src/share/vm/opto/connode.cpp

Thu, 24 May 2018 19:26:50 +0800

author
aoqi
date
Thu, 24 May 2018 19:26:50 +0800
changeset 8862
fd13a567f179
parent 8856
ac27a9c85bea
child 9756
2be326848943
permissions
-rw-r--r--

#7046 C2 supports long branch
Contributed-by: fujie

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/compile.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/phaseX.hpp"
    34 #include "opto/subnode.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    37 // Optimization - Graph Style
    39 //=============================================================================
    40 //------------------------------hash-------------------------------------------
    41 uint ConNode::hash() const {
    42   return (uintptr_t)in(TypeFunc::Control) + _type->hash();
    43 }
    45 //------------------------------make-------------------------------------------
    46 ConNode *ConNode::make( Compile* C, const Type *t ) {
    47   switch( t->basic_type() ) {
    48   case T_INT:         return new (C) ConINode( t->is_int() );
    49   case T_LONG:        return new (C) ConLNode( t->is_long() );
    50   case T_FLOAT:       return new (C) ConFNode( t->is_float_constant() );
    51   case T_DOUBLE:      return new (C) ConDNode( t->is_double_constant() );
    52   case T_VOID:        return new (C) ConNode ( Type::TOP );
    53   case T_OBJECT:      return new (C) ConPNode( t->is_ptr() );
    54   case T_ARRAY:       return new (C) ConPNode( t->is_aryptr() );
    55   case T_ADDRESS:     return new (C) ConPNode( t->is_ptr() );
    56   case T_NARROWOOP:   return new (C) ConNNode( t->is_narrowoop() );
    57   case T_NARROWKLASS: return new (C) ConNKlassNode( t->is_narrowklass() );
    58   case T_METADATA:    return new (C) ConPNode( t->is_ptr() );
    59     // Expected cases:  TypePtr::NULL_PTR, any is_rawptr()
    60     // Also seen: AnyPtr(TopPTR *+top); from command line:
    61     //   r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
    62     // %%%% Stop using TypePtr::NULL_PTR to represent nulls:  use either TypeRawPtr::NULL_PTR
    63     // or else TypeOopPtr::NULL_PTR.  Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
    64   }
    65   ShouldNotReachHere();
    66   return NULL;
    67 }
    69 //=============================================================================
    70 /*
    71 The major change is for CMoveP and StrComp.  They have related but slightly
    72 different problems.  They both take in TWO oops which are both null-checked
    73 independently before the using Node.  After CCP removes the CastPP's they need
    74 to pick up the guarding test edge - in this case TWO control edges.  I tried
    75 various solutions, all have problems:
    77 (1) Do nothing.  This leads to a bug where we hoist a Load from a CMoveP or a
    78 StrComp above a guarding null check.  I've seen both cases in normal -Xcomp
    79 testing.
    81 (2) Plug the control edge from 1 of the 2 oops in.  Apparent problem here is
    82 to figure out which test post-dominates.  The real problem is that it doesn't
    83 matter which one you pick.  After you pick up, the dominating-test elider in
    84 IGVN can remove the test and allow you to hoist up to the dominating test on
    85 the chosen oop bypassing the test on the not-chosen oop.  Seen in testing.
    86 Oops.
    88 (3) Leave the CastPP's in.  This makes the graph more accurate in some sense;
    89 we get to keep around the knowledge that an oop is not-null after some test.
    90 Alas, the CastPP's interfere with GVN (some values are the regular oop, some
    91 are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
    92 This cost us 10% on SpecJVM, even when I removed some of the more trivial
    93 cases in the optimizer.  Removing more useless Phi's started allowing Loads to
    94 illegally float above null checks.  I gave up on this approach.
    96 (4) Add BOTH control edges to both tests.  Alas, too much code knows that
    97 control edges are in slot-zero ONLY.  Many quick asserts fail; no way to do
    98 this one.  Note that I really want to allow the CMoveP to float and add both
    99 control edges to the dependent Load op - meaning I can select early but I
   100 cannot Load until I pass both tests.
   102 (5) Do not hoist CMoveP and StrComp.  To this end I added the v-call
   103 depends_only_on_test().  No obvious performance loss on Spec, but we are
   104 clearly conservative on CMoveP (also so on StrComp but that's unlikely to
   105 matter ever).
   107 */
   110 //------------------------------Ideal------------------------------------------
   111 // Return a node which is more "ideal" than the current node.
   112 // Move constants to the right.
   113 Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   114   if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
   115   // Don't bother trying to transform a dead node
   116   if( in(0) && in(0)->is_top() )  return NULL;
   117   assert( !phase->eqv(in(Condition), this) &&
   118           !phase->eqv(in(IfFalse), this) &&
   119           !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
   120   if( phase->type(in(Condition)) == Type::TOP )
   121     return NULL; // return NULL when Condition is dead
   123   if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
   124     if( in(Condition)->is_Bool() ) {
   125       BoolNode* b  = in(Condition)->as_Bool();
   126       BoolNode* b2 = b->negate(phase);
   127       return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
   128     }
   129   }
   130   return NULL;
   131 }
   133 //------------------------------is_cmove_id------------------------------------
   134 // Helper function to check for CMOVE identity.  Shared with PhiNode::Identity
   135 Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
   136   // Check for Cmp'ing and CMove'ing same values
   137   if( (phase->eqv(cmp->in(1),f) &&
   138        phase->eqv(cmp->in(2),t)) ||
   139       // Swapped Cmp is OK
   140       (phase->eqv(cmp->in(2),f) &&
   141        phase->eqv(cmp->in(1),t)) ) {
   142     // Give up this identity check for floating points because it may choose incorrect
   143     // value around 0.0 and -0.0
   144     if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
   145       return NULL;
   146     // Check for "(t==f)?t:f;" and replace with "f"
   147     if( b->_test._test == BoolTest::eq )
   148       return f;
   149     // Allow the inverted case as well
   150     // Check for "(t!=f)?t:f;" and replace with "t"
   151     if( b->_test._test == BoolTest::ne )
   152       return t;
   153   }
   154   return NULL;
   155 }
   157 //------------------------------Identity---------------------------------------
   158 // Conditional-move is an identity if both inputs are the same, or the test
   159 // true or false.
   160 Node *CMoveNode::Identity( PhaseTransform *phase ) {
   161   if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
   162     return in(IfFalse);         // Then it doesn't matter
   163   if( phase->type(in(Condition)) == TypeInt::ZERO )
   164     return in(IfFalse);         // Always pick left(false) input
   165   if( phase->type(in(Condition)) == TypeInt::ONE )
   166     return in(IfTrue);          // Always pick right(true) input
   168   // Check for CMove'ing a constant after comparing against the constant.
   169   // Happens all the time now, since if we compare equality vs a constant in
   170   // the parser, we "know" the variable is constant on one path and we force
   171   // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
   172   // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
   173   // general in that we don't need constants.
