src/share/vm/opto/escape.cpp

Thu, 16 Jul 2009 14:10:42 -0700

author
kvn
date
Thu, 16 Jul 2009 14:10:42 -0700
changeset 1286
fc4be448891f
parent 1219
b2934faac289
child 1301
18f526145aea
permissions
-rw-r--r--

6851742: (EA) allocation elimination doesn't work with UseG1GC
Summary: Fix eliminate_card_mark() to eliminate G1 pre/post barriers.
Reviewed-by: never

     1 /*
     2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    29   uint v = (targIdx << EdgeShift) + ((uint) et);
    30   if (_edges == NULL) {
    31      Arena *a = Compile::current()->comp_arena();
    32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    33   }
    34   _edges->append_if_missing(v);
    35 }
    37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    38   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   _edges->remove(v);
    41 }
    43 #ifndef PRODUCT
    44 static const char *node_type_names[] = {
    45   "UnknownType",
    46   "JavaObject",
    47   "LocalVar",
    48   "Field"
    49 };
    51 static const char *esc_names[] = {
    52   "UnknownEscape",
    53   "NoEscape",
    54   "ArgEscape",
    55   "GlobalEscape"
    56 };
    58 static const char *edge_type_suffix[] = {
    59  "?", // UnknownEdge
    60  "P", // PointsToEdge
    61  "D", // DeferredEdge
    62  "F"  // FieldEdge
    63 };
    65 void PointsToNode::dump(bool print_state) const {
    66   NodeType nt = node_type();
    67   tty->print("%s ", node_type_names[(int) nt]);
    68   if (print_state) {
    69     EscapeState es = escape_state();
    70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
    71   }
    72   tty->print("[[");
    73   for (uint i = 0; i < edge_count(); i++) {
    74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    75   }
    76   tty->print("]]  ");
    77   if (_node == NULL)
    78     tty->print_cr("<null>");
    79   else
    80     _node->dump();
    81 }
    82 #endif
    84 ConnectionGraph::ConnectionGraph(Compile * C) :
    85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
    86   _processed(C->comp_arena()),
    87   _collecting(true),
    88   _compile(C),
    89   _node_map(C->comp_arena()) {
    91   _phantom_object = C->top()->_idx,
    92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
    94   // Add ConP(#NULL) and ConN(#NULL) nodes.
    95   PhaseGVN* igvn = C->initial_gvn();
    96   Node* oop_null = igvn->zerocon(T_OBJECT);
    97   _oop_null = oop_null->_idx;
    98   assert(_oop_null < C->unique(), "should be created already");
    99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   101   if (UseCompressedOops) {
   102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
   103     _noop_null = noop_null->_idx;
   104     assert(_noop_null < C->unique(), "should be created already");
   105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   106   }
   107 }
   109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   110   PointsToNode *f = ptnode_adr(from_i);
   111   PointsToNode *t = ptnode_adr(to_i);
   113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   116   f->add_edge(to_i, PointsToNode::PointsToEdge);
   117 }
   119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   120   PointsToNode *f = ptnode_adr(from_i);
   121   PointsToNode *t = ptnode_adr(to_i);
   123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   126   // don't add a self-referential edge, this can occur during removal of
   127   // deferred edges
   128   if (from_i != to_i)
   129     f->add_edge(to_i, PointsToNode::DeferredEdge);
   130 }
   132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   133   const Type *adr_type = phase->type(adr);
   134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   135       adr->in(AddPNode::Address)->is_Proj() &&
   136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   137     // We are computing a raw address for a store captured by an Initialize
   138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   140     assert(offs != Type::OffsetBot ||
   141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   142            "offset must be a constant or it is initialization of array");
   143     return offs;
   144   }
   145   const TypePtr *t_ptr = adr_type->isa_ptr();
   146   assert(t_ptr != NULL, "must be a pointer type");
   147   return t_ptr->offset();
   148 }
   150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   151   PointsToNode *f = ptnode_adr(from_i);
   152   PointsToNode *t = ptnode_adr(to_i);
   154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   158   t->set_offset(offset);
   160   f->add_edge(to_i, PointsToNode::FieldEdge);
   161 }
   163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   164   PointsToNode *npt = ptnode_adr(ni);
   165   PointsToNode::EscapeState old_es = npt->escape_state();
   166   if (es > old_es)
   167     npt->set_escape_state(es);
   168 }
   170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   171                                PointsToNode::EscapeState es, bool done) {
   172   PointsToNode* ptadr = ptnode_adr(n->_idx);
   173   ptadr->_node = n;
   174   ptadr->set_node_type(nt);
   176   // inline set_escape_state(idx, es);
   177   PointsToNode::EscapeState old_es = ptadr->escape_state();
   178   if (es > old_es)
   179     ptadr->set_escape_state(es);
   181   if (done)
   182     _processed.set(n->_idx);
   183 }
   185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   186   uint idx = n->_idx;
   187   PointsToNode::EscapeState es;
   189   // If we are still collecting or there were no non-escaping allocations
   190   // we don't know the answer yet
   191   if (_collecting)
   192     return PointsToNode::UnknownEscape;
   194   // if the node was created after the escape computation, return
   195   // UnknownEscape
   196   if (idx >= nodes_size())
   197     return PointsToNode::UnknownEscape;
   199   es = ptnode_adr(idx)->escape_state();
   201   // if we have already computed a value, return it
   202   if (es != PointsToNode::UnknownEscape &&
   203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
   204     return es;
   206   // PointsTo() calls n->uncast() which can return a new ideal node.
   207   if (n->uncast()->_idx >= nodes_size())
   208     return PointsToNode::UnknownEscape;
   210   // compute max escape state of anything this node could point to
   211   VectorSet ptset(Thread::current()->resource_area());
   212   PointsTo(ptset, n, phase);
   213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   214     uint pt = i.elem;
   215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
   216     if (pes > es)
   217       es = pes;
   218   }
   219   // cache the computed escape state
   220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   221   ptnode_adr(idx)->set_escape_state(es);
   222   return es;
   223 }
   225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   226   VectorSet visited(Thread::current()->resource_area());
   227   GrowableArray<uint>  worklist;
   229 #ifdef ASSERT
   230   Node *orig_n = n;
   231 #endif
   233   n = n->uncast();
   234   PointsToNode* npt = ptnode_adr(n->_idx);
   236   // If we have a JavaObject, return just that object
   237   if (npt->node_type() == PointsToNode::JavaObject) {
   238     ptset.set(n->_idx);
   239     return;
   240   }
   241 #ifdef ASSERT
   242   if (npt->_node == NULL) {
   243     if (orig_n != n)
   244       orig_n->dump();
   245     n->dump();
   246     assert(npt->_node != NULL, "unregistered node");
   247   }
   248 #endif
   249   worklist.push(n->_idx);
   250   while(worklist.length() > 0) {
   251     int ni = worklist.pop();
   252     if (visited.test_set(ni))
   253       continue;
   255     PointsToNode* pn = ptnode_adr(ni);
   256     // ensure that all inputs of a Phi have been processed
   257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
   259     int edges_processed = 0;
   260     uint e_cnt = pn->edge_count();
   261     for (uint e = 0; e < e_cnt; e++) {
   262       uint etgt = pn->edge_target(e);
   263       PointsToNode::EdgeType et = pn->edge_type(e);
   264       if (et == PointsToNode::PointsToEdge) {
   265         ptset.set(etgt);
   266         edges_processed++;
   267       } else if (et == PointsToNode::DeferredEdge) {
   268         worklist.push(etgt);
   269         edges_processed++;
   270       } else {
   271         assert(false,"neither PointsToEdge or DeferredEdge");
   272       }
   273     }
   274     if (edges_processed == 0) {
   275       // no deferred or pointsto edges found.  Assume the value was set
   276       // outside this method.  Add the phantom object to the pointsto set.
   277       ptset.set(_phantom_object);
   278     }
   279   }
   280 }
   282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
   283   // This method is most expensive during ConnectionGraph construction.
   284   // Reuse vectorSet and an additional growable array for deferred edges.
   285   deferred_edges->clear();
   286   visited->Clear();
   288   visited->set(ni);
   289   PointsToNode *ptn = ptnode_adr(ni);
   291   // Mark current edges as visited and move deferred edges to separate array.
   292   for (uint i = 0; i < ptn->edge_count(); ) {
   293     uint t = ptn->edge_target(i);
   294 #ifdef ASSERT
   295     assert(!visited->test_set(t), "expecting no duplications");
   296 #else
   297     visited->set(t);
   298 #endif
   299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
   300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   301       deferred_edges->append(t);
   302     } else {
   303       i++;
   304     }
   305   }
   306   for (int next = 0; next < deferred_edges->length(); ++next) {
   307     uint t = deferred_edges->at(next);
   308     PointsToNode *ptt = ptnode_adr(t);
   309     uint e_cnt = ptt->edge_count();
   310     for (uint e = 0; e < e_cnt; e++) {
   311       uint etgt = ptt->edge_target(e);
   312       if (visited->test_set(etgt))
   313         continue;
   315       PointsToNode::EdgeType et = ptt->edge_type(e);
   316       if (et == PointsToNode::PointsToEdge) {
   317         add_pointsto_edge(ni, etgt);
   318         if(etgt == _phantom_object) {
   319           // Special case - field set outside (globally escaping).
   320           ptn->set_escape_state(PointsToNode::GlobalEscape);
   321         }
   322       } else if (et == PointsToNode::DeferredEdge) {
   323         deferred_edges->append(etgt);
   324       } else {
   325         assert(false,"invalid connection graph");
   326       }
   327     }
   328   }
   329 }
   332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   334 //  a pointsto edge is added if it is a JavaObject
   336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   337   PointsToNode* an = ptnode_adr(adr_i);
   338   PointsToNode* to = ptnode_adr(to_i);
   339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
   341   for (uint fe = 0; fe < an->edge_count(); fe++) {
   342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   343     int fi = an->edge_target(fe);
   344     PointsToNode* pf = ptnode_adr(fi);
   345     int po = pf->offset();
   346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   347       if (deferred)
   348         add_deferred_edge(fi, to_i);
   349       else
   350         add_pointsto_edge(fi, to_i);
   351     }
   352   }
   353 }
   355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   356 // whose offset matches "offset".
