvms->method()->method_data();
  1356       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1357       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1358       if ((data == NULL) || !data->is_CounterData()) {
  1359         // no call profile available, try call's control input
  1360         n = n->in(0);
  1361         continue;
  1363       return data->as_CounterData()->count()/FreqCountInvocations;
  1365     // See if there's a gating IF test
  1366     Node *n_c = n->in(0);
  1367     if( !n_c->is_If() ) break;       // No estimate available
  1368     iff = n_c->as_If();
  1369     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1370       // Compute how much count comes on this path
  1371       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1372     // Have no count info.  Skip dull uncommon-trap like branches.
  1373     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1374         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1375       break;
  1376     // Skip through never-taken branch; look for a real loop exit.
  1377     n = iff->in(0);
  1379   return 0.0f;                  // No estimate available
  1382 //------------------------------merge_many_backedges---------------------------
  1383 // Merge all the backedges from the shared header into a private Region.
  1384 // Feed that region as the one backedge to this loop.
  1385 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1386   uint i;
  1388   // Scan for the top 2 hottest backedges
  1389   float hotcnt = 0.0f;
  1390   float warmcnt = 0.0f;
  1391   uint hot_idx = 0;
  1392   // Loop starts at 2 because slot 1 is the fall-in path
  1393   for( i = 2; i < _head->req(); i++ ) {
  1394     float cnt = estimate_path_freq(_head->in(i));
  1395     if( cnt > hotcnt ) {       // Grab hottest path
  1396       warmcnt = hotcnt;
  1397       hotcnt = cnt;
  1398       hot_idx = i;
  1399     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1400       warmcnt = cnt;
  1404   // See if the hottest backedge is worthy of being an inner loop
  1405   // by being much hotter than the next hottest backedge.
  1406   if( hotcnt <= 0.0001 ||
  1407       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1409   // Peel out the backedges into a private merge point; peel
  1410   // them all except optionally hot_idx.
  1411   PhaseIterGVN &igvn = phase->_igvn;
  1413   Node *hot_tail = NULL;
  1414   // Make a Region for the merge point
  1415   Node *r = new (phase->C) RegionNode(1);
  1416   for( i = 2; i < _head->req(); i++ ) {
  1417     if( i != hot_idx )
  1418       r->add_req( _head->in(i) );
  1419     else hot_tail = _head->in(i);
  1421   igvn.register_new_node_with_optimizer(r, _head);
  1422   // Plug region into end of loop _head, followed by hot_tail
  1423   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1424   _head->set_req(2, r);
  1425   if( hot_idx ) _head->add_req(hot_tail);
  1427   // Split all the Phis up between '_head' loop and the Region 'r'
  1428   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1429     Node *out = _head->fast_out(j);
  1430     if( out->is_Phi() ) {
  1431       PhiNode* n = out->as_Phi();
  1432       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1433       Node *hot_phi = NULL;
  1434       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
  1435       // Check all inputs for the ones to peel out
  1436       uint j = 1;
  1437       for( uint i = 2; i < n->req(); i++ ) {
  1438         if( i != hot_idx )
  1439           phi->set_req( j++, n->in(i) );
  1440         else hot_phi = n->in(i);
  1442       // Register the phi but do not transform until whole place transforms
  1443       igvn.register_new_node_with_optimizer(phi, n);
  1444       // Add the merge phi to the old Phi
  1445       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1446       n->set_req(2, phi);
  1447       if( hot_idx ) n->add_req(hot_phi);
  1452   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1453   // of self loop tree.  Turn self into a loop headed by _head and with
  1454   // tail being the new merge point.
  1455   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1456   phase->set_loop(_tail,ilt);   // Adjust tail
  1457   _tail = r;                    // Self's tail is new merge point
  1458   phase->set_loop(r,this);
  1459   ilt->_child = _child;         // New guy has my children
  1460   _child = ilt;                 // Self has new guy as only child
  1461   ilt->_parent = this;          // new guy has self for parent
  1462   ilt->_nest = _nest;           // Same nesting depth (for now)
  1464   // Starting with 'ilt', look for child loop trees using the same shared
  1465   // header.  Flatten these out; they will no longer be loops in the end.
  1466   IdealLoopTree **pilt = &_child;
  1467   while( ilt ) {
  1468     if( ilt->_head == _head ) {
  1469       uint i;
  1470       for( i = 2; i < _head->req(); i++ )
  1471         if( _head->in(i) == ilt->_tail )
  1472           break;                // Still a loop
  1473       if( i == _head->req() ) { // No longer a loop
  1474         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1475         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1476         IdealLoopTree **cp = &ilt->_child;
  1477         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1478         *cp = ilt->_next;       // Hang next list at end of child list
  1479         *pilt = ilt->_child;    // Move child up to replace ilt
  1480         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1481         ilt = ilt->_child;      // Repeat using new ilt
  1482         continue;               // do not advance over ilt->_child
  1484       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1485       phase->set_loop(_head,ilt);
  1487     pilt = &ilt->_child;        // Advance to next
  1488     ilt = *pilt;
  1491   if( _child ) fix_parent( _child, this );
  1494 //------------------------------beautify_loops---------------------------------
  1495 // Split shared headers and insert loop landing pads.
  1496 // Insert a LoopNode to replace the RegionNode.
  1497 // Return TRUE if loop tree is structurally changed.
  1498 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1499   bool result = false;
  1500   // Cache parts in locals for easy
  1501   PhaseIterGVN &igvn = phase->_igvn;
  1503   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1505   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1506   int fall_in_cnt = 0;
  1507   for( uint i = 1; i < _head->req(); i++ )
  1508     if( !phase->is_member( this, _head->in(i) ) )
  1509       fall_in_cnt++;
  1510   assert( fall_in_cnt, "at least 1 fall-in path" );
  1511   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1512     split_fall_in( phase, fall_in_cnt );
  1514   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1515   // the left.
  1516   fall_in_cnt = 1;
  1517   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1518     fall_in_cnt++;
  1519   if( fall_in_cnt > 1 ) {
  1520     // Since I am just swapping inputs I do not need to update def-use info
  1521     Node *tmp = _head->in(1);
  1522     _head->set_req( 1, _head->in(fall_in_cnt) );
  1523     _head->set_req( fall_in_cnt, tmp );
  1524     // Swap also all Phis
  1525     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1526       Node* phi = _head->fast_out(i);
  1527       if( phi->is_Phi() ) {
  1528         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1529         tmp = phi->in(1);
  1530         phi->set_req( 1, phi->in(fall_in_cnt) );
  1531         phi->set_req( fall_in_cnt, tmp );
  1535   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1536   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1538   // If I am a shared header (multiple backedges), peel off the many
  1539   // backedges into a private merge point and use the merge point as
  1540   // the one true backedge.
  1541   if( _head->req() > 3 ) {
  1542     // Merge the many backedges into a single backedge but leave
  1543     // the hottest backedge as separate edge for the following peel.
  1544     merge_many_backedges( phase );
  1545     result = true;
  1548   // If I have one hot backedge, peel off myself loop.
  1549   // I better be the outermost loop.
  1550   if (_head->req() > 3 && !_irreducible) {
  1551     split_outer_loop( phase );
  1552     result = true;
  1554   } else if (!_head->is_Loop() && !_irreducible) {
  1555     // Make a new LoopNode to replace the old loop head
  1556     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
  1557     l = igvn.register_new_node_with_optimizer(l, _head);
  1558     phase->set_created_loop_node();
  1559     // Go ahead and replace _head
  1560     phase->_igvn.replace_node( _head, l );
  1561     _head = l;
  1562     phase->set_loop(_head, this);
  1565   // Now recursively beautify nested loops
  1566   if( _child ) result |= _child->beautify_loops( phase );
  1567   if( _next  ) result |= _next ->beautify_loops( phase );
  1568   return result;
  1571 //------------------------------allpaths_check_safepts----------------------------
  1572 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1573 // encountered.  Helper for check_safepts.
  1574 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1575   assert(stack.size() == 0, "empty stack");
  1576   stack.push(_tail);
  1577   visited.Clear();
  1578   visited.set(_tail->_idx);
  1579   while (stack.size() > 0) {
  1580     Node* n = stack.pop();
  1581     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1582       // Terminate this path
  1583     } else if (n->Opcode() == Op_SafePoint) {
  1584       if (_phase->get_loop(n) != this) {
  1585         if (_required_safept == NULL) _required_safept = new Node_List();
  1586         _required_safept->push(n);  // save the one closest to the tail
  1588       // Terminate this path
  1589     } else {
  1590       uint start = n->is_Region() ? 1 : 0;
  1591       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1592       for (uint i = start; i < end; i++) {
  1593         Node* in = n->in(i);
  1594         assert(in->is_CFG(), "must be");
  1595         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1596           stack.push(in);
  1603 //------------------------------check_safepts----------------------------
  1604 // Given dominators, try to find loops with calls that must always be
  1605 // executed (call dominates loop tail).  These loops do not need non-call
  1606 // safepoints (ncsfpt).
  1607 //
  1608 // A complication is that a safepoint in a inner loop may be needed
  1609 // by an outer loop. In the following, the inner loop sees it has a
  1610 // call (block 3) on every path from the head (block 2) to the
  1611 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1612 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1613 //
  1614 //          entry  0
  1615 //                 |
  1616 //                 v
  1617 // outer 1,2    +->1
  1618 //              |  |
  1619 //              |  v
  1620 //              |  2<---+  ncsfpt in 2
  1621 //              |_/|\   |
  1622 //                 | v  |
  1623 // inner 2,3      /  3  |  call in 3
  1624 //               /   |  |
  1625 //              v    +--+
  1626 //        exit  4
  1627 //
  1628 //
  1629 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1630 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1631 // is first looked for in the lists for the outer loops of the current loop.
  1632 //
  1633 // The insights into the problem:
  1634 //  A) counted loops are okay
  1635 //  B) innermost loops are okay (only an inner loop can delete
  1636 //     a ncsfpt needed by an outer loop)
  1637 //  C) a loop is immune from an inner loop deleting a safepoint
  1638 //     if the loop has a call on the idom-path
  1639 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1640 //     idom-path that is not in a nested loop
  1641 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1642 //     loop needs to be prevented from deletion by an inner loop
  1643 //
  1644 // There are two analyses:
  1645 //  1) The first, and cheaper one, scans the loop body from
  1646 //     tail to head following the idom (immediate dominator)
  1647 //     chain, looking for the cases (C,D,E) above.
  1648 //     Since inner loops are scanned before outer loops, there is summary
  1649 //     information about inner loops.  Inner loops can be skipped over
  1650 //     when the tail of an inner loop is encountered.
