src/cpu/x86/vm/assembler_x86.cpp

Tue, 31 Mar 2009 14:07:08 -0700

author
cfang
date
Tue, 31 Mar 2009 14:07:08 -0700
changeset 1116
fbde8ec322d0
parent 1106
d0994e5bebce
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

6761600: Use sse 4.2 in intrinsics
Summary: Use SSE 4.2 in intrinsics for String.{compareTo/equals/indexOf} and Arrays.equals.
Reviewed-by: kvn, never, jrose

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_x86.cpp.incl"
    28 // Implementation of AddressLiteral
    30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    31   _is_lval = false;
    32   _target = target;
    33   switch (rtype) {
    34   case relocInfo::oop_type:
    35     // Oops are a special case. Normally they would be their own section
    36     // but in cases like icBuffer they are literals in the code stream that
    37     // we don't have a section for. We use none so that we get a literal address
    38     // which is always patchable.
    39     break;
    40   case relocInfo::external_word_type:
    41     _rspec = external_word_Relocation::spec(target);
    42     break;
    43   case relocInfo::internal_word_type:
    44     _rspec = internal_word_Relocation::spec(target);
    45     break;
    46   case relocInfo::opt_virtual_call_type:
    47     _rspec = opt_virtual_call_Relocation::spec();
    48     break;
    49   case relocInfo::static_call_type:
    50     _rspec = static_call_Relocation::spec();
    51     break;
    52   case relocInfo::runtime_call_type:
    53     _rspec = runtime_call_Relocation::spec();
    54     break;
    55   case relocInfo::poll_type:
    56   case relocInfo::poll_return_type:
    57     _rspec = Relocation::spec_simple(rtype);
    58     break;
    59   case relocInfo::none:
    60     break;
    61   default:
    62     ShouldNotReachHere();
    63     break;
    64   }
    65 }
    67 // Implementation of Address
    69 #ifdef _LP64
    71 Address Address::make_array(ArrayAddress adr) {
    72   // Not implementable on 64bit machines
    73   // Should have been handled higher up the call chain.
    74   ShouldNotReachHere();
    75   return Address();
    76 }
    78 // exceedingly dangerous constructor
    79 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    80   _base  = noreg;
    81   _index = noreg;
    82   _scale = no_scale;
    83   _disp  = disp;
    84   switch (rtype) {
    85     case relocInfo::external_word_type:
    86       _rspec = external_word_Relocation::spec(loc);
    87       break;
    88     case relocInfo::internal_word_type:
    89       _rspec = internal_word_Relocation::spec(loc);
    90       break;
    91     case relocInfo::runtime_call_type:
    92       // HMM
    93       _rspec = runtime_call_Relocation::spec();
    94       break;
    95     case relocInfo::poll_type:
    96     case relocInfo::poll_return_type:
    97       _rspec = Relocation::spec_simple(rtype);
    98       break;
    99     case relocInfo::none:
   100       break;
   101     default:
   102       ShouldNotReachHere();
   103   }
   104 }
   105 #else // LP64
   107 Address Address::make_array(ArrayAddress adr) {
   108   AddressLiteral base = adr.base();
   109   Address index = adr.index();
   110   assert(index._disp == 0, "must not have disp"); // maybe it can?
   111   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   112   array._rspec = base._rspec;
   113   return array;
   114 }
   116 // exceedingly dangerous constructor
   117 Address::Address(address loc, RelocationHolder spec) {
   118   _base  = noreg;
   119   _index = noreg;
   120   _scale = no_scale;
   121   _disp  = (intptr_t) loc;
   122   _rspec = spec;
   123 }
   125 #endif // _LP64
   129 // Convert the raw encoding form into the form expected by the constructor for
   130 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   131 // that to noreg for the Address constructor.
   132 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   133   RelocationHolder rspec;
   134   if (disp_is_oop) {
   135     rspec = Relocation::spec_simple(relocInfo::oop_type);
   136   }
   137   bool valid_index = index != rsp->encoding();
   138   if (valid_index) {
   139     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   140     madr._rspec = rspec;
   141     return madr;
   142   } else {
   143     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   144     madr._rspec = rspec;
   145     return madr;
   146   }
   147 }
   149 // Implementation of Assembler
   151 int AbstractAssembler::code_fill_byte() {
   152   return (u_char)'\xF4'; // hlt
   153 }
   155 // make this go away someday
   156 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   157   if (rtype == relocInfo::none)
   158         emit_long(data);
   159   else  emit_data(data, Relocation::spec_simple(rtype), format);
   160 }
   162 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   163   assert(imm_operand == 0, "default format must be immediate in this file");
   164   assert(inst_mark() != NULL, "must be inside InstructionMark");
   165   if (rspec.type() !=  relocInfo::none) {
   166     #ifdef ASSERT
   167       check_relocation(rspec, format);
   168     #endif
   169     // Do not use AbstractAssembler::relocate, which is not intended for
   170     // embedded words.  Instead, relocate to the enclosing instruction.
   172     // hack. call32 is too wide for mask so use disp32
   173     if (format == call32_operand)
   174       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   175     else
   176       code_section()->relocate(inst_mark(), rspec, format);
   177   }
   178   emit_long(data);
   179 }
   181 static int encode(Register r) {
   182   int enc = r->encoding();
   183   if (enc >= 8) {
   184     enc -= 8;
   185   }
   186   return enc;
   187 }
   189 static int encode(XMMRegister r) {
   190   int enc = r->encoding();
   191   if (enc >= 8) {
   192     enc -= 8;
   193   }
   194   return enc;
   195 }
   197 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   198   assert(dst->has_byte_register(), "must have byte register");
   199   assert(isByte(op1) && isByte(op2), "wrong opcode");
   200   assert(isByte(imm8), "not a byte");
   201   assert((op1 & 0x01) == 0, "should be 8bit operation");
   202   emit_byte(op1);
   203   emit_byte(op2 | encode(dst));
   204   emit_byte(imm8);
   205 }
   208 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   209   assert(isByte(op1) && isByte(op2), "wrong opcode");
   210   assert((op1 & 0x01) == 1, "should be 32bit operation");
   211   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   212   if (is8bit(imm32)) {
   213     emit_byte(op1 | 0x02); // set sign bit
   214     emit_byte(op2 | encode(dst));
   215     emit_byte(imm32 & 0xFF);
   216   } else {
   217     emit_byte(op1);
   218     emit_byte(op2 | encode(dst));
   219     emit_long(imm32);
   220   }
   221 }
   223 // immediate-to-memory forms
   224 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   225   assert((op1 & 0x01) == 1, "should be 32bit operation");
   226   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   227   if (is8bit(imm32)) {
   228     emit_byte(op1 | 0x02); // set sign bit
   229     emit_operand(rm, adr, 1);
   230     emit_byte(imm32 & 0xFF);
   231   } else {
   232     emit_byte(op1);
   233     emit_operand(rm, adr, 4);
   234     emit_long(imm32);
   235   }
   236 }
   238 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   239   LP64_ONLY(ShouldNotReachHere());
   240   assert(isByte(op1) && isByte(op2), "wrong opcode");
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   InstructionMark im(this);
   244   emit_byte(op1);
   245   emit_byte(op2 | encode(dst));
   246   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   247 }
   250 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   251   assert(isByte(op1) && isByte(op2), "wrong opcode");
   252   emit_byte(op1);
   253   emit_byte(op2 | encode(dst) << 3 | encode(src));
   254 }
   257 void Assembler::emit_operand(Register reg, Register base, Register index,
   258                              Address::ScaleFactor scale, int disp,
   259                              RelocationHolder const& rspec,
   260                              int rip_relative_correction) {
   261   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   263   // Encode the registers as needed in the fields they are used in
   265   int regenc = encode(reg) << 3;
   266   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   267   int baseenc = base->is_valid() ? encode(base) : 0;
   269   if (base->is_valid()) {
   270     if (index->is_valid()) {
   271       assert(scale != Address::no_scale, "inconsistent address");
   272       // [base + index*scale + disp]
   273       if (disp == 0 && rtype == relocInfo::none  &&
   274           base != rbp LP64_ONLY(&& base != r13)) {
   275         // [base + index*scale]
   276         // [00 reg 100][ss index base]
   277         assert(index != rsp, "illegal addressing mode");
   278         emit_byte(0x04 | regenc);
   279         emit_byte(scale << 6 | indexenc | baseenc);
   280       } else if (is8bit(disp) && rtype == relocInfo::none) {
   281         // [base + index*scale + imm8]
   282         // [01 reg 100][ss index base] imm8
   283         assert(index != rsp, "illegal addressing mode");
   284         emit_byte(0x44 | regenc);
   285         emit_byte(scale << 6 | indexenc | baseenc);
   286         emit_byte(disp & 0xFF);
   287       } else {
   288         // [base + index*scale + disp32]
   289         // [10 reg 100][ss index base] disp32
   290         assert(index != rsp, "illegal addressing mode");
   291         emit_byte(0x84 | regenc);
   292         emit_byte(scale << 6 | indexenc | baseenc);
   293         emit_data(disp, rspec, disp32_operand);
   294       }
   295     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   296       // [rsp + disp]
   297       if (disp == 0 && rtype == relocInfo::none) {
   298         // [rsp]
   299         // [00 reg 100][00 100 100]
   300         emit_byte(0x04 | regenc);
   301         emit_byte(0x24);
   302       } else if (is8bit(disp) && rtype == relocInfo::none) {
   303         // [rsp + imm8]
   304         // [01 reg 100][00 100 100] disp8
   305         emit_byte(0x44 | regenc);
   306         emit_byte(0x24);
   307         emit_byte(disp & 0xFF);
   308       } else {
   309         // [rsp + imm32]
   310         // [10 reg 100][00 100 100] disp32
   311         emit_byte(0x84 | regenc);
   312         emit_byte(0x24);
   313         emit_data(disp, rspec, disp32_operand);
   314       }
   315     } else {
   316       // [base + disp]
   317       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   318       if (disp == 0 && rtype == relocInfo::none &&
   319           base != rbp LP64_ONLY(&& base != r13)) {
   320         // [base]
   321         // [00 reg base]
   322         emit_byte(0x00 | regenc | baseenc);
   323       } else if (is8bit(disp) && rtype == relocInfo::none) {
   324         // [base + disp8]
   325         // [01 reg base] disp8
   326         emit_byte(0x40 | regenc | baseenc);
   327         emit_byte(disp & 0xFF);
   328       } else {
   329         // [base + disp32]
   330         // [10 reg base] disp32
   331         emit_byte(0x80 | regenc | baseenc);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     }
   335   } else {
   336     if (index->is_valid()) {
   337       assert(scale != Address::no_scale, "inconsistent address");
   338       // [index*scale + disp]
   339       // [00 reg 100][ss index 101] disp32
   340       assert(index != rsp, "illegal addressing mode");
   341       emit_byte(0x04 | regenc);
   342       emit_byte(scale << 6 | indexenc | 0x05);
   343       emit_data(disp, rspec, disp32_operand);
   344     } else if (rtype != relocInfo::none ) {
   345       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   346       // [00 000 101] disp32
   348       emit_byte(0x05 | regenc);
   349       // Note that the RIP-rel. correction applies to the generated
   350       // disp field, but _not_ to the target address in the rspec.
   352       // disp was created by converting the target address minus the pc
   353       // at the start of the instruction. That needs more correction here.
   354       // intptr_t disp = target - next_ip;
   355       assert(inst_mark() != NULL, "must be inside InstructionMark");
   356       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   357       int64_t adjusted = disp;
   358       // Do rip-rel adjustment for 64bit
   359       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   360       assert(is_simm32(adjusted),
   361              "must be 32bit offset (RIP relative address)");
   362       emit_data((int32_t) adjusted, rspec, disp32_operand);
   364     } else {
   365       // 32bit never did this, did everything as the rip-rel/disp code above
   366       // [disp] ABSOLUTE
   367       // [00 reg 100][00 100 101] disp32
   368       emit_byte(0x04 | regenc);
   369       emit_byte(0x25);
   370       emit_data(disp, rspec, disp32_operand);
   371     }
   372   }
   373 }
   375 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   376                              Address::ScaleFactor scale, int disp,
   377                              RelocationHolder const& rspec) {
   378   emit_operand((Register)reg, base, index, scale, disp, rspec);
   379 }
   381 // Secret local extension to Assembler::WhichOperand:
   382 #define end_pc_operand (_WhichOperand_limit)
   384 address Assembler::locate_operand(address inst, WhichOperand which) {
   385   // Decode the given instruction, and return the address of
   386   // an embedded 32-bit operand word.
   388   // If "which" is disp32_operand, selects the displacement portion
   389   // of an effective address specifier.
   390   // If "which" is imm64_operand, selects the trailing immediate constant.
   391   // If "which" is call32_operand, selects the displacement of a call or jump.
   392   // Caller is responsible for ensuring that there is such an operand,
   393   // and that it is 32/64 bits wide.
   395   // If "which" is end_pc_operand, find the end of the instruction.
   397   address ip = inst;
   398   bool is_64bit = false;
   400   debug_only(bool has_disp32 = false);
   401   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   403   again_after_prefix:
   404   switch (0xFF & *ip++) {
   406   // These convenience macros generate groups of "case" labels for the switch.