   174   if( in(Condition)->is_Bool() ) {
   175     BoolNode *b = in(Condition)->as_Bool();
   176     Node *cmp = b->in(1);
   177     if( cmp->is_Cmp() ) {
   178       Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
   179       if( id ) return id;
   180     }
   181   }
   183   return this;
   184 }
   186 //------------------------------Value------------------------------------------
   187 // Result is the meet of inputs
   188 const Type *CMoveNode::Value( PhaseTransform *phase ) const {
   189   if( phase->type(in(Condition)) == Type::TOP )
   190     return Type::TOP;
   191   return phase->type(in(IfFalse))->meet_speculative(phase->type(in(IfTrue)));
   192 }
   194 //------------------------------make-------------------------------------------
   195 // Make a correctly-flavored CMove.  Since _type is directly determined
   196 // from the inputs we do not need to specify it here.
   197 CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
   198   switch( t->basic_type() ) {
   199   case T_INT:     return new (C) CMoveINode( bol, left, right, t->is_int() );
   200   case T_FLOAT:   return new (C) CMoveFNode( bol, left, right, t );
   201   case T_DOUBLE:  return new (C) CMoveDNode( bol, left, right, t );
   202   case T_LONG:    return new (C) CMoveLNode( bol, left, right, t->is_long() );
   203   case T_OBJECT:  return new (C) CMovePNode( c, bol, left, right, t->is_oopptr() );
   204   case T_ADDRESS: return new (C) CMovePNode( c, bol, left, right, t->is_ptr() );
   205   case T_NARROWOOP: return new (C) CMoveNNode( c, bol, left, right, t );
   206   default:
   207     ShouldNotReachHere();
   208     return NULL;
   209   }
   210 }
   212 //=============================================================================
   213 //------------------------------Ideal------------------------------------------
   214 // Return a node which is more "ideal" than the current node.
   215 // Check for conversions to boolean
   216 Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   217   // Try generic ideal's first
   218   Node *x = CMoveNode::Ideal(phase, can_reshape);
   219   if( x ) return x;
   221   // If zero is on the left (false-case, no-move-case) it must mean another
   222   // constant is on the right (otherwise the shared CMove::Ideal code would
   223   // have moved the constant to the right).  This situation is bad for Intel
   224   // and a don't-care for Sparc.  It's bad for Intel because the zero has to
   225   // be manifested in a register with a XOR which kills flags, which are live
   226   // on input to the CMoveI, leading to a situation which causes excessive
   227   // spilling on Intel.  For Sparc, if the zero in on the left the Sparc will
   228   // zero a register via G0 and conditionally-move the other constant.  If the
   229   // zero is on the right, the Sparc will load the first constant with a
   230   // 13-bit set-lo and conditionally move G0.  See bug 4677505.
   231   if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
   232     if( in(Condition)->is_Bool() ) {
   233       BoolNode* b  = in(Condition)->as_Bool();
   234       BoolNode* b2 = b->negate(phase);
   235       return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
   236     }
   237   }
   239   // Now check for booleans
   240   int flip = 0;
   242   // Check for picking from zero/one
   243   if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
   244     flip = 1 - flip;
   245   } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
   246   } else return NULL;
   248   // Check for eq/ne test
   249   if( !in(1)->is_Bool() ) return NULL;
   250   BoolNode *bol = in(1)->as_Bool();
   251   if( bol->_test._test == BoolTest::eq ) {
   252   } else if( bol->_test._test == BoolTest::ne ) {
   253     flip = 1-flip;
   254   } else return NULL;
   256   // Check for vs 0 or 1
   257   if( !bol->in(1)->is_Cmp() ) return NULL;
   258   const CmpNode *cmp = bol->in(1)->as_Cmp();
   259   if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
   260   } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
   261     // Allow cmp-vs-1 if the other input is bounded by 0-1
   262     if( phase->type(cmp->in(1)) != TypeInt::BOOL )
   263       return NULL;
   264     flip = 1 - flip;
   265   } else return NULL;
   267   // Convert to a bool (flipped)
   268   // Build int->bool conversion
   269 #ifndef PRODUCT
   270   if( PrintOpto ) tty->print_cr("CMOV to I2B");
   271 #endif
   272   Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
   273   if( flip )
   274     n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
   276   return n;
   277 }
   279 //=============================================================================
   280 //------------------------------Ideal------------------------------------------
   281 // Return a node which is more "ideal" than the current node.
   282 // Check for absolute value
   283 Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   284   // Try generic ideal's first
   285   Node *x = CMoveNode::Ideal(phase, can_reshape);
   286   if( x ) return x;
   288   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
   289   int  phi_x_idx = 0;           // Index of phi input where to find naked x
   291   // Find the Bool
   292   if( !in(1)->is_Bool() ) return NULL;
   293   BoolNode *bol = in(1)->as_Bool();
   294   // Check bool sense
   295   switch( bol->_test._test ) {
   296   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
   297   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
   298   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
   299   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
   300   default:           return NULL;                           break;
   301   }
   303   // Find zero input of CmpF; the other input is being abs'd
   304   Node *cmpf = bol->in(1);
   305   if( cmpf->Opcode() != Op_CmpF ) return NULL;
   306   Node *X = NULL;
   307   bool flip = false;
   308   if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
   309     X = cmpf->in(3 - cmp_zero_idx);
   310   } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
   311     // The test is inverted, we should invert the result...
   312     X = cmpf->in(cmp_zero_idx);
   313     flip = true;
   314   } else {
   315     return NULL;
   316   }
   318   // If X is found on the appropriate phi input, find the subtract on the other
   319   if( X != in(phi_x_idx) ) return NULL;
   320   int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
   321   Node *sub = in(phi_sub_idx);
   323   // Allow only SubF(0,X) and fail out for all others; NegF is not OK
   324   if( sub->Opcode() != Op_SubF ||
   325       sub->in(2) != X ||
   326       phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
   328   Node *abs = new (phase->C) AbsFNode( X );
   329   if( flip )
   330     abs = new (phase->C) SubFNode(sub->in(1), phase->transform(abs));
   332   return abs;
   333 }
   335 //=============================================================================
   336 //------------------------------Ideal------------------------------------------
   337 // Return a node which is more "ideal" than the current node.
   338 // Check for absolute value
   339 Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   340   // Try generic ideal's first
   341   Node *x = CMoveNode::Ideal(phase, can_reshape);
   342   if( x ) return x;
   344   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
   345   int  phi_x_idx = 0;           // Index of phi input where to find naked x
   347   // Find the Bool
   348   if( !in(1)->is_Bool() ) return NULL;
   349   BoolNode *bol = in(1)->as_Bool();
   350   // Check bool sense
   351   switch( bol->_test._test ) {
   352   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
   353   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
   354   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
   355   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
   356   default:           return NULL;                           break;
   357   }
   359   // Find zero input of CmpD; the other input is being abs'd
   360   Node *cmpd = bol->in(1);
   361   if( cmpd->Opcode() != Op_CmpD ) return NULL;
   362   Node *X = NULL;
   363   bool flip = false;
   364   if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
   365     X = cmpd->in(3 - cmp_zero_idx);
   366   } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
   367     // The test is inverted, we should invert the result...