  1651 //
  1652 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1653 //     the idom path (which is rare), scans all predecessor control paths
  1654 //     from the tail to the head, terminating a path when a call or sfpt
  1655 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1656 //
  1657 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1658   // Bottom up traversal
  1659   IdealLoopTree* ch = _child;
  1660   if (_child) _child->check_safepts(visited, stack);
  1661   if (_next)  _next ->check_safepts(visited, stack);
  1663   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1664     bool  has_call         = false; // call on dom-path
  1665     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1666     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1667     // Scan the dom-path nodes from tail to head
  1668     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1669       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1670         has_call = true;
  1671         _has_sfpt = 1;          // Then no need for a safept!
  1672         break;
  1673       } else if (n->Opcode() == Op_SafePoint) {
  1674         if (_phase->get_loop(n) == this) {
  1675           has_local_ncsfpt = true;
  1676           break;
  1678         if (nonlocal_ncsfpt == NULL) {
  1679           nonlocal_ncsfpt = n; // save the one closest to the tail
  1681       } else {
  1682         IdealLoopTree* nlpt = _phase->get_loop(n);
  1683         if (this != nlpt) {
  1684           // If at an inner loop tail, see if the inner loop has already
  1685           // recorded seeing a call on the dom-path (and stop.)  If not,
  1686           // jump to the head of the inner loop.
  1687           assert(is_member(nlpt), "nested loop");
  1688           Node* tail = nlpt->_tail;
  1689           if (tail->in(0)->is_If()) tail = tail->in(0);
  1690           if (n == tail) {
  1691             // If inner loop has call on dom-path, so does outer loop
  1692             if (nlpt->_has_sfpt) {
  1693               has_call = true;
  1694               _has_sfpt = 1;
  1695               break;
  1697             // Skip to head of inner loop
  1698             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1699             n = nlpt->_head;
  1704     // Record safept's that this loop needs preserved when an
  1705     // inner loop attempts to delete it's safepoints.
  1706     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1707       if (nonlocal_ncsfpt != NULL) {
  1708         if (_required_safept == NULL) _required_safept = new Node_List();
  1709         _required_safept->push(nonlocal_ncsfpt);
  1710       } else {
  1711         // Failed to find a suitable safept on the dom-path.  Now use
  1712         // an all paths walk from tail to head, looking for safepoints to preserve.
  1713         allpaths_check_safepts(visited, stack);
  1719 //---------------------------is_deleteable_safept----------------------------
  1720 // Is safept not required by an outer loop?
  1721 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1722   assert(sfpt->Opcode() == Op_SafePoint, "");
  1723   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1724   while (lp != NULL) {
  1725     Node_List* sfpts = lp->_required_safept;
  1726     if (sfpts != NULL) {
  1727       for (uint i = 0; i < sfpts->size(); i++) {
  1728         if (sfpt == sfpts->at(i))
  1729           return false;
  1732     lp = lp->_parent;
  1734   return true;
  1737 //---------------------------replace_parallel_iv-------------------------------
  1738 // Replace parallel induction variable (parallel to trip counter)
  1739 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1740   assert(loop->_head->is_CountedLoop(), "");
  1741   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1742   if (!cl->is_valid_counted_loop())
  1743     return;         // skip malformed counted loop
  1744   Node *incr = cl->incr();
  1745   if (incr == NULL)
  1746     return;         // Dead loop?
  1747   Node *init = cl->init_trip();
  1748   Node *phi  = cl->phi();
  1749   int stride_con = cl->stride_con();
  1751   // Visit all children, looking for Phis
  1752   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1753     Node *out = cl->out(i);
  1754     // Look for other phis (secondary IVs). Skip dead ones
  1755     if (!out->is_Phi() || out == phi || !has_node(out))
  1756       continue;
  1757     PhiNode* phi2 = out->as_Phi();
  1758     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1759     // Look for induction variables of the form:  X += constant
  1760     if (phi2->region() != loop->_head ||
  1761         incr2->req() != 3 ||
  1762         incr2->in(1) != phi2 ||
  1763         incr2 == incr ||
  1764         incr2->Opcode() != Op_AddI ||
  1765         !incr2->in(2)->is_Con())
  1766       continue;
  1768     // Check for parallel induction variable (parallel to trip counter)
  1769     // via an affine function.  In particular, count-down loops with
  1770     // count-up array indices are common. We only RCE references off
  1771     // the trip-counter, so we need to convert all these to trip-counter
  1772     // expressions.
  1773     Node *init2 = phi2->in( LoopNode::EntryControl );
  1774     int stride_con2 = incr2->in(2)->get_int();
  1776     // The general case here gets a little tricky.  We want to find the
  1777     // GCD of all possible parallel IV's and make a new IV using this
  1778     // GCD for the loop.  Then all possible IVs are simple multiples of
  1779     // the GCD.  In practice, this will cover very few extra loops.
  1780     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1781     // where +/-1 is the common case, but other integer multiples are
  1782     // also easy to handle.
  1783     int ratio_con = stride_con2/stride_con;
  1785     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1786 #ifndef PRODUCT
  1787       if (TraceLoopOpts) {
  1788         tty->print("Parallel IV: %d ", phi2->_idx);
  1789         loop->dump_head();
  1791 #endif
  1792       // Convert to using the trip counter.  The parallel induction
  1793       // variable differs from the trip counter by a loop-invariant
  1794       // amount, the difference between their respective initial values.
  1795       // It is scaled by the 'ratio_con'.
  1796       Node* ratio = _igvn.intcon(ratio_con);
  1797       set_ctrl(ratio, C->root());
  1798       Node* ratio_init = new (C) MulINode(init, ratio);
  1799       _igvn.register_new_node_with_optimizer(ratio_init, init);
  1800       set_early_ctrl(ratio_init);
  1801       Node* diff = new (C) SubINode(init2, ratio_init);
  1802       _igvn.register_new_node_with_optimizer(diff, init2);
  1803       set_early_ctrl(diff);
  1804       Node* ratio_idx = new (C) MulINode(phi, ratio);
  1805       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1806       set_ctrl(ratio_idx, cl);
  1807       Node* add = new (C) AddINode(ratio_idx, diff);
  1808       _igvn.register_new_node_with_optimizer(add);
  1809       set_ctrl(add, cl);
  1810       _igvn.replace_node( phi2, add );
  1811       // Sometimes an induction variable is unused
  1812       if (add->outcnt() == 0) {
  1813         _igvn.remove_dead_node(add);
  1815       --i; // deleted this phi; rescan starting with next position
  1816       continue;
  1821 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
  1822   Node* keep = NULL;
  1823   if (keep_one) {
  1824     // Look for a safepoint on the idom-path.
  1825     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
  1826       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
  1827         keep = i;
  1828         break; // Found one
  1833   // Don't remove any safepoints if it is requested to keep a single safepoint and
  1834   // no safepoint was found on idom-path. It is not safe to remove any safepoint
  1835   // in this case since there's no safepoint dominating all paths in the loop body.
  1836   bool prune = !keep_one || keep != NULL;
  1838   // Delete other safepoints in this loop.
  1839   Node_List* sfpts = _safepts;
  1840   if (prune && sfpts != NULL) {
  1841     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
  1842     for (uint i = 0; i < sfpts->size(); i++) {
  1843       Node* n = sfpts->at(i);
  1844       assert(phase->get_loop(n) == this, "");
  1845       if (n != keep && phase->is_deleteable_safept(n)) {
  1846         phase->lazy_replace(n, n->in(TypeFunc::Control));
  1852 //------------------------------counted_loop-----------------------------------
  1853 // Convert to counted loops where possible
  1854 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1856   // For grins, set the inner-loop flag here
  1857   if (!_child) {
  1858     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1861   if (_head->is_CountedLoop() ||
  1862       phase->is_counted_loop(_head, this)) {
  1864     if (!UseCountedLoopSafepoints) {
  1865       // Indicate we do not need a safepoint here
  1866       _has_sfpt = 1;
  1869     // Remove safepoints
  1870     bool keep_one_sfpt = !(_has_call || _has_sfpt);
  1871     remove_safepoints(phase, keep_one_sfpt);
  1873     // Look for induction variables
  1874     phase->replace_parallel_iv(this);
  1876   } else if (_parent != NULL && !_irreducible) {
  1877     // Not a counted loop. Keep one safepoint.
  1878     bool keep_one_sfpt = true;
  1879     remove_safepoints(phase, keep_one_sfpt);
  1882   // Recursively
  1883   if (_child) _child->counted_loop( phase );
  1884   if (_next)  _next ->counted_loop( phase );
  1887 #ifndef PRODUCT
  1888 //------------------------------dump_head--------------------------------------
  1889 // Dump 1 liner for loop header info
  1890 void IdealLoopTree::dump_head( ) const {
  1891   for (uint i=0; i<_nest; i++)
  1892     tty->print("  ");
  1893   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1894   if (_irreducible) tty->print(" IRREDUCIBLE");
  1895   Node* entry = _head->in(LoopNode::EntryControl);
  1896   if (LoopLimitCheck) {
  1897     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1898     if (predicate != NULL ) {
  1899       tty->print(" limit_check");
  1900       entry = entry->in(0)->in(0);
  1903   if (UseLoopPredicate) {
  1904     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1905     if (entry != NULL) {
  1906       tty->print(" predicated");
  1909   if (_head->is_CountedLoop()) {
  1910     CountedLoopNode *cl = _head->as_CountedLoop();
  1911     tty->print(" counted");
  1913     Node* init_n = cl->init_trip();
  1914     if (init_n  != NULL &&  init_n->is_Con())
  1915       tty->print(" [%d,", cl->init_trip()->get_int());
  1916     else
  1917       tty->print(" [int,");
  1918     Node* limit_n = cl->limit();
  1919     if (limit_n  != NULL &&  limit_n->is_Con())
  1920       tty->print("%d),", cl->limit()->get_int());
  1921     else
  1922       tty->print("int),");
  1923     int stride_con  = cl->stride_con();
  1924     if (stride_con > 0) tty->print("+");
  1925     tty->print("%d", stride_con);
  1927     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
  1929     if (cl->is_pre_loop ()) tty->print(" pre" );
  1930     if (cl->is_main_loop()) tty->print(" main");
  1931     if (cl->is_post_loop()) tty->print(" post");
  1933   if (_has_call) tty->print(" has_call");
  1934   if (_has_sfpt) tty->print(" has_sfpt");
  1935   if (_rce_candidate) tty->print(" rce");
  1936   if (_safepts != NULL && _safepts->size() > 0) {
  1937     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
  1939   if (_required_safept != NULL && _required_safept->size() > 0) {
  1940     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
  1942   tty->cr();
  1945 //------------------------------dump-------------------------------------------
  1946 // Dump loops by loop tree
  1947 void IdealLoopTree::dump( ) const {
  1948   dump_head();
  1949   if (_child) _child->dump();
  1950   if (_next)  _next ->dump();
  1953 #endif
  1955 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1956   if (loop == root) {
  1957     if (loop->_child != NULL) {
  1958       log->begin_head("loop_tree");
  1959       log->end_head();
  1960       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1961       log->tail("loop_tree");
  1962       assert(loop->_next == NULL, "what?");
  1964   } else {
  1965     Node* head = loop->_head;
  1966     log->begin_head("loop");
  1967     log->print(" idx='%d' ", head->_idx);
  1968     if (loop->_irreducible) log->print("irreducible='1' ");
  1969     if (head->is_Loop()) {
  1970       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1971       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1973     if (head->is_CountedLoop()) {
  1974       CountedLoopNode* cl = head->as_CountedLoop();
  1975       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1976       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1977       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1979     log->end_head();
  1980     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1981     log->tail("loop");
  1982     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1986 //---------------------collect_potentially_useful_predicates-----------------------
  1987 // Helper function to collect potentially useful predicates to prevent them from
  1988 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1989 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1990                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1991   if (loop->_child) { // child
  1992     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1995   // self (only loops that we can apply loop predication may use their predicates)
  1996   if (loop->_head->is_Loop() &&
  1997       !loop->_irreducible    &&
  1998       !loop->tail()->is_top()) {
  1999     LoopNode* lpn = loop->_head->as_Loop();
  2000     Node* entry = lpn->in(LoopNode::EntryControl);
  2001     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  2002     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  2003       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  2004       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  2005       entry = entry->in(0)->in(0);
  2007     predicate_proj = find_predicate(entry); // Predicate
  2008     if (predicate_proj != NULL ) {
  2009       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  2013   if (loop->_next) { // sibling
  2014     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  2018 //------------------------eliminate_useless_predicates-----------------------------
  2019 // Eliminate all inserted predicates if they could not be used by loop predication.