   407 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   408 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   409              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   410 #define REP16(x) REP8((x)+0): \
   411               case REP8((x)+8)
   413   case CS_segment:
   414   case SS_segment:
   415   case DS_segment:
   416   case ES_segment:
   417   case FS_segment:
   418   case GS_segment:
   419     // Seems dubious
   420     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   421     assert(ip == inst+1, "only one prefix allowed");
   422     goto again_after_prefix;
   424   case 0x67:
   425   case REX:
   426   case REX_B:
   427   case REX_X:
   428   case REX_XB:
   429   case REX_R:
   430   case REX_RB:
   431   case REX_RX:
   432   case REX_RXB:
   433     NOT_LP64(assert(false, "64bit prefixes"));
   434     goto again_after_prefix;
   436   case REX_W:
   437   case REX_WB:
   438   case REX_WX:
   439   case REX_WXB:
   440   case REX_WR:
   441   case REX_WRB:
   442   case REX_WRX:
   443   case REX_WRXB:
   444     NOT_LP64(assert(false, "64bit prefixes"));
   445     is_64bit = true;
   446     goto again_after_prefix;
   448   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   449   case 0x88: // movb a, r
   450   case 0x89: // movl a, r
   451   case 0x8A: // movb r, a
   452   case 0x8B: // movl r, a
   453   case 0x8F: // popl a
   454     debug_only(has_disp32 = true);
   455     break;
   457   case 0x68: // pushq #32
   458     if (which == end_pc_operand) {
   459       return ip + 4;
   460     }
   461     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   462     return ip;                  // not produced by emit_operand
   464   case 0x66: // movw ... (size prefix)
   465     again_after_size_prefix2:
   466     switch (0xFF & *ip++) {
   467     case REX:
   468     case REX_B:
   469     case REX_X:
   470     case REX_XB:
   471     case REX_R:
   472     case REX_RB:
   473     case REX_RX:
   474     case REX_RXB:
   475     case REX_W:
   476     case REX_WB:
   477     case REX_WX:
   478     case REX_WXB:
   479     case REX_WR:
   480     case REX_WRB:
   481     case REX_WRX:
   482     case REX_WRXB:
   483       NOT_LP64(assert(false, "64bit prefix found"));
   484       goto again_after_size_prefix2;
   485     case 0x8B: // movw r, a
   486     case 0x89: // movw a, r
   487       debug_only(has_disp32 = true);
   488       break;
   489     case 0xC7: // movw a, #16
   490       debug_only(has_disp32 = true);
   491       tail_size = 2;  // the imm16
   492       break;
   493     case 0x0F: // several SSE/SSE2 variants
   494       ip--;    // reparse the 0x0F
   495       goto again_after_prefix;
   496     default:
   497       ShouldNotReachHere();
   498     }
   499     break;
   501   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   502     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   503     // these asserts are somewhat nonsensical
   504 #ifndef _LP64
   505     assert(which == imm_operand || which == disp32_operand, "");
   506 #else
   507     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   508            which == narrow_oop_operand && !is_64bit, "");
   509 #endif // _LP64
   510     return ip;
   512   case 0x69: // imul r, a, #32
   513   case 0xC7: // movl a, #32(oop?)
   514     tail_size = 4;
   515     debug_only(has_disp32 = true); // has both kinds of operands!
   516     break;
   518   case 0x0F: // movx..., etc.
   519     switch (0xFF & *ip++) {
   520     case 0x12: // movlps
   521     case 0x28: // movaps
   522     case 0x2E: // ucomiss
   523     case 0x2F: // comiss
   524     case 0x54: // andps
   525     case 0x55: // andnps
   526     case 0x56: // orps
   527     case 0x57: // xorps
   528     case 0x6E: // movd
   529     case 0x7E: // movd
   530     case 0xAE: // ldmxcsr   a
   531       // 64bit side says it these have both operands but that doesn't
   532       // appear to be true
   533       debug_only(has_disp32 = true);
   534       break;
   536     case 0xAD: // shrd r, a, %cl
   537     case 0xAF: // imul r, a
   538     case 0xBE: // movsbl r, a (movsxb)
   539     case 0xBF: // movswl r, a (movsxw)
   540     case 0xB6: // movzbl r, a (movzxb)
   541     case 0xB7: // movzwl r, a (movzxw)
   542     case REP16(0x40): // cmovl cc, r, a
   543     case 0xB0: // cmpxchgb
   544     case 0xB1: // cmpxchg
   545     case 0xC1: // xaddl
   546     case 0xC7: // cmpxchg8
   547     case REP16(0x90): // setcc a
   548       debug_only(has_disp32 = true);
   549       // fall out of the switch to decode the address
   550       break;
   552     case 0xAC: // shrd r, a, #8
   553       debug_only(has_disp32 = true);
   554       tail_size = 1;  // the imm8
   555       break;
   557     case REP16(0x80): // jcc rdisp32
   558       if (which == end_pc_operand)  return ip + 4;
   559       assert(which == call32_operand, "jcc has no disp32 or imm");
   560       return ip;
   561     default:
   562       ShouldNotReachHere();
   563     }
   564     break;
   566   case 0x81: // addl a, #32; addl r, #32
   567     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   568     // on 32bit in the case of cmpl, the imm might be an oop
   569     tail_size = 4;
   570     debug_only(has_disp32 = true); // has both kinds of operands!
   571     break;
   573   case 0x83: // addl a, #8; addl r, #8
   574     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   575     debug_only(has_disp32 = true); // has both kinds of operands!
   576     tail_size = 1;
   577     break;
   579   case 0x9B:
   580     switch (0xFF & *ip++) {
   581     case 0xD9: // fnstcw a
   582       debug_only(has_disp32 = true);
   583       break;
   584     default:
   585       ShouldNotReachHere();
   586     }
   587     break;
   589   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   590   case REP4(0x10): // adc...
   591   case REP4(0x20): // and...
   592   case REP4(0x30): // xor...
   593   case REP4(0x08): // or...
   594   case REP4(0x18): // sbb...
   595   case REP4(0x28): // sub...
   596   case 0xF7: // mull a
   597   case 0x8D: // lea r, a
   598   case 0x87: // xchg r, a
   599   case REP4(0x38): // cmp...
   600   case 0x85: // test r, a
   601     debug_only(has_disp32 = true); // has both kinds of operands!
   602     break;
   604   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   605   case 0xC6: // movb a, #8
   606   case 0x80: // cmpb a, #8
   607   case 0x6B: // imul r, a, #8
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     tail_size = 1; // the imm8
   610     break;
   612   case 0xE8: // call rdisp32
   613   case 0xE9: // jmp  rdisp32
   614     if (which == end_pc_operand)  return ip + 4;
   615     assert(which == call32_operand, "call has no disp32 or imm");
   616     return ip;
   618   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   619   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   620   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   621   case 0xDD: // fld_d a; fst_d a; fstp_d a
   622   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   623   case 0xDF: // fild_d a; fistp_d a
   624   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   625   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   626   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   627     debug_only(has_disp32 = true);
   628     break;
   630   case 0xF0:                    // Lock
   631     assert(os::is_MP(), "only on MP");
   632     goto again_after_prefix;
   634   case 0xF3:                    // For SSE
   635   case 0xF2:                    // For SSE2
   636     switch (0xFF & *ip++) {
   637     case REX:
   638     case REX_B:
   639     case REX_X:
   640     case REX_XB:
   641     case REX_R:
   642     case REX_RB:
   643     case REX_RX:
   644     case REX_RXB:
   645     case REX_W:
   646     case REX_WB:
   647     case REX_WX:
   648     case REX_WXB:
   649     case REX_WR:
   650     case REX_WRB:
   651     case REX_WRX:
   652     case REX_WRXB:
   653       NOT_LP64(assert(false, "found 64bit prefix"));
   654       ip++;
   655     default:
   656       ip++;
   657     }
   658     debug_only(has_disp32 = true); // has both kinds of operands!
   659     break;
   661   default:
   662     ShouldNotReachHere();
   664 #undef REP8
   665 #undef REP16
   666   }
   668   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   669 #ifdef _LP64
   670   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   671 #else
   672   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   673   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   674 #endif // LP64
   675   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   677   // parse the output of emit_operand
   678   int op2 = 0xFF & *ip++;
   679   int base = op2 & 0x07;
   680   int op3 = -1;
   681   const int b100 = 4;
   682   const int b101 = 5;
   683   if (base == b100 && (op2 >> 6) != 3) {
   684     op3 = 0xFF & *ip++;
   685     base = op3 & 0x07;   // refetch the base
   686   }
   687   // now ip points at the disp (if any)
   689   switch (op2 >> 6) {
   690   case 0:
   691     // [00 reg  100][ss index base]
   692     // [00 reg  100][00   100  esp]
   693     // [00 reg base]
   694     // [00 reg  100][ss index  101][disp32]
   695     // [00 reg  101]               [disp32]
   697     if (base == b101) {
   698       if (which == disp32_operand)
   699         return ip;              // caller wants the disp32
   700       ip += 4;                  // skip the disp32
   701     }
   702     break;
   704   case 1:
   705     // [01 reg  100][ss index base][disp8]
   706     // [01 reg  100][00   100  esp][disp8]
   707     // [01 reg base]               [disp8]
   708     ip += 1;                    // skip the disp8
   709     break;
   711   case 2:
   712     // [10 reg  100][ss index base][disp32]
   713     // [10 reg  100][00   100  esp][disp32]
   714     // [10 reg base]               [disp32]
   715     if (which == disp32_operand)
   716       return ip;                // caller wants the disp32
   717     ip += 4;                    // skip the disp32
   718     break;
   720   case 3:
   721     // [11 reg base]  (not a memory addressing mode)
   722     break;
   723   }
   725   if (which == end_pc_operand) {
   726     return ip + tail_size;
   727   }
   729 #ifdef _LP64
   730   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   731 #else
   732   assert(which == imm_operand, "instruction has only an imm field");
   733 #endif // LP64
   734   return ip;
   735 }
   737 address Assembler::locate_next_instruction(address inst) {
   738   // Secretly share code with locate_operand:
   739   return locate_operand(inst, end_pc_operand);
   740 }
   743 #ifdef ASSERT
   744 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   745   address inst = inst_mark();
   746   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   747   address opnd;
   749   Relocation* r = rspec.reloc();
   750   if (r->type() == relocInfo::none) {
   751     return;
   752   } else if (r->is_call() || format == call32_operand) {
   753     // assert(format == imm32_operand, "cannot specify a nonzero format");
   754     opnd = locate_operand(inst, call32_operand);
   755   } else if (r->is_data()) {
   756     assert(format == imm_operand || format == disp32_operand
   757            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   758     opnd = locate_operand(inst, (WhichOperand)format);
   759   } else {
   760     assert(format == imm_operand, "cannot specify a format");
   761     return;
   762   }
   763   assert(opnd == pc(), "must put operand where relocs can find it");
   764 }
   765 #endif // ASSERT
   767 void Assembler::emit_operand32(Register reg, Address adr) {
   768   assert(reg->encoding() < 8, "no extended registers");
   769   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   770   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   771                adr._rspec);
   772 }
   774 void Assembler::emit_operand(Register reg, Address adr,
   775                              int rip_relative_correction) {
   776   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   777                adr._rspec,
   778                rip_relative_correction);
   779 }
   781 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   782   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   783                adr._rspec);
   784 }
   786 // MMX operations
   787 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   788   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   789   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   790 }
   792 // work around gcc (3.2.1-7a) bug
   793 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   794   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   795   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   796 }
   799 void Assembler::emit_farith(int b1, int b2, int i) {
   800   assert(isByte(b1) && isByte(b2), "wrong opcode");
   801   assert(0 <= i &&  i < 8, "illegal stack offset");
   802   emit_byte(b1);
   803   emit_byte(b2 + i);
   804 }
   807 // Now the Assembler instruction (identical for 32/64 bits)
   809 void Assembler::adcl(Register dst, int32_t imm32) {
   810   prefix(dst);
   811   emit_arith(0x81, 0xD0, dst, imm32);
   812 }
   814 void Assembler::adcl(Register dst, Address src) {
   815   InstructionMark im(this);
   816   prefix(src, dst);
   817   emit_byte(0x13);
   818   emit_operand(dst, src);
   819 }
   821 void Assembler::adcl(Register dst, Register src) {
   822   (void) prefix_and_encode(dst->encoding(), src->encoding());
   823   emit_arith(0x13, 0xC0, dst, src);
   824 }
   826 void Assembler::addl(Address dst, int32_t imm32) {
   827   InstructionMark im(this);
   828   prefix(dst);
   829   emit_arith_operand(0x81, rax, dst, imm32);
   830 }
   832 void Assembler::addl(Address dst, Register src) {
   833   InstructionMark im(this);
   834   prefix(dst, src);
   835   emit_byte(0x01);
   836   emit_operand(src, dst);
   837 }
   839 void Assembler::addl(Register dst, int32_t imm32) {
   840   prefix(dst);
   841   emit_arith(0x81, 0xC0, dst, imm32);
   842 }
   844 void Assembler::addl(Register dst, Address src) {
   845   InstructionMark im(this);
   846   prefix(src, dst);
   847   emit_byte(0x03);
   848   emit_operand(dst, src);
   849 }
   851 void Assembler::addl(Register dst, Register src) {
   852   (void) prefix_and_encode(dst->encoding(), src->encoding());
   853   emit_arith(0x03, 0xC0, dst, src);
   854 }
   856 void Assembler::addr_nop_4() {
   857   // 4 bytes: NOP DWORD PTR [EAX+0]
   858   emit_byte(0x0F);
   859   emit_byte(0x1F);
   860   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   861   emit_byte(0);    // 8-bits offset (1 byte)
   862 }
   864 void Assembler::addr_nop_5() {
   865   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   866   emit_byte(0x0F);
   867   emit_byte(0x1F);
   868   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   869   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   870   emit_byte(0);    // 8-bits offset (1 byte)
   871 }
   873 void Assembler::addr_nop_7() {
   874   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   875   emit_byte(0x0F);
   876   emit_byte(0x1F);
   877   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   878   emit_long(0);    // 32-bits offset (4 bytes)
   879 }
   881 void Assembler::addr_nop_8() {
   882   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   883   emit_byte(0x0F);
   884   emit_byte(0x1F);
   885   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   886   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   887   emit_long(0);    // 32-bits offset (4 bytes)
   888 }
   890 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   891   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   892   emit_byte(0xF2);
   893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   894   emit_byte(0x0F);
   895   emit_byte(0x58);
   896   emit_byte(0xC0 | encode);
   897 }
   899 void Assembler::addsd(XMMRegister dst, Address src) {
   900   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   901   InstructionMark im(this);
   902   emit_byte(0xF2);
   903   prefix(src, dst);
   904   emit_byte(0x0F);
   905   emit_byte(0x58);
   906   emit_operand(dst, src);
   907 }
   909 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   911   emit_byte(0xF3);
   912   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_byte(0x0F);
   914   emit_byte(0x58);
   915   emit_byte(0xC0 | encode);
   916 }
   918 void Assembler::addss(XMMRegister dst, Address src) {
   919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   920   InstructionMark im(this);
   921   emit_byte(0xF3);
   922   prefix(src, dst);
   923   emit_byte(0x0F);
   924   emit_byte(0x58);
   925   emit_operand(dst, src);
   926 }
   928 void Assembler::andl(Register dst, int32_t imm32) {
   929   prefix(dst);
   930   emit_arith(0x81, 0xE0, dst, imm32);
   931 }
   933 void Assembler::andl(Register dst, Address src) {
   934   InstructionMark im(this);
   935   prefix(src, dst);
   936   emit_byte(0x23);
   937   emit_operand(dst, src);
   938 }
   940 void Assembler::andl(Register dst, Register src) {
   941   (void) prefix_and_encode(dst->encoding(), src->encoding());
   942   emit_arith(0x23, 0xC0, dst, src);
   943 }
   945 void Assembler::andpd(XMMRegister dst, Address src) {
   946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   947   InstructionMark im(this);
   948   emit_byte(0x66);
   949   prefix(src, dst);
   950   emit_byte(0x0F);
   951   emit_byte(0x54);
   952   emit_operand(dst, src);
   953 }
   955 void Assembler::bswapl(Register reg) { // bswap
   956   int encode = prefix_and_encode(reg->encoding());
   957   emit_byte(0x0F);
   958   emit_byte(0xC8 | encode);
   959 }
   961 void Assembler::call(Label& L, relocInfo::relocType rtype) {
   962   // suspect disp32 is always good
   963   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
   965   if (L.is_bound()) {
   966     const int long_size = 5;
   967     int offs = (int)( target(L) - pc() );
   968     assert(offs <= 0, "assembler error");
   969     InstructionMark im(this);
   970     // 1110 1000 #32-bit disp
   971     emit_byte(0xE8);
   972     emit_data(offs - long_size, rtype, operand);
   973   } else {
   974     InstructionMark im(this);
   975     // 1110 1000 #32-bit disp
   976     L.add_patch_at(code(), locator());
   978     emit_byte(0xE8);
   979     emit_data(int(0), rtype, operand);
   980   }
   981 }
   983 void Assembler::call(Register dst) {
   984   // This was originally using a 32bit register encoding
   985   // and surely we want 64bit!