   357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   358   PointsToNode* an = ptnode_adr(adr_i);
   359   for (uint fe = 0; fe < an->edge_count(); fe++) {
   360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   361     int fi = an->edge_target(fe);
   362     PointsToNode* pf = ptnode_adr(fi);
   363     int po = pf->offset();
   364     if (pf->edge_count() == 0) {
   365       // we have not seen any stores to this field, assume it was set outside this method
   366       add_pointsto_edge(fi, _phantom_object);
   367     }
   368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   369       add_deferred_edge(from_i, fi);
   370     }
   371   }
   372 }
   374 // Helper functions
   376 static Node* get_addp_base(Node *addp) {
   377   assert(addp->is_AddP(), "must be AddP");
   378   //
   379   // AddP cases for Base and Address inputs:
   380   // case #1. Direct object's field reference:
   381   //     Allocate
   382   //       |
   383   //     Proj #5 ( oop result )
   384   //       |
   385   //     CheckCastPP (cast to instance type)
   386   //      | |
   387   //     AddP  ( base == address )
   388   //
   389   // case #2. Indirect object's field reference:
   390   //      Phi
   391   //       |
   392   //     CastPP (cast to instance type)
   393   //      | |
   394   //     AddP  ( base == address )
   395   //
   396   // case #3. Raw object's field reference for Initialize node:
   397   //      Allocate
   398   //        |
   399   //      Proj #5 ( oop result )
   400   //  top   |
   401   //     \  |
   402   //     AddP  ( base == top )
   403   //
   404   // case #4. Array's element reference:
   405   //   {CheckCastPP | CastPP}
   406   //     |  | |
   407   //     |  AddP ( array's element offset )
   408   //     |  |
   409   //     AddP ( array's offset )
   410   //
   411   // case #5. Raw object's field reference for arraycopy stub call:
   412   //          The inline_native_clone() case when the arraycopy stub is called
   413   //          after the allocation before Initialize and CheckCastPP nodes.
   414   //      Allocate
   415   //        |
   416   //      Proj #5 ( oop result )
   417   //       | |
   418   //       AddP  ( base == address )
   419   //
   420   // case #6. Constant Pool, ThreadLocal, CastX2P or
   421   //          Raw object's field reference:
   422   //      {ConP, ThreadLocal, CastX2P, raw Load}
   423   //  top   |
   424   //     \  |
   425   //     AddP  ( base == top )
   426   //
   427   // case #7. Klass's field reference.
   428   //      LoadKlass
   429   //       | |
   430   //       AddP  ( base == address )
   431   //
   432   // case #8. narrow Klass's field reference.
   433   //      LoadNKlass
   434   //       |
   435   //      DecodeN
   436   //       | |
   437   //       AddP  ( base == address )
   438   //
   439   Node *base = addp->in(AddPNode::Base)->uncast();
   440   if (base->is_top()) { // The AddP case #3 and #6.
   441     base = addp->in(AddPNode::Address)->uncast();
   442     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   443            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
   444            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
   445            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
   446   }
   447   return base;
   448 }
   450 static Node* find_second_addp(Node* addp, Node* n) {
   451   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   453   Node* addp2 = addp->raw_out(0);
   454   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   455       addp2->in(AddPNode::Base) == n &&
   456       addp2->in(AddPNode::Address) == addp) {
   458     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   459     //
   460     // Find array's offset to push it on worklist first and
   461     // as result process an array's element offset first (pushed second)
   462     // to avoid CastPP for the array's offset.
   463     // Otherwise the inserted CastPP (LocalVar) will point to what
   464     // the AddP (Field) points to. Which would be wrong since
   465     // the algorithm expects the CastPP has the same point as
   466     // as AddP's base CheckCastPP (LocalVar).
   467     //
   468     //    ArrayAllocation
   469     //     |
   470     //    CheckCastPP
   471     //     |
   472     //    memProj (from ArrayAllocation CheckCastPP)
   473     //     |  ||
   474     //     |  ||   Int (element index)
   475     //     |  ||    |   ConI (log(element size))
   476     //     |  ||    |   /
   477     //     |  ||   LShift
   478     //     |  ||  /
   479     //     |  AddP (array's element offset)
   480     //     |  |
   481     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   482     //     | / /
   483     //     AddP (array's offset)
   484     //      |
   485     //     Load/Store (memory operation on array's element)
   486     //
   487     return addp2;
   488   }
   489   return NULL;
   490 }
   492 //
   493 // Adjust the type and inputs of an AddP which computes the
   494 // address of a field of an instance
   495 //
   496 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   497   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   498   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
   499   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   500   if (t == NULL) {
   501     // We are computing a raw address for a store captured by an Initialize
   502     // compute an appropriate address type (cases #3 and #5).
   503     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   504     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   505     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   506     assert(offs != Type::OffsetBot, "offset must be a constant");
   507     t = base_t->add_offset(offs)->is_oopptr();
   508   }
   509   int inst_id =  base_t->instance_id();
   510   assert(!t->is_known_instance() || t->instance_id() == inst_id,
   511                              "old type must be non-instance or match new type");
   513   // The type 't' could be subclass of 'base_t'.
   514   // As result t->offset() could be large then base_t's size and it will
   515   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
   516   // constructor verifies correctness of the offset.
   517   //
   518   // It could happened on subclass's branch (from the type profiling
   519   // inlining) which was not eliminated during parsing since the exactness
   520   // of the allocation type was not propagated to the subclass type check.
   521   //
   522   // Do nothing for such AddP node and don't process its users since
   523   // this code branch will go away.
   524   //
   525   if (!t->is_known_instance() &&
   526       !t->klass()->equals(base_t->klass()) &&
   527       t->klass()->is_subtype_of(base_t->klass())) {
   528      return false; // bail out
   529   }
   531   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   532   // Do NOT remove the next call: ensure an new alias index is allocated
   533   // for the instance type
   534   int alias_idx = _compile->get_alias_index(tinst);
   535   igvn->set_type(addp, tinst);
   536   // record the allocation in the node map
   537   set_map(addp->_idx, get_map(base->_idx));
   539   // Set addp's Base and Address to 'base'.
   540   Node *abase = addp->in(AddPNode::Base);
   541   Node *adr   = addp->in(AddPNode::Address);
   542   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
   543       adr->in(0)->_idx == (uint)inst_id) {
   544     // Skip AddP cases #3 and #5.
   545   } else {
   546     assert(!abase->is_top(), "sanity"); // AddP case #3
   547     if (abase != base) {
   548       igvn->hash_delete(addp);
   549       addp->set_req(AddPNode::Base, base);
   550       if (abase == adr) {
   551         addp->set_req(AddPNode::Address, base);
   552       } else {
   553         // AddP case #4 (adr is array's element offset AddP node)
   554 #ifdef ASSERT
   555         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
   556         assert(adr->is_AddP() && atype != NULL &&
   557                atype->instance_id() == inst_id, "array's element offset should be processed first");
   558 #endif
   559       }
   560       igvn->hash_insert(addp);
   561     }
   562   }
   563   // Put on IGVN worklist since at least addp's type was changed above.
   564   record_for_optimizer(addp);
   565   return true;
   566 }
   568 //
   569 // Create a new version of orig_phi if necessary. Returns either the newly
   570 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   571 // phi was created.  Cache the last newly created phi in the node map.
   572 //
   573 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   574   Compile *C = _compile;
   575   new_created = false;
   576   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   577   // nothing to do if orig_phi is bottom memory or matches alias_idx
   578   if (phi_alias_idx == alias_idx) {
   579     return orig_phi;
   580   }
   581   // Have we recently created a Phi for this alias index?
   582   PhiNode *result = get_map_phi(orig_phi->_idx);
   583   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   584     return result;
   585   }
   586   // Previous check may fail when the same wide memory Phi was split into Phis
   587   // for different memory slices. Search all Phis for this region.
   588   if (result != NULL) {
   589     Node* region = orig_phi->in(0);
   590     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   591       Node* phi = region->fast_out(i);
   592       if (phi->is_Phi() &&
   593           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
   594         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
   595         return phi->as_Phi();
   596       }
   597     }
   598   }
   599   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   600     if (C->do_escape_analysis() == true && !C->failing()) {
   601       // Retry compilation without escape analysis.
   602       // If this is the first failure, the sentinel string will "stick"
   603       // to the Compile object, and the C2Compiler will see it and retry.
   604       C->record_failure(C2Compiler::retry_no_escape_analysis());
   605     }
   606     return NULL;
   607   }
   608   orig_phi_worklist.append_if_missing(orig_phi);
   609   const TypePtr *atype = C->get_adr_type(alias_idx);
   610   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   611   C->copy_node_notes_to(result, orig_phi);
   612   set_map_phi(orig_phi->_idx, result);
   613   igvn->set_type(result, result->bottom_type());
   614   record_for_optimizer(result);
   615   new_created = true;
   616   return result;
   617 }
   619 //
   620 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   621 // specified alias index.