  2020 // Note: it will also eliminates loop limits check predicate since it also uses
  2021 // Opaque1 node (see Parse::add_predicate()).
  2022 void PhaseIdealLoop::eliminate_useless_predicates() {
  2023   if (C->predicate_count() == 0)
  2024     return; // no predicate left
  2026   Unique_Node_List useful_predicates; // to store useful predicates
  2027   if (C->has_loops()) {
  2028     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  2031   for (int i = C->predicate_count(); i > 0; i--) {
  2032      Node * n = C->predicate_opaque1_node(i-1);
  2033      assert(n->Opcode() == Op_Opaque1, "must be");
  2034      if (!useful_predicates.member(n)) { // not in the useful list
  2035        _igvn.replace_node(n, n->in(1));
  2040 //------------------------process_expensive_nodes-----------------------------
  2041 // Expensive nodes have their control input set to prevent the GVN
  2042 // from commoning them and as a result forcing the resulting node to
  2043 // be in a more frequent path. Use CFG information here, to change the
  2044 // control inputs so that some expensive nodes can be commoned while
  2045 // not executed more frequently.
  2046 bool PhaseIdealLoop::process_expensive_nodes() {
  2047   assert(OptimizeExpensiveOps, "optimization off?");
  2049   // Sort nodes to bring similar nodes together
  2050   C->sort_expensive_nodes();
  2052   bool progress = false;
  2054   for (int i = 0; i < C->expensive_count(); ) {
  2055     Node* n = C->expensive_node(i);
  2056     int start = i;
  2057     // Find nodes similar to n
  2058     i++;
  2059     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
  2060     int end = i;
  2061     // And compare them two by two
  2062     for (int j = start; j < end; j++) {
  2063       Node* n1 = C->expensive_node(j);
  2064       if (is_node_unreachable(n1)) {
  2065         continue;
  2067       for (int k = j+1; k < end; k++) {
  2068         Node* n2 = C->expensive_node(k);
  2069         if (is_node_unreachable(n2)) {
  2070           continue;
  2073         assert(n1 != n2, "should be pair of nodes");
  2075         Node* c1 = n1->in(0);
  2076         Node* c2 = n2->in(0);
  2078         Node* parent_c1 = c1;
  2079         Node* parent_c2 = c2;
  2081         // The call to get_early_ctrl_for_expensive() moves the
  2082         // expensive nodes up but stops at loops that are in a if
  2083         // branch. See whether we can exit the loop and move above the
  2084         // If.
  2085         if (c1->is_Loop()) {
  2086           parent_c1 = c1->in(1);
  2088         if (c2->is_Loop()) {
  2089           parent_c2 = c2->in(1);
  2092         if (parent_c1 == parent_c2) {
  2093           _igvn._worklist.push(n1);
  2094           _igvn._worklist.push(n2);
  2095           continue;
  2098         // Look for identical expensive node up the dominator chain.
  2099         if (is_dominator(c1, c2)) {
  2100           c2 = c1;
  2101         } else if (is_dominator(c2, c1)) {
  2102           c1 = c2;
  2103         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
  2104                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
  2105           // Both branches have the same expensive node so move it up
  2106           // before the if.
  2107           c1 = c2 = idom(parent_c1->in(0));
  2109         // Do the actual moves
  2110         if (n1->in(0) != c1) {
  2111           _igvn.hash_delete(n1);
  2112           n1->set_req(0, c1);
  2113           _igvn.hash_insert(n1);
  2114           _igvn._worklist.push(n1);
  2115           progress = true;
  2117         if (n2->in(0) != c2) {
  2118           _igvn.hash_delete(n2);
  2119           n2->set_req(0, c2);
  2120           _igvn.hash_insert(n2);
  2121           _igvn._worklist.push(n2);
  2122           progress = true;
  2128   return progress;
  2132 //=============================================================================
  2133 //----------------------------build_and_optimize-------------------------------
  2134 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  2135 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  2136 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
  2137   ResourceMark rm;
  2139   int old_progress = C->major_progress();
  2140   uint orig_worklist_size = _igvn._worklist.size();
  2142   // Reset major-progress flag for the driver's heuristics
  2143   C->clear_major_progress();
  2145 #ifndef PRODUCT
  2146   // Capture for later assert
  2147   uint unique = C->unique();
  2148   _loop_invokes++;
  2149   _loop_work += unique;
  2150 #endif
  2152   // True if the method has at least 1 irreducible loop
  2153   _has_irreducible_loops = false;
  2155   _created_loop_node = false;
  2157   Arena *a = Thread::current()->resource_area();
  2158   VectorSet visited(a);
  2159   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  2160   _nodes.map(C->unique(), NULL);
  2161   memset(_nodes.adr(), 0, wordSize * C->unique());
  2163   // Pre-build the top-level outermost loop tree entry
  2164   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  2165   // Do not need a safepoint at the top level
  2166   _ltree_root->_has_sfpt = 1;
  2168   // Initialize Dominators.
  2169   // Checked in clone_loop_predicate() during beautify_loops().
  2170   _idom_size = 0;
  2171   _idom      = NULL;
  2172   _dom_depth = NULL;
  2173   _dom_stk   = NULL;
  2175   // Empty pre-order array
  2176   allocate_preorders();
  2178   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  2179   // IdealLoopTree entries.  Data nodes are NOT walked.
  2180   build_loop_tree();
  2181   // Check for bailout, and return
  2182   if (C->failing()) {
  2183     return;
  2186   // No loops after all
  2187   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  2189   // There should always be an outer loop containing the Root and Return nodes.
  2190   // If not, we have a degenerate empty program.  Bail out in this case.
  2191   if (!has_node(C->root())) {
  2192     if (!_verify_only) {
  2193       C->clear_major_progress();
  2194       C->record_method_not_compilable("empty program detected during loop optimization");
  2196     return;
  2199   // Nothing to do, so get out
  2200   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
  2201   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
  2202   if (stop_early && !do_expensive_nodes) {
  2203     _igvn.optimize();           // Cleanup NeverBranches
  2204     return;
  2207   // Set loop nesting depth
  2208   _ltree_root->set_nest( 0 );
  2210   // Split shared headers and insert loop landing pads.
  2211   // Do not bother doing this on the Root loop of course.
  2212   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  2213     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
  2214     if( _ltree_root->_child->beautify_loops( this ) ) {
  2215       // Re-build loop tree!
  2216       _ltree_root->_child = NULL;
  2217       _nodes.clear();
  2218       reallocate_preorders();
  2219       build_loop_tree();
  2220       // Check for bailout, and return
  2221       if (C->failing()) {
  2222         return;
  2224       // Reset loop nesting depth
  2225       _ltree_root->set_nest( 0 );
  2227       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
  2231   // Build Dominators for elision of NULL checks & loop finding.
  2232   // Since nodes do not have a slot for immediate dominator, make
  2233   // a persistent side array for that info indexed on node->_idx.
  2234   _idom_size = C->unique();
  2235   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  2236   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  2237   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  2238   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  2240   Dominators();
  2242   if (!_verify_only) {
  2243     // As a side effect, Dominators removed any unreachable CFG paths
  2244     // into RegionNodes.  It doesn't do this test against Root, so
  2245     // we do it here.
  2246     for( uint i = 1; i < C->root()->req(); i++ ) {
  2247       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  2248         _igvn.delete_input_of(C->root(), i);
  2249         i--;                      // Rerun same iteration on compressed edges
  2253     // Given dominators, try to find inner loops with calls that must
  2254     // always be executed (call dominates loop tail).  These loops do
  2255     // not need a separate safepoint.
  2256     Node_List cisstack(a);
  2257     _ltree_root->check_safepts(visited, cisstack);
  2260   // Walk the DATA nodes and place into loops.  Find earliest control
  2261   // node.  For CFG nodes, the _nodes array starts out and remains
  2262   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2263   // _nodes array holds the earliest legal controlling CFG node.
  2265   // Allocate stack with enough space to avoid frequent realloc
  2266   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
  2267   Node_Stack nstack( a, stack_size );
  2269   visited.Clear();
  2270   Node_List worklist(a);
  2271   // Don't need C->root() on worklist since
  2272   // it will be processed among C->top() inputs
  2273   worklist.push( C->top() );
  2274   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2275   build_loop_early( visited, worklist, nstack );
  2277   // Given early legal placement, try finding counted loops.  This placement
  2278   // is good enough to discover most loop invariants.
  2279   if( !_verify_me && !_verify_only )
  2280     _ltree_root->counted_loop( this );
  2282   // Find latest loop placement.  Find ideal loop placement.