   368     X = cmpd->in(cmp_zero_idx);
   369     flip = true;
   370   } else {
   371     return NULL;
   372   }
   374   // If X is found on the appropriate phi input, find the subtract on the other
   375   if( X != in(phi_x_idx) ) return NULL;
   376   int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
   377   Node *sub = in(phi_sub_idx);
   379   // Allow only SubD(0,X) and fail out for all others; NegD is not OK
   380   if( sub->Opcode() != Op_SubD ||
   381       sub->in(2) != X ||
   382       phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
   384   Node *abs = new (phase->C) AbsDNode( X );
   385   if( flip )
   386     abs = new (phase->C) SubDNode(sub->in(1), phase->transform(abs));
   388   return abs;
   389 }
   392 //=============================================================================
   393 // If input is already higher or equal to cast type, then this is an identity.
   394 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
   395   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
   396 }
   398 //------------------------------Value------------------------------------------
   399 // Take 'join' of input and cast-up type
   400 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
   401   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
   402 const Type* ft = phase->type(in(1))->filter_speculative(_type);
   404 #ifdef ASSERT
   405   // Previous versions of this function had some special case logic,
   406   // which is no longer necessary.  Make sure of the required effects.
   407   switch (Opcode()) {
   408   case Op_CastII:
   409     {
   410       const Type* t1 = phase->type(in(1));
   411       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
   412       const Type* rt = t1->join_speculative(_type);
   413       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
   414       break;
   415     }
   416   case Op_CastPP:
   417     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
   418         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
   419       assert(ft == Type::TOP, "special case #3");
   420     break;
   421   }
   422 #endif //ASSERT
   424   return ft;
   425 }
   427 //------------------------------Ideal------------------------------------------
   428 // Return a node which is more "ideal" than the current node.  Strip out
   429 // control copies
   430 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
   431   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
   432 }
   434 //------------------------------Ideal_DU_postCCP-------------------------------
   435 // Throw away cast after constant propagation
   436 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   437   const Type *t = ccp->type(in(1));
   438   ccp->hash_delete(this);
   439   set_type(t);                   // Turn into ID function
   440   ccp->hash_insert(this);
   441   return this;
   442 }
   444 uint CastIINode::size_of() const {
   445   return sizeof(*this);
   446 }
   448 uint CastIINode::cmp(const Node &n) const {
   449   return TypeNode::cmp(n) &&
   450          ((CastIINode&)n)._carry_dependency == _carry_dependency &&
   451          ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
   452 }
   454 Node *CastIINode::Identity(PhaseTransform *phase) {
   455   if (_carry_dependency) {
   456     return this;
   457   }
   458   return ConstraintCastNode::Identity(phase);
   459 }
   461 const Type *CastIINode::Value(PhaseTransform *phase) const {
   462   const Type *res = ConstraintCastNode::Value(phase);
   464   // Try to improve the type of the CastII if we recognize a CmpI/If
   465   // pattern.
   466   if (_carry_dependency) {
   467     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
   468       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
   469       Node* proj = in(0);
   470       if (proj->in(0)->in(1)->is_Bool()) {
   471         Node* b = proj->in(0)->in(1);
   472         if (b->in(1)->Opcode() == Op_CmpI) {
   473           Node* cmp = b->in(1);
   474           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
   475             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
   476             const Type* t = TypeInt::INT;
   477             BoolTest test = b->as_Bool()->_test;
   478             if (proj->is_IfFalse()) {
   479               test = test.negate();
   480             }
   481             BoolTest::mask m = test._test;
   482             jlong lo_long = min_jint;
   483             jlong hi_long = max_jint;
   484             if (m == BoolTest::le || m == BoolTest::lt) {
   485               hi_long = in2_t->_hi;
   486               if (m == BoolTest::lt) {
   487                 hi_long -= 1;
   488               }
   489             } else if (m == BoolTest::ge || m == BoolTest::gt) {
   490               lo_long = in2_t->_lo;
   491               if (m == BoolTest::gt) {
   492                 lo_long += 1;
   493               }
   494             } else if (m == BoolTest::eq) {
   495               lo_long = in2_t->_lo;
   496               hi_long = in2_t->_hi;
   497             } else if (m == BoolTest::ne) {
   498               // can't do any better
   499             } else {
   500               stringStream ss;
   501               test.dump_on(&ss);
   502               fatal(err_msg_res("unexpected comparison %s", ss.as_string()));
   503             }
   504             int lo_int = (int)lo_long;
   505             int hi_int = (int)hi_long;
   507             if (lo_long != (jlong)lo_int) {
   508               lo_int = min_jint;
   509             }
   510             if (hi_long != (jlong)hi_int) {
   511               hi_int = max_jint;
   512             }
   514             t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
   516             res = res->filter_speculative(t);
   518             return res;
   519           }
   520         }
   521       }
   522     }
   523   }
   524   return res;
   525 }
   527 Node *CastIINode::Ideal_DU_postCCP(PhaseCCP *ccp) {
   528   if (_carry_dependency || _range_check_dependency) {
   529     return NULL;
   530   }
   531   return ConstraintCastNode::Ideal_DU_postCCP(ccp);
   532 }
   534 #ifndef PRODUCT
   535 void CastIINode::dump_spec(outputStream *st) const {
   536   TypeNode::dump_spec(st);
   537   if (_carry_dependency) {
   538     st->print(" carry dependency");
   539   }
   540   if (_range_check_dependency) {
   541     st->print(" range check dependency");
   542   }
   543 }
   544 #endif
   546 //=============================================================================
   548 //------------------------------Ideal_DU_postCCP-------------------------------
   549 // If not converting int->oop, throw away cast after constant propagation
   550 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   551   const Type *t = ccp->type(in(1));
   552   if (!t->isa_oop_ptr() || ((in(1)->is_DecodeN()) && Matcher::gen_narrow_oop_implicit_null_checks())) {
   553     return NULL; // do not transform raw pointers or narrow oops
   554   }
   555   return ConstraintCastNode::Ideal_DU_postCCP(ccp);
   556 }
   560 //=============================================================================
   561 //------------------------------Identity---------------------------------------
   562 // If input is already higher or equal to cast type, then this is an identity.
   563 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
   564   // Toned down to rescue meeting at a Phi 3 different oops all implementing
   565   // the same interface.  CompileTheWorld starting at 502, kd12rc1.zip.