   622 //
   623 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   625   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   626   Compile *C = _compile;
   627   bool new_phi_created;
   628   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   629   if (!new_phi_created) {
   630     return result;
   631   }
   633   GrowableArray<PhiNode *>  phi_list;
   634   GrowableArray<uint>  cur_input;
   636   PhiNode *phi = orig_phi;
   637   uint idx = 1;
   638   bool finished = false;
   639   while(!finished) {
   640     while (idx < phi->req()) {
   641       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   642       if (mem != NULL && mem->is_Phi()) {
   643         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   644         if (new_phi_created) {
   645           // found an phi for which we created a new split, push current one on worklist and begin
   646           // processing new one
   647           phi_list.push(phi);
   648           cur_input.push(idx);
   649           phi = mem->as_Phi();
   650           result = newphi;
   651           idx = 1;
   652           continue;
   653         } else {
   654           mem = newphi;
   655         }
   656       }
   657       if (C->failing()) {
   658         return NULL;
   659       }
   660       result->set_req(idx++, mem);
   661     }
   662 #ifdef ASSERT
   663     // verify that the new Phi has an input for each input of the original
   664     assert( phi->req() == result->req(), "must have same number of inputs.");
   665     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   666 #endif
   667     // Check if all new phi's inputs have specified alias index.
   668     // Otherwise use old phi.
   669     for (uint i = 1; i < phi->req(); i++) {
   670       Node* in = result->in(i);
   671       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   672     }
   673     // we have finished processing a Phi, see if there are any more to do
   674     finished = (phi_list.length() == 0 );
   675     if (!finished) {
   676       phi = phi_list.pop();
   677       idx = cur_input.pop();
   678       PhiNode *prev_result = get_map_phi(phi->_idx);
   679       prev_result->set_req(idx++, result);
   680       result = prev_result;
   681     }
   682   }
   683   return result;
   684 }
   687 //
   688 // The next methods are derived from methods in MemNode.
   689 //
   690 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   691   Node *mem = mmem;
   692   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   693   // means an array I have not precisely typed yet.  Do not do any
   694   // alias stuff with it any time soon.
   695   if( tinst->base() != Type::AnyPtr &&
   696       !(tinst->klass()->is_java_lang_Object() &&
   697         tinst->offset() == Type::OffsetBot) ) {
   698     mem = mmem->memory_at(alias_idx);
   699     // Update input if it is progress over what we have now
   700   }
   701   return mem;
   702 }
   704 //
   705 // Search memory chain of "mem" to find a MemNode whose address
   706 // is the specified alias index.
   707 //
   708 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   709   if (orig_mem == NULL)
   710     return orig_mem;
   711   Compile* C = phase->C;
   712   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   713   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
   714   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   715   Node *prev = NULL;
   716   Node *result = orig_mem;
   717   while (prev != result) {
   718     prev = result;
   719     if (result == start_mem)
   720       break;  // hit one of our sentinels
   721     if (result->is_Mem()) {
   722       const Type *at = phase->type(result->in(MemNode::Address));
   723       if (at != Type::TOP) {
   724         assert (at->isa_ptr() != NULL, "pointer type required.");
   725         int idx = C->get_alias_index(at->is_ptr());
   726         if (idx == alias_idx)
   727           break;
   728       }
   729       result = result->in(MemNode::Memory);
   730     }
   731     if (!is_instance)
   732       continue;  // don't search further for non-instance types
   733     // skip over a call which does not affect this memory slice
   734     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   735       Node *proj_in = result->in(0);
   736       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
   737         break;  // hit one of our sentinels
   738       } else if (proj_in->is_Call()) {
   739         CallNode *call = proj_in->as_Call();
   740         if (!call->may_modify(tinst, phase)) {
   741           result = call->in(TypeFunc::Memory);
   742         }
   743       } else if (proj_in->is_Initialize()) {
   744         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   745         // Stop if this is the initialization for the object instance which
   746         // which contains this memory slice, otherwise skip over it.
   747         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
   748           result = proj_in->in(TypeFunc::Memory);
   749         }
   750       } else if (proj_in->is_MemBar()) {
   751         result = proj_in->in(TypeFunc::Memory);
   752       }
   753     } else if (result->is_MergeMem()) {
   754       MergeMemNode *mmem = result->as_MergeMem();
   755       result = step_through_mergemem(mmem, alias_idx, tinst);
   756       if (result == mmem->base_memory()) {
   757         // Didn't find instance memory, search through general slice recursively.
   758         result = mmem->memory_at(C->get_general_index(alias_idx));
   759         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   760         if (C->failing()) {
   761           return NULL;
   762         }
   763         mmem->set_memory_at(alias_idx, result);
   764       }
   765     } else if (result->is_Phi() &&
   766                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   767       Node *un = result->as_Phi()->unique_input(phase);
   768       if (un != NULL) {
   769         result = un;
   770       } else {
   771         break;
   772       }
   773     } else if (result->Opcode() == Op_SCMemProj) {
   774       assert(result->in(0)->is_LoadStore(), "sanity");
   775       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
   776       if (at != Type::TOP) {
   777         assert (at->isa_ptr() != NULL, "pointer type required.");
   778         int idx = C->get_alias_index(at->is_ptr());
   779         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
   780         break;
   781       }
   782       result = result->in(0)->in(MemNode::Memory);
   783     }
   784   }
   785   if (result->is_Phi()) {
   786     PhiNode *mphi = result->as_Phi();
   787     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   788     const TypePtr *t = mphi->adr_type();
   789     if (C->get_alias_index(t) != alias_idx) {
   790       // Create a new Phi with the specified alias index type.
   791       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   792     } else if (!is_instance) {
   793       // Push all non-instance Phis on the orig_phis worklist to update inputs
   794       // during Phase 4 if needed.
   795       orig_phis.append_if_missing(mphi);
   796     }
   797   }
   798   // the result is either MemNode, PhiNode, InitializeNode.
   799   return result;
   800 }
   803 //
   804 //  Convert the types of unescaped object to instance types where possible,
   805 //  propagate the new type information through the graph, and update memory
   806 //  edges and MergeMem inputs to reflect the new type.
   807 //
   808 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   809 //  The processing is done in 4 phases:
   810 //
   811 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   812 //            types for the CheckCastPP for allocations where possible.
   813 //            Propagate the the new types through users as follows:
   814 //               casts and Phi:  push users on alloc_worklist
   815 //               AddP:  cast Base and Address inputs to the instance type
   816 //                      push any AddP users on alloc_worklist and push any memnode
   817 //                      users onto memnode_worklist.
   818 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   819 //            search the Memory chain for a store with the appropriate type
   820 //            address type.  If a Phi is found, create a new version with
   821 //            the appropriate memory slices from each of the Phi inputs.
   822 //            For stores, process the users as follows:
   823 //               MemNode:  push on memnode_worklist
   824 //               MergeMem: push on mergemem_worklist
   825 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   826 //            moving the first node encountered of each  instance type to the
   827 //            the input corresponding to its alias index.
   828 //            appropriate memory slice.
   829 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   830 //
   831 // In the following example, the CheckCastPP nodes are the cast of allocation
   832 // results and the allocation of node 29 is unescaped and eligible to be an
   833 // instance type.
   834 //
   835 // We start with:
   836 //
   837 //     7 Parm #memory
   838 //    10  ConI  "12"
   839 //    19  CheckCastPP   "Foo"
   840 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   841 //    29  CheckCastPP   "Foo"
   842 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   843 //
   844 //    40  StoreP  25   7  20   ... alias_index=4
   845 //    50  StoreP  35  40  30   ... alias_index=4
   846 //    60  StoreP  45  50  20   ... alias_index=4
   847 //    70  LoadP    _  60  30   ... alias_index=4
   848 //    80  Phi     75  50  60   Memory alias_index=4
   849 //    90  LoadP    _  80  30   ... alias_index=4
   850 //   100  LoadP    _  80  20   ... alias_index=4
   851 //
   852 //
   853 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   854 // and creating a new alias index for node 30.  This gives:
   855 //
   856 //     7 Parm #memory
   857 //    10  ConI  "12"
   858 //    19  CheckCastPP   "Foo"
   859 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   860 //    29  CheckCastPP   "Foo"  iid=24
   861 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   862 //
   863 //    40  StoreP  25   7  20   ... alias_index=4
   864 //    50  StoreP  35  40  30   ... alias_index=6
   865 //    60  StoreP  45  50  20   ... alias_index=4
   866 //    70  LoadP    _  60  30   ... alias_index=6
   867 //    80  Phi     75  50  60   Memory alias_index=4
   868 //    90  LoadP    _  80  30   ... alias_index=6
   869 //   100  LoadP    _  80  20   ... alias_index=4
   870 //
   871 // In phase 2, new memory inputs are computed for the loads and stores,
   872 // And a new version of the phi is created.  In phase 4, the inputs to
   873 // node 80 are updated and then the memory nodes are updated with the
   874 // values computed in phase 2.  This results in:
   875 //
   876 //     7 Parm #memory
   877 //    10  ConI  "12"
   878 //    19  CheckCastPP   "Foo"
   879 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   880 //    29  CheckCastPP   "Foo"  iid=24
   881 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   882 //
   883 //    40  StoreP  25  7   20   ... alias_index=4
   884 //    50  StoreP  35  7   30   ... alias_index=6
   885 //    60  StoreP  45  40  20   ... alias_index=4
   886 //    70  LoadP    _  50  30   ... alias_index=6
   887 //    80  Phi     75  40  60   Memory alias_index=4
   888 //   120  Phi     75  50  50   Memory alias_index=6
   889 //    90  LoadP    _ 120  30   ... alias_index=6
   890 //   100  LoadP    _  80  20   ... alias_index=4
   891 //
   892 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   893   GrowableArray<Node *>  memnode_worklist;
   894   GrowableArray<Node *>  mergemem_worklist;
   895   GrowableArray<PhiNode *>  orig_phis;
   896   PhaseGVN  *igvn = _compile->initial_gvn();
   897   uint new_index_start = (uint) _compile->num_alias_types();
   898   VectorSet visited(Thread::current()->resource_area());
   899   VectorSet ptset(Thread::current()->resource_area());
   902   //  Phase 1:  Process possible allocations from alloc_worklist.
   903   //  Create instance types for the CheckCastPP for allocations where possible.
