src/share/vm/opto/gcm.cpp

Tue, 31 Mar 2009 14:07:08 -0700

author
cfang
date
Tue, 31 Mar 2009 14:07:08 -0700
changeset 1116
fbde8ec322d0
parent 1108
fbc12e71c476
child 1223
1851e1fb420e
permissions
-rw-r--r--

6761600: Use sse 4.2 in intrinsics
Summary: Use SSE 4.2 in intrinsics for String.{compareTo/equals/indexOf} and Arrays.equals.
Reviewed-by: kvn, never, jrose

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_gcm.cpp.incl"
    32 // To avoid float value underflow
    33 #define MIN_BLOCK_FREQUENCY 1.e-35f
    35 //----------------------------schedule_node_into_block-------------------------
    36 // Insert node n into block b. Look for projections of n and make sure they
    37 // are in b also.
    38 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
    39   // Set basic block of n, Add n to b,
    40   _bbs.map(n->_idx, b);
    41   b->add_inst(n);
    43   // After Matching, nearly any old Node may have projections trailing it.
    44   // These are usually machine-dependent flags.  In any case, they might
    45   // float to another block below this one.  Move them up.
    46   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    47     Node*  use  = n->fast_out(i);
    48     if (use->is_Proj()) {
    49       Block* buse = _bbs[use->_idx];
    50       if (buse != b) {              // In wrong block?
    51         if (buse != NULL)
    52           buse->find_remove(use);   // Remove from wrong block
    53         _bbs.map(use->_idx, b);     // Re-insert in this block
    54         b->add_inst(use);
    55       }
    56     }
    57   }
    58 }
    60 //----------------------------replace_block_proj_ctrl-------------------------
    61 // Nodes that have is_block_proj() nodes as their control need to use
    62 // the appropriate Region for their actual block as their control since
    63 // the projection will be in a predecessor block.
    64 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
    65   const Node *in0 = n->in(0);
    66   assert(in0 != NULL, "Only control-dependent");
    67   const Node *p = in0->is_block_proj();
    68   if (p != NULL && p != n) {    // Control from a block projection?
    69     assert(!n->pinned() || n->is_SafePointScalarObject(), "only SafePointScalarObject pinned node is expected here");
    70     // Find trailing Region
    71     Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
    72     uint j = 0;
    73     if (pb->_num_succs != 1) {  // More then 1 successor?
    74       // Search for successor
    75       uint max = pb->_nodes.size();
    76       assert( max > 1, "" );
    77       uint start = max - pb->_num_succs;
    78       // Find which output path belongs to projection
    79       for (j = start; j < max; j++) {
    80         if( pb->_nodes[j] == in0 )
    81           break;
    82       }
    83       assert( j < max, "must find" );
    84       // Change control to match head of successor basic block
    85       j -= start;
    86     }
    87     n->set_req(0, pb->_succs[j]->head());
    88   }
    89 }
    92 //------------------------------schedule_pinned_nodes--------------------------
    93 // Set the basic block for Nodes pinned into blocks
    94 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
    95   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
    96   GrowableArray <Node *> spstack(C->unique()+8);
    97   spstack.push(_root);
    98   while ( spstack.is_nonempty() ) {
    99     Node *n = spstack.pop();
   100     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
   101       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
   102         assert( n->in(0), "pinned Node must have Control" );
   103         // Before setting block replace block_proj control edge
   104         replace_block_proj_ctrl(n);
   105         Node *input = n->in(0);
   106         while( !input->is_block_start() )
   107           input = input->in(0);
   108         Block *b = _bbs[input->_idx];  // Basic block of controlling input
   109         schedule_node_into_block(n, b);
   110       }
   111       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
   112         if( n->in(i) != NULL )
   113           spstack.push(n->in(i));
   114       }
   115     }
   116   }
   117 }
   119 #ifdef ASSERT
   120 // Assert that new input b2 is dominated by all previous inputs.
   121 // Check this by by seeing that it is dominated by b1, the deepest
   122 // input observed until b2.
   123 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
   124   if (b1 == NULL)  return;
   125   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
   126   Block* tmp = b2;
   127   while (tmp != b1 && tmp != NULL) {
   128     tmp = tmp->_idom;
   129   }
   130   if (tmp != b1) {
   131     // Detected an unschedulable graph.  Print some nice stuff and die.
   132     tty->print_cr("!!! Unschedulable graph !!!");
   133     for (uint j=0; j<n->len(); j++) { // For all inputs
   134       Node* inn = n->in(j); // Get input
   135       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
   136       Block* inb = bbs[inn->_idx];
   137       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
   138                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
   139       inn->dump();
   140     }
   141     tty->print("Failing node: ");
   142     n->dump();
   143     assert(false, "unscheduable graph");
   144   }
   145 }
   146 #endif
   148 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
   149   // Find the last input dominated by all other inputs.
   150   Block* deepb           = NULL;        // Deepest block so far
   151   int    deepb_dom_depth = 0;
   152   for (uint k = 0; k < n->len(); k++) { // For all inputs
   153     Node* inn = n->in(k);               // Get input
   154     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
   155     Block* inb = bbs[inn->_idx];
   156     assert(inb != NULL, "must already have scheduled this input");
   157     if (deepb_dom_depth < (int) inb->_dom_depth) {
   158       // The new inb must be dominated by the previous deepb.
   159       // The various inputs must be linearly ordered in the dom
   160       // tree, or else there will not be a unique deepest block.
   161       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
   162       deepb = inb;                      // Save deepest block
   163       deepb_dom_depth = deepb->_dom_depth;
   164     }
   165   }
   166   assert(deepb != NULL, "must be at least one input to n");
   167   return deepb;
   168 }
   171 //------------------------------schedule_early---------------------------------
   172 // Find the earliest Block any instruction can be placed in.  Some instructions
   173 // are pinned into Blocks.  Unpinned instructions can appear in last block in
   174 // which all their inputs occur.
   175 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
   176   // Allocate stack with enough space to avoid frequent realloc
   177   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
   178   // roots.push(_root); _root will be processed among C->top() inputs
   179   roots.push(C->top());
   180   visited.set(C->top()->_idx);
   182   while (roots.size() != 0) {
   183     // Use local variables nstack_top_n & nstack_top_i to cache values
   184     // on stack's top.
   185     Node *nstack_top_n = roots.pop();
   186     uint  nstack_top_i = 0;
   187 //while_nstack_nonempty:
   188     while (true) {
   189       // Get parent node and next input's index from stack's top.
   190       Node *n = nstack_top_n;
   191       uint  i = nstack_top_i;
   193       if (i == 0) {
   194         // Fixup some control.  Constants without control get attached
   195         // to root and nodes that use is_block_proj() nodes should be attached
   196         // to the region that starts their block.
   197         const Node *in0 = n->in(0);
   198         if (in0 != NULL) {              // Control-dependent?
   199           replace_block_proj_ctrl(n);
   200         } else {               // n->in(0) == NULL
   201           if (n->req() == 1) { // This guy is a constant with NO inputs?
   202             n->set_req(0, _root);
   203           }
   204         }
   205       }
   207       // First, visit all inputs and force them to get a block.  If an
   208       // input is already in a block we quit following inputs (to avoid
   209       // cycles). Instead we put that Node on a worklist to be handled
   210       // later (since IT'S inputs may not have a block yet).
   211       bool done = true;              // Assume all n's inputs will be processed
   212       while (i < n->len()) {         // For all inputs
   213         Node *in = n->in(i);         // Get input
   214         ++i;
   215         if (in == NULL) continue;    // Ignore NULL, missing inputs
   216         int is_visited = visited.test_set(in->_idx);
   217         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
   218           if (is_visited) {
   219             // assert( !visited.test(in->_idx), "did not schedule early" );
   220             return false;
   221           }
   222           nstack.push(n, i);         // Save parent node and next input's index.
   223           nstack_top_n = in;         // Process current input now.
   224           nstack_top_i = 0;
   225           done = false;              // Not all n's inputs processed.
   226           break; // continue while_nstack_nonempty;
   227         } else if (!is_visited) {    // Input not yet visited?
   228           roots.push(in);            // Visit this guy later, using worklist
   229         }
   230       }
   231       if (done) {
   232         // All of n's inputs have been processed, complete post-processing.
   234         // Some instructions are pinned into a block.  These include Region,
   235         // Phi, Start, Return, and other control-dependent instructions and
   236         // any projections which depend on them.
   237         if (!n->pinned()) {
   238           // Set earliest legal block.
   239           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
   240         } else {
   241           assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge");
   242         }
   244         if (nstack.is_empty()) {
   245           // Finished all nodes on stack.
   246           // Process next node on the worklist 'roots'.
   247           break;
   248         }
   249         // Get saved parent node and next input's index.