   566   return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
   567 }
   569 //------------------------------Value------------------------------------------
   570 // Take 'join' of input and cast-up type, unless working with an Interface
   571 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
   572   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
   574   const Type *inn = phase->type(in(1));
   575   if( inn == Type::TOP ) return Type::TOP;  // No information yet
   577   const TypePtr *in_type   = inn->isa_ptr();
   578   const TypePtr *my_type   = _type->isa_ptr();
   579   const Type *result = _type;
   580   if( in_type != NULL && my_type != NULL ) {
   581     TypePtr::PTR   in_ptr    = in_type->ptr();
   582     if( in_ptr == TypePtr::Null ) {
   583       result = in_type;
   584     } else if( in_ptr == TypePtr::Constant ) {
   585       // Casting a constant oop to an interface?
   586       // (i.e., a String to a Comparable?)
   587       // Then return the interface.
   588       const TypeOopPtr *jptr = my_type->isa_oopptr();
   589       assert( jptr, "" );
   590       result =  (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
   591         ? my_type->cast_to_ptr_type( TypePtr::NotNull )
   592         : in_type;
   593     } else {
   594       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
   595     }
   596   }
   597   return result;
   599   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
   600   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
   602   //
   603   // Remove this code after overnight run indicates no performance
   604   // loss from not performing JOIN at CheckCastPPNode
   605   //
   606   // const TypeInstPtr *in_oop = in->isa_instptr();
   607   // const TypeInstPtr *my_oop = _type->isa_instptr();
   608   // // If either input is an 'interface', return destination type
   609   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
   610   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
   611   // if( (in_oop && in_oop->klass()->is_interface())
   612   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
   613   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
   614   //   // Preserve cast away nullness for interfaces
   615   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
   616   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
   617   //   }
   618   //   return _type;
   619   // }
   620   //
   621   // // Neither the input nor the destination type is an interface,
   622   //
   623   // // history: JOIN used to cause weird corner case bugs
   624   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
   625   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
   626   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
   627   // const Type *join = in->join(_type);
   628   // // Check if join preserved NotNull'ness for pointers
   629   // if( join->isa_ptr() && _type->isa_ptr() ) {
   630   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
   631   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
   632   //   // If there isn't any NotNull'ness to preserve
   633   //   // OR if join preserved NotNull'ness then return it
   634   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
   635   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
   636   //     return join;
   637   //   }
   638   //   // ELSE return same old type as before
   639   //   return _type;
   640   // }
   641   // // Not joining two pointers
   642   // return join;
   643 }
   645 //------------------------------Ideal------------------------------------------
   646 // Return a node which is more "ideal" than the current node.  Strip out
   647 // control copies
   648 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
   649   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
   650 }
   653 Node* DecodeNNode::Identity(PhaseTransform* phase) {
   654   const Type *t = phase->type( in(1) );
   655   if( t == Type::TOP ) return in(1);
   657   if (in(1)->is_EncodeP()) {
   658     // (DecodeN (EncodeP p)) -> p
   659     return in(1)->in(1);
   660   }
   661   return this;
   662 }
   664 const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
   665   const Type *t = phase->type( in(1) );
   666   if (t == Type::TOP) return Type::TOP;
   667   if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
   669   assert(t->isa_narrowoop(), "only  narrowoop here");
   670   return t->make_ptr();
   671 }
   673 Node* EncodePNode::Identity(PhaseTransform* phase) {
   674   const Type *t = phase->type( in(1) );
   675   if( t == Type::TOP ) return in(1);
   677   if (in(1)->is_DecodeN()) {
   678     // (EncodeP (DecodeN p)) -> p
   679     return in(1)->in(1);
   680   }
   681   return this;
   682 }
   684 const Type *EncodePNode::Value( PhaseTransform *phase ) const {
   685   const Type *t = phase->type( in(1) );
   686   if (t == Type::TOP) return Type::TOP;
   687   if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
   689   assert(t->isa_oop_ptr(), "only oopptr here");
   690   return t->make_narrowoop();
   691 }
   694 Node *EncodeNarrowPtrNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   695   return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
   696 }
   698 Node* DecodeNKlassNode::Identity(PhaseTransform* phase) {
   699   const Type *t = phase->type( in(1) );
   700   if( t == Type::TOP ) return in(1);
   702   if (in(1)->is_EncodePKlass()) {
   703     // (DecodeNKlass (EncodePKlass p)) -> p
   704     return in(1)->in(1);
   705   }
   706   return this;
   707 }
   709 const Type *DecodeNKlassNode::Value( PhaseTransform *phase ) const {
   710   const Type *t = phase->type( in(1) );
   711   if (t == Type::TOP) return Type::TOP;
   712   assert(t != TypeNarrowKlass::NULL_PTR, "null klass?");
   714   assert(t->isa_narrowklass(), "only narrow klass ptr here");
   715   return t->make_ptr();
   716 }
   718 Node* EncodePKlassNode::Identity(PhaseTransform* phase) {
   719   const Type *t = phase->type( in(1) );
   720   if( t == Type::TOP ) return in(1);
   722   if (in(1)->is_DecodeNKlass()) {
   723     // (EncodePKlass (DecodeNKlass p)) -> p
   724     return in(1)->in(1);
   725   }
   726   return this;
   727 }
   729 const Type *EncodePKlassNode::Value( PhaseTransform *phase ) const {
   730   const Type *t = phase->type( in(1) );
   731   if (t == Type::TOP) return Type::TOP;
   732   assert (t != TypePtr::NULL_PTR, "null klass?");
   734   assert(UseCompressedClassPointers && t->isa_klassptr(), "only klass ptr here");
   735   return t->make_narrowklass();
   736 }
   739 //=============================================================================
   740 //------------------------------Identity---------------------------------------
   741 Node *Conv2BNode::Identity( PhaseTransform *phase ) {
   742   const Type *t = phase->type( in(1) );
   743   if( t == Type::TOP ) return in(1);
   744   if( t == TypeInt::ZERO ) return in(1);
   745   if( t == TypeInt::ONE ) return in(1);
   746   if( t == TypeInt::BOOL ) return in(1);
   747   return this;
   748 }
   750 //------------------------------Value------------------------------------------
   751 const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
   752   const Type *t = phase->type( in(1) );
   753   if( t == Type::TOP ) return Type::TOP;
   754   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
   755   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
   756   const TypePtr *tp = t->isa_ptr();
   757   if( tp != NULL ) {
   758     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
   759     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
   760     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
   761     return TypeInt::BOOL;
   762   }
   763   if (t->base() != Type::Int) return TypeInt::BOOL;
   764   const TypeInt *ti = t->is_int();
   765   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
   766   return TypeInt::BOOL;
   767 }
   770 // The conversions operations are all Alpha sorted.  Please keep it that way!
   771 //=============================================================================
   772 //------------------------------Value------------------------------------------
   773 const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
   774   const Type *t = phase->type( in(1) );
   775   if( t == Type::TOP ) return Type::TOP;
   776   if( t == Type::DOUBLE ) return Type::FLOAT;
   777   const TypeD *td = t->is_double_constant();
   778   return TypeF::make( (float)td->getd() );
   779 }
   781 //------------------------------Identity---------------------------------------
   782 // Float's can be converted to doubles with no loss of bits.  Hence
   783 // converting a float to a double and back to a float is a NOP.