  2283   visited.Clear();
  2284   init_dom_lca_tags();
  2285   // Need C->root() on worklist when processing outs
  2286   worklist.push( C->root() );
  2287   NOT_PRODUCT( C->verify_graph_edges(); )
  2288   worklist.push( C->top() );
  2289   build_loop_late( visited, worklist, nstack );
  2291   if (_verify_only) {
  2292     // restore major progress flag
  2293     for (int i = 0; i < old_progress; i++)
  2294       C->set_major_progress();
  2295     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2296     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2297     return;
  2300   // clear out the dead code after build_loop_late
  2301   while (_deadlist.size()) {
  2302     _igvn.remove_globally_dead_node(_deadlist.pop());
  2305   if (stop_early) {
  2306     assert(do_expensive_nodes, "why are we here?");
  2307     if (process_expensive_nodes()) {
  2308       // If we made some progress when processing expensive nodes then
  2309       // the IGVN may modify the graph in a way that will allow us to
  2310       // make some more progress: we need to try processing expensive
  2311       // nodes again.
  2312       C->set_major_progress();
  2314     _igvn.optimize();
  2315     return;
  2318   // Some parser-inserted loop predicates could never be used by loop
  2319   // predication or they were moved away from loop during some optimizations.
  2320   // For example, peeling. Eliminate them before next loop optimizations.
  2321   if (UseLoopPredicate || LoopLimitCheck) {
  2322     eliminate_useless_predicates();
  2325 #ifndef PRODUCT
  2326   C->verify_graph_edges();
  2327   if (_verify_me) {             // Nested verify pass?
  2328     // Check to see if the verify mode is broken
  2329     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2330     return;
  2332   if(VerifyLoopOptimizations) verify();
  2333   if(TraceLoopOpts && C->has_loops()) {
  2334     _ltree_root->dump();
  2336 #endif
  2338   if (skip_loop_opts) {
  2339     // restore major progress flag
  2340     for (int i = 0; i < old_progress; i++) {
  2341       C->set_major_progress();
  2344     // Cleanup any modified bits
  2345     _igvn.optimize();
  2347     if (C->log() != NULL) {
  2348       log_loop_tree(_ltree_root, _ltree_root, C->log());
  2350     return;
  2353   if (ReassociateInvariants) {
  2354     // Reassociate invariants and prep for split_thru_phi
  2355     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2356       IdealLoopTree* lpt = iter.current();
  2357       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2359       lpt->reassociate_invariants(this);
  2361       // Because RCE opportunities can be masked by split_thru_phi,
  2362       // look for RCE candidates and inhibit split_thru_phi
  2363       // on just their loop-phi's for this pass of loop opts
  2364       if (SplitIfBlocks && do_split_ifs) {
  2365         if (lpt->policy_range_check(this)) {
  2366           lpt->_rce_candidate = 1; // = true
  2372   // Check for aggressive application of split-if and other transforms
  2373   // that require basic-block info (like cloning through Phi's)
  2374   if( SplitIfBlocks && do_split_ifs ) {
  2375     visited.Clear();
  2376     split_if_with_blocks( visited, nstack );
  2377     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2380   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
  2381     C->set_major_progress();
  2384   // Perform loop predication before iteration splitting
  2385   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2386     _ltree_root->_child->loop_predication(this);
  2389   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2390     if (do_intrinsify_fill()) {
  2391       C->set_major_progress();
  2395   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2396   // range checks or one-shot null checks.
  2398   // If split-if's didn't hack the graph too bad (no CFG changes)
  2399   // then do loop opts.
  2400   if (C->has_loops() && !C->major_progress()) {
  2401     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2402     _ltree_root->_child->iteration_split( this, worklist );
  2403     // No verify after peeling!  GCM has hoisted code out of the loop.
  2404     // After peeling, the hoisted code could sink inside the peeled area.
  2405     // The peeling code does not try to recompute the best location for
  2406     // all the code before the peeled area, so the verify pass will always
  2407     // complain about it.
  2409   // Do verify graph edges in any case
  2410   NOT_PRODUCT( C->verify_graph_edges(); );
  2412   if (!do_split_ifs) {
  2413     // We saw major progress in Split-If to get here.  We forced a
  2414     // pass with unrolling and not split-if, however more split-if's
  2415     // might make progress.  If the unrolling didn't make progress
  2416     // then the major-progress flag got cleared and we won't try
  2417     // another round of Split-If.  In particular the ever-common
  2418     // instance-of/check-cast pattern requires at least 2 rounds of
  2419     // Split-If to clear out.
  2420     C->set_major_progress();
  2423   // Repeat loop optimizations if new loops were seen
  2424   if (created_loop_node()) {
  2425     C->set_major_progress();
  2428   // Keep loop predicates and perform optimizations with them
  2429   // until no more loop optimizations could be done.
  2430   // After that switch predicates off and do more loop optimizations.
  2431   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2432      C->cleanup_loop_predicates(_igvn);
  2433 #ifndef PRODUCT
  2434      if (TraceLoopOpts) {
  2435        tty->print_cr("PredicatesOff");
  2437 #endif
  2438      C->set_major_progress();
  2441   // Convert scalar to superword operations at the end of all loop opts.
  2442   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2443     // SuperWord transform
  2444     SuperWord sw(this);
  2445     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2446       IdealLoopTree* lpt = iter.current();
  2447       if (lpt->is_counted()) {
  2448         sw.transform_loop(lpt);
  2453   // Cleanup any modified bits
  2454   _igvn.optimize();
  2456   // disable assert until issue with split_flow_path is resolved (6742111)
  2457   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2458   //        "shouldn't introduce irreducible loops");
  2460   if (C->log() != NULL) {
  2461     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2465 #ifndef PRODUCT
  2466 //------------------------------print_statistics-------------------------------
  2467 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2468 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2469 void PhaseIdealLoop::print_statistics() {
  2470   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2473 //------------------------------verify-----------------------------------------
  2474 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2475 static int fail;                // debug only, so its multi-thread dont care
  2476 void PhaseIdealLoop::verify() const {
  2477   int old_progress = C->major_progress();
  2478   ResourceMark rm;
  2479   PhaseIdealLoop loop_verify( _igvn, this );
  2480   VectorSet visited(Thread::current()->resource_area());
  2482   fail = 0;
  2483   verify_compare( C->root(), &loop_verify, visited );
  2484   assert( fail == 0, "verify loops failed" );
  2485   // Verify loop structure is the same
  2486   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2487   // Reset major-progress.  It was cleared by creating a verify version of
  2488   // PhaseIdealLoop.
  2489   for( int i=0; i<old_progress; i++ )
  2490     C->set_major_progress();
  2493 //------------------------------verify_compare---------------------------------
  2494 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2495 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2496   if( !n ) return;
  2497   if( visited.test_set( n->_idx ) ) return;
  2498   if( !_nodes[n->_idx] ) {      // Unreachable
  2499     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2500     return;
  2503   uint i;
  2504   for( i = 0; i < n->req(); i++ )
  2505     verify_compare( n->in(i), loop_verify, visited );
  2507   // Check the '_nodes' block/loop structure
  2508   i = n->_idx;
  2509   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2510     if( _nodes[i] != loop_verify->_nodes[i] &&
  2511         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2512       tty->print("Mismatched control setting for: ");
  2513       n->dump();
  2514       if( fail++ > 10 ) return;
  2515       Node *c = get_ctrl_no_update(n);
  2516       tty->print("We have it as: ");
  2517       if( c->in(0) ) c->dump();
  2518         else tty->print_cr("N%d",c->_idx);
  2519       tty->print("Verify thinks: ");
  2520       if( loop_verify->has_ctrl(n) )
  2521         loop_verify->get_ctrl_no_update(n)->dump();
  2522       else
  2523         loop_verify->get_loop_idx(n)->dump();
  2524       tty->cr();
  2526   } else {                    // We have a loop
  2527     IdealLoopTree *us = get_loop_idx(n);
  2528     if( loop_verify->has_ctrl(n) ) {
  2529       tty->print("Mismatched loop setting for: ");
  2530       n->dump();
  2531       if( fail++ > 10 ) return;
  2532       tty->print("We have it as: ");
  2533       us->dump();
  2534       tty->print("Verify thinks: ");
  2535       loop_verify->get_ctrl_no_update(n)->dump();
  2536       tty->cr();
  2537     } else if (!C->major_progress()) {
  2538       // Loop selection can be messed up if we did a major progress
  2539       // operation, like split-if.  Do not verify in that case.
  2540       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2541       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2542         tty->print("Unequals loops for: ");
  2543         n->dump();
  2544         if( fail++ > 10 ) return;
  2545         tty->print("We have it as: ");
  2546         us->dump();
  2547         tty->print("Verify thinks: ");
  2548         them->dump();
  2549         tty->cr();
  2554   // Check for immediate dominators being equal
  2555   if( i >= _idom_size ) {
  2556     if( !n->is_CFG() ) return;
  2557     tty->print("CFG Node with no idom: ");
  2558     n->dump();
  2559     return;
  2561   if( !n->is_CFG() ) return;
  2562   if( n == C->root() ) return; // No IDOM here
  2564   assert(n->_idx == i, "sanity");
  2565   Node *id = idom_no_update(n);
  2566   if( id != loop_verify->idom_no_update(n) ) {
  2567     tty->print("Unequals idoms for: ");
  2568     n->dump();
  2569     if( fail++ > 10 ) return;
  2570     tty->print("We have it as: ");
  2571     id->dump();
  2572     tty->print("Verify thinks: ");
  2573     loop_verify->idom_no_update(n)->dump();
  2574     tty->cr();
  2579 //------------------------------verify_tree------------------------------------
  2580 // Verify that tree structures match.  Because the CFG can change, siblings
  2581 // within the loop tree can be reordered.  We attempt to deal with that by
  2582 // reordering the verify's loop tree if possible.
  2583 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2584   assert( _parent == parent, "Badly formed loop tree" );
  2586   // Siblings not in same order?  Attempt to re-order.
  2587   if( _head != loop->_head ) {
  2588     // Find _next pointer to update
  2589     IdealLoopTree **pp = &loop->_parent->_child;
  2590     while( *pp != loop )
  2591       pp = &((*pp)->_next);
  2592     // Find proper sibling to be next
  2593     IdealLoopTree **nn = &loop->_next;
  2594     while( (*nn) && (*nn)->_head != _head )
  2595       nn = &((*nn)->_next);
  2597     // Check for no match.
  2598     if( !(*nn) ) {
  2599       // Annoyingly, irreducible loops can pick different headers
  2600       // after a major_progress operation, so the rest of the loop
  2601       // tree cannot be matched.