   250         nstack_top_n = nstack.node();
   251         nstack_top_i = nstack.index();
   252         nstack.pop();
   253       } //    if (done)
   254     }   // while (true)
   255   }     // while (roots.size() != 0)
   256   return true;
   257 }
   259 //------------------------------dom_lca----------------------------------------
   260 // Find least common ancestor in dominator tree
   261 // LCA is a current notion of LCA, to be raised above 'this'.
   262 // As a convenient boundary condition, return 'this' if LCA is NULL.
   263 // Find the LCA of those two nodes.
   264 Block* Block::dom_lca(Block* LCA) {
   265   if (LCA == NULL || LCA == this)  return this;
   267   Block* anc = this;
   268   while (anc->_dom_depth > LCA->_dom_depth)
   269     anc = anc->_idom;           // Walk up till anc is as high as LCA
   271   while (LCA->_dom_depth > anc->_dom_depth)
   272     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
   274   while (LCA != anc) {          // Walk both up till they are the same
   275     LCA = LCA->_idom;
   276     anc = anc->_idom;
   277   }
   279   return LCA;
   280 }
   282 //--------------------------raise_LCA_above_use--------------------------------
   283 // We are placing a definition, and have been given a def->use edge.
   284 // The definition must dominate the use, so move the LCA upward in the
   285 // dominator tree to dominate the use.  If the use is a phi, adjust
   286 // the LCA only with the phi input paths which actually use this def.
   287 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
   288   Block* buse = bbs[use->_idx];
   289   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
   290   if (!use->is_Phi())  return buse->dom_lca(LCA);
   291   uint pmax = use->req();       // Number of Phi inputs
   292   // Why does not this loop just break after finding the matching input to
   293   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
   294   // chains.  Means I cannot distinguish, from the def-use direction, which
   295   // of many use-defs lead from the same use to the same def.  That is, this
   296   // Phi might have several uses of the same def.  Each use appears in a
   297   // different predecessor block.  But when I enter here, I cannot distinguish
   298   // which use-def edge I should find the predecessor block for.  So I find
   299   // them all.  Means I do a little extra work if a Phi uses the same value
   300   // more than once.
   301   for (uint j=1; j<pmax; j++) { // For all inputs
   302     if (use->in(j) == def) {    // Found matching input?
   303       Block* pred = bbs[buse->pred(j)->_idx];
   304       LCA = pred->dom_lca(LCA);
   305     }
   306   }
   307   return LCA;
   308 }
   310 //----------------------------raise_LCA_above_marks----------------------------
   311 // Return a new LCA that dominates LCA and any of its marked predecessors.
   312 // Search all my parents up to 'early' (exclusive), looking for predecessors
   313 // which are marked with the given index.  Return the LCA (in the dom tree)
   314 // of all marked blocks.  If there are none marked, return the original
   315 // LCA.
   316 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
   317                                     Block* early, Block_Array &bbs) {
   318   Block_List worklist;
   319   worklist.push(LCA);
   320   while (worklist.size() > 0) {
   321     Block* mid = worklist.pop();
   322     if (mid == early)  continue;  // stop searching here
   324     // Test and set the visited bit.
   325     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
   327     // Don't process the current LCA, otherwise the search may terminate early
   328     if (mid != LCA && mid->raise_LCA_mark() == mark) {
   329       // Raise the LCA.
   330       LCA = mid->dom_lca(LCA);
   331       if (LCA == early)  break;   // stop searching everywhere
   332       assert(early->dominates(LCA), "early is high enough");
   333       // Resume searching at that point, skipping intermediate levels.
   334       worklist.push(LCA);
   335       if (LCA == mid)
   336         continue; // Don't mark as visited to avoid early termination.
   337     } else {
   338       // Keep searching through this block's predecessors.
   339       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
   340         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
   341         worklist.push(mid_parent);
   342       }
   343     }
   344     mid->set_raise_LCA_visited(mark);
   345   }
   346   return LCA;
   347 }
   349 //--------------------------memory_early_block--------------------------------
   350 // This is a variation of find_deepest_input, the heart of schedule_early.
   351 // Find the "early" block for a load, if we considered only memory and
   352 // address inputs, that is, if other data inputs were ignored.
   353 //
   354 // Because a subset of edges are considered, the resulting block will
   355 // be earlier (at a shallower dom_depth) than the true schedule_early
   356 // point of the node. We compute this earlier block as a more permissive
   357 // site for anti-dependency insertion, but only if subsume_loads is enabled.
   358 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
   359   Node* base;
   360   Node* index;
   361   Node* store = load->in(MemNode::Memory);
   362   load->as_Mach()->memory_inputs(base, index);
   364   assert(base != NodeSentinel && index != NodeSentinel,
   365          "unexpected base/index inputs");
   367   Node* mem_inputs[4];
   368   int mem_inputs_length = 0;
   369   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
   370   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
   371   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
   373   // In the comparision below, add one to account for the control input,
   374   // which may be null, but always takes up a spot in the in array.
   375   if (mem_inputs_length + 1 < (int) load->req()) {
   376     // This "load" has more inputs than just the memory, base and index inputs.
   377     // For purposes of checking anti-dependences, we need to start
   378     // from the early block of only the address portion of the instruction,
   379     // and ignore other blocks that may have factored into the wider
   380     // schedule_early calculation.
   381     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
   383     Block* deepb           = NULL;        // Deepest block so far
   384     int    deepb_dom_depth = 0;
   385     for (int i = 0; i < mem_inputs_length; i++) {
   386       Block* inb = bbs[mem_inputs[i]->_idx];
   387       if (deepb_dom_depth < (int) inb->_dom_depth) {
   388         // The new inb must be dominated by the previous deepb.
   389         // The various inputs must be linearly ordered in the dom
   390         // tree, or else there will not be a unique deepest block.
   391         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
   392         deepb = inb;                      // Save deepest block
   393         deepb_dom_depth = deepb->_dom_depth;
   394       }
   395     }
   396     early = deepb;
   397   }
   399   return early;
   400 }
   402 //--------------------------insert_anti_dependences---------------------------
   403 // A load may need to witness memory that nearby stores can overwrite.
   404 // For each nearby store, either insert an "anti-dependence" edge
   405 // from the load to the store, or else move LCA upward to force the
   406 // load to (eventually) be scheduled in a block above the store.
   407 //
   408 // Do not add edges to stores on distinct control-flow paths;
   409 // only add edges to stores which might interfere.
   410 //
   411 // Return the (updated) LCA.  There will not be any possibly interfering
   412 // store between the load's "early block" and the updated LCA.
   413 // Any stores in the updated LCA will have new precedence edges
   414 // back to the load.  The caller is expected to schedule the load
   415 // in the LCA, in which case the precedence edges will make LCM
   416 // preserve anti-dependences.  The caller may also hoist the load
   417 // above the LCA, if it is not the early block.
   418 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
   419   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
   420   assert(LCA != NULL, "");
   421   DEBUG_ONLY(Block* LCA_orig = LCA);
   423   // Compute the alias index.  Loads and stores with different alias indices
   424   // do not need anti-dependence edges.
   425   uint load_alias_idx = C->get_alias_index(load->adr_type());
   426 #ifdef ASSERT
   427   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
   428       (PrintOpto || VerifyAliases ||
   429        PrintMiscellaneous && (WizardMode || Verbose))) {
   430     // Load nodes should not consume all of memory.
   431     // Reporting a bottom type indicates a bug in adlc.
   432     // If some particular type of node validly consumes all of memory,
   433     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
   434     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
   435     load->dump(2);
   436     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
   437   }
   438 #endif
   439   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
   440          "String compare is only known 'load' that does not conflict with any stores");
   441   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
   442          "String equals is a 'load' that does not conflict with any stores");
   443   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
   444          "String indexOf is a 'load' that does not conflict with any stores");
   445   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
   446          "Arrays equals is a 'load' that do not conflict with any stores");
   448   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
   449     // It is impossible to spoil this load by putting stores before it,
   450     // because we know that the stores will never update the value
   451     // which 'load' must witness.
   452     return LCA;
   453   }
   455   node_idx_t load_index = load->_idx;
   457   // Note the earliest legal placement of 'load', as determined by
   458   // by the unique point in the dom tree where all memory effects
   459   // and other inputs are first available.  (Computed by schedule_early.)
   460   // For normal loads, 'early' is the shallowest place (dom graph wise)
   461   // to look for anti-deps between this load and any store.
   462   Block* early = _bbs[load_index];
   464   // If we are subsuming loads, compute an "early" block that only considers
   465   // memory or address inputs. This block may be different than the
   466   // schedule_early block in that it could be at an even shallower depth in the
   467   // dominator tree, and allow for a broader discovery of anti-dependences.