   904   //
   905   // (Note: don't forget to change the order of the second AddP node on
   906   //  the alloc_worklist if the order of the worklist processing is changed,
   907   //  see the comment in find_second_addp().)
   908   //
   909   while (alloc_worklist.length() != 0) {
   910     Node *n = alloc_worklist.pop();
   911     uint ni = n->_idx;
   912     const TypeOopPtr* tinst = NULL;
   913     if (n->is_Call()) {
   914       CallNode *alloc = n->as_Call();
   915       // copy escape information to call node
   916       PointsToNode* ptn = ptnode_adr(alloc->_idx);
   917       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   918       // We have an allocation or call which returns a Java object,
   919       // see if it is unescaped.
   920       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   921         continue;
   923       // Find CheckCastPP for the allocate or for the return value of a call
   924       n = alloc->result_cast();
   925       if (n == NULL) {            // No uses except Initialize node
   926         if (alloc->is_Allocate()) {
   927           // Set the scalar_replaceable flag for allocation
   928           // so it could be eliminated if it has no uses.
   929           alloc->as_Allocate()->_is_scalar_replaceable = true;
   930         }
   931         continue;
   932       }
   933       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
   934         assert(!alloc->is_Allocate(), "allocation should have unique type");
   935         continue;
   936       }
   938       // The inline code for Object.clone() casts the allocation result to
   939       // java.lang.Object and then to the actual type of the allocated
   940       // object. Detect this case and use the second cast.
   941       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
   942       // the allocation result is cast to java.lang.Object and then
   943       // to the actual Array type.
   944       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   945           && (alloc->is_AllocateArray() ||
   946               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
   947         Node *cast2 = NULL;
   948         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   949           Node *use = n->fast_out(i);
   950           if (use->is_CheckCastPP()) {
   951             cast2 = use;
   952             break;
   953           }
   954         }
   955         if (cast2 != NULL) {
   956           n = cast2;
   957         } else {
   958           // Non-scalar replaceable if the allocation type is unknown statically
   959           // (reflection allocation), the object can't be restored during
   960           // deoptimization without precise type.
   961           continue;
   962         }
   963       }
   964       if (alloc->is_Allocate()) {
   965         // Set the scalar_replaceable flag for allocation
   966         // so it could be eliminated.
   967         alloc->as_Allocate()->_is_scalar_replaceable = true;
   968       }
   969       set_escape_state(n->_idx, es);
   970       // in order for an object to be scalar-replaceable, it must be:
   971       //   - a direct allocation (not a call returning an object)
   972       //   - non-escaping
   973       //   - eligible to be a unique type
   974       //   - not determined to be ineligible by escape analysis
   975       set_map(alloc->_idx, n);
   976       set_map(n->_idx, alloc);
   977       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   978       if (t == NULL)
   979         continue;  // not a TypeInstPtr
   980       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
   981       igvn->hash_delete(n);
   982       igvn->set_type(n,  tinst);
   983       n->raise_bottom_type(tinst);
   984       igvn->hash_insert(n);
   985       record_for_optimizer(n);
   986       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
   987           (t->isa_instptr() || t->isa_aryptr())) {
   989         // First, put on the worklist all Field edges from Connection Graph
   990         // which is more accurate then putting immediate users from Ideal Graph.
   991         for (uint e = 0; e < ptn->edge_count(); e++) {
   992           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
   993           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
   994                  "only AddP nodes are Field edges in CG");
   995           if (use->outcnt() > 0) { // Don't process dead nodes
   996             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
   997             if (addp2 != NULL) {
   998               assert(alloc->is_AllocateArray(),"array allocation was expected");
   999               alloc_worklist.append_if_missing(addp2);
  1001             alloc_worklist.append_if_missing(use);
  1005         // An allocation may have an Initialize which has raw stores. Scan
  1006         // the users of the raw allocation result and push AddP users
  1007         // on alloc_worklist.
  1008         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  1009         assert (raw_result != NULL, "must have an allocation result");
  1010         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  1011           Node *use = raw_result->fast_out(i);
  1012           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  1013             Node* addp2 = find_second_addp(use, raw_result);
  1014             if (addp2 != NULL) {
  1015               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1016               alloc_worklist.append_if_missing(addp2);
  1018             alloc_worklist.append_if_missing(use);
  1019           } else if (use->is_Initialize()) {
  1020             memnode_worklist.append_if_missing(use);
  1024     } else if (n->is_AddP()) {
  1025       ptset.Clear();
  1026       PointsTo(ptset, get_addp_base(n), igvn);
  1027       assert(ptset.Size() == 1, "AddP address is unique");
  1028       uint elem = ptset.getelem(); // Allocation node's index
  1029       if (elem == _phantom_object)
  1030         continue; // Assume the value was set outside this method.
  1031       Node *base = get_map(elem);  // CheckCastPP node
  1032       if (!split_AddP(n, base, igvn)) continue; // wrong type
  1033       tinst = igvn->type(base)->isa_oopptr();
  1034     } else if (n->is_Phi() ||
  1035                n->is_CheckCastPP() ||
  1036                n->is_EncodeP() ||
  1037                n->is_DecodeN() ||
  1038                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  1039       if (visited.test_set(n->_idx)) {
  1040         assert(n->is_Phi(), "loops only through Phi's");
  1041         continue;  // already processed
  1043       ptset.Clear();
  1044       PointsTo(ptset, n, igvn);
  1045       if (ptset.Size() == 1) {
  1046         uint elem = ptset.getelem(); // Allocation node's index
  1047         if (elem == _phantom_object)
  1048           continue; // Assume the value was set outside this method.
  1049         Node *val = get_map(elem);   // CheckCastPP node
  1050         TypeNode *tn = n->as_Type();
  1051         tinst = igvn->type(val)->isa_oopptr();
  1052         assert(tinst != NULL && tinst->is_known_instance() &&
  1053                (uint)tinst->instance_id() == elem , "instance type expected.");
  1055         const Type *tn_type = igvn->type(tn);
  1056         const TypeOopPtr *tn_t;
  1057         if (tn_type->isa_narrowoop()) {
  1058           tn_t = tn_type->make_ptr()->isa_oopptr();
  1059         } else {
  1060           tn_t = tn_type->isa_oopptr();
  1063         if (tn_t != NULL &&
  1064             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
  1065           if (tn_type->isa_narrowoop()) {
  1066             tn_type = tinst->make_narrowoop();
  1067           } else {
  1068             tn_type = tinst;
  1070           igvn->hash_delete(tn);
  1071           igvn->set_type(tn, tn_type);
  1072           tn->set_type(tn_type);
  1073           igvn->hash_insert(tn);
  1074           record_for_optimizer(n);
  1075         } else {
  1076           continue; // wrong type
  1079     } else {
  1080       continue;
  1082     // push users on appropriate worklist
  1083     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1084       Node *use = n->fast_out(i);
  1085       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  1086         memnode_worklist.append_if_missing(use);
  1087       } else if (use->is_Initialize()) {
  1088         memnode_worklist.append_if_missing(use);
  1089       } else if (use->is_MergeMem()) {
  1090         mergemem_worklist.append_if_missing(use);
  1091       } else if (use->is_SafePoint() && tinst != NULL) {
  1092         // Look for MergeMem nodes for calls which reference unique allocation
  1093         // (through CheckCastPP nodes) even for debug info.
  1094         Node* m = use->in(TypeFunc::Memory);
  1095         uint iid = tinst->instance_id();
  1096         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
  1097                m->in(0) != use && !m->in(0)->_idx != iid) {
  1098           m = m->in(0)->in(TypeFunc::Memory);
  1100         if (m->is_MergeMem()) {
  1101           mergemem_worklist.append_if_missing(m);
  1103       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  1104         Node* addp2 = find_second_addp(use, n);
  1105         if (addp2 != NULL) {
  1106           alloc_worklist.append_if_missing(addp2);
  1108         alloc_worklist.append_if_missing(use);
  1109       } else if (use->is_Phi() ||
  1110                  use->is_CheckCastPP() ||
  1111                  use->is_EncodeP() ||
  1112                  use->is_DecodeN() ||
  1113                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  1114         alloc_worklist.append_if_missing(use);
  1119   // New alias types were created in split_AddP().
  1120   uint new_index_end = (uint) _compile->num_alias_types();
  1122   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  1123   //            compute new values for Memory inputs  (the Memory inputs are not
  1124   //            actually updated until phase 4.)
  1125   if (memnode_worklist.length() == 0)
  1126     return;  // nothing to do
  1128   while (memnode_worklist.length() != 0) {
  1129     Node *n = memnode_worklist.pop();
  1130     if (visited.test_set(n->_idx))
  1131       continue;
  1132     if (n->is_Phi()) {
  1133       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
  1134       // we don't need to do anything, but the users must be pushed if we haven't processed
  1135       // this Phi before
  1136     } else if (n->is_Initialize()) {
  1137       // we don't need to do anything, but the users of the memory projection must be pushed
  1138       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
  1139       if (n == NULL)
  1140         continue;
  1141     } else {
  1142       assert(n->is_Mem(), "memory node required.");
  1143       Node *addr = n->in(MemNode::Address);
  1144       assert(addr->is_AddP(), "AddP required");
  1145       const Type *addr_t = igvn->type(addr);
  1146       if (addr_t == Type::TOP)
  1147         continue;
  1148       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  1149       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  1150       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  1151       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
  1152       if (_compile->failing()) {
  1153         return;
  1155       if (mem != n->in(MemNode::Memory)) {
  1156         set_map(n->_idx, mem);
  1157         ptnode_adr(n->_idx)->_node = n;
  1159       if (n->is_Load()) {
  1160         continue;  // don't push users
  1161       } else if (n->is_LoadStore()) {
  1162         // get the memory projection
  1163         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1164           Node *use = n->fast_out(i);
  1165           if (use->Opcode() == Op_SCMemProj) {
  1166             n = use;
  1167             break;
  1170         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1173     // push user on appropriate worklist
  1174     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1175       Node *use = n->fast_out(i);
  1176       if (use->is_Phi()) {
  1177         memnode_worklist.append_if_missing(use);
  1178       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1179         memnode_worklist.append_if_missing(use);
  1180       } else if (use->is_Initialize()) {
  1181         memnode_worklist.append_if_missing(use);
  1182       } else if (use->is_MergeMem()) {
  1183         mergemem_worklist.append_if_missing(use);
  1188   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1189   //            Walk each memory moving the first node encountered of each
  1190   //            instance type to the the input corresponding to its alias index.