   986   // this is a 32bit encoding but in 64bit mode the default
   987   // operand size is 64bit so there is no need for the
   988   // wide prefix. So prefix only happens if we use the
   989   // new registers. Much like push/pop.
   990   int x = offset();
   991   // this may be true but dbx disassembles it as if it
   992   // were 32bits...
   993   // int encode = prefix_and_encode(dst->encoding());
   994   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
   995   int encode = prefixq_and_encode(dst->encoding());
   997   emit_byte(0xFF);
   998   emit_byte(0xD0 | encode);
   999 }
  1002 void Assembler::call(Address adr) {
  1003   InstructionMark im(this);
  1004   prefix(adr);
  1005   emit_byte(0xFF);
  1006   emit_operand(rdx, adr);
  1009 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1010   assert(entry != NULL, "call most probably wrong");
  1011   InstructionMark im(this);
  1012   emit_byte(0xE8);
  1013   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1014   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1015   // Technically, should use call32_operand, but this format is
  1016   // implied by the fact that we're emitting a call instruction.
  1018   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1019   emit_data((int) disp, rspec, operand);
  1022 void Assembler::cdql() {
  1023   emit_byte(0x99);
  1026 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1027   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1028   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1029   emit_byte(0x0F);
  1030   emit_byte(0x40 | cc);
  1031   emit_byte(0xC0 | encode);
  1035 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1036   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1037   prefix(src, dst);
  1038   emit_byte(0x0F);
  1039   emit_byte(0x40 | cc);
  1040   emit_operand(dst, src);
  1043 void Assembler::cmpb(Address dst, int imm8) {
  1044   InstructionMark im(this);
  1045   prefix(dst);
  1046   emit_byte(0x80);
  1047   emit_operand(rdi, dst, 1);
  1048   emit_byte(imm8);
  1051 void Assembler::cmpl(Address dst, int32_t imm32) {
  1052   InstructionMark im(this);
  1053   prefix(dst);
  1054   emit_byte(0x81);
  1055   emit_operand(rdi, dst, 4);
  1056   emit_long(imm32);
  1059 void Assembler::cmpl(Register dst, int32_t imm32) {
  1060   prefix(dst);
  1061   emit_arith(0x81, 0xF8, dst, imm32);
  1064 void Assembler::cmpl(Register dst, Register src) {
  1065   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1066   emit_arith(0x3B, 0xC0, dst, src);
  1070 void Assembler::cmpl(Register dst, Address  src) {
  1071   InstructionMark im(this);
  1072   prefix(src, dst);
  1073   emit_byte(0x3B);
  1074   emit_operand(dst, src);
  1077 void Assembler::cmpw(Address dst, int imm16) {
  1078   InstructionMark im(this);
  1079   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1080   emit_byte(0x66);
  1081   emit_byte(0x81);
  1082   emit_operand(rdi, dst, 2);
  1083   emit_word(imm16);
  1086 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1087 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1088 // The ZF is set if the compared values were equal, and cleared otherwise.
  1089 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1090   if (Atomics & 2) {
  1091      // caveat: no instructionmark, so this isn't relocatable.
  1092      // Emit a synthetic, non-atomic, CAS equivalent.
  1093      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1094      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1095      cmpl(rax, adr);
  1096      movl(rax, adr);
  1097      if (reg != rax) {
  1098         Label L ;
  1099         jcc(Assembler::notEqual, L);
  1100         movl(adr, reg);
  1101         bind(L);
  1103   } else {
  1104      InstructionMark im(this);
  1105      prefix(adr, reg);
  1106      emit_byte(0x0F);
  1107      emit_byte(0xB1);
  1108      emit_operand(reg, adr);
  1112 void Assembler::comisd(XMMRegister dst, Address src) {
  1113   // NOTE: dbx seems to decode this as comiss even though the
  1114   // 0x66 is there. Strangly ucomisd comes out correct
  1115   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1116   emit_byte(0x66);
  1117   comiss(dst, src);
  1120 void Assembler::comiss(XMMRegister dst, Address src) {
  1121   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1123   InstructionMark im(this);
  1124   prefix(src, dst);
  1125   emit_byte(0x0F);
  1126   emit_byte(0x2F);
  1127   emit_operand(dst, src);
  1130 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1132   emit_byte(0xF3);
  1133   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1134   emit_byte(0x0F);
  1135   emit_byte(0xE6);
  1136   emit_byte(0xC0 | encode);
  1139 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1141   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1142   emit_byte(0x0F);
  1143   emit_byte(0x5B);
  1144   emit_byte(0xC0 | encode);
  1147 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1149   emit_byte(0xF2);
  1150   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1151   emit_byte(0x0F);
  1152   emit_byte(0x5A);
  1153   emit_byte(0xC0 | encode);
  1156 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1157   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1158   emit_byte(0xF2);
  1159   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1160   emit_byte(0x0F);
  1161   emit_byte(0x2A);
  1162   emit_byte(0xC0 | encode);
  1165 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1166   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1167   emit_byte(0xF3);
  1168   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1169   emit_byte(0x0F);
  1170   emit_byte(0x2A);
  1171   emit_byte(0xC0 | encode);
  1174 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1176   emit_byte(0xF3);
  1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1178   emit_byte(0x0F);
  1179   emit_byte(0x5A);
  1180   emit_byte(0xC0 | encode);
  1183 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1185   emit_byte(0xF2);
  1186   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1187   emit_byte(0x0F);
  1188   emit_byte(0x2C);
  1189   emit_byte(0xC0 | encode);
  1192 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1193   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1194   emit_byte(0xF3);
  1195   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1196   emit_byte(0x0F);
  1197   emit_byte(0x2C);
  1198   emit_byte(0xC0 | encode);
  1201 void Assembler::decl(Address dst) {
  1202   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1203   InstructionMark im(this);
  1204   prefix(dst);
  1205   emit_byte(0xFF);
  1206   emit_operand(rcx, dst);
  1209 void Assembler::divsd(XMMRegister dst, Address src) {
  1210   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1211   InstructionMark im(this);
  1212   emit_byte(0xF2);
  1213   prefix(src, dst);
  1214   emit_byte(0x0F);
  1215   emit_byte(0x5E);
  1216   emit_operand(dst, src);
  1219 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1220   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1221   emit_byte(0xF2);
  1222   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1223   emit_byte(0x0F);
  1224   emit_byte(0x5E);
  1225   emit_byte(0xC0 | encode);
  1228 void Assembler::divss(XMMRegister dst, Address src) {
  1229   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1230   InstructionMark im(this);
  1231   emit_byte(0xF3);
  1232   prefix(src, dst);
  1233   emit_byte(0x0F);
  1234   emit_byte(0x5E);
  1235   emit_operand(dst, src);
  1238 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1239   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1240   emit_byte(0xF3);
  1241   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1242   emit_byte(0x0F);
  1243   emit_byte(0x5E);
  1244   emit_byte(0xC0 | encode);
  1247 void Assembler::emms() {
  1248   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1249   emit_byte(0x0F);
  1250   emit_byte(0x77);
  1253 void Assembler::hlt() {
  1254   emit_byte(0xF4);
  1257 void Assembler::idivl(Register src) {
  1258   int encode = prefix_and_encode(src->encoding());
  1259   emit_byte(0xF7);
  1260   emit_byte(0xF8 | encode);
  1263 void Assembler::imull(Register dst, Register src) {
  1264   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1265   emit_byte(0x0F);
  1266   emit_byte(0xAF);
  1267   emit_byte(0xC0 | encode);
  1271 void Assembler::imull(Register dst, Register src, int value) {
  1272   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1273   if (is8bit(value)) {
  1274     emit_byte(0x6B);
  1275     emit_byte(0xC0 | encode);
  1276     emit_byte(value);
  1277   } else {
  1278     emit_byte(0x69);
  1279     emit_byte(0xC0 | encode);
  1280     emit_long(value);
  1284 void Assembler::incl(Address dst) {
  1285   // Don't use it directly. Use MacroAssembler::increment() instead.
  1286   InstructionMark im(this);
  1287   prefix(dst);
  1288   emit_byte(0xFF);
  1289   emit_operand(rax, dst);
  1292 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1293   InstructionMark im(this);
  1294   relocate(rtype);
  1295   assert((0 <= cc) && (cc < 16), "illegal cc");
  1296   if (L.is_bound()) {
  1297     address dst = target(L);
  1298     assert(dst != NULL, "jcc most probably wrong");
  1300     const int short_size = 2;
  1301     const int long_size = 6;
  1302     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1303     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1304       // 0111 tttn #8-bit disp
  1305       emit_byte(0x70 | cc);
  1306       emit_byte((offs - short_size) & 0xFF);
  1307     } else {
  1308       // 0000 1111 1000 tttn #32-bit disp
  1309       assert(is_simm32(offs - long_size),
  1310              "must be 32bit offset (call4)");
  1311       emit_byte(0x0F);
  1312       emit_byte(0x80 | cc);
  1313       emit_long(offs - long_size);
  1315   } else {
  1316     // Note: could eliminate cond. jumps to this jump if condition
  1317     //       is the same however, seems to be rather unlikely case.
  1318     // Note: use jccb() if label to be bound is very close to get
  1319     //       an 8-bit displacement
  1320     L.add_patch_at(code(), locator());
  1321     emit_byte(0x0F);
  1322     emit_byte(0x80 | cc);
  1323     emit_long(0);
  1327 void Assembler::jccb(Condition cc, Label& L) {
  1328   if (L.is_bound()) {
  1329     const int short_size = 2;
  1330     address entry = target(L);
  1331     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1332            "Dispacement too large for a short jmp");
  1333     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1334     // 0111 tttn #8-bit disp
  1335     emit_byte(0x70 | cc);
  1336     emit_byte((offs - short_size) & 0xFF);
  1337   } else {
  1338     InstructionMark im(this);
  1339     L.add_patch_at(code(), locator());
  1340     emit_byte(0x70 | cc);
  1341     emit_byte(0);
  1345 void Assembler::jmp(Address adr) {
  1346   InstructionMark im(this);
  1347   prefix(adr);
  1348   emit_byte(0xFF);
  1349   emit_operand(rsp, adr);
  1352 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1353   if (L.is_bound()) {
  1354     address entry = target(L);
  1355     assert(entry != NULL, "jmp most probably wrong");
  1356     InstructionMark im(this);
  1357     const int short_size = 2;
  1358     const int long_size = 5;
  1359     intptr_t offs = entry - _code_pos;
  1360     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1361       emit_byte(0xEB);
  1362       emit_byte((offs - short_size) & 0xFF);
  1363     } else {
  1364       emit_byte(0xE9);
  1365       emit_long(offs - long_size);
  1367   } else {
  1368     // By default, forward jumps are always 32-bit displacements, since
  1369     // we can't yet know where the label will be bound.  If you're sure that
  1370     // the forward jump will not run beyond 256 bytes, use jmpb to
  1371     // force an 8-bit displacement.