  2602       if (_irreducible && Compile::current()->major_progress())  return;
  2603       assert( 0, "failed to match loop tree" );
  2606     // Move (*nn) to (*pp)
  2607     IdealLoopTree *hit = *nn;
  2608     *nn = hit->_next;
  2609     hit->_next = loop;
  2610     *pp = loop;
  2611     loop = hit;
  2612     // Now try again to verify
  2615   assert( _head  == loop->_head , "mismatched loop head" );
  2616   Node *tail = _tail;           // Inline a non-updating version of
  2617   while( !tail->in(0) )         // the 'tail()' call.
  2618     tail = tail->in(1);
  2619   assert( tail == loop->_tail, "mismatched loop tail" );
  2621   // Counted loops that are guarded should be able to find their guards
  2622   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2623     CountedLoopNode *cl = _head->as_CountedLoop();
  2624     Node *init = cl->init_trip();
  2625     Node *ctrl = cl->in(LoopNode::EntryControl);
  2626     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2627     Node *iff  = ctrl->in(0);
  2628     assert( iff->Opcode() == Op_If, "" );
  2629     Node *bol  = iff->in(1);
  2630     assert( bol->Opcode() == Op_Bool, "" );
  2631     Node *cmp  = bol->in(1);
  2632     assert( cmp->Opcode() == Op_CmpI, "" );
  2633     Node *add  = cmp->in(1);
  2634     Node *opaq;
  2635     if( add->Opcode() == Op_Opaque1 ) {
  2636       opaq = add;
  2637     } else {
  2638       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2639       assert( add == init, "" );
  2640       opaq = cmp->in(2);
  2642     assert( opaq->Opcode() == Op_Opaque1, "" );
  2646   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2647   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2648   // Innermost loops need to verify loop bodies,
  2649   // but only if no 'major_progress'
  2650   int fail = 0;
  2651   if (!Compile::current()->major_progress() && _child == NULL) {
  2652     for( uint i = 0; i < _body.size(); i++ ) {
  2653       Node *n = _body.at(i);
  2654       if (n->outcnt() == 0)  continue; // Ignore dead
  2655       uint j;
  2656       for( j = 0; j < loop->_body.size(); j++ )
  2657         if( loop->_body.at(j) == n )
  2658           break;
  2659       if( j == loop->_body.size() ) { // Not found in loop body
  2660         // Last ditch effort to avoid assertion: Its possible that we
  2661         // have some users (so outcnt not zero) but are still dead.
  2662         // Try to find from root.
  2663         if (Compile::current()->root()->find(n->_idx)) {
  2664           fail++;
  2665           tty->print("We have that verify does not: ");
  2666           n->dump();
  2670     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2671       Node *n = loop->_body.at(i2);
  2672       if (n->outcnt() == 0)  continue; // Ignore dead
  2673       uint j;
  2674       for( j = 0; j < _body.size(); j++ )
  2675         if( _body.at(j) == n )
  2676           break;
  2677       if( j == _body.size() ) { // Not found in loop body
  2678         // Last ditch effort to avoid assertion: Its possible that we
  2679         // have some users (so outcnt not zero) but are still dead.
  2680         // Try to find from root.
  2681         if (Compile::current()->root()->find(n->_idx)) {
  2682           fail++;
  2683           tty->print("Verify has that we do not: ");
  2684           n->dump();
  2688     assert( !fail, "loop body mismatch" );
  2692 #endif
  2694 //------------------------------set_idom---------------------------------------
  2695 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2696   uint idx = d->_idx;
  2697   if (idx >= _idom_size) {
  2698     uint newsize = _idom_size<<1;
  2699     while( idx >= newsize ) {
  2700       newsize <<= 1;
  2702     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2703     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2704     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2705     _idom_size = newsize;
  2707   _idom[idx] = n;
  2708   _dom_depth[idx] = dom_depth;
  2711 //------------------------------recompute_dom_depth---------------------------------------
  2712 // The dominator tree is constructed with only parent pointers.
  2713 // This recomputes the depth in the tree by first tagging all
  2714 // nodes as "no depth yet" marker.  The next pass then runs up
  2715 // the dom tree from each node marked "no depth yet", and computes
  2716 // the depth on the way back down.
  2717 void PhaseIdealLoop::recompute_dom_depth() {
  2718   uint no_depth_marker = C->unique();
  2719   uint i;
  2720   // Initialize depth to "no depth yet"
  2721   for (i = 0; i < _idom_size; i++) {
  2722     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2723      _dom_depth[i] = no_depth_marker;
  2726   if (_dom_stk == NULL) {
  2727     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
  2728     if (init_size < 10) init_size = 10;
  2729     _dom_stk = new GrowableArray<uint>(init_size);
  2731   // Compute new depth for each node.
  2732   for (i = 0; i < _idom_size; i++) {
  2733     uint j = i;
  2734     // Run up the dom tree to find a node with a depth
  2735     while (_dom_depth[j] == no_depth_marker) {
  2736       _dom_stk->push(j);
  2737       j = _idom[j]->_idx;
  2739     // Compute the depth on the way back down this tree branch
  2740     uint dd = _dom_depth[j] + 1;
  2741     while (_dom_stk->length() > 0) {
  2742       uint j = _dom_stk->pop();
  2743       _dom_depth[j] = dd;
  2744       dd++;
  2749 //------------------------------sort-------------------------------------------
  2750 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2751 // loop tree, not the root.
  2752 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2753   if( !innermost ) return loop; // New innermost loop
  2755   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2756   assert( loop_preorder, "not yet post-walked loop" );
  2757   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2758   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2760   // Insert at start of list
  2761   while( l ) {                  // Insertion sort based on pre-order
  2762     if( l == loop ) return innermost; // Already on list!
  2763     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2764     assert( l_preorder, "not yet post-walked l" );
  2765     // Check header pre-order number to figure proper nesting
  2766     if( loop_preorder > l_preorder )
  2767       break;                    // End of insertion
  2768     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2769     // Since I split shared headers, you'd think this could not happen.
  2770     // BUT: I must first do the preorder numbering before I can discover I
  2771     // have shared headers, so the split headers all get the same preorder
  2772     // number as the RegionNode they split from.
  2773     if( loop_preorder == l_preorder &&
  2774         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2775       break;                    // Also check for shared headers (same pre#)
  2776     pp = &l->_parent;           // Chain up list
  2777     l = *pp;
  2779   // Link into list
  2780   // Point predecessor to me
  2781   *pp = loop;
  2782   // Point me to successor
  2783   IdealLoopTree *p = loop->_parent;
  2784   loop->_parent = l;            // Point me to successor
  2785   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2786   return innermost;
  2789 //------------------------------build_loop_tree--------------------------------
  2790 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2791 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2792 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2793 // tightest enclosing IdealLoopTree for post-walked.
  2794 //
  2795 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2796 // a loop backedge with that doesn't have any work on the backedge.  This
  2797 // helps me construct nested loops with shared headers better.
  2798 //
  2799 // Once I've done the forward recursion, I do the post-work.  For each child
  2800 // I check to see if there is a backedge.  Backedges define a loop!  I
  2801 // insert an IdealLoopTree at the target of the backedge.
  2802 //
  2803 // During the post-work I also check to see if I have several children
  2804 // belonging to different loops.  If so, then this Node is a decision point
  2805 // where control flow can choose to change loop nests.  It is at this
  2806 // decision point where I can figure out how loops are nested.  At this
  2807 // time I can properly order the different loop nests from my children.
  2808 // Note that there may not be any backedges at the decision point!
  2809 //
  2810 // Since the decision point can be far removed from the backedges, I can't
  2811 // order my loops at the time I discover them.  Thus at the decision point
  2812 // I need to inspect loop header pre-order numbers to properly nest my
  2813 // loops.  This means I need to sort my childrens' loops by pre-order.
  2814 // The sort is of size number-of-control-children, which generally limits
  2815 // it to size 2 (i.e., I just choose between my 2 target loops).
  2816 void PhaseIdealLoop::build_loop_tree() {
  2817   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
  2818   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
  2819   Node *n = C->root();
  2820   bltstack.push(n);
  2821   int pre_order = 1;
  2822   int stack_size;
  2824   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2825     n = bltstack.top(); // Leave node on stack
  2826     if ( !is_visited(n) ) {
  2827       // ---- Pre-pass Work ----
  2828       // Pre-walked but not post-walked nodes need a pre_order number.
  2830       set_preorder_visited( n, pre_order ); // set as visited
  2832       // ---- Scan over children ----
  2833       // Scan first over control projections that lead to loop headers.
  2834       // This helps us find inner-to-outer loops with shared headers better.
  2836       // Scan children's children for loop headers.
  2837       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2838         Node* m = n->raw_out(i);       // Child
  2839         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2840           // Scan over children's children to find loop
  2841           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2842             Node* l = m->fast_out(j);
  2843             if( is_visited(l) &&       // Been visited?
  2844                 !is_postvisited(l) &&  // But not post-visited
  2845                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2846               // Found!  Scan the DFS down this path before doing other paths
  2847               bltstack.push(m);
  2848               break;
  2853       pre_order++;
  2855     else if ( !is_postvisited(n) ) {
  2856       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2857       // such as com.sun.rsasign.am::a.
  2858       // For non-recursive version, first, process current children.
  2859       // On next iteration, check if additional children were added.
  2860       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2861         Node* u = n->raw_out(k);
  2862         if ( u->is_CFG() && !is_visited(u) ) {
  2863           bltstack.push(u);
  2866       if ( bltstack.length() == stack_size ) {
  2867         // There were no additional children, post visit node now
  2868         (void)bltstack.pop(); // Remove node from stack
  2869         pre_order = build_loop_tree_impl( n, pre_order );
  2870         // Check for bailout
  2871         if (C->failing()) {
  2872           return;
  2874         // Check to grow _preorders[] array for the case when
  2875         // build_loop_tree_impl() adds new nodes.
  2876         check_grow_preorders();
  2879     else {
  2880       (void)bltstack.pop(); // Remove post-visited node from stack
  2885 //------------------------------build_loop_tree_impl---------------------------
  2886 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2887   // ---- Post-pass Work ----
  2888   // Pre-walked but not post-walked nodes need a pre_order number.
  2890   // Tightest enclosing loop for this Node
  2891   IdealLoopTree *innermost = NULL;
  2893   // For all children, see if any edge is a backedge.  If so, make a loop
  2894   // for it.  Then find the tightest enclosing loop for the self Node.