  1191   while (mergemem_worklist.length() != 0) {
  1192     Node *n = mergemem_worklist.pop();
  1193     assert(n->is_MergeMem(), "MergeMem node required.");
  1194     if (visited.test_set(n->_idx))
  1195       continue;
  1196     MergeMemNode *nmm = n->as_MergeMem();
  1197     // Note: we don't want to use MergeMemStream here because we only want to
  1198     //  scan inputs which exist at the start, not ones we add during processing.
  1199     uint nslices = nmm->req();
  1200     igvn->hash_delete(nmm);
  1201     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1202       Node* mem = nmm->in(i);
  1203       Node* cur = NULL;
  1204       if (mem == NULL || mem->is_top())
  1205         continue;
  1206       while (mem->is_Mem()) {
  1207         const Type *at = igvn->type(mem->in(MemNode::Address));
  1208         if (at != Type::TOP) {
  1209           assert (at->isa_ptr() != NULL, "pointer type required.");
  1210           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1211           if (idx == i) {
  1212             if (cur == NULL)
  1213               cur = mem;
  1214           } else {
  1215             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1216               nmm->set_memory_at(idx, mem);
  1220         mem = mem->in(MemNode::Memory);
  1222       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1223       // Find any instance of the current type if we haven't encountered
  1224       // a value of the instance along the chain.
  1225       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1226         if((uint)_compile->get_general_index(ni) == i) {
  1227           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1228           if (nmm->is_empty_memory(m)) {
  1229             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1230             if (_compile->failing()) {
  1231               return;
  1233             nmm->set_memory_at(ni, result);
  1238     // Find the rest of instances values
  1239     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1240       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1241       Node* result = step_through_mergemem(nmm, ni, tinst);
  1242       if (result == nmm->base_memory()) {
  1243         // Didn't find instance memory, search through general slice recursively.
  1244         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1245         result = find_inst_mem(result, ni, orig_phis, igvn);
  1246         if (_compile->failing()) {
  1247           return;
  1249         nmm->set_memory_at(ni, result);
  1252     igvn->hash_insert(nmm);
  1253     record_for_optimizer(nmm);
  1255     // Propagate new memory slices to following MergeMem nodes.
  1256     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1257       Node *use = n->fast_out(i);
  1258       if (use->is_Call()) {
  1259         CallNode* in = use->as_Call();
  1260         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1261           Node* m = in->proj_out(TypeFunc::Memory);
  1262           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1263             Node* mm = m->fast_out(j);
  1264             if (mm->is_MergeMem()) {
  1265               mergemem_worklist.append_if_missing(mm);
  1269         if (use->is_Allocate()) {
  1270           use = use->as_Allocate()->initialization();
  1271           if (use == NULL) {
  1272             continue;
  1276       if (use->is_Initialize()) {
  1277         InitializeNode* in = use->as_Initialize();
  1278         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1279           Node* m = in->proj_out(TypeFunc::Memory);
  1280           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1281             Node* mm = m->fast_out(j);
  1282             if (mm->is_MergeMem()) {
  1283               mergemem_worklist.append_if_missing(mm);
  1291   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1292   //            the Memory input of memnodes
  1293   // First update the inputs of any non-instance Phi's from
  1294   // which we split out an instance Phi.  Note we don't have
  1295   // to recursively process Phi's encounted on the input memory
  1296   // chains as is done in split_memory_phi() since they  will
  1297   // also be processed here.
  1298   for (int j = 0; j < orig_phis.length(); j++) {
  1299     PhiNode *phi = orig_phis.at(j);
  1300     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1301     igvn->hash_delete(phi);
  1302     for (uint i = 1; i < phi->req(); i++) {
  1303       Node *mem = phi->in(i);
  1304       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1305       if (_compile->failing()) {
  1306         return;
  1308       if (mem != new_mem) {
  1309         phi->set_req(i, new_mem);
  1312     igvn->hash_insert(phi);
  1313     record_for_optimizer(phi);
  1316   // Update the memory inputs of MemNodes with the value we computed
  1317   // in Phase 2.
  1318   for (uint i = 0; i < nodes_size(); i++) {
  1319     Node *nmem = get_map(i);
  1320     if (nmem != NULL) {
  1321       Node *n = ptnode_adr(i)->_node;
  1322       if (n != NULL && n->is_Mem()) {
  1323         igvn->hash_delete(n);
  1324         n->set_req(MemNode::Memory, nmem);
  1325         igvn->hash_insert(n);
  1326         record_for_optimizer(n);
  1332 bool ConnectionGraph::has_candidates(Compile *C) {
  1333   // EA brings benefits only when the code has allocations and/or locks which
  1334   // are represented by ideal Macro nodes.
  1335   int cnt = C->macro_count();
  1336   for( int i=0; i < cnt; i++ ) {
  1337     Node *n = C->macro_node(i);
  1338     if ( n->is_Allocate() )
  1339       return true;
  1340     if( n->is_Lock() ) {
  1341       Node* obj = n->as_Lock()->obj_node()->uncast();
  1342       if( !(obj->is_Parm() || obj->is_Con()) )
  1343         return true;
  1346   return false;
  1349 bool ConnectionGraph::compute_escape() {
  1350   Compile* C = _compile;
  1352   // 1. Populate Connection Graph (CG) with Ideal nodes.
  1354   Unique_Node_List worklist_init;
  1355   worklist_init.map(C->unique(), NULL);  // preallocate space
  1357   // Initialize worklist
  1358   if (C->root() != NULL) {
  1359     worklist_init.push(C->root());
  1362   GrowableArray<int> cg_worklist;
  1363   PhaseGVN* igvn = C->initial_gvn();
  1364   bool has_allocations = false;
  1366   // Push all useful nodes onto CG list and set their type.
  1367   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1368     Node* n = worklist_init.at(next);
  1369     record_for_escape_analysis(n, igvn);
  1370     // Only allocations and java static calls results are checked
  1371     // for an escape status. See process_call_result() below.
  1372     if (n->is_Allocate() || n->is_CallStaticJava() &&
  1373         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1374       has_allocations = true;
  1376     if(n->is_AddP())
  1377       cg_worklist.append(n->_idx);
  1378     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1379       Node* m = n->fast_out(i);   // Get user
  1380       worklist_init.push(m);
  1384   if (!has_allocations) {
  1385     _collecting = false;
  1386     return false; // Nothing to do.
  1389   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1390   uint delayed_size = _delayed_worklist.size();
  1391   for( uint next = 0; next < delayed_size; ++next ) {
  1392     Node* n = _delayed_worklist.at(next);
  1393     build_connection_graph(n, igvn);
  1396   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1397   uint cg_length = cg_worklist.length();
  1398   for( uint next = 0; next < cg_length; ++next ) {
  1399     int ni = cg_worklist.at(next);
  1400     build_connection_graph(ptnode_adr(ni)->_node, igvn);
  1403   cg_worklist.clear();
  1404   cg_worklist.append(_phantom_object);
  1406   // 4. Build Connection Graph which need
  1407   //    to walk the connection graph.
  1408   for (uint ni = 0; ni < nodes_size(); ni++) {
  1409     PointsToNode* ptn = ptnode_adr(ni);
  1410     Node *n = ptn->_node;
  1411     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1412       build_connection_graph(n, igvn);
  1413       if (ptn->node_type() != PointsToNode::UnknownType)
  1414         cg_worklist.append(n->_idx); // Collect CG nodes
  1418   VectorSet ptset(Thread::current()->resource_area());
  1419   GrowableArray<uint>  deferred_edges;
  1420   VectorSet visited(Thread::current()->resource_area());
  1422   // 5. Remove deferred edges from the graph and collect
  1423   //    information needed for type splitting.
  1424   cg_length = cg_worklist.length();
  1425   for( uint next = 0; next < cg_length; ++next ) {
  1426     int ni = cg_worklist.at(next);
  1427     PointsToNode* ptn = ptnode_adr(ni);
  1428     PointsToNode::NodeType nt = ptn->node_type();
  1429     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1430       remove_deferred(ni, &deferred_edges, &visited);
  1431       Node *n = ptn->_node;
  1432       if (n->is_AddP()) {
  1433         // Search for objects which are not scalar replaceable.
  1434         // Mark their escape state as ArgEscape to propagate the state
  1435         // to referenced objects.
  1436         // Note: currently there are no difference in compiler optimizations
  1437         // for ArgEscape objects and NoEscape objects which are not
  1438         // scalar replaceable.
  1440         int offset = ptn->offset();
  1441         Node *base = get_addp_base(n);
  1442         ptset.Clear();
  1443         PointsTo(ptset, base, igvn);
  1444         int ptset_size = ptset.Size();
  1446         // Check if a field's initializing value is recorded and add
  1447         // a corresponding NULL field's value if it is not recorded.
  1448         // Connection Graph does not record a default initialization by NULL
  1449         // captured by Initialize node.
  1450         //
  1451         // Note: it will disable scalar replacement in some cases:
  1452         //
  1453         //    Point p[] = new Point[1];
  1454         //    p[0] = new Point(); // Will be not scalar replaced
  1455         //
  1456         // but it will save us from incorrect optimizations in next cases:
  1457         //
  1458         //    Point p[] = new Point[1];
  1459         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1460         //
  1461         // Without a control flow analysis we can't distinguish above cases.