  1372     InstructionMark im(this);
  1373     relocate(rtype);
  1374     L.add_patch_at(code(), locator());
  1375     emit_byte(0xE9);
  1376     emit_long(0);
  1380 void Assembler::jmp(Register entry) {
  1381   int encode = prefix_and_encode(entry->encoding());
  1382   emit_byte(0xFF);
  1383   emit_byte(0xE0 | encode);
  1386 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1387   InstructionMark im(this);
  1388   emit_byte(0xE9);
  1389   assert(dest != NULL, "must have a target");
  1390   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1391   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1392   emit_data(disp, rspec.reloc(), call32_operand);
  1395 void Assembler::jmpb(Label& L) {
  1396   if (L.is_bound()) {
  1397     const int short_size = 2;
  1398     address entry = target(L);
  1399     assert(is8bit((entry - _code_pos) + short_size),
  1400            "Dispacement too large for a short jmp");
  1401     assert(entry != NULL, "jmp most probably wrong");
  1402     intptr_t offs = entry - _code_pos;
  1403     emit_byte(0xEB);
  1404     emit_byte((offs - short_size) & 0xFF);
  1405   } else {
  1406     InstructionMark im(this);
  1407     L.add_patch_at(code(), locator());
  1408     emit_byte(0xEB);
  1409     emit_byte(0);
  1413 void Assembler::ldmxcsr( Address src) {
  1414   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1415   InstructionMark im(this);
  1416   prefix(src);
  1417   emit_byte(0x0F);
  1418   emit_byte(0xAE);
  1419   emit_operand(as_Register(2), src);
  1422 void Assembler::leal(Register dst, Address src) {
  1423   InstructionMark im(this);
  1424 #ifdef _LP64
  1425   emit_byte(0x67); // addr32
  1426   prefix(src, dst);
  1427 #endif // LP64
  1428   emit_byte(0x8D);
  1429   emit_operand(dst, src);
  1432 void Assembler::lock() {
  1433   if (Atomics & 1) {
  1434      // Emit either nothing, a NOP, or a NOP: prefix
  1435      emit_byte(0x90) ;
  1436   } else {
  1437      emit_byte(0xF0);
  1441 // Emit mfence instruction
  1442 void Assembler::mfence() {
  1443   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1444   emit_byte( 0x0F );
  1445   emit_byte( 0xAE );
  1446   emit_byte( 0xF0 );
  1449 void Assembler::mov(Register dst, Register src) {
  1450   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1453 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1455   int dstenc = dst->encoding();
  1456   int srcenc = src->encoding();
  1457   emit_byte(0x66);
  1458   if (dstenc < 8) {
  1459     if (srcenc >= 8) {
  1460       prefix(REX_B);
  1461       srcenc -= 8;
  1463   } else {
  1464     if (srcenc < 8) {
  1465       prefix(REX_R);
  1466     } else {
  1467       prefix(REX_RB);
  1468       srcenc -= 8;
  1470     dstenc -= 8;
  1472   emit_byte(0x0F);
  1473   emit_byte(0x28);
  1474   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1477 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1478   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1479   int dstenc = dst->encoding();
  1480   int srcenc = src->encoding();
  1481   if (dstenc < 8) {
  1482     if (srcenc >= 8) {
  1483       prefix(REX_B);
  1484       srcenc -= 8;
  1486   } else {
  1487     if (srcenc < 8) {
  1488       prefix(REX_R);
  1489     } else {
  1490       prefix(REX_RB);
  1491       srcenc -= 8;
  1493     dstenc -= 8;
  1495   emit_byte(0x0F);
  1496   emit_byte(0x28);
  1497   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1500 void Assembler::movb(Register dst, Address src) {
  1501   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1502   InstructionMark im(this);
  1503   prefix(src, dst, true);
  1504   emit_byte(0x8A);
  1505   emit_operand(dst, src);
  1509 void Assembler::movb(Address dst, int imm8) {
  1510   InstructionMark im(this);
  1511    prefix(dst);
  1512   emit_byte(0xC6);
  1513   emit_operand(rax, dst, 1);
  1514   emit_byte(imm8);
  1518 void Assembler::movb(Address dst, Register src) {
  1519   assert(src->has_byte_register(), "must have byte register");
  1520   InstructionMark im(this);
  1521   prefix(dst, src, true);
  1522   emit_byte(0x88);
  1523   emit_operand(src, dst);
  1526 void Assembler::movdl(XMMRegister dst, Register src) {
  1527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1528   emit_byte(0x66);
  1529   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1530   emit_byte(0x0F);
  1531   emit_byte(0x6E);
  1532   emit_byte(0xC0 | encode);
  1535 void Assembler::movdl(Register dst, XMMRegister src) {
  1536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1537   emit_byte(0x66);
  1538   // swap src/dst to get correct prefix
  1539   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1540   emit_byte(0x0F);
  1541   emit_byte(0x7E);
  1542   emit_byte(0xC0 | encode);
  1545 void Assembler::movdqa(XMMRegister dst, Address src) {
  1546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1547   InstructionMark im(this);
  1548   emit_byte(0x66);
  1549   prefix(src, dst);
  1550   emit_byte(0x0F);
  1551   emit_byte(0x6F);
  1552   emit_operand(dst, src);
  1555 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1557   emit_byte(0x66);
  1558   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1559   emit_byte(0x0F);
  1560   emit_byte(0x6F);
  1561   emit_byte(0xC0 | encode);
  1564 void Assembler::movdqa(Address dst, XMMRegister src) {
  1565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1566   InstructionMark im(this);
  1567   emit_byte(0x66);
  1568   prefix(dst, src);
  1569   emit_byte(0x0F);
  1570   emit_byte(0x7F);
  1571   emit_operand(src, dst);
  1574 void Assembler::movdqu(XMMRegister dst, Address src) {
  1575   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1576   InstructionMark im(this);
  1577   emit_byte(0xF3);
  1578   prefix(src, dst);
  1579   emit_byte(0x0F);
  1580   emit_byte(0x6F);
  1581   emit_operand(dst, src);
  1584 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1585   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1586   emit_byte(0xF3);
  1587   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1588   emit_byte(0x0F);
  1589   emit_byte(0x6F);
  1590   emit_byte(0xC0 | encode);
  1593 void Assembler::movdqu(Address dst, XMMRegister src) {
  1594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1595   InstructionMark im(this);
  1596   emit_byte(0xF3);
  1597   prefix(dst, src);
  1598   emit_byte(0x0F);
  1599   emit_byte(0x7F);
  1600   emit_operand(src, dst);
  1603 // Uses zero extension on 64bit
  1605 void Assembler::movl(Register dst, int32_t imm32) {
  1606   int encode = prefix_and_encode(dst->encoding());
  1607   emit_byte(0xB8 | encode);
  1608   emit_long(imm32);
  1611 void Assembler::movl(Register dst, Register src) {
  1612   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1613   emit_byte(0x8B);
  1614   emit_byte(0xC0 | encode);
  1617 void Assembler::movl(Register dst, Address src) {
  1618   InstructionMark im(this);
  1619   prefix(src, dst);
  1620   emit_byte(0x8B);
  1621   emit_operand(dst, src);
  1624 void Assembler::movl(Address dst, int32_t imm32) {
  1625   InstructionMark im(this);
  1626   prefix(dst);
  1627   emit_byte(0xC7);
  1628   emit_operand(rax, dst, 4);
  1629   emit_long(imm32);
  1632 void Assembler::movl(Address dst, Register src) {
  1633   InstructionMark im(this);
  1634   prefix(dst, src);
  1635   emit_byte(0x89);
  1636   emit_operand(src, dst);
  1639 // New cpus require to use movsd and movss to avoid partial register stall
  1640 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1641 // The selection is done in MacroAssembler::movdbl() and movflt().
  1642 void Assembler::movlpd(XMMRegister dst, Address src) {
  1643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1644   InstructionMark im(this);
  1645   emit_byte(0x66);
  1646   prefix(src, dst);
  1647   emit_byte(0x0F);
  1648   emit_byte(0x12);
  1649   emit_operand(dst, src);
  1652 void Assembler::movq( MMXRegister dst, Address src ) {
  1653   assert( VM_Version::supports_mmx(), "" );
  1654   emit_byte(0x0F);
  1655   emit_byte(0x6F);
  1656   emit_operand(dst, src);
  1659 void Assembler::movq( Address dst, MMXRegister src ) {
  1660   assert( VM_Version::supports_mmx(), "" );
  1661   emit_byte(0x0F);
  1662   emit_byte(0x7F);
  1663   // workaround gcc (3.2.1-7a) bug
  1664   // In that version of gcc with only an emit_operand(MMX, Address)
  1665   // gcc will tail jump and try and reverse the parameters completely
  1666   // obliterating dst in the process. By having a version available
  1667   // that doesn't need to swap the args at the tail jump the bug is
  1668   // avoided.
  1669   emit_operand(dst, src);
  1672 void Assembler::movq(XMMRegister dst, Address src) {
  1673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1674   InstructionMark im(this);
  1675   emit_byte(0xF3);
  1676   prefix(src, dst);
  1677   emit_byte(0x0F);
  1678   emit_byte(0x7E);
  1679   emit_operand(dst, src);
  1682 void Assembler::movq(Address dst, XMMRegister src) {
  1683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1684   InstructionMark im(this);
  1685   emit_byte(0x66);
  1686   prefix(dst, src);
  1687   emit_byte(0x0F);
  1688   emit_byte(0xD6);
  1689   emit_operand(src, dst);
  1692 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1693   InstructionMark im(this);
  1694   prefix(src, dst);
  1695   emit_byte(0x0F);
  1696   emit_byte(0xBE);
  1697   emit_operand(dst, src);
  1700 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1701   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1702   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1703   emit_byte(0x0F);
  1704   emit_byte(0xBE);
  1705   emit_byte(0xC0 | encode);
  1708 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1710   emit_byte(0xF2);
  1711   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1712   emit_byte(0x0F);
  1713   emit_byte(0x10);
  1714   emit_byte(0xC0 | encode);
  1717 void Assembler::movsd(XMMRegister dst, Address src) {
  1718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1719   InstructionMark im(this);
  1720   emit_byte(0xF2);
  1721   prefix(src, dst);
  1722   emit_byte(0x0F);
  1723   emit_byte(0x10);
  1724   emit_operand(dst, src);
  1727 void Assembler::movsd(Address dst, XMMRegister src) {
  1728   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1729   InstructionMark im(this);
  1730   emit_byte(0xF2);
  1731   prefix(dst, src);
  1732   emit_byte(0x0F);
  1733   emit_byte(0x11);
  1734   emit_operand(src, dst);
  1737 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1738   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1739   emit_byte(0xF3);
  1740   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1741   emit_byte(0x0F);
  1742   emit_byte(0x10);
  1743   emit_byte(0xC0 | encode);
  1746 void Assembler::movss(XMMRegister dst, Address src) {
  1747   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1748   InstructionMark im(this);
  1749   emit_byte(0xF3);
  1750   prefix(src, dst);
  1751   emit_byte(0x0F);
  1752   emit_byte(0x10);
  1753   emit_operand(dst, src);
  1756 void Assembler::movss(Address dst, XMMRegister src) {
  1757   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1758   InstructionMark im(this);
  1759   emit_byte(0xF3);
  1760   prefix(dst, src);
  1761   emit_byte(0x0F);
  1762   emit_byte(0x11);
  1763   emit_operand(src, dst);
  1766 void Assembler::movswl(Register dst, Address src) { // movsxw
  1767   InstructionMark im(this);
  1768   prefix(src, dst);
  1769   emit_byte(0x0F);
  1770   emit_byte(0xBF);
  1771   emit_operand(dst, src);
  1774 void Assembler::movswl(Register dst, Register src) { // movsxw
  1775   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1776   emit_byte(0x0F);
  1777   emit_byte(0xBF);
  1778   emit_byte(0xC0 | encode);
  1781 void Assembler::movw(Address dst, int imm16) {
  1782   InstructionMark im(this);
  1784   emit_byte(0x66); // switch to 16-bit mode
  1785   prefix(dst);
  1786   emit_byte(0xC7);
  1787   emit_operand(rax, dst, 2);
  1788   emit_word(imm16);
  1791 void Assembler::movw(Register dst, Address src) {
  1792   InstructionMark im(this);
  1793   emit_byte(0x66);
  1794   prefix(src, dst);
  1795   emit_byte(0x8B);
  1796   emit_operand(dst, src);
  1799 void Assembler::movw(Address dst, Register src) {
  1800   InstructionMark im(this);
  1801   emit_byte(0x66);
  1802   prefix(dst, src);
  1803   emit_byte(0x89);
  1804   emit_operand(src, dst);
  1807 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1808   InstructionMark im(this);
  1809   prefix(src, dst);
  1810   emit_byte(0x0F);
  1811   emit_byte(0xB6);
  1812   emit_operand(dst, src);
  1815 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1816   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1817   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1818   emit_byte(0x0F);
  1819   emit_byte(0xB6);
  1820   emit_byte(0xC0 | encode);
  1823 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1824   InstructionMark im(this);
  1825   prefix(src, dst);
  1826   emit_byte(0x0F);
  1827   emit_byte(0xB7);
  1828   emit_operand(dst, src);
  1831 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1832   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1833   emit_byte(0x0F);
  1834   emit_byte(0xB7);
  1835   emit_byte(0xC0 | encode);
  1838 void Assembler::mull(Address src) {
  1839   InstructionMark im(this);
  1840   prefix(src);
  1841   emit_byte(0xF7);
  1842   emit_operand(rsp, src);
  1845 void Assembler::mull(Register src) {
  1846   int encode = prefix_and_encode(src->encoding());
  1847   emit_byte(0xF7);
  1848   emit_byte(0xE0 | encode);
  1851 void Assembler::mulsd(XMMRegister dst, Address src) {
  1852   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1853   InstructionMark im(this);
  1854   emit_byte(0xF2);
  1855   prefix(src, dst);
  1856   emit_byte(0x0F);
  1857   emit_byte(0x59);
  1858   emit_operand(dst, src);
  1861 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1863   emit_byte(0xF2);
  1864   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1865   emit_byte(0x0F);
  1866   emit_byte(0x59);
  1867   emit_byte(0xC0 | encode);
  1870 void Assembler::mulss(XMMRegister dst, Address src) {
  1871   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1872   InstructionMark im(this);
  1873   emit_byte(0xF3);
  1874   prefix(src, dst);
  1875   emit_byte(0x0F);
  1876   emit_byte(0x59);
  1877   emit_operand(dst, src);
  1880 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1881   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1882   emit_byte(0xF3);
  1883   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1884   emit_byte(0x0F);
  1885   emit_byte(0x59);
  1886   emit_byte(0xC0 | encode);
  1889 void Assembler::negl(Register dst) {
  1890   int encode = prefix_and_encode(dst->encoding());
  1891   emit_byte(0xF7);
  1892   emit_byte(0xD8 | encode);
  1895 void Assembler::nop(int i) {
  1896 #ifdef ASSERT
  1897   assert(i > 0, " ");
  1898   // The fancy nops aren't currently recognized by debuggers making it a
  1899   // pain to disassemble code while debugging. If asserts are on clearly
  1900   // speed is not an issue so simply use the single byte traditional nop
  1901   // to do alignment.