   784 Node *ConvD2FNode::Identity(PhaseTransform *phase) {
   785   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
   786 }
   788 //=============================================================================
   789 //------------------------------Value------------------------------------------
   790 const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
   791   const Type *t = phase->type( in(1) );
   792   if( t == Type::TOP ) return Type::TOP;
   793   if( t == Type::DOUBLE ) return TypeInt::INT;
   794   const TypeD *td = t->is_double_constant();
   795   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
   796 }
   798 //------------------------------Ideal------------------------------------------
   799 // If converting to an int type, skip any rounding nodes
   800 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
   801   if( in(1)->Opcode() == Op_RoundDouble )
   802     set_req(1,in(1)->in(1));
   803   return NULL;
   804 }
   806 //------------------------------Identity---------------------------------------
   807 // Int's can be converted to doubles with no loss of bits.  Hence
   808 // converting an integer to a double and back to an integer is a NOP.
   809 Node *ConvD2INode::Identity(PhaseTransform *phase) {
   810   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
   811 }
   813 //=============================================================================
   814 //------------------------------Value------------------------------------------
   815 const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
   816   const Type *t = phase->type( in(1) );
   817   if( t == Type::TOP ) return Type::TOP;
   818   if( t == Type::DOUBLE ) return TypeLong::LONG;
   819   const TypeD *td = t->is_double_constant();
   820   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
   821 }
   823 //------------------------------Identity---------------------------------------
   824 Node *ConvD2LNode::Identity(PhaseTransform *phase) {
   825   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
   826   if( in(1)       ->Opcode() == Op_ConvL2D &&
   827       in(1)->in(1)->Opcode() == Op_ConvD2L )
   828     return in(1)->in(1);
   829   return this;
   830 }
   832 //------------------------------Ideal------------------------------------------
   833 // If converting to an int type, skip any rounding nodes
   834 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   835   if( in(1)->Opcode() == Op_RoundDouble )
   836     set_req(1,in(1)->in(1));
   837   return NULL;
   838 }
   840 //=============================================================================
   841 //------------------------------Value------------------------------------------
   842 const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
   843   const Type *t = phase->type( in(1) );
   844   if( t == Type::TOP ) return Type::TOP;
   845   if( t == Type::FLOAT ) return Type::DOUBLE;
   846   const TypeF *tf = t->is_float_constant();
   847   return TypeD::make( (double)tf->getf() );
   848 }
   850 //=============================================================================
   851 //------------------------------Value------------------------------------------
   852 const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
   853   const Type *t = phase->type( in(1) );
   854   if( t == Type::TOP )       return Type::TOP;
   855   if( t == Type::FLOAT ) return TypeInt::INT;
   856   const TypeF *tf = t->is_float_constant();
   857   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
   858 }
   860 //------------------------------Identity---------------------------------------
   861 Node *ConvF2INode::Identity(PhaseTransform *phase) {
   862   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
   863   if( in(1)       ->Opcode() == Op_ConvI2F &&
   864       in(1)->in(1)->Opcode() == Op_ConvF2I )
   865     return in(1)->in(1);
   866   return this;
   867 }
   869 //------------------------------Ideal------------------------------------------
   870 // If converting to an int type, skip any rounding nodes
   871 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
   872   if( in(1)->Opcode() == Op_RoundFloat )
   873     set_req(1,in(1)->in(1));
   874   return NULL;
   875 }
   877 //=============================================================================
   878 //------------------------------Value------------------------------------------
   879 const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
   880   const Type *t = phase->type( in(1) );
   881   if( t == Type::TOP )       return Type::TOP;
   882   if( t == Type::FLOAT ) return TypeLong::LONG;
   883   const TypeF *tf = t->is_float_constant();
   884   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
   885 }
   887 //------------------------------Identity---------------------------------------
   888 Node *ConvF2LNode::Identity(PhaseTransform *phase) {
   889   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
   890   if( in(1)       ->Opcode() == Op_ConvL2F &&
   891       in(1)->in(1)->Opcode() == Op_ConvF2L )
   892     return in(1)->in(1);
   893   return this;
   894 }
   896 //------------------------------Ideal------------------------------------------
   897 // If converting to an int type, skip any rounding nodes
   898 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   899   if( in(1)->Opcode() == Op_RoundFloat )
   900     set_req(1,in(1)->in(1));
   901   return NULL;
   902 }
   904 //=============================================================================
   905 //------------------------------Value------------------------------------------
   906 const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
   907   const Type *t = phase->type( in(1) );
   908   if( t == Type::TOP ) return Type::TOP;
   909   const TypeInt *ti = t->is_int();
   910   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
   911   return bottom_type();
   912 }
   914 //=============================================================================
   915 //------------------------------Value------------------------------------------
   916 const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
   917   const Type *t = phase->type( in(1) );
   918   if( t == Type::TOP ) return Type::TOP;
   919   const TypeInt *ti = t->is_int();
   920   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
   921   return bottom_type();
   922 }
   924 //------------------------------Identity---------------------------------------
   925 Node *ConvI2FNode::Identity(PhaseTransform *phase) {
   926   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
   927   if( in(1)       ->Opcode() == Op_ConvF2I &&
   928       in(1)->in(1)->Opcode() == Op_ConvI2F )
   929     return in(1)->in(1);
   930   return this;
   931 }
   933 //=============================================================================
   934 //------------------------------Value------------------------------------------
   935 const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
   936   const Type *t = phase->type( in(1) );
   937   if( t == Type::TOP ) return Type::TOP;
   938   const TypeInt *ti = t->is_int();
   939   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
   940   // Join my declared type against my incoming type.
   941   tl = tl->filter(_type);
   942   return tl;
   943 }
   945 #ifdef _LP64
   946 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
   947                                        jlong lo2, jlong hi2) {
   948   // Two ranges overlap iff one range's low point falls in the other range.
   949   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
   950 }
   951 #endif
   953 //------------------------------Ideal------------------------------------------
   954 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   955   const TypeLong* this_type = this->type()->is_long();
   956   Node* this_changed = NULL;
   958   // If _major_progress, then more loop optimizations follow.  Do NOT
   959   // remove this node's type assertion until no more loop ops can happen.
   960   // The progress bit is set in the major loop optimizations THEN comes the
   961   // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
   962   if (can_reshape && !phase->C->major_progress()) {
   963     const TypeInt* in_type = phase->type(in(1))->isa_int();
   964     if (in_type != NULL && this_type != NULL &&
   965         (in_type->_lo != this_type->_lo ||
   966          in_type->_hi != this_type->_hi)) {
   967       // Although this WORSENS the type, it increases GVN opportunities,
   968       // because I2L nodes with the same input will common up, regardless
   969       // of slightly differing type assertions.  Such slight differences
   970       // arise routinely as a result of loop unrolling, so this is a
   971       // post-unrolling graph cleanup.  Choose a type which depends only
   972       // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
   973       jlong lo1 = this_type->_lo;
   974       jlong hi1 = this_type->_hi;
   975       int   w1  = this_type->_widen;
   976       if (lo1 != (jint)lo1 ||
   977           hi1 != (jint)hi1 ||
   978           lo1 > hi1) {
   979         // Overflow leads to wraparound, wraparound leads to range saturation.