   468   if (C->subsume_loads()) {
   469     early = memory_early_block(load, early, _bbs);
   470   }
   472   ResourceArea *area = Thread::current()->resource_area();
   473   Node_List worklist_mem(area);     // prior memory state to store
   474   Node_List worklist_store(area);   // possible-def to explore
   475   Node_List worklist_visited(area); // visited mergemem nodes
   476   Node_List non_early_stores(area); // all relevant stores outside of early
   477   bool must_raise_LCA = false;
   479 #ifdef TRACK_PHI_INPUTS
   480   // %%% This extra checking fails because MergeMem nodes are not GVNed.
   481   // Provide "phi_inputs" to check if every input to a PhiNode is from the
   482   // original memory state.  This indicates a PhiNode for which should not
   483   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
   484   // may be overly conservative.
   485   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
   486   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
   487 #endif
   489   // 'load' uses some memory state; look for users of the same state.
   490   // Recurse through MergeMem nodes to the stores that use them.
   492   // Each of these stores is a possible definition of memory
   493   // that 'load' needs to use.  We need to force 'load'
   494   // to occur before each such store.  When the store is in
   495   // the same block as 'load', we insert an anti-dependence
   496   // edge load->store.
   498   // The relevant stores "nearby" the load consist of a tree rooted
   499   // at initial_mem, with internal nodes of type MergeMem.
   500   // Therefore, the branches visited by the worklist are of this form:
   501   //    initial_mem -> (MergeMem ->)* store
   502   // The anti-dependence constraints apply only to the fringe of this tree.
   504   Node* initial_mem = load->in(MemNode::Memory);
   505   worklist_store.push(initial_mem);
   506   worklist_visited.push(initial_mem);
   507   worklist_mem.push(NULL);
   508   while (worklist_store.size() > 0) {
   509     // Examine a nearby store to see if it might interfere with our load.
   510     Node* mem   = worklist_mem.pop();
   511     Node* store = worklist_store.pop();
   512     uint op = store->Opcode();
   514     // MergeMems do not directly have anti-deps.
   515     // Treat them as internal nodes in a forward tree of memory states,
   516     // the leaves of which are each a 'possible-def'.
   517     if (store == initial_mem    // root (exclusive) of tree we are searching
   518         || op == Op_MergeMem    // internal node of tree we are searching
   519         ) {
   520       mem = store;   // It's not a possibly interfering store.
   521       if (store == initial_mem)
   522         initial_mem = NULL;  // only process initial memory once
   524       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
   525         store = mem->fast_out(i);
   526         if (store->is_MergeMem()) {
   527           // Be sure we don't get into combinatorial problems.
   528           // (Allow phis to be repeated; they can merge two relevant states.)
   529           uint j = worklist_visited.size();
   530           for (; j > 0; j--) {
   531             if (worklist_visited.at(j-1) == store)  break;
   532           }
   533           if (j > 0)  continue; // already on work list; do not repeat
   534           worklist_visited.push(store);
   535         }
   536         worklist_mem.push(mem);
   537         worklist_store.push(store);
   538       }
   539       continue;
   540     }
   542     if (op == Op_MachProj || op == Op_Catch)   continue;
   543     if (store->needs_anti_dependence_check())  continue;  // not really a store
   545     // Compute the alias index.  Loads and stores with different alias
   546     // indices do not need anti-dependence edges.  Wide MemBar's are
   547     // anti-dependent on everything (except immutable memories).
   548     const TypePtr* adr_type = store->adr_type();
   549     if (!C->can_alias(adr_type, load_alias_idx))  continue;
   551     // Most slow-path runtime calls do NOT modify Java memory, but
   552     // they can block and so write Raw memory.
   553     if (store->is_Mach()) {
   554       MachNode* mstore = store->as_Mach();
   555       if (load_alias_idx != Compile::AliasIdxRaw) {
   556         // Check for call into the runtime using the Java calling
   557         // convention (and from there into a wrapper); it has no
   558         // _method.  Can't do this optimization for Native calls because
   559         // they CAN write to Java memory.
   560         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
   561           assert(mstore->is_MachSafePoint(), "");
   562           MachSafePointNode* ms = (MachSafePointNode*) mstore;
   563           assert(ms->is_MachCallJava(), "");
   564           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
   565           if (mcj->_method == NULL) {
   566             // These runtime calls do not write to Java visible memory
   567             // (other than Raw) and so do not require anti-dependence edges.
   568             continue;
   569           }
   570         }
   571         // Same for SafePoints: they read/write Raw but only read otherwise.
   572         // This is basically a workaround for SafePoints only defining control
   573         // instead of control + memory.
   574         if (mstore->ideal_Opcode() == Op_SafePoint)
   575           continue;
   576       } else {
   577         // Some raw memory, such as the load of "top" at an allocation,
   578         // can be control dependent on the previous safepoint. See
   579         // comments in GraphKit::allocate_heap() about control input.
   580         // Inserting an anti-dep between such a safepoint and a use
   581         // creates a cycle, and will cause a subsequent failure in
   582         // local scheduling.  (BugId 4919904)
   583         // (%%% How can a control input be a safepoint and not a projection??)
   584         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
   585           continue;
   586       }
   587     }
   589     // Identify a block that the current load must be above,
   590     // or else observe that 'store' is all the way up in the
   591     // earliest legal block for 'load'.  In the latter case,
   592     // immediately insert an anti-dependence edge.
   593     Block* store_block = _bbs[store->_idx];
   594     assert(store_block != NULL, "unused killing projections skipped above");
   596     if (store->is_Phi()) {
   597       // 'load' uses memory which is one (or more) of the Phi's inputs.
   598       // It must be scheduled not before the Phi, but rather before
   599       // each of the relevant Phi inputs.
   600       //
   601       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
   602       // we mark each corresponding predecessor block and do a combined
   603       // hoisting operation later (raise_LCA_above_marks).
   604       //
   605       // Do not assert(store_block != early, "Phi merging memory after access")
   606       // PhiNode may be at start of block 'early' with backedge to 'early'
   607       DEBUG_ONLY(bool found_match = false);
   608       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
   609         if (store->in(j) == mem) {   // Found matching input?
   610           DEBUG_ONLY(found_match = true);
   611           Block* pred_block = _bbs[store_block->pred(j)->_idx];
   612           if (pred_block != early) {
   613             // If any predecessor of the Phi matches the load's "early block",
   614             // we do not need a precedence edge between the Phi and 'load'
   615             // since the load will be forced into a block preceding the Phi.
   616             pred_block->set_raise_LCA_mark(load_index);
   617             assert(!LCA_orig->dominates(pred_block) ||
   618                    early->dominates(pred_block), "early is high enough");
   619             must_raise_LCA = true;
   620           }
   621         }
   622       }
   623       assert(found_match, "no worklist bug");
   624 #ifdef TRACK_PHI_INPUTS
   625 #ifdef ASSERT
   626       // This assert asks about correct handling of PhiNodes, which may not
   627       // have all input edges directly from 'mem'. See BugId 4621264
   628       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
   629       // Increment by exactly one even if there are multiple copies of 'mem'
   630       // coming into the phi, because we will run this block several times
   631       // if there are several copies of 'mem'.  (That's how DU iterators work.)
   632       phi_inputs.at_put(store->_idx, num_mem_inputs);
   633       assert(PhiNode::Input + num_mem_inputs < store->req(),
   634              "Expect at least one phi input will not be from original memory state");
   635 #endif //ASSERT
   636 #endif //TRACK_PHI_INPUTS
   637     } else if (store_block != early) {
   638       // 'store' is between the current LCA and earliest possible block.
   639       // Label its block, and decide later on how to raise the LCA
   640       // to include the effect on LCA of this store.
   641       // If this store's block gets chosen as the raised LCA, we
   642       // will find him on the non_early_stores list and stick him
   643       // with a precedence edge.
   644       // (But, don't bother if LCA is already raised all the way.)
   645       if (LCA != early) {
   646         store_block->set_raise_LCA_mark(load_index);
   647         must_raise_LCA = true;
   648         non_early_stores.push(store);
   649       }
   650     } else {
   651       // Found a possibly-interfering store in the load's 'early' block.
   652       // This means 'load' cannot sink at all in the dominator tree.
   653       // Add an anti-dep edge, and squeeze 'load' into the highest block.
   654       assert(store != load->in(0), "dependence cycle found");
   655       if (verify) {
   656         assert(store->find_edge(load) != -1, "missing precedence edge");
   657       } else {
   658         store->add_prec(load);
   659       }
   660       LCA = early;
   661       // This turns off the process of gathering non_early_stores.
   662     }
   663   }
   664   // (Worklist is now empty; all nearby stores have been visited.)
   666   // Finished if 'load' must be scheduled in its 'early' block.
   667   // If we found any stores there, they have already been given
   668   // precedence edges.
   669   if (LCA == early)  return LCA;
   671   // We get here only if there are no possibly-interfering stores
   672   // in the load's 'early' block.  Move LCA up above all predecessors
   673   // which contain stores we have noted.