  1903   for (; i > 0 ; i--) emit_byte(0x90);
  1904   return;
  1906 #endif // ASSERT
  1908   if (UseAddressNop && VM_Version::is_intel()) {
  1909     //
  1910     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1911     //  1: 0x90
  1912     //  2: 0x66 0x90
  1913     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1914     //  4: 0x0F 0x1F 0x40 0x00
  1915     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1916     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1917     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1918     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1919     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1920     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1921     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1923     // The rest coding is Intel specific - don't use consecutive address nops
  1925     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1926     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1927     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1928     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1930     while(i >= 15) {
  1931       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1932       i -= 15;
  1933       emit_byte(0x66);   // size prefix
  1934       emit_byte(0x66);   // size prefix
  1935       emit_byte(0x66);   // size prefix
  1936       addr_nop_8();
  1937       emit_byte(0x66);   // size prefix
  1938       emit_byte(0x66);   // size prefix
  1939       emit_byte(0x66);   // size prefix
  1940       emit_byte(0x90);   // nop
  1942     switch (i) {
  1943       case 14:
  1944         emit_byte(0x66); // size prefix
  1945       case 13:
  1946         emit_byte(0x66); // size prefix
  1947       case 12:
  1948         addr_nop_8();
  1949         emit_byte(0x66); // size prefix
  1950         emit_byte(0x66); // size prefix
  1951         emit_byte(0x66); // size prefix
  1952         emit_byte(0x90); // nop
  1953         break;
  1954       case 11:
  1955         emit_byte(0x66); // size prefix
  1956       case 10:
  1957         emit_byte(0x66); // size prefix
  1958       case 9:
  1959         emit_byte(0x66); // size prefix
  1960       case 8:
  1961         addr_nop_8();
  1962         break;
  1963       case 7:
  1964         addr_nop_7();
  1965         break;
  1966       case 6:
  1967         emit_byte(0x66); // size prefix
  1968       case 5:
  1969         addr_nop_5();
  1970         break;
  1971       case 4:
  1972         addr_nop_4();
  1973         break;
  1974       case 3:
  1975         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  1976         emit_byte(0x66); // size prefix
  1977       case 2:
  1978         emit_byte(0x66); // size prefix
  1979       case 1:
  1980         emit_byte(0x90); // nop
  1981         break;
  1982       default:
  1983         assert(i == 0, " ");
  1985     return;
  1987   if (UseAddressNop && VM_Version::is_amd()) {
  1988     //
  1989     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  1990     //  1: 0x90
  1991     //  2: 0x66 0x90
  1992     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1993     //  4: 0x0F 0x1F 0x40 0x00
  1994     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1995     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1996     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1997     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1998     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1999     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2000     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2002     // The rest coding is AMD specific - use consecutive address nops
  2004     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2005     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2006     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2007     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2008     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2009     //     Size prefixes (0x66) are added for larger sizes
  2011     while(i >= 22) {
  2012       i -= 11;
  2013       emit_byte(0x66); // size prefix
  2014       emit_byte(0x66); // size prefix
  2015       emit_byte(0x66); // size prefix
  2016       addr_nop_8();
  2018     // Generate first nop for size between 21-12
  2019     switch (i) {
  2020       case 21:
  2021         i -= 1;
  2022         emit_byte(0x66); // size prefix
  2023       case 20:
  2024       case 19:
  2025         i -= 1;
  2026         emit_byte(0x66); // size prefix
  2027       case 18:
  2028       case 17:
  2029         i -= 1;
  2030         emit_byte(0x66); // size prefix
  2031       case 16:
  2032       case 15:
  2033         i -= 8;
  2034         addr_nop_8();
  2035         break;
  2036       case 14:
  2037       case 13:
  2038         i -= 7;
  2039         addr_nop_7();
  2040         break;
  2041       case 12:
  2042         i -= 6;
  2043         emit_byte(0x66); // size prefix
  2044         addr_nop_5();
  2045         break;
  2046       default:
  2047         assert(i < 12, " ");
  2050     // Generate second nop for size between 11-1
  2051     switch (i) {
  2052       case 11:
  2053         emit_byte(0x66); // size prefix
  2054       case 10:
  2055         emit_byte(0x66); // size prefix
  2056       case 9:
  2057         emit_byte(0x66); // size prefix
  2058       case 8:
  2059         addr_nop_8();
  2060         break;
  2061       case 7:
  2062         addr_nop_7();
  2063         break;
  2064       case 6:
  2065         emit_byte(0x66); // size prefix
  2066       case 5:
  2067         addr_nop_5();
  2068         break;
  2069       case 4:
  2070         addr_nop_4();
  2071         break;
  2072       case 3:
  2073         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2074         emit_byte(0x66); // size prefix
  2075       case 2:
  2076         emit_byte(0x66); // size prefix
  2077       case 1:
  2078         emit_byte(0x90); // nop
  2079         break;
  2080       default:
  2081         assert(i == 0, " ");
  2083     return;
  2086   // Using nops with size prefixes "0x66 0x90".
  2087   // From AMD Optimization Guide:
  2088   //  1: 0x90
  2089   //  2: 0x66 0x90
  2090   //  3: 0x66 0x66 0x90
  2091   //  4: 0x66 0x66 0x66 0x90
  2092   //  5: 0x66 0x66 0x90 0x66 0x90
  2093   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2094   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2095   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2096   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2097   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2098   //
  2099   while(i > 12) {
  2100     i -= 4;
  2101     emit_byte(0x66); // size prefix
  2102     emit_byte(0x66);
  2103     emit_byte(0x66);
  2104     emit_byte(0x90); // nop
  2106   // 1 - 12 nops
  2107   if(i > 8) {
  2108     if(i > 9) {
  2109       i -= 1;
  2110       emit_byte(0x66);
  2112     i -= 3;
  2113     emit_byte(0x66);
  2114     emit_byte(0x66);
  2115     emit_byte(0x90);
  2117   // 1 - 8 nops
  2118   if(i > 4) {
  2119     if(i > 6) {
  2120       i -= 1;
  2121       emit_byte(0x66);
  2123     i -= 3;
  2124     emit_byte(0x66);
  2125     emit_byte(0x66);
  2126     emit_byte(0x90);
  2128   switch (i) {
  2129     case 4:
  2130       emit_byte(0x66);
  2131     case 3:
  2132       emit_byte(0x66);
  2133     case 2:
  2134       emit_byte(0x66);
  2135     case 1:
  2136       emit_byte(0x90);
  2137       break;
  2138     default:
  2139       assert(i == 0, " ");
  2143 void Assembler::notl(Register dst) {
  2144   int encode = prefix_and_encode(dst->encoding());
  2145   emit_byte(0xF7);
  2146   emit_byte(0xD0 | encode );
  2149 void Assembler::orl(Address dst, int32_t imm32) {
  2150   InstructionMark im(this);
  2151   prefix(dst);
  2152   emit_byte(0x81);
  2153   emit_operand(rcx, dst, 4);
  2154   emit_long(imm32);
  2157 void Assembler::orl(Register dst, int32_t imm32) {
  2158   prefix(dst);
  2159   emit_arith(0x81, 0xC8, dst, imm32);
  2163 void Assembler::orl(Register dst, Address src) {
  2164   InstructionMark im(this);
  2165   prefix(src, dst);
  2166   emit_byte(0x0B);
  2167   emit_operand(dst, src);
  2171 void Assembler::orl(Register dst, Register src) {
  2172   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2173   emit_arith(0x0B, 0xC0, dst, src);
  2176 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2177   assert(VM_Version::supports_sse4_2(), "");
  2179   InstructionMark im(this);
  2180   emit_byte(0x66);
  2181   prefix(src, dst);
  2182   emit_byte(0x0F);
  2183   emit_byte(0x3A);
  2184   emit_byte(0x61);
  2185   emit_operand(dst, src);
  2186   emit_byte(imm8);
  2189 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2190   assert(VM_Version::supports_sse4_2(), "");
  2192   emit_byte(0x66);
  2193   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2194   emit_byte(0x0F);
  2195   emit_byte(0x3A);
  2196   emit_byte(0x61);
  2197   emit_byte(0xC0 | encode);
  2198   emit_byte(imm8);
  2201 // generic
  2202 void Assembler::pop(Register dst) {
  2203   int encode = prefix_and_encode(dst->encoding());
  2204   emit_byte(0x58 | encode);
  2207 void Assembler::popcntl(Register dst, Address src) {
  2208   assert(VM_Version::supports_popcnt(), "must support");
  2209   InstructionMark im(this);
  2210   emit_byte(0xF3);
  2211   prefix(src, dst);
  2212   emit_byte(0x0F);
  2213   emit_byte(0xB8);
  2214   emit_operand(dst, src);
  2217 void Assembler::popcntl(Register dst, Register src) {
  2218   assert(VM_Version::supports_popcnt(), "must support");
  2219   emit_byte(0xF3);
  2220   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2221   emit_byte(0x0F);
  2222   emit_byte(0xB8);
  2223   emit_byte(0xC0 | encode);
  2226 void Assembler::popf() {
  2227   emit_byte(0x9D);
  2230 void Assembler::popl(Address dst) {
  2231   // NOTE: this will adjust stack by 8byte on 64bits
  2232   InstructionMark im(this);
  2233   prefix(dst);
  2234   emit_byte(0x8F);
  2235   emit_operand(rax, dst);
  2238 void Assembler::prefetch_prefix(Address src) {
  2239   prefix(src);
  2240   emit_byte(0x0F);
  2243 void Assembler::prefetchnta(Address src) {
  2244   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2245   InstructionMark im(this);
  2246   prefetch_prefix(src);
  2247   emit_byte(0x18);
  2248   emit_operand(rax, src); // 0, src
  2251 void Assembler::prefetchr(Address src) {
  2252   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2253   InstructionMark im(this);
  2254   prefetch_prefix(src);
  2255   emit_byte(0x0D);
  2256   emit_operand(rax, src); // 0, src
  2259 void Assembler::prefetcht0(Address src) {
  2260   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2261   InstructionMark im(this);
  2262   prefetch_prefix(src);
  2263   emit_byte(0x18);
  2264   emit_operand(rcx, src); // 1, src
  2267 void Assembler::prefetcht1(Address src) {
  2268   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2269   InstructionMark im(this);
  2270   prefetch_prefix(src);
  2271   emit_byte(0x18);
  2272   emit_operand(rdx, src); // 2, src
  2275 void Assembler::prefetcht2(Address src) {
  2276   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2277   InstructionMark im(this);
  2278   prefetch_prefix(src);
  2279   emit_byte(0x18);
  2280   emit_operand(rbx, src); // 3, src
  2283 void Assembler::prefetchw(Address src) {
  2284   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2285   InstructionMark im(this);
  2286   prefetch_prefix(src);
  2287   emit_byte(0x0D);
  2288   emit_operand(rcx, src); // 1, src
  2291 void Assembler::prefix(Prefix p) {
  2292   a_byte(p);
  2295 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2296   assert(isByte(mode), "invalid value");
  2297   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2299   emit_byte(0x66);
  2300   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2301   emit_byte(0x0F);
  2302   emit_byte(0x70);
  2303   emit_byte(0xC0 | encode);
  2304   emit_byte(mode & 0xFF);
  2308 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2309   assert(isByte(mode), "invalid value");
  2310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2312   InstructionMark im(this);
  2313   emit_byte(0x66);
  2314   prefix(src, dst);
  2315   emit_byte(0x0F);
  2316   emit_byte(0x70);
  2317   emit_operand(dst, src);
  2318   emit_byte(mode & 0xFF);
  2321 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2322   assert(isByte(mode), "invalid value");
  2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2325   emit_byte(0xF2);
  2326   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2327   emit_byte(0x0F);
  2328   emit_byte(0x70);
  2329   emit_byte(0xC0 | encode);
  2330   emit_byte(mode & 0xFF);
  2333 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2334   assert(isByte(mode), "invalid value");
  2335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2337   InstructionMark im(this);
  2338   emit_byte(0xF2);
  2339   prefix(src, dst); // QQ new
  2340   emit_byte(0x0F);
  2341   emit_byte(0x70);
  2342   emit_operand(dst, src);
  2343   emit_byte(mode & 0xFF);
  2346 void Assembler::psrlq(XMMRegister dst, int shift) {
  2347   // HMM Table D-1 says sse2 or mmx
  2348   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2350   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2351   emit_byte(0x66);
  2352   emit_byte(0x0F);
  2353   emit_byte(0x73);
  2354   emit_byte(0xC0 | encode);
  2355   emit_byte(shift);
  2358 void Assembler::ptest(XMMRegister dst, Address src) {
  2359   assert(VM_Version::supports_sse4_1(), "");
  2361   InstructionMark im(this);
  2362   emit_byte(0x66);
  2363   prefix(src, dst);
  2364   emit_byte(0x0F);
  2365   emit_byte(0x38);
  2366   emit_byte(0x17);
  2367   emit_operand(dst, src);
  2370 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2371   assert(VM_Version::supports_sse4_1(), "");
  2373   emit_byte(0x66);
  2374   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2375   emit_byte(0x0F);
  2376   emit_byte(0x38);
  2377   emit_byte(0x17);
  2378   emit_byte(0xC0 | encode);
  2381 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2383   emit_byte(0x66);
  2384   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2385   emit_byte(0x0F);
  2386   emit_byte(0x60);
  2387   emit_byte(0xC0 | encode);
  2390 void Assembler::push(int32_t imm32) {
  2391   // in 64bits we push 64bits onto the stack but only
  2392   // take a 32bit immediate
  2393   emit_byte(0x68);
  2394   emit_long(imm32);
  2397 void Assembler::push(Register src) {