  1462         //
  1463         if (offset != Type::OffsetBot && ptset_size == 1) {
  1464           uint elem = ptset.getelem(); // Allocation node's index
  1465           // It does not matter if it is not Allocation node since
  1466           // only non-escaping allocations are scalar replaced.
  1467           if (ptnode_adr(elem)->_node->is_Allocate() &&
  1468               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
  1469             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
  1470             InitializeNode* ini = alloc->initialization();
  1471             Node* value = NULL;
  1472             if (ini != NULL) {
  1473               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
  1474               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
  1475               if (store != NULL && store->is_Store())
  1476                 value = store->in(MemNode::ValueIn);
  1478             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
  1479               // A field's initializing value was not recorded. Add NULL.
  1480               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
  1481               add_pointsto_edge(ni, null_idx);
  1486         // An object is not scalar replaceable if the field which may point
  1487         // to it has unknown offset (unknown element of an array of objects).
  1488         //
  1489         if (offset == Type::OffsetBot) {
  1490           uint e_cnt = ptn->edge_count();
  1491           for (uint ei = 0; ei < e_cnt; ei++) {
  1492             uint npi = ptn->edge_target(ei);
  1493             set_escape_state(npi, PointsToNode::ArgEscape);
  1494             ptnode_adr(npi)->_scalar_replaceable = false;
  1498         // Currently an object is not scalar replaceable if a LoadStore node
  1499         // access its field since the field value is unknown after it.
  1500         //
  1501         bool has_LoadStore = false;
  1502         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1503           Node *use = n->fast_out(i);
  1504           if (use->is_LoadStore()) {
  1505             has_LoadStore = true;
  1506             break;
  1509         // An object is not scalar replaceable if the address points
  1510         // to unknown field (unknown element for arrays, offset is OffsetBot).
  1511         //
  1512         // Or the address may point to more then one object. This may produce
  1513         // the false positive result (set scalar_replaceable to false)
  1514         // since the flow-insensitive escape analysis can't separate
  1515         // the case when stores overwrite the field's value from the case
  1516         // when stores happened on different control branches.
  1517         //
  1518         if (ptset_size > 1 || ptset_size != 0 &&
  1519             (has_LoadStore || offset == Type::OffsetBot)) {
  1520           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1521             set_escape_state(j.elem, PointsToNode::ArgEscape);
  1522             ptnode_adr(j.elem)->_scalar_replaceable = false;
  1529   // 6. Propagate escape states.
  1530   GrowableArray<int>  worklist;
  1531   bool has_non_escaping_obj = false;
  1533   // push all GlobalEscape nodes on the worklist
  1534   for( uint next = 0; next < cg_length; ++next ) {
  1535     int nk = cg_worklist.at(next);
  1536     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
  1537       worklist.push(nk);
  1539   // mark all nodes reachable from GlobalEscape nodes
  1540   while(worklist.length() > 0) {
  1541     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1542     uint e_cnt = ptn->edge_count();
  1543     for (uint ei = 0; ei < e_cnt; ei++) {
  1544       uint npi = ptn->edge_target(ei);
  1545       PointsToNode *np = ptnode_adr(npi);
  1546       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1547         np->set_escape_state(PointsToNode::GlobalEscape);
  1548         worklist.push(npi);
  1553   // push all ArgEscape nodes on the worklist
  1554   for( uint next = 0; next < cg_length; ++next ) {
  1555     int nk = cg_worklist.at(next);
  1556     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
  1557       worklist.push(nk);
  1559   // mark all nodes reachable from ArgEscape nodes
  1560   while(worklist.length() > 0) {
  1561     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1562     if (ptn->node_type() == PointsToNode::JavaObject)
  1563       has_non_escaping_obj = true; // Non GlobalEscape
  1564     uint e_cnt = ptn->edge_count();
  1565     for (uint ei = 0; ei < e_cnt; ei++) {
  1566       uint npi = ptn->edge_target(ei);
  1567       PointsToNode *np = ptnode_adr(npi);
  1568       if (np->escape_state() < PointsToNode::ArgEscape) {
  1569         np->set_escape_state(PointsToNode::ArgEscape);
  1570         worklist.push(npi);
  1575   GrowableArray<Node*> alloc_worklist;
  1577   // push all NoEscape nodes on the worklist
  1578   for( uint next = 0; next < cg_length; ++next ) {
  1579     int nk = cg_worklist.at(next);
  1580     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
  1581       worklist.push(nk);
  1583   // mark all nodes reachable from NoEscape nodes
  1584   while(worklist.length() > 0) {
  1585     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1586     if (ptn->node_type() == PointsToNode::JavaObject)
  1587       has_non_escaping_obj = true; // Non GlobalEscape
  1588     Node* n = ptn->_node;
  1589     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
  1590       // Push scalar replaceable allocations on alloc_worklist
  1591       // for processing in split_unique_types().
  1592       alloc_worklist.append(n);
  1594     uint e_cnt = ptn->edge_count();
  1595     for (uint ei = 0; ei < e_cnt; ei++) {
  1596       uint npi = ptn->edge_target(ei);
  1597       PointsToNode *np = ptnode_adr(npi);
  1598       if (np->escape_state() < PointsToNode::NoEscape) {
  1599         np->set_escape_state(PointsToNode::NoEscape);
  1600         worklist.push(npi);
  1605   _collecting = false;
  1606   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
  1608   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
  1609   if ( has_scalar_replaceable_candidates &&
  1610        C->AliasLevel() >= 3 && EliminateAllocations ) {
  1612     // Now use the escape information to create unique types for
  1613     // scalar replaceable objects.
  1614     split_unique_types(alloc_worklist);
  1616     if (C->failing())  return false;
  1618     // Clean up after split unique types.
  1619     ResourceMark rm;
  1620     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
  1622     C->print_method("After Escape Analysis", 2);
  1624 #ifdef ASSERT
  1625   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
  1626     tty->print("=== No allocations eliminated for ");
  1627     C->method()->print_short_name();
  1628     if(!EliminateAllocations) {
  1629       tty->print(" since EliminateAllocations is off ===");
  1630     } else if(!has_scalar_replaceable_candidates) {
  1631       tty->print(" since there are no scalar replaceable candidates ===");
  1632     } else if(C->AliasLevel() < 3) {
  1633       tty->print(" since AliasLevel < 3 ===");
  1635     tty->cr();
  1636 #endif
  1638   return has_non_escaping_obj;
  1641 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1643     switch (call->Opcode()) {
  1644 #ifdef ASSERT
  1645     case Op_Allocate:
  1646     case Op_AllocateArray:
  1647     case Op_Lock:
  1648     case Op_Unlock:
  1649       assert(false, "should be done already");
  1650       break;
  1651 #endif
  1652     case Op_CallLeafNoFP:
  1654       // Stub calls, objects do not escape but they are not scale replaceable.
  1655       // Adjust escape state for outgoing arguments.
  1656       const TypeTuple * d = call->tf()->domain();
  1657       VectorSet ptset(Thread::current()->resource_area());
  1658       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1659         const Type* at = d->field_at(i);
  1660         Node *arg = call->in(i)->uncast();
  1661         const Type *aat = phase->type(arg);
  1662         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
  1663           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1664                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1665           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1666           if (arg->is_AddP()) {
  1667             //
  1668             // The inline_native_clone() case when the arraycopy stub is called
  1669             // after the allocation before Initialize and CheckCastPP nodes.
  1670             //
  1671             // Set AddP's base (Allocate) as not scalar replaceable since
  1672             // pointer to the base (with offset) is passed as argument.
  1673             //
  1674             arg = get_addp_base(arg);
  1676           ptset.Clear();
  1677           PointsTo(ptset, arg, phase);
  1678           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1679             uint pt = j.elem;
  1680             set_escape_state(pt, PointsToNode::ArgEscape);
  1684       break;
  1687     case Op_CallStaticJava:
  1688     // For a static call, we know exactly what method is being called.
  1689     // Use bytecode estimator to record the call's escape affects
  1691       ciMethod *meth = call->as_CallJava()->method();
  1692       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1693       // fall-through if not a Java method or no analyzer information
  1694       if (call_analyzer != NULL) {
  1695         const TypeTuple * d = call->tf()->domain();
  1696         VectorSet ptset(Thread::current()->resource_area());
  1697         bool copy_dependencies = false;
  1698         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1699           const Type* at = d->field_at(i);
  1700           int k = i - TypeFunc::Parms;
  1702           if (at->isa_oopptr() != NULL) {
  1703             Node *arg = call->in(i)->uncast();
  1705             bool global_escapes = false;
  1706             bool fields_escapes = false;
  1707             if (!call_analyzer->is_arg_stack(k)) {
  1708               // The argument global escapes, mark everything it could point to
  1709               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1710               global_escapes = true;
  1711             } else {
  1712               if (!call_analyzer->is_arg_local(k)) {
  1713                 // The argument itself doesn't escape, but any fields might
  1714                 fields_escapes = true;
  1716               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1717               copy_dependencies = true;
  1720             ptset.Clear();
  1721             PointsTo(ptset, arg, phase);
  1722             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1723               uint pt = j.elem;
  1724               if (global_escapes) {
  1725                 //The argument global escapes, mark everything it could point to
  1726                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1727               } else {
  1728                 if (fields_escapes) {
  1729                   // The argument itself doesn't escape, but any fields might
  1730                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1732                 set_escape_state(pt, PointsToNode::ArgEscape);
  1737         if (copy_dependencies)
  1738           call_analyzer->copy_dependencies(_compile->dependencies());
  1739         break;
  1743     default:
  1744     // Fall-through here if not a Java method or no analyzer information
  1745     // or some other type of call, assume the worst case: all arguments
  1746     // globally escape.