   674   //
   675   // The raised LCA block can be a home to such interfering stores,
   676   // but its predecessors must not contain any such stores.
   677   //
   678   // The raised LCA will be a lower bound for placing the load,
   679   // preventing the load from sinking past any block containing
   680   // a store that may invalidate the memory state required by 'load'.
   681   if (must_raise_LCA)
   682     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
   683   if (LCA == early)  return LCA;
   685   // Insert anti-dependence edges from 'load' to each store
   686   // in the non-early LCA block.
   687   // Mine the non_early_stores list for such stores.
   688   if (LCA->raise_LCA_mark() == load_index) {
   689     while (non_early_stores.size() > 0) {
   690       Node* store = non_early_stores.pop();
   691       Block* store_block = _bbs[store->_idx];
   692       if (store_block == LCA) {
   693         // add anti_dependence from store to load in its own block
   694         assert(store != load->in(0), "dependence cycle found");
   695         if (verify) {
   696           assert(store->find_edge(load) != -1, "missing precedence edge");
   697         } else {
   698           store->add_prec(load);
   699         }
   700       } else {
   701         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
   702         // Any other stores we found must be either inside the new LCA
   703         // or else outside the original LCA.  In the latter case, they
   704         // did not interfere with any use of 'load'.
   705         assert(LCA->dominates(store_block)
   706                || !LCA_orig->dominates(store_block), "no stray stores");
   707       }
   708     }
   709   }
   711   // Return the highest block containing stores; any stores
   712   // within that block have been given anti-dependence edges.
   713   return LCA;
   714 }
   716 // This class is used to iterate backwards over the nodes in the graph.
   718 class Node_Backward_Iterator {
   720 private:
   721   Node_Backward_Iterator();
   723 public:
   724   // Constructor for the iterator
   725   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
   727   // Postincrement operator to iterate over the nodes
   728   Node *next();
   730 private:
   731   VectorSet   &_visited;
   732   Node_List   &_stack;
   733   Block_Array &_bbs;
   734 };
   736 // Constructor for the Node_Backward_Iterator
   737 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
   738   : _visited(visited), _stack(stack), _bbs(bbs) {
   739   // The stack should contain exactly the root
   740   stack.clear();
   741   stack.push(root);
   743   // Clear the visited bits
   744   visited.Clear();
   745 }
   747 // Iterator for the Node_Backward_Iterator
   748 Node *Node_Backward_Iterator::next() {
   750   // If the _stack is empty, then just return NULL: finished.
   751   if ( !_stack.size() )
   752     return NULL;
   754   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
   755   // made stateless, so I do not need to record the index 'i' on my _stack.
   756   // Instead I visit all users each time, scanning for unvisited users.
   757   // I visit unvisited not-anti-dependence users first, then anti-dependent
   758   // children next.
   759   Node *self = _stack.pop();
   761   // I cycle here when I am entering a deeper level of recursion.
   762   // The key variable 'self' was set prior to jumping here.
   763   while( 1 ) {
   765     _visited.set(self->_idx);
   767     // Now schedule all uses as late as possible.
   768     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
   769     uint src_rpo = _bbs[src]->_rpo;
   771     // Schedule all nodes in a post-order visit
   772     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
   774     // Scan for unvisited nodes
   775     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
   776       // For all uses, schedule late
   777       Node* n = self->fast_out(i); // Use
   779       // Skip already visited children
   780       if ( _visited.test(n->_idx) )
   781         continue;
   783       // do not traverse backward control edges
   784       Node *use = n->is_Proj() ? n->in(0) : n;
   785       uint use_rpo = _bbs[use->_idx]->_rpo;
   787       if ( use_rpo < src_rpo )
   788         continue;
   790       // Phi nodes always precede uses in a basic block
   791       if ( use_rpo == src_rpo && use->is_Phi() )
   792         continue;
   794       unvisited = n;      // Found unvisited
   796       // Check for possible-anti-dependent
   797       if( !n->needs_anti_dependence_check() )
   798         break;            // Not visited, not anti-dep; schedule it NOW
   799     }
   801     // Did I find an unvisited not-anti-dependent Node?
   802     if ( !unvisited )
   803       break;                  // All done with children; post-visit 'self'
   805     // Visit the unvisited Node.  Contains the obvious push to
   806     // indicate I'm entering a deeper level of recursion.  I push the
   807     // old state onto the _stack and set a new state and loop (recurse).
   808     _stack.push(self);
   809     self = unvisited;
   810   } // End recursion loop
   812   return self;
   813 }
   815 //------------------------------ComputeLatenciesBackwards----------------------
   816 // Compute the latency of all the instructions.
   817 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
   818 #ifndef PRODUCT
   819   if (trace_opto_pipelining())
   820     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
   821 #endif
   823   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
   824   Node *n;
   826   // Walk over all the nodes from last to first
   827   while (n = iter.next()) {
   828     // Set the latency for the definitions of this instruction
   829     partial_latency_of_defs(n);
   830   }
   831 } // end ComputeLatenciesBackwards
   833 //------------------------------partial_latency_of_defs------------------------
   834 // Compute the latency impact of this node on all defs.  This computes
   835 // a number that increases as we approach the beginning of the routine.
   836 void PhaseCFG::partial_latency_of_defs(Node *n) {
   837   // Set the latency for this instruction
   838 #ifndef PRODUCT
   839   if (trace_opto_pipelining()) {
   840     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
   841                n->_idx, _node_latency.at_grow(n->_idx));
   842     dump();
   843   }
   844 #endif
   846   if (n->is_Proj())
   847     n = n->in(0);
   849   if (n->is_Root())
   850     return;
   852   uint nlen = n->len();
   853   uint use_latency = _node_latency.at_grow(n->_idx);
   854   uint use_pre_order = _bbs[n->_idx]->_pre_order;
   856   for ( uint j=0; j<nlen; j++ ) {
   857     Node *def = n->in(j);
   859     if (!def || def == n)
   860       continue;
   862     // Walk backwards thru projections
   863     if (def->is_Proj())
   864       def = def->in(0);
   866 #ifndef PRODUCT
   867     if (trace_opto_pipelining()) {
   868       tty->print("#    in(%2d): ", j);
   869       def->dump();
   870     }
   871 #endif
   873     // If the defining block is not known, assume it is ok
   874     Block *def_block = _bbs[def->_idx];
   875     uint def_pre_order = def_block ? def_block->_pre_order : 0;
   877     if ( (use_pre_order <  def_pre_order) ||
   878          (use_pre_order == def_pre_order && n->is_Phi()) )
   879       continue;
   881     uint delta_latency = n->latency(j);
   882     uint current_latency = delta_latency + use_latency;
   884     if (_node_latency.at_grow(def->_idx) < current_latency) {
   885       _node_latency.at_put_grow(def->_idx, current_latency);
   886     }
   888 #ifndef PRODUCT
   889     if (trace_opto_pipelining()) {
   890       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
   891                     use_latency, j, delta_latency, current_latency, def->_idx,
   892                     _node_latency.at_grow(def->_idx));
   893     }
   894 #endif
   895   }
   896 }
   898 //------------------------------latency_from_use-------------------------------
   899 // Compute the latency of a specific use
   900 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
   901   // If self-reference, return no latency
   902   if (use == n || use->is_Root())
   903     return 0;
   905   uint def_pre_order = _bbs[def->_idx]->_pre_order;
   906   uint latency = 0;
   908   // If the use is not a projection, then it is simple...
   909   if (!use->is_Proj()) {
   910 #ifndef PRODUCT
   911     if (trace_opto_pipelining()) {
   912       tty->print("#    out(): ");
   913       use->dump();
   914     }
   915 #endif
   917     uint use_pre_order = _bbs[use->_idx]->_pre_order;
   919     if (use_pre_order < def_pre_order)
   920       return 0;
   922     if (use_pre_order == def_pre_order && use->is_Phi())
   923       return 0;
   925     uint nlen = use->len();
   926     uint nl = _node_latency.at_grow(use->_idx);
   928     for ( uint j=0; j<nlen; j++ ) {
   929       if (use->in(j) == n) {
   930         // Change this if we want local latencies
   931         uint ul = use->latency(j);
   932         uint  l = ul + nl;
   933         if (latency < l) latency = l;
   934 #ifndef PRODUCT
   935         if (trace_opto_pipelining()) {
   936           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
   937                         nl, j, ul, l, latency);
   938         }
   939 #endif
   940       }
   941     }
   942   } else {
   943     // This is a projection, just grab the latency of the use(s)
   944     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
   945       uint l = latency_from_use(use, def, use->fast_out(j));
   946       if (latency < l) latency = l;
   947     }
   948   }
   950   return latency;
   951 }
   953 //------------------------------latency_from_uses------------------------------
   954 // Compute the latency of this instruction relative to all of it's uses.