  2895   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2896     Node* m = n->fast_out(i);   // Child
  2897     if( n == m ) continue;      // Ignore control self-cycles
  2898     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2900     IdealLoopTree *l;           // Child's loop
  2901     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2902       // Found a backedge
  2903       assert( get_preorder(m) < pre_order, "should be backedge" );
  2904       // Check for the RootNode, which is already a LoopNode and is allowed
  2905       // to have multiple "backedges".
  2906       if( m == C->root()) {     // Found the root?
  2907         l = _ltree_root;        // Root is the outermost LoopNode
  2908       } else {                  // Else found a nested loop
  2909         // Insert a LoopNode to mark this loop.
  2910         l = new IdealLoopTree(this, m, n);
  2911       } // End of Else found a nested loop
  2912       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2913         set_loop(m, l);         // Set loop header to loop now
  2915     } else {                    // Else not a nested loop
  2916       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2917       l = get_loop(m);          // Get previously determined loop
  2918       // If successor is header of a loop (nest), move up-loop till it
  2919       // is a member of some outer enclosing loop.  Since there are no
  2920       // shared headers (I've split them already) I only need to go up
  2921       // at most 1 level.
  2922       while( l && l->_head == m ) // Successor heads loop?
  2923         l = l->_parent;         // Move up 1 for me
  2924       // If this loop is not properly parented, then this loop
  2925       // has no exit path out, i.e. its an infinite loop.
  2926       if( !l ) {
  2927         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2928         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2929         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2930         // many backedges as well.
  2932         // Here I set the loop to be the root loop.  I could have, after
  2933         // inserting a bogus loop exit, restarted the recursion and found my
  2934         // new loop exit.  This would make the infinite loop a first-class
  2935         // loop and it would then get properly optimized.  What's the use of
  2936         // optimizing an infinite loop?
  2937         l = _ltree_root;        // Oops, found infinite loop
  2939         if (!_verify_only) {
  2940           // Insert the NeverBranch between 'm' and it's control user.
  2941           NeverBranchNode *iff = new (C) NeverBranchNode( m );
  2942           _igvn.register_new_node_with_optimizer(iff);
  2943           set_loop(iff, l);
  2944           Node *if_t = new (C) CProjNode( iff, 0 );
  2945           _igvn.register_new_node_with_optimizer(if_t);
  2946           set_loop(if_t, l);
  2948           Node* cfg = NULL;       // Find the One True Control User of m
  2949           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2950             Node* x = m->fast_out(j);
  2951             if (x->is_CFG() && x != m && x != iff)
  2952               { cfg = x; break; }
  2954           assert(cfg != NULL, "must find the control user of m");
  2955           uint k = 0;             // Probably cfg->in(0)
  2956           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2957           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2959           // Now create the never-taken loop exit
  2960           Node *if_f = new (C) CProjNode( iff, 1 );
  2961           _igvn.register_new_node_with_optimizer(if_f);
  2962           set_loop(if_f, l);
  2963           // Find frame ptr for Halt.  Relies on the optimizer
  2964           // V-N'ing.  Easier and quicker than searching through
  2965           // the program structure.
  2966           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
  2967           _igvn.register_new_node_with_optimizer(frame);
  2968           // Halt & Catch Fire
  2969           Node *halt = new (C) HaltNode( if_f, frame );
  2970           _igvn.register_new_node_with_optimizer(halt);
  2971           set_loop(halt, l);
  2972           C->root()->add_req(halt);
  2974         set_loop(C->root(), _ltree_root);
  2977     // Weeny check for irreducible.  This child was already visited (this
  2978     // IS the post-work phase).  Is this child's loop header post-visited
  2979     // as well?  If so, then I found another entry into the loop.
  2980     if (!_verify_only) {
  2981       while( is_postvisited(l->_head) ) {
  2982         // found irreducible
  2983         l->_irreducible = 1; // = true
  2984         l = l->_parent;
  2985         _has_irreducible_loops = true;
  2986         // Check for bad CFG here to prevent crash, and bailout of compile
  2987         if (l == NULL) {
  2988           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2989           return pre_order;
  2992       C->set_has_irreducible_loop(_has_irreducible_loops);
  2995     // This Node might be a decision point for loops.  It is only if
  2996     // it's children belong to several different loops.  The sort call
  2997     // does a trivial amount of work if there is only 1 child or all
  2998     // children belong to the same loop.  If however, the children
  2999     // belong to different loops, the sort call will properly set the
  3000     // _parent pointers to show how the loops nest.
  3001     //
  3002     // In any case, it returns the tightest enclosing loop.
  3003     innermost = sort( l, innermost );
  3006   // Def-use info will have some dead stuff; dead stuff will have no
  3007   // loop decided on.
  3009   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  3010   if( innermost && innermost->_head == n ) {
  3011     assert( get_loop(n) == innermost, "" );
  3012     IdealLoopTree *p = innermost->_parent;
  3013     IdealLoopTree *l = innermost;
  3014     while( p && l->_head == n ) {
  3015       l->_next = p->_child;     // Put self on parents 'next child'
  3016       p->_child = l;            // Make self as first child of parent
  3017       l = p;                    // Now walk up the parent chain
  3018       p = l->_parent;
  3020   } else {
  3021     // Note that it is possible for a LoopNode to reach here, if the
  3022     // backedge has been made unreachable (hence the LoopNode no longer
  3023     // denotes a Loop, and will eventually be removed).
  3025     // Record tightest enclosing loop for self.  Mark as post-visited.
  3026     set_loop(n, innermost);
  3027     // Also record has_call flag early on
  3028     if( innermost ) {
  3029       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  3030         // Do not count uncommon calls
  3031         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  3032           Node *iff = n->in(0)->in(0);
  3033           // No any calls for vectorized loops.
  3034           if( UseSuperWord || !iff->is_If() ||
  3035               (n->in(0)->Opcode() == Op_IfFalse &&
  3036                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  3037               (iff->as_If()->_prob >= 0.01) )
  3038             innermost->_has_call = 1;
  3040       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  3041         // Disable loop optimizations if the loop has a scalar replaceable
  3042         // allocation. This disabling may cause a potential performance lost
  3043         // if the allocation is not eliminated for some reason.
  3044         innermost->_allow_optimizations = false;
  3045         innermost->_has_call = 1; // = true
  3046       } else if (n->Opcode() == Op_SafePoint) {
  3047         // Record all safepoints in this loop.
  3048         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
  3049         innermost->_safepts->push(n);
  3054   // Flag as post-visited now
  3055   set_postvisited(n);
  3056   return pre_order;
  3060 //------------------------------build_loop_early-------------------------------
  3061 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3062 // First pass computes the earliest controlling node possible.  This is the
  3063 // controlling input with the deepest dominating depth.
  3064 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3065   while (worklist.size() != 0) {
  3066     // Use local variables nstack_top_n & nstack_top_i to cache values
  3067     // on nstack's top.
  3068     Node *nstack_top_n = worklist.pop();
  3069     uint  nstack_top_i = 0;
  3070 //while_nstack_nonempty:
  3071     while (true) {
  3072       // Get parent node and next input's index from stack's top.
  3073       Node  *n = nstack_top_n;
  3074       uint   i = nstack_top_i;
  3075       uint cnt = n->req(); // Count of inputs
  3076       if (i == 0) {        // Pre-process the node.
  3077         if( has_node(n) &&            // Have either loop or control already?
  3078             !has_ctrl(n) ) {          // Have loop picked out already?
  3079           // During "merge_many_backedges" we fold up several nested loops
  3080           // into a single loop.  This makes the members of the original
  3081           // loop bodies pointing to dead loops; they need to move up
  3082           // to the new UNION'd larger loop.  I set the _head field of these
  3083           // dead loops to NULL and the _parent field points to the owning
  3084           // loop.  Shades of UNION-FIND algorithm.
  3085           IdealLoopTree *ilt;
  3086           while( !(ilt = get_loop(n))->_head ) {
  3087             // Normally I would use a set_loop here.  But in this one special
  3088             // case, it is legal (and expected) to change what loop a Node
  3089             // belongs to.
  3090             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  3092           // Remove safepoints ONLY if I've already seen I don't need one.
  3093           // (the old code here would yank a 2nd safepoint after seeing a
  3094           // first one, even though the 1st did not dominate in the loop body
  3095           // and thus could be avoided indefinitely)
  3096           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  3097               is_deleteable_safept(n)) {
  3098             Node *in = n->in(TypeFunc::Control);
  3099             lazy_replace(n,in);       // Pull safepoint now
  3100             if (ilt->_safepts != NULL) {
  3101               ilt->_safepts->yank(n);
  3103             // Carry on with the recursion "as if" we are walking
  3104             // only the control input
  3105             if( !visited.test_set( in->_idx ) ) {
  3106               worklist.push(in);      // Visit this guy later, using worklist
  3108             // Get next node from nstack:
  3109             // - skip n's inputs processing by setting i > cnt;
  3110             // - we also will not call set_early_ctrl(n) since
  3111             //   has_node(n) == true (see the condition above).
  3112             i = cnt + 1;
  3115       } // if (i == 0)
  3117       // Visit all inputs
  3118       bool done = true;       // Assume all n's inputs will be processed
  3119       while (i < cnt) {
  3120         Node *in = n->in(i);
  3121         ++i;
  3122         if (in == NULL) continue;
  3123         if (in->pinned() && !in->is_CFG())
  3124           set_ctrl(in, in->in(0));
  3125         int is_visited = visited.test_set( in->_idx );
  3126         if (!has_node(in)) {  // No controlling input yet?
  3127           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  3128           assert( !is_visited, "visit only once" );
  3129           nstack.push(n, i);  // Save parent node and next input's index.
  3130           nstack_top_n = in;  // Process current input now.
  3131           nstack_top_i = 0;
  3132           done = false;       // Not all n's inputs processed.
  3133           break; // continue while_nstack_nonempty;
  3134         } else if (!is_visited) {
  3135           // This guy has a location picked out for him, but has not yet
  3136           // been visited.  Happens to all CFG nodes, for instance.
  3137           // Visit him using the worklist instead of recursion, to break
  3138           // cycles.  Since he has a location already we do not need to
  3139           // find his location before proceeding with the current Node.
  3140           worklist.push(in);  // Visit this guy later, using worklist
  3143       if (done) {
  3144         // All of n's inputs have been processed, complete post-processing.
  3146         // Compute earliest point this Node can go.
  3147         // CFG, Phi, pinned nodes already know their controlling input.
  3148         if (!has_node(n)) {
  3149           // Record earliest legal location
  3150           set_early_ctrl( n );
  3152         if (nstack.is_empty()) {
  3153           // Finished all nodes on stack.
  3154           // Process next node on the worklist.
  3155           break;
  3157         // Get saved parent node and next input's index.