  1748       // adjust escape state for  outgoing arguments
  1749       const TypeTuple * d = call->tf()->domain();
  1750       VectorSet ptset(Thread::current()->resource_area());
  1751       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1752         const Type* at = d->field_at(i);
  1753         if (at->isa_oopptr() != NULL) {
  1754           Node *arg = call->in(i)->uncast();
  1755           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1756           ptset.Clear();
  1757           PointsTo(ptset, arg, phase);
  1758           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1759             uint pt = j.elem;
  1760             set_escape_state(pt, PointsToNode::GlobalEscape);
  1767 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1768   CallNode   *call = resproj->in(0)->as_Call();
  1769   uint    call_idx = call->_idx;
  1770   uint resproj_idx = resproj->_idx;
  1772   switch (call->Opcode()) {
  1773     case Op_Allocate:
  1775       Node *k = call->in(AllocateNode::KlassNode);
  1776       const TypeKlassPtr *kt;
  1777       if (k->Opcode() == Op_LoadKlass) {
  1778         kt = k->as_Load()->type()->isa_klassptr();
  1779       } else {
  1780         // Also works for DecodeN(LoadNKlass).
  1781         kt = k->as_Type()->type()->isa_klassptr();
  1783       assert(kt != NULL, "TypeKlassPtr  required.");
  1784       ciKlass* cik = kt->klass();
  1785       ciInstanceKlass* ciik = cik->as_instance_klass();
  1787       PointsToNode::EscapeState es;
  1788       uint edge_to;
  1789       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1790         es = PointsToNode::GlobalEscape;
  1791         edge_to = _phantom_object; // Could not be worse
  1792       } else {
  1793         es = PointsToNode::NoEscape;
  1794         edge_to = call_idx;
  1796       set_escape_state(call_idx, es);
  1797       add_pointsto_edge(resproj_idx, edge_to);
  1798       _processed.set(resproj_idx);
  1799       break;
  1802     case Op_AllocateArray:
  1804       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1805       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1806         // Not scalar replaceable if the length is not constant or too big.
  1807         ptnode_adr(call_idx)->_scalar_replaceable = false;
  1809       set_escape_state(call_idx, PointsToNode::NoEscape);
  1810       add_pointsto_edge(resproj_idx, call_idx);
  1811       _processed.set(resproj_idx);
  1812       break;
  1815     case Op_CallStaticJava:
  1816     // For a static call, we know exactly what method is being called.
  1817     // Use bytecode estimator to record whether the call's return value escapes
  1819       bool done = true;
  1820       const TypeTuple *r = call->tf()->range();
  1821       const Type* ret_type = NULL;
  1823       if (r->cnt() > TypeFunc::Parms)
  1824         ret_type = r->field_at(TypeFunc::Parms);
  1826       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1827       //        _multianewarray functions return a TypeRawPtr.
  1828       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1829         _processed.set(resproj_idx);
  1830         break;  // doesn't return a pointer type
  1832       ciMethod *meth = call->as_CallJava()->method();
  1833       const TypeTuple * d = call->tf()->domain();
  1834       if (meth == NULL) {
  1835         // not a Java method, assume global escape
  1836         set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1837         add_pointsto_edge(resproj_idx, _phantom_object);
  1838       } else {
  1839         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1840         bool copy_dependencies = false;
  1842         if (call_analyzer->is_return_allocated()) {
  1843           // Returns a newly allocated unescaped object, simply
  1844           // update dependency information.
  1845           // Mark it as NoEscape so that objects referenced by
  1846           // it's fields will be marked as NoEscape at least.
  1847           set_escape_state(call_idx, PointsToNode::NoEscape);
  1848           add_pointsto_edge(resproj_idx, call_idx);
  1849           copy_dependencies = true;
  1850         } else if (call_analyzer->is_return_local()) {
  1851           // determine whether any arguments are returned
  1852           set_escape_state(call_idx, PointsToNode::NoEscape);
  1853           bool ret_arg = false;
  1854           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1855             const Type* at = d->field_at(i);
  1857             if (at->isa_oopptr() != NULL) {
  1858               Node *arg = call->in(i)->uncast();
  1860               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1861                 ret_arg = true;
  1862                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1863                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1864                   done = false;
  1865                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1866                   add_pointsto_edge(resproj_idx, arg->_idx);
  1867                 else
  1868                   add_deferred_edge(resproj_idx, arg->_idx);
  1869                 arg_esp->_hidden_alias = true;
  1873           if (done && !ret_arg) {
  1874             // Returns unknown object.
  1875             set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1876             add_pointsto_edge(resproj_idx, _phantom_object);
  1878           copy_dependencies = true;
  1879         } else {
  1880           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1881           add_pointsto_edge(resproj_idx, _phantom_object);
  1882           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1883             const Type* at = d->field_at(i);
  1884             if (at->isa_oopptr() != NULL) {
  1885               Node *arg = call->in(i)->uncast();
  1886               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1887               arg_esp->_hidden_alias = true;
  1891         if (copy_dependencies)
  1892           call_analyzer->copy_dependencies(_compile->dependencies());
  1894       if (done)
  1895         _processed.set(resproj_idx);
  1896       break;
  1899     default:
  1900     // Some other type of call, assume the worst case that the
  1901     // returned value, if any, globally escapes.
  1903       const TypeTuple *r = call->tf()->range();
  1904       if (r->cnt() > TypeFunc::Parms) {
  1905         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1907         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1908         //        _multianewarray functions return a TypeRawPtr.
  1909         if (ret_type->isa_ptr() != NULL) {
  1910           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1911           add_pointsto_edge(resproj_idx, _phantom_object);
  1914       _processed.set(resproj_idx);
  1919 // Populate Connection Graph with Ideal nodes and create simple
  1920 // connection graph edges (do not need to check the node_type of inputs
  1921 // or to call PointsTo() to walk the connection graph).
  1922 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1923   if (_processed.test(n->_idx))
  1924     return; // No need to redefine node's state.
  1926   if (n->is_Call()) {
  1927     // Arguments to allocation and locking don't escape.
  1928     if (n->is_Allocate()) {
  1929       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1930       record_for_optimizer(n);
  1931     } else if (n->is_Lock() || n->is_Unlock()) {
  1932       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1933       // the first IGVN optimization when escape information is still available.
  1934       record_for_optimizer(n);
  1935       _processed.set(n->_idx);
  1936     } else {
  1937       // Have to process call's arguments first.
  1938       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  1940       // Check if a call returns an object.
  1941       const TypeTuple *r = n->as_Call()->tf()->range();
  1942       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
  1943           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  1944         // Note:  use isa_ptr() instead of isa_oopptr() here because
  1945         //        the _multianewarray functions return a TypeRawPtr.
  1946         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  1947           nt = PointsToNode::JavaObject;
  1950       add_node(n, nt, PointsToNode::UnknownEscape, false);
  1952     return;
  1955   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  1956   // ThreadLocal has RawPrt type.
  1957   switch (n->Opcode()) {
  1958     case Op_AddP:
  1960       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  1961       break;
  1963     case Op_CastX2P:
  1964     { // "Unsafe" memory access.
  1965       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1966       break;
  1968     case Op_CastPP:
  1969     case Op_CheckCastPP:
  1970     case Op_EncodeP:
  1971     case Op_DecodeN:
  1973       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1974       int ti = n->in(1)->_idx;
  1975       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  1976       if (nt == PointsToNode::UnknownType) {
  1977         _delayed_worklist.push(n); // Process it later.
  1978         break;
  1979       } else if (nt == PointsToNode::JavaObject) {
  1980         add_pointsto_edge(n->_idx, ti);
  1981       } else {
  1982         add_deferred_edge(n->_idx, ti);
  1984       _processed.set(n->_idx);
  1985       break;
  1987     case Op_ConP:
  1989       // assume all pointer constants globally escape except for null
  1990       PointsToNode::EscapeState es;
  1991       if (phase->type(n) == TypePtr::NULL_PTR)
  1992         es = PointsToNode::NoEscape;
  1993       else
  1994         es = PointsToNode::GlobalEscape;
  1996       add_node(n, PointsToNode::JavaObject, es, true);
  1997       break;
  1999     case Op_ConN:
  2001       // assume all narrow oop constants globally escape except for null
  2002       PointsToNode::EscapeState es;
  2003       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
  2004         es = PointsToNode::NoEscape;
  2005       else
  2006         es = PointsToNode::GlobalEscape;
  2008       add_node(n, PointsToNode::JavaObject, es, true);
  2009       break;
  2011     case Op_CreateEx:
  2013       // assume that all exception objects globally escape
  2014       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2015       break;
  2017     case Op_LoadKlass:
  2018     case Op_LoadNKlass:
  2020       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2021       break;
  2023     case Op_LoadP:
  2024     case Op_LoadN:
  2026       const Type *t = phase->type(n);
  2027       if (t->make_ptr() == NULL) {
  2028         _processed.set(n->_idx);
  2029         return;
  2031       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2032       break;
  2034     case Op_Parm:
  2036       _processed.set(n->_idx); // No need to redefine it state.
  2037       uint con = n->as_Proj()->_con;
  2038       if (con < TypeFunc::Parms)
  2039         return;
  2040       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  2041       if (t->isa_ptr() == NULL)
  2042         return;
  2043       // We have to assume all input parameters globally escape
  2044       // (Note: passing 'false' since _processed is already set).