  2398   int encode = prefix_and_encode(src->encoding());
  2400   emit_byte(0x50 | encode);
  2403 void Assembler::pushf() {
  2404   emit_byte(0x9C);
  2407 void Assembler::pushl(Address src) {
  2408   // Note this will push 64bit on 64bit
  2409   InstructionMark im(this);
  2410   prefix(src);
  2411   emit_byte(0xFF);
  2412   emit_operand(rsi, src);
  2415 void Assembler::pxor(XMMRegister dst, Address src) {
  2416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2417   InstructionMark im(this);
  2418   emit_byte(0x66);
  2419   prefix(src, dst);
  2420   emit_byte(0x0F);
  2421   emit_byte(0xEF);
  2422   emit_operand(dst, src);
  2425 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2426   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2427   InstructionMark im(this);
  2428   emit_byte(0x66);
  2429   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2430   emit_byte(0x0F);
  2431   emit_byte(0xEF);
  2432   emit_byte(0xC0 | encode);
  2435 void Assembler::rcll(Register dst, int imm8) {
  2436   assert(isShiftCount(imm8), "illegal shift count");
  2437   int encode = prefix_and_encode(dst->encoding());
  2438   if (imm8 == 1) {
  2439     emit_byte(0xD1);
  2440     emit_byte(0xD0 | encode);
  2441   } else {
  2442     emit_byte(0xC1);
  2443     emit_byte(0xD0 | encode);
  2444     emit_byte(imm8);
  2448 // copies data from [esi] to [edi] using rcx pointer sized words
  2449 // generic
  2450 void Assembler::rep_mov() {
  2451   emit_byte(0xF3);
  2452   // MOVSQ
  2453   LP64_ONLY(prefix(REX_W));
  2454   emit_byte(0xA5);
  2457 // sets rcx pointer sized words with rax, value at [edi]
  2458 // generic
  2459 void Assembler::rep_set() { // rep_set
  2460   emit_byte(0xF3);
  2461   // STOSQ
  2462   LP64_ONLY(prefix(REX_W));
  2463   emit_byte(0xAB);
  2466 // scans rcx pointer sized words at [edi] for occurance of rax,
  2467 // generic
  2468 void Assembler::repne_scan() { // repne_scan
  2469   emit_byte(0xF2);
  2470   // SCASQ
  2471   LP64_ONLY(prefix(REX_W));
  2472   emit_byte(0xAF);
  2475 #ifdef _LP64
  2476 // scans rcx 4 byte words at [edi] for occurance of rax,
  2477 // generic
  2478 void Assembler::repne_scanl() { // repne_scan
  2479   emit_byte(0xF2);
  2480   // SCASL
  2481   emit_byte(0xAF);
  2483 #endif
  2485 void Assembler::ret(int imm16) {
  2486   if (imm16 == 0) {
  2487     emit_byte(0xC3);
  2488   } else {
  2489     emit_byte(0xC2);
  2490     emit_word(imm16);
  2494 void Assembler::sahf() {
  2495 #ifdef _LP64
  2496   // Not supported in 64bit mode
  2497   ShouldNotReachHere();
  2498 #endif
  2499   emit_byte(0x9E);
  2502 void Assembler::sarl(Register dst, int imm8) {
  2503   int encode = prefix_and_encode(dst->encoding());
  2504   assert(isShiftCount(imm8), "illegal shift count");
  2505   if (imm8 == 1) {
  2506     emit_byte(0xD1);
  2507     emit_byte(0xF8 | encode);
  2508   } else {
  2509     emit_byte(0xC1);
  2510     emit_byte(0xF8 | encode);
  2511     emit_byte(imm8);
  2515 void Assembler::sarl(Register dst) {
  2516   int encode = prefix_and_encode(dst->encoding());
  2517   emit_byte(0xD3);
  2518   emit_byte(0xF8 | encode);
  2521 void Assembler::sbbl(Address dst, int32_t imm32) {
  2522   InstructionMark im(this);
  2523   prefix(dst);
  2524   emit_arith_operand(0x81, rbx, dst, imm32);
  2527 void Assembler::sbbl(Register dst, int32_t imm32) {
  2528   prefix(dst);
  2529   emit_arith(0x81, 0xD8, dst, imm32);
  2533 void Assembler::sbbl(Register dst, Address src) {
  2534   InstructionMark im(this);
  2535   prefix(src, dst);
  2536   emit_byte(0x1B);
  2537   emit_operand(dst, src);
  2540 void Assembler::sbbl(Register dst, Register src) {
  2541   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2542   emit_arith(0x1B, 0xC0, dst, src);
  2545 void Assembler::setb(Condition cc, Register dst) {
  2546   assert(0 <= cc && cc < 16, "illegal cc");
  2547   int encode = prefix_and_encode(dst->encoding(), true);
  2548   emit_byte(0x0F);
  2549   emit_byte(0x90 | cc);
  2550   emit_byte(0xC0 | encode);
  2553 void Assembler::shll(Register dst, int imm8) {
  2554   assert(isShiftCount(imm8), "illegal shift count");
  2555   int encode = prefix_and_encode(dst->encoding());
  2556   if (imm8 == 1 ) {
  2557     emit_byte(0xD1);
  2558     emit_byte(0xE0 | encode);
  2559   } else {
  2560     emit_byte(0xC1);
  2561     emit_byte(0xE0 | encode);
  2562     emit_byte(imm8);
  2566 void Assembler::shll(Register dst) {
  2567   int encode = prefix_and_encode(dst->encoding());
  2568   emit_byte(0xD3);
  2569   emit_byte(0xE0 | encode);
  2572 void Assembler::shrl(Register dst, int imm8) {
  2573   assert(isShiftCount(imm8), "illegal shift count");
  2574   int encode = prefix_and_encode(dst->encoding());
  2575   emit_byte(0xC1);
  2576   emit_byte(0xE8 | encode);
  2577   emit_byte(imm8);
  2580 void Assembler::shrl(Register dst) {
  2581   int encode = prefix_and_encode(dst->encoding());
  2582   emit_byte(0xD3);
  2583   emit_byte(0xE8 | encode);
  2586 // copies a single word from [esi] to [edi]
  2587 void Assembler::smovl() {
  2588   emit_byte(0xA5);
  2591 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2592   // HMM Table D-1 says sse2
  2593   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2595   emit_byte(0xF2);
  2596   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2597   emit_byte(0x0F);
  2598   emit_byte(0x51);
  2599   emit_byte(0xC0 | encode);
  2602 void Assembler::stmxcsr( Address dst) {
  2603   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2604   InstructionMark im(this);
  2605   prefix(dst);
  2606   emit_byte(0x0F);
  2607   emit_byte(0xAE);
  2608   emit_operand(as_Register(3), dst);
  2611 void Assembler::subl(Address dst, int32_t imm32) {
  2612   InstructionMark im(this);
  2613   prefix(dst);
  2614   if (is8bit(imm32)) {
  2615     emit_byte(0x83);
  2616     emit_operand(rbp, dst, 1);
  2617     emit_byte(imm32 & 0xFF);
  2618   } else {
  2619     emit_byte(0x81);
  2620     emit_operand(rbp, dst, 4);
  2621     emit_long(imm32);
  2625 void Assembler::subl(Register dst, int32_t imm32) {
  2626   prefix(dst);
  2627   emit_arith(0x81, 0xE8, dst, imm32);
  2630 void Assembler::subl(Address dst, Register src) {
  2631   InstructionMark im(this);
  2632   prefix(dst, src);
  2633   emit_byte(0x29);
  2634   emit_operand(src, dst);
  2637 void Assembler::subl(Register dst, Address src) {
  2638   InstructionMark im(this);
  2639   prefix(src, dst);
  2640   emit_byte(0x2B);
  2641   emit_operand(dst, src);
  2644 void Assembler::subl(Register dst, Register src) {
  2645   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2646   emit_arith(0x2B, 0xC0, dst, src);
  2649 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2650   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2651   emit_byte(0xF2);
  2652   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2653   emit_byte(0x0F);
  2654   emit_byte(0x5C);
  2655   emit_byte(0xC0 | encode);
  2658 void Assembler::subsd(XMMRegister dst, Address src) {
  2659   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2660   InstructionMark im(this);
  2661   emit_byte(0xF2);
  2662   prefix(src, dst);
  2663   emit_byte(0x0F);
  2664   emit_byte(0x5C);
  2665   emit_operand(dst, src);
  2668 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2669   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2670   emit_byte(0xF3);
  2671   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2672   emit_byte(0x0F);
  2673   emit_byte(0x5C);
  2674   emit_byte(0xC0 | encode);
  2677 void Assembler::subss(XMMRegister dst, Address src) {
  2678   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2679   InstructionMark im(this);
  2680   emit_byte(0xF3);
  2681   prefix(src, dst);
  2682   emit_byte(0x0F);
  2683   emit_byte(0x5C);
  2684   emit_operand(dst, src);
  2687 void Assembler::testb(Register dst, int imm8) {
  2688   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2689   (void) prefix_and_encode(dst->encoding(), true);
  2690   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2693 void Assembler::testl(Register dst, int32_t imm32) {
  2694   // not using emit_arith because test
  2695   // doesn't support sign-extension of
  2696   // 8bit operands
  2697   int encode = dst->encoding();
  2698   if (encode == 0) {
  2699     emit_byte(0xA9);
  2700   } else {
  2701     encode = prefix_and_encode(encode);
  2702     emit_byte(0xF7);
  2703     emit_byte(0xC0 | encode);
  2705   emit_long(imm32);
  2708 void Assembler::testl(Register dst, Register src) {
  2709   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2710   emit_arith(0x85, 0xC0, dst, src);
  2713 void Assembler::testl(Register dst, Address  src) {
  2714   InstructionMark im(this);
  2715   prefix(src, dst);
  2716   emit_byte(0x85);
  2717   emit_operand(dst, src);
  2720 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2722   emit_byte(0x66);
  2723   ucomiss(dst, src);
  2726 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2728   emit_byte(0x66);
  2729   ucomiss(dst, src);
  2732 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2733   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2735   InstructionMark im(this);
  2736   prefix(src, dst);
  2737   emit_byte(0x0F);
  2738   emit_byte(0x2E);
  2739   emit_operand(dst, src);
  2742 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2743   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2744   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2745   emit_byte(0x0F);
  2746   emit_byte(0x2E);
  2747   emit_byte(0xC0 | encode);
  2751 void Assembler::xaddl(Address dst, Register src) {
  2752   InstructionMark im(this);
  2753   prefix(dst, src);
  2754   emit_byte(0x0F);
  2755   emit_byte(0xC1);
  2756   emit_operand(src, dst);
  2759 void Assembler::xchgl(Register dst, Address src) { // xchg
  2760   InstructionMark im(this);
  2761   prefix(src, dst);
  2762   emit_byte(0x87);
  2763   emit_operand(dst, src);
  2766 void Assembler::xchgl(Register dst, Register src) {
  2767   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2768   emit_byte(0x87);
  2769   emit_byte(0xc0 | encode);
  2772 void Assembler::xorl(Register dst, int32_t imm32) {
  2773   prefix(dst);
  2774   emit_arith(0x81, 0xF0, dst, imm32);
  2777 void Assembler::xorl(Register dst, Address src) {
  2778   InstructionMark im(this);
  2779   prefix(src, dst);
  2780   emit_byte(0x33);
  2781   emit_operand(dst, src);
  2784 void Assembler::xorl(Register dst, Register src) {
  2785   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2786   emit_arith(0x33, 0xC0, dst, src);
  2789 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2790   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2791   emit_byte(0x66);
  2792   xorps(dst, src);
  2795 void Assembler::xorpd(XMMRegister dst, Address src) {
  2796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2797   InstructionMark im(this);
  2798   emit_byte(0x66);
  2799   prefix(src, dst);
  2800   emit_byte(0x0F);
  2801   emit_byte(0x57);
  2802   emit_operand(dst, src);
  2806 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2807   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2808   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2809   emit_byte(0x0F);
  2810   emit_byte(0x57);
  2811   emit_byte(0xC0 | encode);
  2814 void Assembler::xorps(XMMRegister dst, Address src) {
  2815   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2816   InstructionMark im(this);
  2817   prefix(src, dst);
  2818   emit_byte(0x0F);
  2819   emit_byte(0x57);
  2820   emit_operand(dst, src);
  2823 #ifndef _LP64
  2824 // 32bit only pieces of the assembler
  2826 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2827   // NO PREFIX AS NEVER 64BIT
  2828   InstructionMark im(this);
  2829   emit_byte(0x81);
  2830   emit_byte(0xF8 | src1->encoding());
  2831   emit_data(imm32, rspec, 0);
  2834 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2835   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2836   InstructionMark im(this);
  2837   emit_byte(0x81);
  2838   emit_operand(rdi, src1);
  2839   emit_data(imm32, rspec, 0);
  2842 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2843 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2844 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2845 void Assembler::cmpxchg8(Address adr) {
  2846   InstructionMark im(this);
  2847   emit_byte(0x0F);
  2848   emit_byte(0xc7);
  2849   emit_operand(rcx, adr);
  2852 void Assembler::decl(Register dst) {
  2853   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2854  emit_byte(0x48 | dst->encoding());
  2857 #endif // _LP64
  2859 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2861 void Assembler::fabs() {
  2862   emit_byte(0xD9);
  2863   emit_byte(0xE1);
  2866 void Assembler::fadd(int i) {
  2867   emit_farith(0xD8, 0xC0, i);
  2870 void Assembler::fadd_d(Address src) {
  2871   InstructionMark im(this);
  2872   emit_byte(0xDC);
  2873   emit_operand32(rax, src);
  2876 void Assembler::fadd_s(Address src) {
  2877   InstructionMark im(this);
  2878   emit_byte(0xD8);
  2879   emit_operand32(rax, src);
  2882 void Assembler::fadda(int i) {
  2883   emit_farith(0xDC, 0xC0, i);
  2886 void Assembler::faddp(int i) {
  2887   emit_farith(0xDE, 0xC0, i);
  2890 void Assembler::fchs() {
  2891   emit_byte(0xD9);
  2892   emit_byte(0xE0);
  2895 void Assembler::fcom(int i) {
  2896   emit_farith(0xD8, 0xD0, i);
  2899 void Assembler::fcomp(int i) {
  2900   emit_farith(0xD8, 0xD8, i);
  2903 void Assembler::fcomp_d(Address src) {
  2904   InstructionMark im(this);
  2905   emit_byte(0xDC);
  2906   emit_operand32(rbx, src);
  2909 void Assembler::fcomp_s(Address src) {
  2910   InstructionMark im(this);
  2911   emit_byte(0xD8);
  2912   emit_operand32(rbx, src);
  2915 void Assembler::fcompp() {
  2916   emit_byte(0xDE);
  2917   emit_byte(0xD9);
  2920 void Assembler::fcos() {
  2921   emit_byte(0xD9);
  2922   emit_byte(0xFF);
  2925 void Assembler::fdecstp() {
  2926   emit_byte(0xD9);
  2927   emit_byte(0xF6);
  2930 void Assembler::fdiv(int i) {
  2931   emit_farith(0xD8, 0xF0, i);
  2934 void Assembler::fdiv_d(Address src) {
  2935   InstructionMark im(this);
  2936   emit_byte(0xDC);
  2937   emit_operand32(rsi, src);
  2940 void Assembler::fdiv_s(Address src) {
  2941   InstructionMark im(this);
  2942   emit_byte(0xD8);
  2943   emit_operand32(rsi, src);
  2946 void Assembler::fdiva(int i) {
  2947   emit_farith(0xDC, 0xF8, i);
  2950 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  2951 //       is erroneous for some of the floating-point instructions below.