   955 // This computes a number that increases as we approach the beginning of the
   956 // routine.
   957 void PhaseCFG::latency_from_uses(Node *n) {
   958   // Set the latency for this instruction
   959 #ifndef PRODUCT
   960   if (trace_opto_pipelining()) {
   961     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
   962                n->_idx, _node_latency.at_grow(n->_idx));
   963     dump();
   964   }
   965 #endif
   966   uint latency=0;
   967   const Node *def = n->is_Proj() ? n->in(0): n;
   969   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   970     uint l = latency_from_use(n, def, n->fast_out(i));
   972     if (latency < l) latency = l;
   973   }
   975   _node_latency.at_put_grow(n->_idx, latency);
   976 }
   978 //------------------------------hoist_to_cheaper_block-------------------------
   979 // Pick a block for node self, between early and LCA, that is a cheaper
   980 // alternative to LCA.
   981 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
   982   const double delta = 1+PROB_UNLIKELY_MAG(4);
   983   Block* least       = LCA;
   984   double least_freq  = least->_freq;
   985   uint target        = _node_latency.at_grow(self->_idx);
   986   uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
   987   uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
   988   bool in_latency    = (target <= start_latency);
   989   const Block* root_block = _bbs[_root->_idx];
   991   // Turn off latency scheduling if scheduling is just plain off
   992   if (!C->do_scheduling())
   993     in_latency = true;
   995   // Do not hoist (to cover latency) instructions which target a
   996   // single register.  Hoisting stretches the live range of the
   997   // single register and may force spilling.
   998   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
   999   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
  1000     in_latency = true;
  1002 #ifndef PRODUCT
  1003   if (trace_opto_pipelining()) {
  1004     tty->print("# Find cheaper block for latency %d: ",
  1005       _node_latency.at_grow(self->_idx));
  1006     self->dump();
  1007     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1008       LCA->_pre_order,
  1009       LCA->_nodes[0]->_idx,
  1010       start_latency,
  1011       LCA->_nodes[LCA->end_idx()]->_idx,
  1012       end_latency,
  1013       least_freq);
  1015 #endif
  1017   // Walk up the dominator tree from LCA (Lowest common ancestor) to
  1018   // the earliest legal location.  Capture the least execution frequency.
  1019   while (LCA != early) {
  1020     LCA = LCA->_idom;         // Follow up the dominator tree
  1022     if (LCA == NULL) {
  1023       // Bailout without retry
  1024       C->record_method_not_compilable("late schedule failed: LCA == NULL");
  1025       return least;
  1028     // Don't hoist machine instructions to the root basic block
  1029     if (mach && LCA == root_block)
  1030       break;
  1032     uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
  1033     uint end_idx   = LCA->end_idx();
  1034     uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
  1035     double LCA_freq = LCA->_freq;
  1036 #ifndef PRODUCT
  1037     if (trace_opto_pipelining()) {
  1038       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1039         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
  1041 #endif
  1042     if (LCA_freq < least_freq              || // Better Frequency
  1043         ( !in_latency                   &&    // No block containing latency
  1044           LCA_freq < least_freq * delta &&    // No worse frequency
  1045           target >= end_lat             &&    // within latency range
  1046           !self->is_iteratively_computed() )  // But don't hoist IV increments
  1047              // because they may end up above other uses of their phi forcing
  1048              // their result register to be different from their input.
  1049        ) {
  1050       least = LCA;            // Found cheaper block
  1051       least_freq = LCA_freq;
  1052       start_latency = start_lat;
  1053       end_latency = end_lat;
  1054       if (target <= start_lat)
  1055         in_latency = true;
  1059 #ifndef PRODUCT
  1060   if (trace_opto_pipelining()) {
  1061     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
  1062       least->_pre_order, start_latency, least_freq);
  1064 #endif
  1066   // See if the latency needs to be updated
  1067   if (target < end_latency) {
  1068 #ifndef PRODUCT
  1069     if (trace_opto_pipelining()) {
  1070       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
  1072 #endif
  1073     _node_latency.at_put_grow(self->_idx, end_latency);
  1074     partial_latency_of_defs(self);
  1077   return least;
  1081 //------------------------------schedule_late-----------------------------------
  1082 // Now schedule all codes as LATE as possible.  This is the LCA in the
  1083 // dominator tree of all USES of a value.  Pick the block with the least
  1084 // loop nesting depth that is lowest in the dominator tree.
  1085 extern const char must_clone[];
  1086 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
  1087 #ifndef PRODUCT
  1088   if (trace_opto_pipelining())
  1089     tty->print("\n#---- schedule_late ----\n");
  1090 #endif
  1092   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
  1093   Node *self;
  1095   // Walk over all the nodes from last to first
  1096   while (self = iter.next()) {
  1097     Block* early = _bbs[self->_idx];   // Earliest legal placement
  1099     if (self->is_top()) {
  1100       // Top node goes in bb #2 with other constants.
  1101       // It must be special-cased, because it has no out edges.
  1102       early->add_inst(self);
  1103       continue;
  1106     // No uses, just terminate
  1107     if (self->outcnt() == 0) {
  1108       assert(self->Opcode() == Op_MachProj, "sanity");
  1109       continue;                   // Must be a dead machine projection
  1112     // If node is pinned in the block, then no scheduling can be done.
  1113     if( self->pinned() )          // Pinned in block?
  1114       continue;
  1116     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1117     if (mach) {
  1118       switch (mach->ideal_Opcode()) {
  1119       case Op_CreateEx:
  1120         // Don't move exception creation
  1121         early->add_inst(self);
  1122         continue;
  1123         break;
  1124       case Op_CheckCastPP:
  1125         // Don't move CheckCastPP nodes away from their input, if the input
  1126         // is a rawptr (5071820).
  1127         Node *def = self->in(1);
  1128         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
  1129           early->add_inst(self);
  1130           continue;
  1132         break;
  1136     // Gather LCA of all uses
  1137     Block *LCA = NULL;
  1139       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
  1140         // For all uses, find LCA
  1141         Node* use = self->fast_out(i);
  1142         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
  1144     }  // (Hide defs of imax, i from rest of block.)
  1146     // Place temps in the block of their use.  This isn't a
  1147     // requirement for correctness but it reduces useless
  1148     // interference between temps and other nodes.
  1149     if (mach != NULL && mach->is_MachTemp()) {
  1150       _bbs.map(self->_idx, LCA);
  1151       LCA->add_inst(self);
  1152       continue;
  1155     // Check if 'self' could be anti-dependent on memory
  1156     if (self->needs_anti_dependence_check()) {
  1157       // Hoist LCA above possible-defs and insert anti-dependences to
  1158       // defs in new LCA block.
  1159       LCA = insert_anti_dependences(LCA, self);
  1162     if (early->_dom_depth > LCA->_dom_depth) {
  1163       // Somehow the LCA has moved above the earliest legal point.
  1164       // (One way this can happen is via memory_early_block.)
  1165       if (C->subsume_loads() == true && !C->failing()) {
  1166         // Retry with subsume_loads == false
  1167         // If this is the first failure, the sentinel string will "stick"
  1168         // to the Compile object, and the C2Compiler will see it and retry.
  1169         C->record_failure(C2Compiler::retry_no_subsuming_loads());
  1170       } else {
  1171         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
  1172         C->record_method_not_compilable("late schedule failed: incorrect graph");
  1174       return;
  1177     // If there is no opportunity to hoist, then we're done.
  1178     bool try_to_hoist = (LCA != early);
  1180     // Must clone guys stay next to use; no hoisting allowed.
  1181     // Also cannot hoist guys that alter memory or are otherwise not
  1182     // allocatable (hoisting can make a value live longer, leading to
  1183     // anti and output dependency problems which are normally resolved
  1184     // by the register allocator giving everyone a different register).
  1185     if (mach != NULL && must_clone[mach->ideal_Opcode()])
  1186       try_to_hoist = false;
  1188     Block* late = NULL;
  1189     if (try_to_hoist) {
  1190       // Now find the block with the least execution frequency.
  1191       // Start at the latest schedule and work up to the earliest schedule
  1192       // in the dominator tree.  Thus the Node will dominate all its uses.
  1193       late = hoist_to_cheaper_block(LCA, early, self);
  1194     } else {
  1195       // Just use the LCA of the uses.
  1196       late = LCA;
  1199     // Put the node into target block
  1200     schedule_node_into_block(self, late);
  1202 #ifdef ASSERT
  1203     if (self->needs_anti_dependence_check()) {
  1204       // since precedence edges are only inserted when we're sure they
  1205       // are needed make sure that after placement in a block we don't
  1206       // need any new precedence edges.