   980         lo1 = min_jint; hi1 = max_jint;
   981       } else if (lo1 >= 0) {
   982         // Keep a range assertion of >=0.
   983         lo1 = 0;        hi1 = max_jint;
   984       } else if (hi1 < 0) {
   985         // Keep a range assertion of <0.
   986         lo1 = min_jint; hi1 = -1;
   987       } else {
   988         lo1 = min_jint; hi1 = max_jint;
   989       }
   990       const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
   991                                              MIN2((jlong)in_type->_hi, hi1),
   992                                              MAX2((int)in_type->_widen, w1));
   993       if (wtype != type()) {
   994         set_type(wtype);
   995         // Note: this_type still has old type value, for the logic below.
   996         this_changed = this;
   997       }
   998     }
   999   }
  1001 #ifdef _LP64
  1002   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
  1003   // but only if x and y have subranges that cannot cause 32-bit overflow,
  1004   // under the assumption that x+y is in my own subrange this->type().
  1006   // This assumption is based on a constraint (i.e., type assertion)
  1007   // established in Parse::array_addressing or perhaps elsewhere.
  1008   // This constraint has been adjoined to the "natural" type of
  1009   // the incoming argument in(0).  We know (because of runtime
  1010   // checks) - that the result value I2L(x+y) is in the joined range.
  1011   // Hence we can restrict the incoming terms (x, y) to values such
  1012   // that their sum also lands in that range.
  1014   // This optimization is useful only on 64-bit systems, where we hope
  1015   // the addition will end up subsumed in an addressing mode.
  1016   // It is necessary to do this when optimizing an unrolled array
  1017   // copy loop such as x[i++] = y[i++].
  1019   // On 32-bit systems, it's better to perform as much 32-bit math as
  1020   // possible before the I2L conversion, because 32-bit math is cheaper.
  1021   // There's no common reason to "leak" a constant offset through the I2L.
  1022   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
  1024   Node* z = in(1);
  1025   int op = z->Opcode();
  1026   if (op == Op_AddI || op == Op_SubI) {
  1027     Node* x = z->in(1);
  1028     Node* y = z->in(2);
  1029     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
  1030     if (phase->type(x) == Type::TOP)  return this_changed;
  1031     if (phase->type(y) == Type::TOP)  return this_changed;
  1032     const TypeInt*  tx = phase->type(x)->is_int();
  1033     const TypeInt*  ty = phase->type(y)->is_int();
  1034     const TypeLong* tz = this_type;
  1035     jlong xlo = tx->_lo;
  1036     jlong xhi = tx->_hi;
  1037     jlong ylo = ty->_lo;
  1038     jlong yhi = ty->_hi;
  1039     jlong zlo = tz->_lo;
  1040     jlong zhi = tz->_hi;
  1041     jlong vbit = CONST64(1) << BitsPerInt;
  1042     int widen =  MAX2(tx->_widen, ty->_widen);
  1043     if (op == Op_SubI) {
  1044       jlong ylo0 = ylo;
  1045       ylo = -yhi;
  1046       yhi = -ylo0;
  1048     // See if x+y can cause positive overflow into z+2**32
  1049     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
  1050       return this_changed;
  1052     // See if x+y can cause negative overflow into z-2**32
  1053     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
  1054       return this_changed;
  1056     // Now it's always safe to assume x+y does not overflow.
  1057     // This is true even if some pairs x,y might cause overflow, as long
  1058     // as that overflow value cannot fall into [zlo,zhi].
  1060     // Confident that the arithmetic is "as if infinite precision",
  1061     // we can now use z's range to put constraints on those of x and y.
  1062     // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
  1063     // more "restricted" range by intersecting [xlo,xhi] with the
  1064     // range obtained by subtracting y's range from the asserted range
  1065     // of the I2L conversion.  Here's the interval arithmetic algebra:
  1066     //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
  1067     //    => x in [zlo-yhi, zhi-ylo]
  1068     //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
  1069     //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
  1070     jlong rxlo = MAX2(xlo, zlo - yhi);
  1071     jlong rxhi = MIN2(xhi, zhi - ylo);
  1072     // And similarly, x changing place with y:
  1073     jlong rylo = MAX2(ylo, zlo - xhi);
  1074     jlong ryhi = MIN2(yhi, zhi - xlo);
  1075     if (rxlo > rxhi || rylo > ryhi) {
  1076       return this_changed;  // x or y is dying; don't mess w/ it
  1078     if (op == Op_SubI) {
  1079       jlong rylo0 = rylo;
  1080       rylo = -ryhi;
  1081       ryhi = -rylo0;
  1083     assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
  1084     assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
  1085     Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), NULL);
  1086     Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), NULL);
  1087     switch (op) {
  1088     case Op_AddI:  return new (phase->C) AddLNode(cx, cy);
  1089     case Op_SubI:  return new (phase->C) SubLNode(cx, cy);
  1090     default:       ShouldNotReachHere();
  1093 #endif //_LP64
  1095   return this_changed;
  1098 //=============================================================================
  1099 //------------------------------Value------------------------------------------
  1100 const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
  1101   const Type *t = phase->type( in(1) );
  1102   if( t == Type::TOP ) return Type::TOP;
  1103   const TypeLong *tl = t->is_long();
  1104   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
  1105   return bottom_type();
  1108 //=============================================================================
  1109 //------------------------------Value------------------------------------------
  1110 const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
  1111   const Type *t = phase->type( in(1) );
  1112   if( t == Type::TOP ) return Type::TOP;
  1113   const TypeLong *tl = t->is_long();
  1114   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
  1115   return bottom_type();
  1118 //=============================================================================
  1119 //----------------------------Identity-----------------------------------------
  1120 Node *ConvL2INode::Identity( PhaseTransform *phase ) {
  1121   // Convert L2I(I2L(x)) => x
  1122   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
  1123   return this;
  1126 //------------------------------Value------------------------------------------
  1127 const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
  1128   const Type *t = phase->type( in(1) );
  1129   if( t == Type::TOP ) return Type::TOP;
  1130   const TypeLong *tl = t->is_long();
  1131   if (tl->is_con())
  1132     // Easy case.
  1133     return TypeInt::make((jint)tl->get_con());
  1134   return bottom_type();
  1137 //------------------------------Ideal------------------------------------------
  1138 // Return a node which is more "ideal" than the current node.