  2953 void Assembler::fdivp(int i) {
  2954   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  2957 void Assembler::fdivr(int i) {
  2958   emit_farith(0xD8, 0xF8, i);
  2961 void Assembler::fdivr_d(Address src) {
  2962   InstructionMark im(this);
  2963   emit_byte(0xDC);
  2964   emit_operand32(rdi, src);
  2967 void Assembler::fdivr_s(Address src) {
  2968   InstructionMark im(this);
  2969   emit_byte(0xD8);
  2970   emit_operand32(rdi, src);
  2973 void Assembler::fdivra(int i) {
  2974   emit_farith(0xDC, 0xF0, i);
  2977 void Assembler::fdivrp(int i) {
  2978   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  2981 void Assembler::ffree(int i) {
  2982   emit_farith(0xDD, 0xC0, i);
  2985 void Assembler::fild_d(Address adr) {
  2986   InstructionMark im(this);
  2987   emit_byte(0xDF);
  2988   emit_operand32(rbp, adr);
  2991 void Assembler::fild_s(Address adr) {
  2992   InstructionMark im(this);
  2993   emit_byte(0xDB);
  2994   emit_operand32(rax, adr);
  2997 void Assembler::fincstp() {
  2998   emit_byte(0xD9);
  2999   emit_byte(0xF7);
  3002 void Assembler::finit() {
  3003   emit_byte(0x9B);
  3004   emit_byte(0xDB);
  3005   emit_byte(0xE3);
  3008 void Assembler::fist_s(Address adr) {
  3009   InstructionMark im(this);
  3010   emit_byte(0xDB);
  3011   emit_operand32(rdx, adr);
  3014 void Assembler::fistp_d(Address adr) {
  3015   InstructionMark im(this);
  3016   emit_byte(0xDF);
  3017   emit_operand32(rdi, adr);
  3020 void Assembler::fistp_s(Address adr) {
  3021   InstructionMark im(this);
  3022   emit_byte(0xDB);
  3023   emit_operand32(rbx, adr);
  3026 void Assembler::fld1() {
  3027   emit_byte(0xD9);
  3028   emit_byte(0xE8);
  3031 void Assembler::fld_d(Address adr) {
  3032   InstructionMark im(this);
  3033   emit_byte(0xDD);
  3034   emit_operand32(rax, adr);
  3037 void Assembler::fld_s(Address adr) {
  3038   InstructionMark im(this);
  3039   emit_byte(0xD9);
  3040   emit_operand32(rax, adr);
  3044 void Assembler::fld_s(int index) {
  3045   emit_farith(0xD9, 0xC0, index);
  3048 void Assembler::fld_x(Address adr) {
  3049   InstructionMark im(this);
  3050   emit_byte(0xDB);
  3051   emit_operand32(rbp, adr);
  3054 void Assembler::fldcw(Address src) {
  3055   InstructionMark im(this);
  3056   emit_byte(0xd9);
  3057   emit_operand32(rbp, src);
  3060 void Assembler::fldenv(Address src) {
  3061   InstructionMark im(this);
  3062   emit_byte(0xD9);
  3063   emit_operand32(rsp, src);
  3066 void Assembler::fldlg2() {
  3067   emit_byte(0xD9);
  3068   emit_byte(0xEC);
  3071 void Assembler::fldln2() {
  3072   emit_byte(0xD9);
  3073   emit_byte(0xED);
  3076 void Assembler::fldz() {
  3077   emit_byte(0xD9);
  3078   emit_byte(0xEE);
  3081 void Assembler::flog() {
  3082   fldln2();
  3083   fxch();
  3084   fyl2x();
  3087 void Assembler::flog10() {
  3088   fldlg2();
  3089   fxch();
  3090   fyl2x();
  3093 void Assembler::fmul(int i) {
  3094   emit_farith(0xD8, 0xC8, i);
  3097 void Assembler::fmul_d(Address src) {
  3098   InstructionMark im(this);
  3099   emit_byte(0xDC);
  3100   emit_operand32(rcx, src);
  3103 void Assembler::fmul_s(Address src) {
  3104   InstructionMark im(this);
  3105   emit_byte(0xD8);
  3106   emit_operand32(rcx, src);
  3109 void Assembler::fmula(int i) {
  3110   emit_farith(0xDC, 0xC8, i);
  3113 void Assembler::fmulp(int i) {
  3114   emit_farith(0xDE, 0xC8, i);
  3117 void Assembler::fnsave(Address dst) {
  3118   InstructionMark im(this);
  3119   emit_byte(0xDD);
  3120   emit_operand32(rsi, dst);
  3123 void Assembler::fnstcw(Address src) {
  3124   InstructionMark im(this);
  3125   emit_byte(0x9B);
  3126   emit_byte(0xD9);
  3127   emit_operand32(rdi, src);
  3130 void Assembler::fnstsw_ax() {
  3131   emit_byte(0xdF);
  3132   emit_byte(0xE0);
  3135 void Assembler::fprem() {
  3136   emit_byte(0xD9);
  3137   emit_byte(0xF8);
  3140 void Assembler::fprem1() {
  3141   emit_byte(0xD9);
  3142   emit_byte(0xF5);
  3145 void Assembler::frstor(Address src) {
  3146   InstructionMark im(this);
  3147   emit_byte(0xDD);
  3148   emit_operand32(rsp, src);
  3151 void Assembler::fsin() {
  3152   emit_byte(0xD9);
  3153   emit_byte(0xFE);
  3156 void Assembler::fsqrt() {
  3157   emit_byte(0xD9);
  3158   emit_byte(0xFA);
  3161 void Assembler::fst_d(Address adr) {
  3162   InstructionMark im(this);
  3163   emit_byte(0xDD);
  3164   emit_operand32(rdx, adr);
  3167 void Assembler::fst_s(Address adr) {
  3168   InstructionMark im(this);
  3169   emit_byte(0xD9);
  3170   emit_operand32(rdx, adr);
  3173 void Assembler::fstp_d(Address adr) {
  3174   InstructionMark im(this);
  3175   emit_byte(0xDD);
  3176   emit_operand32(rbx, adr);
  3179 void Assembler::fstp_d(int index) {
  3180   emit_farith(0xDD, 0xD8, index);
  3183 void Assembler::fstp_s(Address adr) {
  3184   InstructionMark im(this);
  3185   emit_byte(0xD9);
  3186   emit_operand32(rbx, adr);
  3189 void Assembler::fstp_x(Address adr) {
  3190   InstructionMark im(this);
  3191   emit_byte(0xDB);
  3192   emit_operand32(rdi, adr);
  3195 void Assembler::fsub(int i) {
  3196   emit_farith(0xD8, 0xE0, i);
  3199 void Assembler::fsub_d(Address src) {
  3200   InstructionMark im(this);
  3201   emit_byte(0xDC);
  3202   emit_operand32(rsp, src);
  3205 void Assembler::fsub_s(Address src) {
  3206   InstructionMark im(this);
  3207   emit_byte(0xD8);
  3208   emit_operand32(rsp, src);
  3211 void Assembler::fsuba(int i) {
  3212   emit_farith(0xDC, 0xE8, i);
  3215 void Assembler::fsubp(int i) {
  3216   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3219 void Assembler::fsubr(int i) {
  3220   emit_farith(0xD8, 0xE8, i);
  3223 void Assembler::fsubr_d(Address src) {
  3224   InstructionMark im(this);
  3225   emit_byte(0xDC);
  3226   emit_operand32(rbp, src);
  3229 void Assembler::fsubr_s(Address src) {
  3230   InstructionMark im(this);
  3231   emit_byte(0xD8);
  3232   emit_operand32(rbp, src);
  3235 void Assembler::fsubra(int i) {
  3236   emit_farith(0xDC, 0xE0, i);
  3239 void Assembler::fsubrp(int i) {
  3240   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3243 void Assembler::ftan() {
  3244   emit_byte(0xD9);
  3245   emit_byte(0xF2);
  3246   emit_byte(0xDD);
  3247   emit_byte(0xD8);
  3250 void Assembler::ftst() {
  3251   emit_byte(0xD9);
  3252   emit_byte(0xE4);
  3255 void Assembler::fucomi(int i) {
  3256   // make sure the instruction is supported (introduced for P6, together with cmov)
  3257   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3258   emit_farith(0xDB, 0xE8, i);
  3261 void Assembler::fucomip(int i) {
  3262   // make sure the instruction is supported (introduced for P6, together with cmov)
  3263   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3264   emit_farith(0xDF, 0xE8, i);
  3267 void Assembler::fwait() {
  3268   emit_byte(0x9B);
  3271 void Assembler::fxch(int i) {
  3272   emit_farith(0xD9, 0xC8, i);
  3275 void Assembler::fyl2x() {
  3276   emit_byte(0xD9);
  3277   emit_byte(0xF1);
  3281 #ifndef _LP64
  3283 void Assembler::incl(Register dst) {
  3284   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3285  emit_byte(0x40 | dst->encoding());
  3288 void Assembler::lea(Register dst, Address src) {
  3289   leal(dst, src);
  3292 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3293   InstructionMark im(this);
  3294   emit_byte(0xC7);
  3295   emit_operand(rax, dst);
  3296   emit_data((int)imm32, rspec, 0);
  3299 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3300   InstructionMark im(this);
  3301   int encode = prefix_and_encode(dst->encoding());
  3302   emit_byte(0xB8 | encode);
  3303   emit_data((int)imm32, rspec, 0);
  3306 void Assembler::popa() { // 32bit
  3307   emit_byte(0x61);
  3310 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3311   InstructionMark im(this);
  3312   emit_byte(0x68);
  3313   emit_data(imm32, rspec, 0);
  3316 void Assembler::pusha() { // 32bit
  3317   emit_byte(0x60);
  3320 void Assembler::set_byte_if_not_zero(Register dst) {
  3321   emit_byte(0x0F);
  3322   emit_byte(0x95);
  3323   emit_byte(0xE0 | dst->encoding());
  3326 void Assembler::shldl(Register dst, Register src) {
  3327   emit_byte(0x0F);
  3328   emit_byte(0xA5);
  3329   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3332 void Assembler::shrdl(Register dst, Register src) {
  3333   emit_byte(0x0F);
  3334   emit_byte(0xAD);
  3335   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3338 #else // LP64
  3340 // 64bit only pieces of the assembler
  3341 // This should only be used by 64bit instructions that can use rip-relative
  3342 // it cannot be used by instructions that want an immediate value.
  3344 bool Assembler::reachable(AddressLiteral adr) {
  3345   int64_t disp;
  3346   // None will force a 64bit literal to the code stream. Likely a placeholder
  3347   // for something that will be patched later and we need to certain it will
  3348   // always be reachable.
  3349   if (adr.reloc() == relocInfo::none) {
  3350     return false;
  3352   if (adr.reloc() == relocInfo::internal_word_type) {
  3353     // This should be rip relative and easily reachable.
  3354     return true;
  3356   if (adr.reloc() == relocInfo::virtual_call_type ||
  3357       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3358       adr.reloc() == relocInfo::static_call_type ||
  3359       adr.reloc() == relocInfo::static_stub_type ) {
  3360     // This should be rip relative within the code cache and easily
  3361     // reachable until we get huge code caches. (At which point
  3362     // ic code is going to have issues).
  3363     return true;
  3365   if (adr.reloc() != relocInfo::external_word_type &&
  3366       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3367       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3368       adr.reloc() != relocInfo::runtime_call_type ) {
  3369     return false;
  3372   // Stress the correction code
  3373   if (ForceUnreachable) {
  3374     // Must be runtimecall reloc, see if it is in the codecache
  3375     // Flipping stuff in the codecache to be unreachable causes issues
  3376     // with things like inline caches where the additional instructions
  3377     // are not handled.