  1207       verify_anti_dependences(late, self);
  1209 #endif
  1210   } // Loop until all nodes have been visited
  1212 } // end ScheduleLate
  1214 //------------------------------GlobalCodeMotion-------------------------------
  1215 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
  1216   ResourceMark rm;
  1218 #ifndef PRODUCT
  1219   if (trace_opto_pipelining()) {
  1220     tty->print("\n---- Start GlobalCodeMotion ----\n");
  1222 #endif
  1224   // Initialize the bbs.map for things on the proj_list
  1225   uint i;
  1226   for( i=0; i < proj_list.size(); i++ )
  1227     _bbs.map(proj_list[i]->_idx, NULL);
  1229   // Set the basic block for Nodes pinned into blocks
  1230   Arena *a = Thread::current()->resource_area();
  1231   VectorSet visited(a);
  1232   schedule_pinned_nodes( visited );
  1234   // Find the earliest Block any instruction can be placed in.  Some
  1235   // instructions are pinned into Blocks.  Unpinned instructions can
  1236   // appear in last block in which all their inputs occur.
  1237   visited.Clear();
  1238   Node_List stack(a);
  1239   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
  1240   if (!schedule_early(visited, stack)) {
  1241     // Bailout without retry
  1242     C->record_method_not_compilable("early schedule failed");
  1243     return;
  1246   // Build Def-Use edges.
  1247   proj_list.push(_root);        // Add real root as another root
  1248   proj_list.pop();
  1250   // Compute the latency information (via backwards walk) for all the
  1251   // instructions in the graph
  1252   GrowableArray<uint> node_latency;
  1253   _node_latency = node_latency;
  1255   if( C->do_scheduling() )
  1256     ComputeLatenciesBackwards(visited, stack);
  1258   // Now schedule all codes as LATE as possible.  This is the LCA in the
  1259   // dominator tree of all USES of a value.  Pick the block with the least
  1260   // loop nesting depth that is lowest in the dominator tree.
  1261   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
  1262   schedule_late(visited, stack);
  1263   if( C->failing() ) {
  1264     // schedule_late fails only when graph is incorrect.
  1265     assert(!VerifyGraphEdges, "verification should have failed");
  1266     return;
  1269   unique = C->unique();
  1271 #ifndef PRODUCT
  1272   if (trace_opto_pipelining()) {
  1273     tty->print("\n---- Detect implicit null checks ----\n");
  1275 #endif
  1277   // Detect implicit-null-check opportunities.  Basically, find NULL checks
  1278   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  1279   // I can generate a memory op if there is not one nearby.
  1280   if (C->is_method_compilation()) {
  1281     // Don't do it for natives, adapters, or runtime stubs
  1282     int allowed_reasons = 0;
  1283     // ...and don't do it when there have been too many traps, globally.
  1284     for (int reason = (int)Deoptimization::Reason_none+1;
  1285          reason < Compile::trapHistLength; reason++) {
  1286       assert(reason < BitsPerInt, "recode bit map");
  1287       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
  1288         allowed_reasons |= nth_bit(reason);
  1290     // By reversing the loop direction we get a very minor gain on mpegaudio.
  1291     // Feel free to revert to a forward loop for clarity.
  1292     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
  1293     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
  1294       Node *proj = matcher._null_check_tests[i  ];
  1295       Node *val  = matcher._null_check_tests[i+1];
  1296       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
  1297       // The implicit_null_check will only perform the transformation
  1298       // if the null branch is truly uncommon, *and* it leads to an
  1299       // uncommon trap.  Combined with the too_many_traps guards
  1300       // above, this prevents SEGV storms reported in 6366351,
  1301       // by recompiling offending methods without this optimization.
  1305 #ifndef PRODUCT
  1306   if (trace_opto_pipelining()) {
  1307     tty->print("\n---- Start Local Scheduling ----\n");
  1309 #endif
  1311   // Schedule locally.  Right now a simple topological sort.
  1312   // Later, do a real latency aware scheduler.
  1313   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
  1314   memset( ready_cnt, -1, C->unique() * sizeof(int) );
  1315   visited.Clear();
  1316   for (i = 0; i < _num_blocks; i++) {
  1317     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
  1318       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  1319         C->record_method_not_compilable("local schedule failed");
  1321       return;
  1325   // If we inserted any instructions between a Call and his CatchNode,
  1326   // clone the instructions on all paths below the Catch.
  1327   for( i=0; i < _num_blocks; i++ )
  1328     _blocks[i]->call_catch_cleanup(_bbs);
  1330 #ifndef PRODUCT
  1331   if (trace_opto_pipelining()) {
  1332     tty->print("\n---- After GlobalCodeMotion ----\n");
  1333     for (uint i = 0; i < _num_blocks; i++) {
  1334       _blocks[i]->dump();
  1337 #endif
  1341 //------------------------------Estimate_Block_Frequency-----------------------
  1342 // Estimate block frequencies based on IfNode probabilities.
  1343 void PhaseCFG::Estimate_Block_Frequency() {
  1345   // Force conditional branches leading to uncommon traps to be unlikely,
  1346   // not because we get to the uncommon_trap with less relative frequency,
  1347   // but because an uncommon_trap typically causes a deopt, so we only get
  1348   // there once.
  1349   if (C->do_freq_based_layout()) {
  1350     Block_List worklist;
  1351     Block* root_blk = _blocks[0];
  1352     for (uint i = 1; i < root_blk->num_preds(); i++) {
  1353       Block *pb = _bbs[root_blk->pred(i)->_idx];
  1354       if (pb->has_uncommon_code()) {
  1355         worklist.push(pb);
  1358     while (worklist.size() > 0) {
  1359       Block* uct = worklist.pop();
  1360       if (uct == _broot) continue;
  1361       for (uint i = 1; i < uct->num_preds(); i++) {
  1362         Block *pb = _bbs[uct->pred(i)->_idx];
  1363         if (pb->_num_succs == 1) {
  1364           worklist.push(pb);
  1365         } else if (pb->num_fall_throughs() == 2) {
  1366           pb->update_uncommon_branch(uct);
  1372   // Create the loop tree and calculate loop depth.
  1373   _root_loop = create_loop_tree();
  1374   _root_loop->compute_loop_depth(0);
  1376   // Compute block frequency of each block, relative to a single loop entry.
  1377   _root_loop->compute_freq();
  1379   // Adjust all frequencies to be relative to a single method entry
  1380   _root_loop->_freq = 1.0;
  1381   _root_loop->scale_freq();
  1383   // Save outmost loop frequency for LRG frequency threshold
  1384   _outer_loop_freq = _root_loop->outer_loop_freq();
  1386   // force paths ending at uncommon traps to be infrequent
  1387   if (!C->do_freq_based_layout()) {
  1388     Block_List worklist;
  1389     Block* root_blk = _blocks[0];
  1390     for (uint i = 1; i < root_blk->num_preds(); i++) {
  1391       Block *pb = _bbs[root_blk->pred(i)->_idx];
  1392       if (pb->has_uncommon_code()) {
  1393         worklist.push(pb);
  1396     while (worklist.size() > 0) {
  1397       Block* uct = worklist.pop();
  1398       uct->_freq = PROB_MIN;
  1399       for (uint i = 1; i < uct->num_preds(); i++) {
  1400         Block *pb = _bbs[uct->pred(i)->_idx];
  1401         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
  1402           worklist.push(pb);
  1408 #ifdef ASSERT
  1409   for (uint i = 0; i < _num_blocks; i++ ) {
  1410     Block *b = _blocks[i];
  1411     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
  1413 #endif
  1415 #ifndef PRODUCT
  1416   if (PrintCFGBlockFreq) {
  1417     tty->print_cr("CFG Block Frequencies");
  1418     _root_loop->dump_tree();
  1419     if (Verbose) {
  1420       tty->print_cr("PhaseCFG dump");
  1421       dump();
  1422       tty->print_cr("Node dump");
  1423       _root->dump(99999);
  1426 #endif
  1429 //----------------------------create_loop_tree--------------------------------
  1430 // Create a loop tree from the CFG
  1431 CFGLoop* PhaseCFG::create_loop_tree() {
  1433 #ifdef ASSERT
  1434   assert( _blocks[0] == _broot, "" );
  1435   for (uint i = 0; i < _num_blocks; i++ ) {
  1436     Block *b = _blocks[i];
  1437     // Check that _loop field are clear...we could clear them if not.
  1438     assert(b->_loop == NULL, "clear _loop expected");
  1439     // Sanity check that the RPO numbering is reflected in the _blocks array.
  1440     // It doesn't have to be for the loop tree to be built, but if it is not,
  1441     // then the blocks have been reordered since dom graph building...which
  1442     // may question the RPO numbering
  1443     assert(b->_rpo == i, "unexpected reverse post order number");
  1445 #endif
  1447   int idct = 0;
  1448   CFGLoop* root_loop = new CFGLoop(idct++);
  1450   Block_List worklist;
  1452   // Assign blocks to loops
  1453   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
  1454     Block *b = _blocks[i];
  1456     if (b->head()->is_Loop()) {
  1457       Block* loop_head = b;
  1458       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1459       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
  1460       Block* tail = _bbs[tail_n->_idx];
  1462       // Defensively filter out Loop nodes for non-single-entry loops.