  3158         nstack_top_n = nstack.node();
  3159         nstack_top_i = nstack.index();
  3160         nstack.pop();
  3162     } // while (true)
  3166 //------------------------------dom_lca_internal--------------------------------
  3167 // Pair-wise LCA
  3168 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  3169   if( !n1 ) return n2;          // Handle NULL original LCA
  3170   assert( n1->is_CFG(), "" );
  3171   assert( n2->is_CFG(), "" );
  3172   // find LCA of all uses
  3173   uint d1 = dom_depth(n1);
  3174   uint d2 = dom_depth(n2);
  3175   while (n1 != n2) {
  3176     if (d1 > d2) {
  3177       n1 =      idom(n1);
  3178       d1 = dom_depth(n1);
  3179     } else if (d1 < d2) {
  3180       n2 =      idom(n2);
  3181       d2 = dom_depth(n2);
  3182     } else {
  3183       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3184       // of the tree might have the same depth.  These sections have
  3185       // to be searched more carefully.
  3187       // Scan up all the n1's with equal depth, looking for n2.
  3188       Node *t1 = idom(n1);
  3189       while (dom_depth(t1) == d1) {
  3190         if (t1 == n2)  return n2;
  3191         t1 = idom(t1);
  3193       // Scan up all the n2's with equal depth, looking for n1.
  3194       Node *t2 = idom(n2);
  3195       while (dom_depth(t2) == d2) {
  3196         if (t2 == n1)  return n1;
  3197         t2 = idom(t2);
  3199       // Move up to a new dominator-depth value as well as up the dom-tree.
  3200       n1 = t1;
  3201       n2 = t2;
  3202       d1 = dom_depth(n1);
  3203       d2 = dom_depth(n2);
  3206   return n1;
  3209 //------------------------------compute_idom-----------------------------------
  3210 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  3211 // IDOMs are correct.
  3212 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  3213   assert( region->is_Region(), "" );
  3214   Node *LCA = NULL;
  3215   for( uint i = 1; i < region->req(); i++ ) {
  3216     if( region->in(i) != C->top() )
  3217       LCA = dom_lca( LCA, region->in(i) );
  3219   return LCA;
  3222 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  3223   bool had_error = false;
  3224 #ifdef ASSERT
  3225   if (early != C->root()) {
  3226     // Make sure that there's a dominance path from LCA to early
  3227     Node* d = LCA;
  3228     while (d != early) {
  3229       if (d == C->root()) {
  3230         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
  3231         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
  3232         had_error = true;
  3233         break;
  3235       d = idom(d);
  3238 #endif
  3239   return had_error;
  3243 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  3244   // Compute LCA over list of uses
  3245   bool had_error = false;
  3246   Node *LCA = NULL;
  3247   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  3248     Node* c = n->fast_out(i);
  3249     if (_nodes[c->_idx] == NULL)
  3250       continue;                 // Skip the occasional dead node
  3251     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  3252       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  3253         if( c->in(j) == n ) {   // Found matching input?
  3254           Node *use = c->in(0)->in(j);
  3255           if (_verify_only && use->is_top()) continue;
  3256           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3257           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3260     } else {
  3261       // For CFG data-users, use is in the block just prior
  3262       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  3263       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3264       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3267   assert(!had_error, "bad dominance");
  3268   return LCA;
  3271 //------------------------------get_late_ctrl----------------------------------
  3272 // Compute latest legal control.
  3273 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  3274   assert(early != NULL, "early control should not be NULL");
  3276   Node* LCA = compute_lca_of_uses(n, early);
  3277 #ifdef ASSERT
  3278   if (LCA == C->root() && LCA != early) {
  3279     // def doesn't dominate uses so print some useful debugging output
  3280     compute_lca_of_uses(n, early, true);
  3282 #endif
  3284   // if this is a load, check for anti-dependent stores
  3285   // We use a conservative algorithm to identify potential interfering
  3286   // instructions and for rescheduling the load.  The users of the memory
  3287   // input of this load are examined.  Any use which is not a load and is
  3288   // dominated by early is considered a potentially interfering store.
  3289   // This can produce false positives.
  3290   if (n->is_Load() && LCA != early) {
  3291     Node_List worklist;
  3293     Node *mem = n->in(MemNode::Memory);
  3294     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  3295       Node* s = mem->fast_out(i);
  3296       worklist.push(s);
  3298     while(worklist.size() != 0 && LCA != early) {
  3299       Node* s = worklist.pop();
  3300       if (s->is_Load()) {
  3301         continue;
  3302       } else if (s->is_MergeMem()) {
  3303         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3304           Node* s1 = s->fast_out(i);
  3305           worklist.push(s1);
  3307       } else {
  3308         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3309         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3310         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3311           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3317   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3318   return LCA;
  3321 // true if CFG node d dominates CFG node n
  3322 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3323   if (d == n)
  3324     return true;
  3325   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3326   uint dd = dom_depth(d);
  3327   while (dom_depth(n) >= dd) {
  3328     if (n == d)
  3329       return true;
  3330     n = idom(n);
  3332   return false;
  3335 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3336 // Pair-wise LCA with tags.
  3337 // Tag each index with the node 'tag' currently being processed
  3338 // before advancing up the dominator chain using idom().
  3339 // Later calls that find a match to 'tag' know that this path has already
  3340 // been considered in the current LCA (which is input 'n1' by convention).
  3341 // Since get_late_ctrl() is only called once for each node, the tag array
  3342 // does not need to be cleared between calls to get_late_ctrl().
  3343 // Algorithm trades a larger constant factor for better asymptotic behavior
  3344 //
  3345 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3346   uint d1 = dom_depth(n1);
  3347   uint d2 = dom_depth(n2);
  3349   do {
  3350     if (d1 > d2) {
  3351       // current lca is deeper than n2
  3352       _dom_lca_tags.map(n1->_idx, tag);
  3353       n1 =      idom(n1);
  3354       d1 = dom_depth(n1);
  3355     } else if (d1 < d2) {
  3356       // n2 is deeper than current lca
  3357       Node *memo = _dom_lca_tags[n2->_idx];
  3358       if( memo == tag ) {
  3359         return n1;    // Return the current LCA
  3361       _dom_lca_tags.map(n2->_idx, tag);
  3362       n2 =      idom(n2);
  3363       d2 = dom_depth(n2);
  3364     } else {
  3365       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3366       // of the tree might have the same depth.  These sections have
  3367       // to be searched more carefully.
  3369       // Scan up all the n1's with equal depth, looking for n2.
  3370       _dom_lca_tags.map(n1->_idx, tag);
  3371       Node *t1 = idom(n1);
  3372       while (dom_depth(t1) == d1) {
  3373         if (t1 == n2)  return n2;
  3374         _dom_lca_tags.map(t1->_idx, tag);
  3375         t1 = idom(t1);
  3377       // Scan up all the n2's with equal depth, looking for n1.
  3378       _dom_lca_tags.map(n2->_idx, tag);
  3379       Node *t2 = idom(n2);
  3380       while (dom_depth(t2) == d2) {
  3381         if (t2 == n1)  return n1;
  3382         _dom_lca_tags.map(t2->_idx, tag);
  3383         t2 = idom(t2);
  3385       // Move up to a new dominator-depth value as well as up the dom-tree.
  3386       n1 = t1;
  3387       n2 = t2;
  3388       d1 = dom_depth(n1);
  3389       d2 = dom_depth(n2);
  3391   } while (n1 != n2);
  3392   return n1;
  3395 //------------------------------init_dom_lca_tags------------------------------
  3396 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3397 // Intended use does not involve any growth for the array, so it could
  3398 // be of fixed size.
  3399 void PhaseIdealLoop::init_dom_lca_tags() {
  3400   uint limit = C->unique() + 1;
  3401   _dom_lca_tags.map( limit, NULL );
  3402 #ifdef ASSERT
  3403   for( uint i = 0; i < limit; ++i ) {
  3404     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3406 #endif // ASSERT
  3409 //------------------------------clear_dom_lca_tags------------------------------
  3410 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3411 // Intended use does not involve any growth for the array, so it could
  3412 // be of fixed size.
  3413 void PhaseIdealLoop::clear_dom_lca_tags() {
  3414   uint limit = C->unique() + 1;
  3415   _dom_lca_tags.map( limit, NULL );
  3416   _dom_lca_tags.clear();
  3417 #ifdef ASSERT
  3418   for( uint i = 0; i < limit; ++i ) {
  3419     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3421 #endif // ASSERT
  3424 //------------------------------build_loop_late--------------------------------
  3425 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3426 // Second pass finds latest legal placement, and ideal loop placement.
  3427 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3428   while (worklist.size() != 0) {
  3429     Node *n = worklist.pop();
  3430     // Only visit once
  3431     if (visited.test_set(n->_idx)) continue;
  3432     uint cnt = n->outcnt();
  3433     uint   i = 0;
  3434     while (true) {
  3435       assert( _nodes[n->_idx], "no dead nodes" );
  3436       // Visit all children
  3437       if (i < cnt) {
  3438         Node* use = n->raw_out(i);
  3439         ++i;
  3440         // Check for dead uses.  Aggressively prune such junk.  It might be
  3441         // dead in the global sense, but still have local uses so I cannot
  3442         // easily call 'remove_dead_node'.
  3443         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3444           // Due to cycles, we might not hit the same fixed point in the verify
  3445           // pass as we do in the regular pass.  Instead, visit such phis as
  3446           // simple uses of the loop head.
  3447           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3448             if( !visited.test(use->_idx) )
  3449               worklist.push(use);
  3450           } else if( !visited.test_set(use->_idx) ) {
  3451             nstack.push(n, i); // Save parent and next use's index.
  3452             n   = use;         // Process all children of current use.
  3453             cnt = use->outcnt();
  3454             i   = 0;
  3456         } else {
  3457           // Do not visit around the backedge of loops via data edges.
  3458           // push dead code onto a worklist
  3459           _deadlist.push(use);
  3461       } else {
  3462         // All of n's children have been processed, complete post-processing.
  3463         build_loop_late_post(n);
  3464         if (nstack.is_empty()) {
  3465           // Finished all nodes on stack.
  3466           // Process next node on the worklist.
  3467           break;
  3469         // Get saved parent node and next use's index. Visit the rest of uses.
  3470         n   = nstack.node();
  3471         cnt = n->outcnt();
  3472         i   = nstack.index();
  3473         nstack.pop();
  3479 //------------------------------build_loop_late_post---------------------------
  3480 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3481 // Second pass finds latest legal placement, and ideal loop placement.
  3482 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3484   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3485     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3488 #ifdef ASSERT
  3489   if (_verify_only && !n->is_CFG()) {
  3490     // Check def-use domination.