  2045       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  2046       break;
  2048     case Op_Phi:
  2050       const Type *t = n->as_Phi()->type();
  2051       if (t->make_ptr() == NULL) {
  2052         // nothing to do if not an oop or narrow oop
  2053         _processed.set(n->_idx);
  2054         return;
  2056       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2057       uint i;
  2058       for (i = 1; i < n->req() ; i++) {
  2059         Node* in = n->in(i);
  2060         if (in == NULL)
  2061           continue;  // ignore NULL
  2062         in = in->uncast();
  2063         if (in->is_top() || in == n)
  2064           continue;  // ignore top or inputs which go back this node
  2065         int ti = in->_idx;
  2066         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2067         if (nt == PointsToNode::UnknownType) {
  2068           break;
  2069         } else if (nt == PointsToNode::JavaObject) {
  2070           add_pointsto_edge(n->_idx, ti);
  2071         } else {
  2072           add_deferred_edge(n->_idx, ti);
  2075       if (i >= n->req())
  2076         _processed.set(n->_idx);
  2077       else
  2078         _delayed_worklist.push(n);
  2079       break;
  2081     case Op_Proj:
  2083       // we are only interested in the result projection from a call
  2084       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2085         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2086         process_call_result(n->as_Proj(), phase);
  2087         if (!_processed.test(n->_idx)) {
  2088           // The call's result may need to be processed later if the call
  2089           // returns it's argument and the argument is not processed yet.
  2090           _delayed_worklist.push(n);
  2092       } else {
  2093         _processed.set(n->_idx);
  2095       break;
  2097     case Op_Return:
  2099       if( n->req() > TypeFunc::Parms &&
  2100           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2101         // Treat Return value as LocalVar with GlobalEscape escape state.
  2102         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  2103         int ti = n->in(TypeFunc::Parms)->_idx;
  2104         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2105         if (nt == PointsToNode::UnknownType) {
  2106           _delayed_worklist.push(n); // Process it later.
  2107           break;
  2108         } else if (nt == PointsToNode::JavaObject) {
  2109           add_pointsto_edge(n->_idx, ti);
  2110         } else {
  2111           add_deferred_edge(n->_idx, ti);
  2114       _processed.set(n->_idx);
  2115       break;
  2117     case Op_StoreP:
  2118     case Op_StoreN:
  2120       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2121       adr_type = adr_type->make_ptr();
  2122       if (adr_type->isa_oopptr()) {
  2123         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2124       } else {
  2125         Node* adr = n->in(MemNode::Address);
  2126         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  2127             adr->in(AddPNode::Address)->is_Proj() &&
  2128             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2129           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2130           // We are computing a raw address for a store captured
  2131           // by an Initialize compute an appropriate address type.
  2132           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2133           assert(offs != Type::OffsetBot, "offset must be a constant");
  2134         } else {
  2135           _processed.set(n->_idx);
  2136           return;
  2139       break;
  2141     case Op_StorePConditional:
  2142     case Op_CompareAndSwapP:
  2143     case Op_CompareAndSwapN:
  2145       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2146       adr_type = adr_type->make_ptr();
  2147       if (adr_type->isa_oopptr()) {
  2148         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2149       } else {
  2150         _processed.set(n->_idx);
  2151         return;
  2153       break;
  2155     case Op_ThreadLocal:
  2157       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  2158       break;
  2160     default:
  2162       // nothing to do
  2164   return;
  2167 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  2168   uint n_idx = n->_idx;
  2170   // Don't set processed bit for AddP, LoadP, StoreP since
  2171   // they may need more then one pass to process.
  2172   if (_processed.test(n_idx))
  2173     return; // No need to redefine node's state.
  2175   if (n->is_Call()) {
  2176     CallNode *call = n->as_Call();
  2177     process_call_arguments(call, phase);
  2178     _processed.set(n_idx);
  2179     return;
  2182   switch (n->Opcode()) {
  2183     case Op_AddP:
  2185       Node *base = get_addp_base(n);
  2186       // Create a field edge to this node from everything base could point to.
  2187       VectorSet ptset(Thread::current()->resource_area());
  2188       PointsTo(ptset, base, phase);
  2189       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2190         uint pt = i.elem;
  2191         add_field_edge(pt, n_idx, address_offset(n, phase));
  2193       break;
  2195     case Op_CastX2P:
  2197       assert(false, "Op_CastX2P");
  2198       break;
  2200     case Op_CastPP:
  2201     case Op_CheckCastPP:
  2202     case Op_EncodeP:
  2203     case Op_DecodeN:
  2205       int ti = n->in(1)->_idx;
  2206       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2207         add_pointsto_edge(n_idx, ti);
  2208       } else {
  2209         add_deferred_edge(n_idx, ti);
  2211       _processed.set(n_idx);
  2212       break;
  2214     case Op_ConP:
  2216       assert(false, "Op_ConP");
  2217       break;
  2219     case Op_ConN:
  2221       assert(false, "Op_ConN");
  2222       break;
  2224     case Op_CreateEx:
  2226       assert(false, "Op_CreateEx");
  2227       break;
  2229     case Op_LoadKlass:
  2230     case Op_LoadNKlass:
  2232       assert(false, "Op_LoadKlass");
  2233       break;
  2235     case Op_LoadP:
  2236     case Op_LoadN:
  2238       const Type *t = phase->type(n);
  2239 #ifdef ASSERT
  2240       if (t->make_ptr() == NULL)
  2241         assert(false, "Op_LoadP");
  2242 #endif
  2244       Node* adr = n->in(MemNode::Address)->uncast();
  2245       const Type *adr_type = phase->type(adr);
  2246       Node* adr_base;
  2247       if (adr->is_AddP()) {
  2248         adr_base = get_addp_base(adr);
  2249       } else {
  2250         adr_base = adr;
  2253       // For everything "adr_base" could point to, create a deferred edge from
  2254       // this node to each field with the same offset.
  2255       VectorSet ptset(Thread::current()->resource_area());
  2256       PointsTo(ptset, adr_base, phase);
  2257       int offset = address_offset(adr, phase);
  2258       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2259         uint pt = i.elem;
  2260         add_deferred_edge_to_fields(n_idx, pt, offset);
  2262       break;
  2264     case Op_Parm:
  2266       assert(false, "Op_Parm");
  2267       break;
  2269     case Op_Phi:
  2271 #ifdef ASSERT
  2272       const Type *t = n->as_Phi()->type();
  2273       if (t->make_ptr() == NULL)
  2274         assert(false, "Op_Phi");
  2275 #endif
  2276       for (uint i = 1; i < n->req() ; i++) {
  2277         Node* in = n->in(i);
  2278         if (in == NULL)
  2279           continue;  // ignore NULL
  2280         in = in->uncast();
  2281         if (in->is_top() || in == n)
  2282           continue;  // ignore top or inputs which go back this node
  2283         int ti = in->_idx;
  2284         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2285         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
  2286         if (nt == PointsToNode::JavaObject) {
  2287           add_pointsto_edge(n_idx, ti);
  2288         } else {
  2289           add_deferred_edge(n_idx, ti);
  2292       _processed.set(n_idx);
  2293       break;
  2295     case Op_Proj:
  2297       // we are only interested in the result projection from a call
  2298       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2299         process_call_result(n->as_Proj(), phase);
  2300         assert(_processed.test(n_idx), "all call results should be processed");
  2301       } else {
  2302         assert(false, "Op_Proj");
  2304       break;
  2306     case Op_Return:
  2308 #ifdef ASSERT
  2309       if( n->req() <= TypeFunc::Parms ||
  2310           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2311         assert(false, "Op_Return");
  2313 #endif
  2314       int ti = n->in(TypeFunc::Parms)->_idx;
  2315       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2316         add_pointsto_edge(n_idx, ti);
  2317       } else {
  2318         add_deferred_edge(n_idx, ti);
  2320       _processed.set(n_idx);
  2321       break;
  2323     case Op_StoreP:
  2324     case Op_StoreN:
  2325     case Op_StorePConditional:
  2326     case Op_CompareAndSwapP:
  2327     case Op_CompareAndSwapN:
  2329       Node *adr = n->in(MemNode::Address);
  2330       const Type *adr_type = phase->type(adr)->make_ptr();
  2331 #ifdef ASSERT
  2332       if (!adr_type->isa_oopptr())
  2333         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2334 #endif
  2336       assert(adr->is_AddP(), "expecting an AddP");
  2337       Node *adr_base = get_addp_base(adr);
  2338       Node *val = n->in(MemNode::ValueIn)->uncast();
  2339       // For everything "adr_base" could point to, create a deferred edge
  2340       // to "val" from each field with the same offset.
  2341       VectorSet ptset(Thread::current()->resource_area());
  2342       PointsTo(ptset, adr_base, phase);
  2343       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2344         uint pt = i.elem;
  2345         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2347       break;
  2349     case Op_ThreadLocal:
  2351       assert(false, "Op_ThreadLocal");
  2352       break;
  2354     default:
  2356       // nothing to do
  2360 #ifndef PRODUCT
  2361 void ConnectionGraph::dump() {
  2362   PhaseGVN  *igvn = _compile->initial_gvn();
  2363   bool first = true;
  2365   uint size = nodes_size();
  2366   for (uint ni = 0; ni < size; ni++) {
  2367     PointsToNode *ptn = ptnode_adr(ni);
  2368     PointsToNode::NodeType ptn_type = ptn->node_type();
  2370     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2371       continue;
  2372     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2373     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2374       if (first) {
  2375         tty->cr();
  2376         tty->print("======== Connection graph for ");
  2377         _compile->method()->print_short_name();
  2378         tty->cr();
  2379         first = false;
  2381       tty->print("%6d ", ni);
  2382       ptn->dump();
  2383       // Print all locals which reference this allocation
  2384       for (uint li = ni; li < size; li++) {
  2385         PointsToNode *ptn_loc = ptnode_adr(li);
  2386         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2387         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2388              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2389           ptnode_adr(li)->dump(false);
  2392       if (Verbose) {
  2393         // Print all fields which reference this allocation
  2394         for (uint i = 0; i < ptn->edge_count(); i++) {
  2395           uint ei = ptn->edge_target(i);
  2396           ptnode_adr(ei)->dump(false);
  2399       tty->cr();
  2403 #endif

mercurial