  1463       // For all reasonable loops, the head occurs before the tail in RPO.
  1464       if (i <= tail->_rpo) {
  1466         // The tail and (recursive) predecessors of the tail
  1467         // are made members of a new loop.
  1469         assert(worklist.size() == 0, "nonempty worklist");
  1470         CFGLoop* nloop = new CFGLoop(idct++);
  1471         assert(loop_head->_loop == NULL, "just checking");
  1472         loop_head->_loop = nloop;
  1473         // Add to nloop so push_pred() will skip over inner loops
  1474         nloop->add_member(loop_head);
  1475         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
  1477         while (worklist.size() > 0) {
  1478           Block* member = worklist.pop();
  1479           if (member != loop_head) {
  1480             for (uint j = 1; j < member->num_preds(); j++) {
  1481               nloop->push_pred(member, j, worklist, _bbs);
  1489   // Create a member list for each loop consisting
  1490   // of both blocks and (immediate child) loops.
  1491   for (uint i = 0; i < _num_blocks; i++) {
  1492     Block *b = _blocks[i];
  1493     CFGLoop* lp = b->_loop;
  1494     if (lp == NULL) {
  1495       // Not assigned to a loop. Add it to the method's pseudo loop.
  1496       b->_loop = root_loop;
  1497       lp = root_loop;
  1499     if (lp == root_loop || b != lp->head()) { // loop heads are already members
  1500       lp->add_member(b);
  1502     if (lp != root_loop) {
  1503       if (lp->parent() == NULL) {
  1504         // Not a nested loop. Make it a child of the method's pseudo loop.
  1505         root_loop->add_nested_loop(lp);
  1507       if (b == lp->head()) {
  1508         // Add nested loop to member list of parent loop.
  1509         lp->parent()->add_member(lp);
  1514   return root_loop;
  1517 //------------------------------push_pred--------------------------------------
  1518 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
  1519   Node* pred_n = blk->pred(i);
  1520   Block* pred = node_to_blk[pred_n->_idx];
  1521   CFGLoop *pred_loop = pred->_loop;
  1522   if (pred_loop == NULL) {
  1523     // Filter out blocks for non-single-entry loops.
  1524     // For all reasonable loops, the head occurs before the tail in RPO.
  1525     if (pred->_rpo > head()->_rpo) {
  1526       pred->_loop = this;
  1527       worklist.push(pred);
  1529   } else if (pred_loop != this) {
  1530     // Nested loop.
  1531     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
  1532       pred_loop = pred_loop->_parent;
  1534     // Make pred's loop be a child
  1535     if (pred_loop->_parent == NULL) {
  1536       add_nested_loop(pred_loop);
  1537       // Continue with loop entry predecessor.
  1538       Block* pred_head = pred_loop->head();
  1539       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1540       assert(pred_head != head(), "loop head in only one loop");
  1541       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
  1542     } else {
  1543       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
  1548 //------------------------------add_nested_loop--------------------------------
  1549 // Make cl a child of the current loop in the loop tree.
  1550 void CFGLoop::add_nested_loop(CFGLoop* cl) {
  1551   assert(_parent == NULL, "no parent yet");
  1552   assert(cl != this, "not my own parent");
  1553   cl->_parent = this;
  1554   CFGLoop* ch = _child;
  1555   if (ch == NULL) {
  1556     _child = cl;
  1557   } else {
  1558     while (ch->_sibling != NULL) { ch = ch->_sibling; }
  1559     ch->_sibling = cl;
  1563 //------------------------------compute_loop_depth-----------------------------
  1564 // Store the loop depth in each CFGLoop object.
  1565 // Recursively walk the children to do the same for them.
  1566 void CFGLoop::compute_loop_depth(int depth) {
  1567   _depth = depth;
  1568   CFGLoop* ch = _child;
  1569   while (ch != NULL) {
  1570     ch->compute_loop_depth(depth + 1);
  1571     ch = ch->_sibling;
  1575 //------------------------------compute_freq-----------------------------------
  1576 // Compute the frequency of each block and loop, relative to a single entry
  1577 // into the dominating loop head.
  1578 void CFGLoop::compute_freq() {
  1579   // Bottom up traversal of loop tree (visit inner loops first.)
  1580   // Set loop head frequency to 1.0, then transitively
  1581   // compute frequency for all successors in the loop,
  1582   // as well as for each exit edge.  Inner loops are
  1583   // treated as single blocks with loop exit targets
  1584   // as the successor blocks.
  1586   // Nested loops first
  1587   CFGLoop* ch = _child;
  1588   while (ch != NULL) {
  1589     ch->compute_freq();
  1590     ch = ch->_sibling;
  1592   assert (_members.length() > 0, "no empty loops");
  1593   Block* hd = head();
  1594   hd->_freq = 1.0f;
  1595   for (int i = 0; i < _members.length(); i++) {
  1596     CFGElement* s = _members.at(i);
  1597     float freq = s->_freq;
  1598     if (s->is_block()) {
  1599       Block* b = s->as_Block();
  1600       for (uint j = 0; j < b->_num_succs; j++) {
  1601         Block* sb = b->_succs[j];
  1602         update_succ_freq(sb, freq * b->succ_prob(j));
  1604     } else {
  1605       CFGLoop* lp = s->as_CFGLoop();
  1606       assert(lp->_parent == this, "immediate child");
  1607       for (int k = 0; k < lp->_exits.length(); k++) {
  1608         Block* eb = lp->_exits.at(k).get_target();
  1609         float prob = lp->_exits.at(k).get_prob();
  1610         update_succ_freq(eb, freq * prob);
  1615   // For all loops other than the outer, "method" loop,
  1616   // sum and normalize the exit probability. The "method" loop
  1617   // should keep the initial exit probability of 1, so that
  1618   // inner blocks do not get erroneously scaled.
  1619   if (_depth != 0) {
  1620     // Total the exit probabilities for this loop.
  1621     float exits_sum = 0.0f;
  1622     for (int i = 0; i < _exits.length(); i++) {
  1623       exits_sum += _exits.at(i).get_prob();
  1626     // Normalize the exit probabilities. Until now, the
  1627     // probabilities estimate the possibility of exit per
  1628     // a single loop iteration; afterward, they estimate
  1629     // the probability of exit per loop entry.
  1630     for (int i = 0; i < _exits.length(); i++) {
  1631       Block* et = _exits.at(i).get_target();
  1632       float new_prob = 0.0f;
  1633       if (_exits.at(i).get_prob() > 0.0f) {
  1634         new_prob = _exits.at(i).get_prob() / exits_sum;
  1636       BlockProbPair bpp(et, new_prob);
  1637       _exits.at_put(i, bpp);
  1640     // Save the total, but guard against unreasonable probability,
  1641     // as the value is used to estimate the loop trip count.
  1642     // An infinite trip count would blur relative block
  1643     // frequencies.
  1644     if (exits_sum > 1.0f) exits_sum = 1.0;
  1645     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
  1646     _exit_prob = exits_sum;
  1650 //------------------------------succ_prob-------------------------------------
  1651 // Determine the probability of reaching successor 'i' from the receiver block.
  1652 float Block::succ_prob(uint i) {
  1653   int eidx = end_idx();
  1654   Node *n = _nodes[eidx];  // Get ending Node
  1656   int op = n->Opcode();
  1657   if (n->is_Mach()) {
  1658     if (n->is_MachNullCheck()) {
  1659       // Can only reach here if called after lcm. The original Op_If is gone,
  1660       // so we attempt to infer the probability from one or both of the
  1661       // successor blocks.
  1662       assert(_num_succs == 2, "expecting 2 successors of a null check");
  1663       // If either successor has only one predecessor, then the
  1664       // probability estimate can be derived using the
  1665       // relative frequency of the successor and this block.
  1666       if (_succs[i]->num_preds() == 2) {
  1667         return _succs[i]->_freq / _freq;
  1668       } else if (_succs[1-i]->num_preds() == 2) {
  1669         return 1 - (_succs[1-i]->_freq / _freq);
  1670       } else {
  1671         // Estimate using both successor frequencies
  1672         float freq = _succs[i]->_freq;
  1673         return freq / (freq + _succs[1-i]->_freq);
  1676     op = n->as_Mach()->ideal_Opcode();
  1680   // Switch on branch type
  1681   switch( op ) {
  1682   case Op_CountedLoopEnd:
  1683   case Op_If: {
  1684     assert (i < 2, "just checking");
  1685     // Conditionals pass on only part of their frequency
  1686     float prob  = n->as_MachIf()->_prob;
  1687     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
  1688     // If succ[i] is the FALSE branch, invert path info
  1689     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
  1690       return 1.0f - prob; // not taken
  1691     } else {
  1692       return prob; // taken
  1696   case Op_Jump:
  1697     // Divide the frequency between all successors evenly
  1698     return 1.0f/_num_succs;
  1700   case Op_Catch: {
  1701     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
  1702     if (ci->_con == CatchProjNode::fall_through_index) {
  1703       // Fall-thru path gets the lion's share.