  3491     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
  3493 #endif
  3495   // CFG and pinned nodes already handled
  3496   if( n->in(0) ) {
  3497     if( n->in(0)->is_top() ) return; // Dead?
  3499     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3500     // _must_ be pinned (they have to observe their control edge of course).
  3501     // Unlike Stores (which modify an unallocable resource, the memory
  3502     // state), Mods/Loads can float around.  So free them up.
  3503     bool pinned = true;
  3504     switch( n->Opcode() ) {
  3505     case Op_DivI:
  3506     case Op_DivF:
  3507     case Op_DivD:
  3508     case Op_ModI:
  3509     case Op_ModF:
  3510     case Op_ModD:
  3511     case Op_LoadB:              // Same with Loads; they can sink
  3512     case Op_LoadUB:             // during loop optimizations.
  3513     case Op_LoadUS:
  3514     case Op_LoadD:
  3515     case Op_LoadF:
  3516     case Op_LoadI:
  3517     case Op_LoadKlass:
  3518     case Op_LoadNKlass:
  3519     case Op_LoadL:
  3520     case Op_LoadS:
  3521     case Op_LoadP:
  3522     case Op_LoadN:
  3523     case Op_LoadRange:
  3524     case Op_LoadD_unaligned:
  3525     case Op_LoadL_unaligned:
  3526     case Op_StrComp:            // Does a bunch of load-like effects
  3527     case Op_StrEquals:
  3528     case Op_StrIndexOf:
  3529     case Op_AryEq:
  3530       pinned = false;
  3532     if( pinned ) {
  3533       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3534       if( !chosen_loop->_child )       // Inner loop?
  3535         chosen_loop->_body.push(n); // Collect inner loops
  3536       return;
  3538   } else {                      // No slot zero
  3539     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3540       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3541       return;
  3543     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3546   // Do I have a "safe range" I can select over?
  3547   Node *early = get_ctrl(n);// Early location already computed
  3549   // Compute latest point this Node can go
  3550   Node *LCA = get_late_ctrl( n, early );
  3551   // LCA is NULL due to uses being dead
  3552   if( LCA == NULL ) {
  3553 #ifdef ASSERT
  3554     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3555       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3557 #endif
  3558     _nodes.map(n->_idx, 0);     // This node is useless
  3559     _deadlist.push(n);
  3560     return;
  3562   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3564   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3565   Node *least = legal;          // Best legal position so far
  3566   while( early != legal ) {     // While not at earliest legal
  3567 #ifdef ASSERT
  3568     if (legal->is_Start() && !early->is_Root()) {
  3569       // Bad graph. Print idom path and fail.
  3570       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
  3571       assert(false, "Bad graph detected in build_loop_late");
  3573 #endif
  3574     // Find least loop nesting depth
  3575     legal = idom(legal);        // Bump up the IDOM tree
  3576     // Check for lower nesting depth
  3577     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3578       least = legal;
  3580   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3582   // Try not to place code on a loop entry projection
  3583   // which can inhibit range check elimination.
  3584   if (least != early) {
  3585     Node* ctrl_out = least->unique_ctrl_out();
  3586     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3587         least == ctrl_out->in(LoopNode::EntryControl)) {
  3588       Node* least_dom = idom(least);
  3589       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3590         least = least_dom;
  3595 #ifdef ASSERT
  3596   // If verifying, verify that 'verify_me' has a legal location
  3597   // and choose it as our location.
  3598   if( _verify_me ) {
  3599     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3600     Node *legal = LCA;
  3601     while( early != legal ) {   // While not at earliest legal
  3602       if( legal == v_ctrl ) break;  // Check for prior good location
  3603       legal = idom(legal)      ;// Bump up the IDOM tree
  3605     // Check for prior good location
  3606     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3608 #endif
  3610   // Assign discovered "here or above" point
  3611   least = find_non_split_ctrl(least);
  3612   set_ctrl(n, least);
  3614   // Collect inner loop bodies
  3615   IdealLoopTree *chosen_loop = get_loop(least);
  3616   if( !chosen_loop->_child )   // Inner loop?
  3617     chosen_loop->_body.push(n);// Collect inner loops
  3620 #ifdef ASSERT
  3621 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
  3622   tty->print_cr("%s", msg);
  3623   tty->print("n: "); n->dump();
  3624   tty->print("early(n): "); early->dump();
  3625   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
  3626       n->in(0) != early && !n->in(0)->is_Root()) {
  3627     tty->print("n->in(0): "); n->in(0)->dump();
  3629   for (uint i = 1; i < n->req(); i++) {
  3630     Node* in1 = n->in(i);
  3631     if (in1 != NULL && in1 != n && !in1->is_top()) {
  3632       tty->print("n->in(%d): ", i); in1->dump();
  3633       Node* in1_early = get_ctrl(in1);
  3634       tty->print("early(n->in(%d)): ", i); in1_early->dump();
  3635       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
  3636           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
  3637         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
  3639       for (uint j = 1; j < in1->req(); j++) {
  3640         Node* in2 = in1->in(j);
  3641         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
  3642           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
  3643           Node* in2_early = get_ctrl(in2);
  3644           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
  3645           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
  3646               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
  3647             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
  3653   tty->cr();
  3654   tty->print("LCA(n): "); LCA->dump();
  3655   for (uint i = 0; i < n->outcnt(); i++) {
  3656     Node* u1 = n->raw_out(i);
  3657     if (u1 == n)
  3658       continue;
  3659     tty->print("n->out(%d): ", i); u1->dump();
  3660     if (u1->is_CFG()) {
  3661       for (uint j = 0; j < u1->outcnt(); j++) {
  3662         Node* u2 = u1->raw_out(j);
  3663         if (u2 != u1 && u2 != n && u2->is_CFG()) {
  3664           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3667     } else {
  3668       Node* u1_later = get_ctrl(u1);
  3669       tty->print("later(n->out(%d)): ", i); u1_later->dump();
  3670       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
  3671           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
  3672         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
  3674       for (uint j = 0; j < u1->outcnt(); j++) {
  3675         Node* u2 = u1->raw_out(j);
  3676         if (u2 == n || u2 == u1)
  3677           continue;
  3678         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3679         if (!u2->is_CFG()) {
  3680           Node* u2_later = get_ctrl(u2);
  3681           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
  3682           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
  3683               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
  3684             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
  3690   tty->cr();
  3691   int ct = 0;
  3692   Node *dbg_legal = LCA;
  3693   while(!dbg_legal->is_Start() && ct < 100) {
  3694     tty->print("idom[%d] ",ct); dbg_legal->dump();
  3695     ct++;
  3696     dbg_legal = idom(dbg_legal);
  3698   tty->cr();
  3700 #endif
  3702 #ifndef PRODUCT
  3703 //------------------------------dump-------------------------------------------
  3704 void PhaseIdealLoop::dump( ) const {
  3705   ResourceMark rm;
  3706   Arena* arena = Thread::current()->resource_area();
  3707   Node_Stack stack(arena, C->live_nodes() >> 2);
  3708   Node_List rpo_list;
  3709   VectorSet visited(arena);
  3710   visited.set(C->top()->_idx);
  3711   rpo( C->root(), stack, visited, rpo_list );
  3712   // Dump root loop indexed by last element in PO order
  3713   dump( _ltree_root, rpo_list.size(), rpo_list );
  3716 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3717   loop->dump_head();
  3719   // Now scan for CFG nodes in the same loop
  3720   for( uint j=idx; j > 0;  j-- ) {
  3721     Node *n = rpo_list[j-1];
  3722     if( !_nodes[n->_idx] )      // Skip dead nodes
  3723       continue;
  3724     if( get_loop(n) != loop ) { // Wrong loop nest
  3725       if( get_loop(n)->_head == n &&    // Found nested loop?
  3726           get_loop(n)->_parent == loop )
  3727         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3728       continue;
  3731     // Dump controlling node
  3732     for( uint x = 0; x < loop->_nest; x++ )
  3733       tty->print("  ");
  3734     tty->print("C");
  3735     if( n == C->root() ) {
  3736       n->dump();
  3737     } else {
  3738       Node* cached_idom   = idom_no_update(n);
  3739       Node *computed_idom = n->in(0);
  3740       if( n->is_Region() ) {
  3741         computed_idom = compute_idom(n);
  3742         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3743         // any MultiBranch ctrl node), so apply a similar transform to
  3744         // the cached idom returned from idom_no_update.
  3745         cached_idom = find_non_split_ctrl(cached_idom);
  3747       tty->print(" ID:%d",computed_idom->_idx);
  3748       n->dump();
  3749       if( cached_idom != computed_idom ) {
  3750         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3751                       computed_idom->_idx, cached_idom->_idx);
  3754     // Dump nodes it controls
  3755     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3756       // (k < C->unique() && get_ctrl(find(k)) == n)
  3757       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3758         Node *m = C->root()->find(k);
  3759         if( m && m->outcnt() > 0 ) {
  3760           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3761             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3762                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3764           for( uint j = 0; j < loop->_nest; j++ )
  3765             tty->print("  ");
  3766           tty->print(" ");
  3767           m->dump();
  3774 // Collect a R-P-O for the whole CFG.
  3775 // Result list is in post-order (scan backwards for RPO)
  3776 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3777   stk.push(start, 0);
  3778   visited.set(start->_idx);
  3780   while (stk.is_nonempty()) {
  3781     Node* m   = stk.node();
  3782     uint  idx = stk.index();
  3783     if (idx < m->outcnt()) {
  3784       stk.set_index(idx + 1);
  3785       Node* n = m->raw_out(idx);
  3786       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3787         stk.push(n, 0);
  3789     } else {
  3790       rpo_list.push(m);
  3791       stk.pop();
  3795 #endif
  3798 //=============================================================================
  3799 //------------------------------LoopTreeIterator-----------------------------------
  3801 // Advance to next loop tree using a preorder, left-to-right traversal.
  3802 void LoopTreeIterator::next() {
  3803   assert(!done(), "must not be done.");
  3804   if (_curnt->_child != NULL) {
  3805     _curnt = _curnt->_child;
  3806   } else if (_curnt->_next != NULL) {
  3807     _curnt = _curnt->_next;
  3808   } else {
  3809     while (_curnt != _root && _curnt->_next == NULL) {
  3810       _curnt = _curnt->_parent;
  3812     if (_curnt == _root) {
  3813       _curnt = NULL;
  3814       assert(done(), "must be done.");
  3815     } else {
  3816       assert(_curnt->_next != NULL, "must be more to do");
  3817       _curnt = _curnt->_next;

mercurial