  1139 // Blow off prior masking to int
  1140 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1141   Node *andl = in(1);
  1142   uint andl_op = andl->Opcode();
  1143   if( andl_op == Op_AndL ) {
  1144     // Blow off prior masking to int
  1145     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
  1146       set_req(1,andl->in(1));
  1147       return this;
  1151   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1152   // This replaces an 'AddL' with an 'AddI'.
  1153   if( andl_op == Op_AddL ) {
  1154     // Don't do this for nodes which have more than one user since
  1155     // we'll end up computing the long add anyway.
  1156     if (andl->outcnt() > 1) return NULL;
  1158     Node* x = andl->in(1);
  1159     Node* y = andl->in(2);
  1160     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
  1161     if (phase->type(x) == Type::TOP)  return NULL;
  1162     if (phase->type(y) == Type::TOP)  return NULL;
  1163     Node *add1 = phase->transform(new (phase->C) ConvL2INode(x));
  1164     Node *add2 = phase->transform(new (phase->C) ConvL2INode(y));
  1165     return new (phase->C) AddINode(add1,add2);
  1168   // Disable optimization: LoadL->ConvL2I ==> LoadI.
  1169   // It causes problems (sizes of Load and Store nodes do not match)
  1170   // in objects initialization code and Escape Analysis.
  1171   return NULL;
  1174 //=============================================================================
  1175 //------------------------------Value------------------------------------------
  1176 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
  1177   const Type* t = phase->type(in(1));
  1178   if (t == Type::TOP) return Type::TOP;
  1179   if (t->base() == Type_X && t->singleton()) {
  1180     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
  1181     if (bits == 0)   return TypePtr::NULL_PTR;
  1182     return TypeRawPtr::make((address) bits);
  1184   return CastX2PNode::bottom_type();
  1187 //------------------------------Idealize---------------------------------------
  1188 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
  1189   if (t == Type::TOP)  return false;
  1190   const TypeX* tl = t->is_intptr_t();
  1191   jint lo = min_jint;
  1192   jint hi = max_jint;
  1193   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
  1194   return (tl->_lo >= lo) && (tl->_hi <= hi);
  1197 static inline Node* addP_of_X2P(PhaseGVN *phase,
  1198                                 Node* base,
  1199                                 Node* dispX,
  1200                                 bool negate = false) {
  1201   if (negate) {
  1202     dispX = new (phase->C) SubXNode(phase->MakeConX(0), phase->transform(dispX));
  1204   return new (phase->C) AddPNode(phase->C->top(),
  1205                           phase->transform(new (phase->C) CastX2PNode(base)),
  1206                           phase->transform(dispX));
  1209 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1210   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
  1211   int op = in(1)->Opcode();
  1212   Node* x;
  1213   Node* y;
  1214   switch (op) {
  1215   case Op_SubX:
  1216     x = in(1)->in(1);
  1217     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
  1218     if (phase->find_intptr_t_con(x, -1) == 0)
  1219       break;
  1220     y = in(1)->in(2);
  1221     if (fits_in_int(phase->type(y), true)) {
  1222       return addP_of_X2P(phase, x, y, true);
  1224     break;
  1225   case Op_AddX:
  1226     x = in(1)->in(1);
  1227     y = in(1)->in(2);
  1228     if (fits_in_int(phase->type(y))) {
  1229       return addP_of_X2P(phase, x, y);
  1231     if (fits_in_int(phase->type(x))) {
  1232       return addP_of_X2P(phase, y, x);
  1234     break;
  1236   return NULL;
  1239 //------------------------------Identity---------------------------------------
  1240 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
  1241   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
  1242   return this;
  1245 //=============================================================================
  1246 //------------------------------Value------------------------------------------
  1247 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
  1248   const Type* t = phase->type(in(1));
  1249   if (t == Type::TOP) return Type::TOP;
  1250   if (t->base() == Type::RawPtr && t->singleton()) {
  1251     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
  1252     return TypeX::make(bits);
  1254   return CastP2XNode::bottom_type();
  1257 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1258   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  1261 //------------------------------Identity---------------------------------------
  1262 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
  1263   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
  1264   return this;
  1268 //=============================================================================
  1269 //------------------------------Identity---------------------------------------
  1270 // Remove redundant roundings
  1271 Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
  1272   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  1273   // Do not round constants
  1274   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
  1275   int op = in(1)->Opcode();
  1276   // Redundant rounding
  1277   if( op == Op_RoundFloat ) return in(1);
  1278   // Already rounded
  1279   if( op == Op_Parm ) return in(1);
  1280   if( op == Op_LoadF ) return in(1);
  1281   return this;
  1284 //------------------------------Value------------------------------------------
  1285 const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
  1286   return phase->type( in(1) );
  1289 //=============================================================================
  1290 //------------------------------Identity---------------------------------------
  1291 // Remove redundant roundings.  Incoming arguments are already rounded.
  1292 Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
  1293   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  1294   // Do not round constants
  1295   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
  1296   int op = in(1)->Opcode();
  1297   // Redundant rounding
  1298   if( op == Op_RoundDouble ) return in(1);
  1299   // Already rounded
  1300   if( op == Op_Parm ) return in(1);
  1301   if( op == Op_LoadD ) return in(1);
  1302   if( op == Op_ConvF2D ) return in(1);
  1303   if( op == Op_ConvI2D ) return in(1);
  1304   return this;
  1307 //------------------------------Value------------------------------------------
  1308 const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
  1309   return phase->type( in(1) );
  1313 //=============================================================================
  1314 // Do not allow value-numbering
  1315 uint Opaque1Node::hash() const { return NO_HASH; }
  1316 uint Opaque1Node::cmp( const Node &n ) const {
  1317   return (&n == this);          // Always fail except on self
  1320 //------------------------------Identity---------------------------------------
  1321 // If _major_progress, then more loop optimizations follow.  Do NOT remove
  1322 // the opaque Node until no more loop ops can happen.  Note the timing of
  1323 // _major_progress; it's set in the major loop optimizations THEN comes the
  1324 // call to IterGVN and any chance of hitting this code.  Hence there's no
  1325 // phase-ordering problem with stripping Opaque1 in IGVN followed by some
  1326 // more loop optimizations that require it.
  1327 Node *Opaque1Node::Identity( PhaseTransform *phase ) {
  1328   return phase->C->major_progress() ? this : in(1);
  1331 //=============================================================================
  1332 // A node to prevent unwanted optimizations.  Allows constant folding.  Stops
  1333 // value-numbering, most Ideal calls or Identity functions.  This Node is
  1334 // specifically designed to prevent the pre-increment value of a loop trip
  1335 // counter from being live out of the bottom of the loop (hence causing the
  1336 // pre- and post-increment values both being live and thus requiring an extra
  1337 // temp register and an extra move).  If we "accidentally" optimize through
  1338 // this kind of a Node, we'll get slightly pessimal, but correct, code.  Thus
  1339 // it's OK to be slightly sloppy on optimizations here.