  1704       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
  1705     } else {
  1706       // Presume exceptional paths are equally unlikely
  1707       return PROB_UNLIKELY_MAG(5);
  1711   case Op_Root:
  1712   case Op_Goto:
  1713     // Pass frequency straight thru to target
  1714     return 1.0f;
  1716   case Op_NeverBranch:
  1717     return 0.0f;
  1719   case Op_TailCall:
  1720   case Op_TailJump:
  1721   case Op_Return:
  1722   case Op_Halt:
  1723   case Op_Rethrow:
  1724     // Do not push out freq to root block
  1725     return 0.0f;
  1727   default:
  1728     ShouldNotReachHere();
  1731   return 0.0f;
  1734 //------------------------------num_fall_throughs-----------------------------
  1735 // Return the number of fall-through candidates for a block
  1736 int Block::num_fall_throughs() {
  1737   int eidx = end_idx();
  1738   Node *n = _nodes[eidx];  // Get ending Node
  1740   int op = n->Opcode();
  1741   if (n->is_Mach()) {
  1742     if (n->is_MachNullCheck()) {
  1743       // In theory, either side can fall-thru, for simplicity sake,
  1744       // let's say only the false branch can now.
  1745       return 1;
  1747     op = n->as_Mach()->ideal_Opcode();
  1750   // Switch on branch type
  1751   switch( op ) {
  1752   case Op_CountedLoopEnd:
  1753   case Op_If:
  1754     return 2;
  1756   case Op_Root:
  1757   case Op_Goto:
  1758     return 1;
  1760   case Op_Catch: {
  1761     for (uint i = 0; i < _num_succs; i++) {
  1762       const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
  1763       if (ci->_con == CatchProjNode::fall_through_index) {
  1764         return 1;
  1767     return 0;
  1770   case Op_Jump:
  1771   case Op_NeverBranch:
  1772   case Op_TailCall:
  1773   case Op_TailJump:
  1774   case Op_Return:
  1775   case Op_Halt:
  1776   case Op_Rethrow:
  1777     return 0;
  1779   default:
  1780     ShouldNotReachHere();
  1783   return 0;
  1786 //------------------------------succ_fall_through-----------------------------
  1787 // Return true if a specific successor could be fall-through target.
  1788 bool Block::succ_fall_through(uint i) {
  1789   int eidx = end_idx();
  1790   Node *n = _nodes[eidx];  // Get ending Node
  1792   int op = n->Opcode();
  1793   if (n->is_Mach()) {
  1794     if (n->is_MachNullCheck()) {
  1795       // In theory, either side can fall-thru, for simplicity sake,
  1796       // let's say only the false branch can now.
  1797       return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
  1799     op = n->as_Mach()->ideal_Opcode();
  1802   // Switch on branch type
  1803   switch( op ) {
  1804   case Op_CountedLoopEnd:
  1805   case Op_If:
  1806   case Op_Root:
  1807   case Op_Goto:
  1808     return true;
  1810   case Op_Catch: {
  1811     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
  1812     return ci->_con == CatchProjNode::fall_through_index;
  1815   case Op_Jump:
  1816   case Op_NeverBranch:
  1817   case Op_TailCall:
  1818   case Op_TailJump:
  1819   case Op_Return:
  1820   case Op_Halt:
  1821   case Op_Rethrow:
  1822     return false;
  1824   default:
  1825     ShouldNotReachHere();
  1828   return false;
  1831 //------------------------------update_uncommon_branch------------------------
  1832 // Update the probability of a two-branch to be uncommon
  1833 void Block::update_uncommon_branch(Block* ub) {
  1834   int eidx = end_idx();
  1835   Node *n = _nodes[eidx];  // Get ending Node
  1837   int op = n->as_Mach()->ideal_Opcode();
  1839   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
  1840   assert(num_fall_throughs() == 2, "must be a two way branch block");
  1842   // Which successor is ub?
  1843   uint s;
  1844   for (s = 0; s <_num_succs; s++) {
  1845     if (_succs[s] == ub) break;
  1847   assert(s < 2, "uncommon successor must be found");
  1849   // If ub is the true path, make the proability small, else
  1850   // ub is the false path, and make the probability large
  1851   bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
  1853   // Get existing probability
  1854   float p = n->as_MachIf()->_prob;
  1856   if (invert) p = 1.0 - p;
  1857   if (p > PROB_MIN) {
  1858     p = PROB_MIN;
  1860   if (invert) p = 1.0 - p;
  1862   n->as_MachIf()->_prob = p;
  1865 //------------------------------update_succ_freq-------------------------------
  1866 // Update the appropriate frequency associated with block 'b', a successor of
  1867 // a block in this loop.
  1868 void CFGLoop::update_succ_freq(Block* b, float freq) {
  1869   if (b->_loop == this) {
  1870     if (b == head()) {
  1871       // back branch within the loop
  1872       // Do nothing now, the loop carried frequency will be
  1873       // adjust later in scale_freq().
  1874     } else {
  1875       // simple branch within the loop
  1876       b->_freq += freq;
  1878   } else if (!in_loop_nest(b)) {
  1879     // branch is exit from this loop
  1880     BlockProbPair bpp(b, freq);
  1881     _exits.append(bpp);
  1882   } else {
  1883     // branch into nested loop
  1884     CFGLoop* ch = b->_loop;
  1885     ch->_freq += freq;
  1889 //------------------------------in_loop_nest-----------------------------------
  1890 // Determine if block b is in the receiver's loop nest.
  1891 bool CFGLoop::in_loop_nest(Block* b) {
  1892   int depth = _depth;
  1893   CFGLoop* b_loop = b->_loop;
  1894   int b_depth = b_loop->_depth;
  1895   if (depth == b_depth) {
  1896     return true;
  1898   while (b_depth > depth) {
  1899     b_loop = b_loop->_parent;
  1900     b_depth = b_loop->_depth;
  1902   return b_loop == this;
  1905 //------------------------------scale_freq-------------------------------------
  1906 // Scale frequency of loops and blocks by trip counts from outer loops
  1907 // Do a top down traversal of loop tree (visit outer loops first.)
  1908 void CFGLoop::scale_freq() {
  1909   float loop_freq = _freq * trip_count();
  1910   _freq = loop_freq;
  1911   for (int i = 0; i < _members.length(); i++) {
  1912     CFGElement* s = _members.at(i);
  1913     float block_freq = s->_freq * loop_freq;
  1914     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
  1915       block_freq = MIN_BLOCK_FREQUENCY;
  1916     s->_freq = block_freq;
  1918   CFGLoop* ch = _child;
  1919   while (ch != NULL) {
  1920     ch->scale_freq();
  1921     ch = ch->_sibling;
  1925 // Frequency of outer loop
  1926 float CFGLoop::outer_loop_freq() const {
  1927   if (_child != NULL) {
  1928     return _child->_freq;
  1930   return _freq;
  1933 #ifndef PRODUCT
  1934 //------------------------------dump_tree--------------------------------------
  1935 void CFGLoop::dump_tree() const {
  1936   dump();
  1937   if (_child != NULL)   _child->dump_tree();
  1938   if (_sibling != NULL) _sibling->dump_tree();
  1941 //------------------------------dump-------------------------------------------
  1942 void CFGLoop::dump() const {
  1943   for (int i = 0; i < _depth; i++) tty->print("   ");
  1944   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
  1945              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
  1946   for (int i = 0; i < _depth; i++) tty->print("   ");
  1947   tty->print("         members:", _id);
  1948   int k = 0;
  1949   for (int i = 0; i < _members.length(); i++) {
  1950     if (k++ >= 6) {
  1951       tty->print("\n              ");
  1952       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  1953       k = 0;
  1955     CFGElement *s = _members.at(i);
  1956     if (s->is_block()) {
  1957       Block *b = s->as_Block();
  1958       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
  1959     } else {
  1960       CFGLoop* lp = s->as_CFGLoop();
  1961       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
  1964   tty->print("\n");
  1965   for (int i = 0; i < _depth; i++) tty->print("   ");
  1966   tty->print("         exits:  ");
  1967   k = 0;
  1968   for (int i = 0; i < _exits.length(); i++) {
  1969     if (k++ >= 7) {
  1970       tty->print("\n              ");
  1971       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  1972       k = 0;
  1974     Block *blk = _exits.at(i).get_target();
  1975     float prob = _exits.at(i).get_prob();
  1976     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
  1978   tty->print("\n");
  1980 #endif

mercurial