  1341 // Do not allow value-numbering
  1342 uint Opaque2Node::hash() const { return NO_HASH; }
  1343 uint Opaque2Node::cmp( const Node &n ) const {
  1344   return (&n == this);          // Always fail except on self
  1347 //=============================================================================
  1349 uint ProfileBooleanNode::hash() const { return NO_HASH; }
  1350 uint ProfileBooleanNode::cmp( const Node &n ) const {
  1351   return (&n == this);
  1354 Node *ProfileBooleanNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1355   if (can_reshape && _delay_removal) {
  1356     _delay_removal = false;
  1357     return this;
  1358   } else {
  1359     return NULL;
  1363 Node *ProfileBooleanNode::Identity( PhaseTransform *phase ) {
  1364   if (_delay_removal) {
  1365     return this;
  1366   } else {
  1367     assert(_consumed, "profile should be consumed before elimination");
  1368     return in(1);
  1372 //------------------------------Value------------------------------------------
  1373 const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
  1374   const Type *t = phase->type( in(1) );
  1375   if( t == Type::TOP ) return Type::TOP;
  1376   const TypeLong *tl = t->is_long();
  1377   if( !tl->is_con() ) return bottom_type();
  1378   JavaValue v;
  1379   v.set_jlong(tl->get_con());
  1380   return TypeD::make( v.get_jdouble() );
  1383 //------------------------------Value------------------------------------------
  1384 const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
  1385   const Type *t = phase->type( in(1) );
  1386   if( t == Type::TOP ) return Type::TOP;
  1387   const TypeInt *ti = t->is_int();
  1388   if( !ti->is_con() )   return bottom_type();
  1389   JavaValue v;
  1390   v.set_jint(ti->get_con());
  1391   return TypeF::make( v.get_jfloat() );
  1394 //------------------------------Value------------------------------------------
  1395 const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
  1396   const Type *t = phase->type( in(1) );
  1397   if( t == Type::TOP )       return Type::TOP;
  1398   if( t == Type::FLOAT ) return TypeInt::INT;
  1399   const TypeF *tf = t->is_float_constant();
  1400   JavaValue v;
  1401   v.set_jfloat(tf->getf());
  1402   return TypeInt::make( v.get_jint() );
  1405 //------------------------------Value------------------------------------------
  1406 const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
  1407   const Type *t = phase->type( in(1) );
  1408   if( t == Type::TOP ) return Type::TOP;
  1409   if( t == Type::DOUBLE ) return TypeLong::LONG;
  1410   const TypeD *td = t->is_double_constant();
  1411   JavaValue v;
  1412   v.set_jdouble(td->getd());
  1413   return TypeLong::make( v.get_jlong() );
  1416 //------------------------------Value------------------------------------------
  1417 const Type* CountLeadingZerosINode::Value(PhaseTransform* phase) const {
  1418   const Type* t = phase->type(in(1));
  1419   if (t == Type::TOP) return Type::TOP;
  1420   const TypeInt* ti = t->isa_int();
  1421   if (ti && ti->is_con()) {
  1422     jint i = ti->get_con();
  1423     // HD, Figure 5-6
  1424     if (i == 0)
  1425       return TypeInt::make(BitsPerInt);
  1426     int n = 1;
  1427     unsigned int x = i;
  1428     if (x >> 16 == 0) { n += 16; x <<= 16; }
  1429     if (x >> 24 == 0) { n +=  8; x <<=  8; }
  1430     if (x >> 28 == 0) { n +=  4; x <<=  4; }
  1431     if (x >> 30 == 0) { n +=  2; x <<=  2; }
  1432     n -= x >> 31;
  1433     return TypeInt::make(n);
  1435   return TypeInt::INT;
  1438 //------------------------------Value------------------------------------------
  1439 const Type* CountLeadingZerosLNode::Value(PhaseTransform* phase) const {
  1440   const Type* t = phase->type(in(1));
  1441   if (t == Type::TOP) return Type::TOP;
  1442   const TypeLong* tl = t->isa_long();
  1443   if (tl && tl->is_con()) {
  1444     jlong l = tl->get_con();
  1445     // HD, Figure 5-6
  1446     if (l == 0)
  1447       return TypeInt::make(BitsPerLong);
  1448     int n = 1;
  1449     unsigned int x = (((julong) l) >> 32);
  1450     if (x == 0) { n += 32; x = (int) l; }
  1451     if (x >> 16 == 0) { n += 16; x <<= 16; }
  1452     if (x >> 24 == 0) { n +=  8; x <<=  8; }
  1453     if (x >> 28 == 0) { n +=  4; x <<=  4; }
  1454     if (x >> 30 == 0) { n +=  2; x <<=  2; }
  1455     n -= x >> 31;
  1456     return TypeInt::make(n);
  1458   return TypeInt::INT;
  1461 //------------------------------Value------------------------------------------
  1462 const Type* CountTrailingZerosINode::Value(PhaseTransform* phase) const {
  1463   const Type* t = phase->type(in(1));
  1464   if (t == Type::TOP) return Type::TOP;
  1465   const TypeInt* ti = t->isa_int();
  1466   if (ti && ti->is_con()) {
  1467     jint i = ti->get_con();
  1468     // HD, Figure 5-14
  1469     int y;
  1470     if (i == 0)
  1471       return TypeInt::make(BitsPerInt);
  1472     int n = 31;
  1473     y = i << 16; if (y != 0) { n = n - 16; i = y; }
  1474     y = i <<  8; if (y != 0) { n = n -  8; i = y; }
  1475     y = i <<  4; if (y != 0) { n = n -  4; i = y; }
  1476     y = i <<  2; if (y != 0) { n = n -  2; i = y; }
  1477     y = i <<  1; if (y != 0) { n = n -  1; }
  1478     return TypeInt::make(n);
  1480   return TypeInt::INT;
  1483 //------------------------------Value------------------------------------------
  1484 const Type* CountTrailingZerosLNode::Value(PhaseTransform* phase) const {
  1485   const Type* t = phase->type(in(1));
  1486   if (t == Type::TOP) return Type::TOP;
  1487   const TypeLong* tl = t->isa_long();
  1488   if (tl && tl->is_con()) {
  1489     jlong l = tl->get_con();
  1490     // HD, Figure 5-14
  1491     int x, y;
  1492     if (l == 0)
  1493       return TypeInt::make(BitsPerLong);
  1494     int n = 63;
  1495     y = (int) l; if (y != 0) { n = n - 32; x = y; } else x = (((julong) l) >> 32);
  1496     y = x << 16; if (y != 0) { n = n - 16; x = y; }
  1497     y = x <<  8; if (y != 0) { n = n -  8; x = y; }
  1498     y = x <<  4; if (y != 0) { n = n -  4; x = y; }
  1499     y = x <<  2; if (y != 0) { n = n -  2; x = y; }
  1500     y = x <<  1; if (y != 0) { n = n -  1; }
  1501     return TypeInt::make(n);
  1503   return TypeInt::INT;

mercurial