  3378     if (CodeCache::find_blob(adr._target) == NULL) {
  3379       return false;
  3382   // For external_word_type/runtime_call_type if it is reachable from where we
  3383   // are now (possibly a temp buffer) and where we might end up
  3384   // anywhere in the codeCache then we are always reachable.
  3385   // This would have to change if we ever save/restore shared code
  3386   // to be more pessimistic.
  3388   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3389   if (!is_simm32(disp)) return false;
  3390   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3391   if (!is_simm32(disp)) return false;
  3393   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3395   // Because rip relative is a disp + address_of_next_instruction and we
  3396   // don't know the value of address_of_next_instruction we apply a fudge factor
  3397   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3398   // We don't have to fudge the checks above here because they are already worst case.
  3400   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3401   // + 4 because better safe than sorry.
  3402   const int fudge = 12 + 4;
  3403   if (disp < 0) {
  3404     disp -= fudge;
  3405   } else {
  3406     disp += fudge;
  3408   return is_simm32(disp);
  3411 void Assembler::emit_data64(jlong data,
  3412                             relocInfo::relocType rtype,
  3413                             int format) {
  3414   if (rtype == relocInfo::none) {
  3415     emit_long64(data);
  3416   } else {
  3417     emit_data64(data, Relocation::spec_simple(rtype), format);
  3421 void Assembler::emit_data64(jlong data,
  3422                             RelocationHolder const& rspec,
  3423                             int format) {
  3424   assert(imm_operand == 0, "default format must be immediate in this file");
  3425   assert(imm_operand == format, "must be immediate");
  3426   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3427   // Do not use AbstractAssembler::relocate, which is not intended for
  3428   // embedded words.  Instead, relocate to the enclosing instruction.
  3429   code_section()->relocate(inst_mark(), rspec, format);
  3430 #ifdef ASSERT
  3431   check_relocation(rspec, format);
  3432 #endif
  3433   emit_long64(data);
  3436 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3437   if (reg_enc >= 8) {
  3438     prefix(REX_B);
  3439     reg_enc -= 8;
  3440   } else if (byteinst && reg_enc >= 4) {
  3441     prefix(REX);
  3443   return reg_enc;
  3446 int Assembler::prefixq_and_encode(int reg_enc) {
  3447   if (reg_enc < 8) {
  3448     prefix(REX_W);
  3449   } else {
  3450     prefix(REX_WB);
  3451     reg_enc -= 8;
  3453   return reg_enc;
  3456 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3457   if (dst_enc < 8) {
  3458     if (src_enc >= 8) {
  3459       prefix(REX_B);
  3460       src_enc -= 8;
  3461     } else if (byteinst && src_enc >= 4) {
  3462       prefix(REX);
  3464   } else {
  3465     if (src_enc < 8) {
  3466       prefix(REX_R);
  3467     } else {
  3468       prefix(REX_RB);
  3469       src_enc -= 8;
  3471     dst_enc -= 8;
  3473   return dst_enc << 3 | src_enc;
  3476 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3477   if (dst_enc < 8) {
  3478     if (src_enc < 8) {
  3479       prefix(REX_W);
  3480     } else {
  3481       prefix(REX_WB);
  3482       src_enc -= 8;
  3484   } else {
  3485     if (src_enc < 8) {
  3486       prefix(REX_WR);
  3487     } else {
  3488       prefix(REX_WRB);
  3489       src_enc -= 8;
  3491     dst_enc -= 8;
  3493   return dst_enc << 3 | src_enc;
  3496 void Assembler::prefix(Register reg) {
  3497   if (reg->encoding() >= 8) {
  3498     prefix(REX_B);
  3502 void Assembler::prefix(Address adr) {
  3503   if (adr.base_needs_rex()) {
  3504     if (adr.index_needs_rex()) {
  3505       prefix(REX_XB);
  3506     } else {
  3507       prefix(REX_B);
  3509   } else {
  3510     if (adr.index_needs_rex()) {
  3511       prefix(REX_X);
  3516 void Assembler::prefixq(Address adr) {
  3517   if (adr.base_needs_rex()) {
  3518     if (adr.index_needs_rex()) {
  3519       prefix(REX_WXB);
  3520     } else {
  3521       prefix(REX_WB);
  3523   } else {
  3524     if (adr.index_needs_rex()) {
  3525       prefix(REX_WX);
  3526     } else {
  3527       prefix(REX_W);
  3533 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3534   if (reg->encoding() < 8) {
  3535     if (adr.base_needs_rex()) {
  3536       if (adr.index_needs_rex()) {
  3537         prefix(REX_XB);
  3538       } else {
  3539         prefix(REX_B);
  3541     } else {
  3542       if (adr.index_needs_rex()) {
  3543         prefix(REX_X);
  3544       } else if (reg->encoding() >= 4 ) {
  3545         prefix(REX);
  3548   } else {
  3549     if (adr.base_needs_rex()) {
  3550       if (adr.index_needs_rex()) {
  3551         prefix(REX_RXB);
  3552       } else {
  3553         prefix(REX_RB);
  3555     } else {
  3556       if (adr.index_needs_rex()) {
  3557         prefix(REX_RX);
  3558       } else {
  3559         prefix(REX_R);
  3565 void Assembler::prefixq(Address adr, Register src) {
  3566   if (src->encoding() < 8) {
  3567     if (adr.base_needs_rex()) {
  3568       if (adr.index_needs_rex()) {
  3569         prefix(REX_WXB);
  3570       } else {
  3571         prefix(REX_WB);
  3573     } else {
  3574       if (adr.index_needs_rex()) {
  3575         prefix(REX_WX);
  3576       } else {
  3577         prefix(REX_W);
  3580   } else {
  3581     if (adr.base_needs_rex()) {
  3582       if (adr.index_needs_rex()) {
  3583         prefix(REX_WRXB);
  3584       } else {
  3585         prefix(REX_WRB);
  3587     } else {
  3588       if (adr.index_needs_rex()) {
  3589         prefix(REX_WRX);
  3590       } else {
  3591         prefix(REX_WR);
  3597 void Assembler::prefix(Address adr, XMMRegister reg) {
  3598   if (reg->encoding() < 8) {
  3599     if (adr.base_needs_rex()) {
  3600       if (adr.index_needs_rex()) {
  3601         prefix(REX_XB);
  3602       } else {
  3603         prefix(REX_B);
  3605     } else {
  3606       if (adr.index_needs_rex()) {
  3607         prefix(REX_X);
  3610   } else {
  3611     if (adr.base_needs_rex()) {
  3612       if (adr.index_needs_rex()) {
  3613         prefix(REX_RXB);
  3614       } else {
  3615         prefix(REX_RB);
  3617     } else {
  3618       if (adr.index_needs_rex()) {
  3619         prefix(REX_RX);
  3620       } else {
  3621         prefix(REX_R);
  3627 void Assembler::adcq(Register dst, int32_t imm32) {
  3628   (void) prefixq_and_encode(dst->encoding());
  3629   emit_arith(0x81, 0xD0, dst, imm32);
  3632 void Assembler::adcq(Register dst, Address src) {
  3633   InstructionMark im(this);
  3634   prefixq(src, dst);
  3635   emit_byte(0x13);
  3636   emit_operand(dst, src);
  3639 void Assembler::adcq(Register dst, Register src) {
  3640   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3641   emit_arith(0x13, 0xC0, dst, src);
  3644 void Assembler::addq(Address dst, int32_t imm32) {
  3645   InstructionMark im(this);
  3646   prefixq(dst);
  3647   emit_arith_operand(0x81, rax, dst,imm32);
  3650 void Assembler::addq(Address dst, Register src) {
  3651   InstructionMark im(this);
  3652   prefixq(dst, src);
  3653   emit_byte(0x01);
  3654   emit_operand(src, dst);
  3657 void Assembler::addq(Register dst, int32_t imm32) {
  3658   (void) prefixq_and_encode(dst->encoding());
  3659   emit_arith(0x81, 0xC0, dst, imm32);
  3662 void Assembler::addq(Register dst, Address src) {
  3663   InstructionMark im(this);
  3664   prefixq(src, dst);
  3665   emit_byte(0x03);
  3666   emit_operand(dst, src);
  3669 void Assembler::addq(Register dst, Register src) {
  3670   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3671   emit_arith(0x03, 0xC0, dst, src);
  3674 void Assembler::andq(Register dst, int32_t imm32) {
  3675   (void) prefixq_and_encode(dst->encoding());
  3676   emit_arith(0x81, 0xE0, dst, imm32);
  3679 void Assembler::andq(Register dst, Address src) {
  3680   InstructionMark im(this);
  3681   prefixq(src, dst);
  3682   emit_byte(0x23);
  3683   emit_operand(dst, src);
  3686 void Assembler::andq(Register dst, Register src) {
  3687   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3688   emit_arith(0x23, 0xC0, dst, src);
  3691 void Assembler::bswapq(Register reg) {
  3692   int encode = prefixq_and_encode(reg->encoding());
  3693   emit_byte(0x0F);
  3694   emit_byte(0xC8 | encode);
  3697 void Assembler::cdqq() {
  3698   prefix(REX_W);
  3699   emit_byte(0x99);
  3702 void Assembler::clflush(Address adr) {
  3703   prefix(adr);
  3704   emit_byte(0x0F);
  3705   emit_byte(0xAE);
  3706   emit_operand(rdi, adr);
  3709 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3710   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3711   emit_byte(0x0F);
  3712   emit_byte(0x40 | cc);
  3713   emit_byte(0xC0 | encode);
  3716 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3717   InstructionMark im(this);
  3718   prefixq(src, dst);
  3719   emit_byte(0x0F);
  3720   emit_byte(0x40 | cc);
  3721   emit_operand(dst, src);
  3724 void Assembler::cmpq(Address dst, int32_t imm32) {
  3725   InstructionMark im(this);
  3726   prefixq(dst);
  3727   emit_byte(0x81);
  3728   emit_operand(rdi, dst, 4);
  3729   emit_long(imm32);
  3732 void Assembler::cmpq(Register dst, int32_t imm32) {
  3733   (void) prefixq_and_encode(dst->encoding());
  3734   emit_arith(0x81, 0xF8, dst, imm32);
  3737 void Assembler::cmpq(Address dst, Register src) {
  3738   InstructionMark im(this);
  3739   prefixq(dst, src);
  3740   emit_byte(0x3B);
  3741   emit_operand(src, dst);
  3744 void Assembler::cmpq(Register dst, Register src) {
  3745   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3746   emit_arith(0x3B, 0xC0, dst, src);
  3749 void Assembler::cmpq(Register dst, Address  src) {
  3750   InstructionMark im(this);
  3751   prefixq(src, dst);
  3752   emit_byte(0x3B);
  3753   emit_operand(dst, src);
  3756 void Assembler::cmpxchgq(Register reg, Address adr) {
  3757   InstructionMark im(this);
  3758   prefixq(adr, reg);
  3759   emit_byte(0x0F);
  3760   emit_byte(0xB1);
  3761   emit_operand(reg, adr);
  3764 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3766   emit_byte(0xF2);
  3767   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3768   emit_byte(0x0F);
  3769   emit_byte(0x2A);
  3770   emit_byte(0xC0 | encode);
  3773 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3774   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3775   emit_byte(0xF3);
  3776   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3777   emit_byte(0x0F);
  3778   emit_byte(0x2A);
  3779   emit_byte(0xC0 | encode);
  3782 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3784   emit_byte(0xF2);
  3785   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3786   emit_byte(0x0F);
  3787   emit_byte(0x2C);
  3788   emit_byte(0xC0 | encode);
  3791 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3792   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3793   emit_byte(0xF3);
  3794   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3795   emit_byte(0x0F);
  3796   emit_byte(0x2C);
  3797   emit_byte(0xC0 | encode);
  3800 void Assembler::decl(Register dst) {
  3801   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3802   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3803   int encode = prefix_and_encode(dst->encoding());
  3804   emit_byte(0xFF);
  3805   emit_byte(0xC8 | encode);
  3808 void Assembler::decq(Register dst) {
  3809   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3810   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3811   int encode = prefixq_and_encode(dst->encoding());
  3812   emit_byte(0xFF);
  3813   emit_byte(0xC8 | encode);
  3816 void Assembler::decq(Address dst) {
  3817   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3818   InstructionMark im(this);
  3819   prefixq(dst);
  3820   emit_byte(0xFF);
  3821   emit_operand(rcx, dst);
  3824 void Assembler::fxrstor(Address src) {
  3825   prefixq(src);
  3826   emit_byte(0x0F);
  3827   emit_byte(0xAE);
  3828   emit_operand(as_Register(1), src);
  3831 void Assembler::fxsave(Address dst) {
  3832   prefixq(dst);
  3833   emit_byte(0x0F);
  3834   emit_byte(0xAE);
  3835   emit_operand(as_Register(0), dst);
  3838 void Assembler::idivq(Register src) {
  3839   int encode = prefixq_and_encode(src->encoding());
  3840   emit_byte(0xF7);
  3841   emit_byte(0xF8 | encode);
  3844 void Assembler::imulq(Register dst, Register src) {
  3845   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3846   emit_byte(0x0F);
  3847   emit_byte(0xAF);
  3848   emit_byte(0xC0 | encode);
  3851 void Assembler::imulq(Register dst, Register src, int value) {
  3852   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3853   if (is8bit(value)) {
  3854     emit_byte(0x6B);
  3855     emit_byte(0xC0 | encode);
  3856     emit_byte(value);
  3857   } else {
  3858     emit_byte(0x69);
  3859     emit_byte(0xC0 | encode);
  3860     emit_long(value);
  3864 void Assembler::incl(Register dst) {
  3865   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3866   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3867   int encode = prefix_and_encode(dst->encoding());
  3868   emit_byte(0xFF);
  3869   emit_byte(0xC0 | encode);
  3872 void Assembler::incq(Register dst) {
  3873   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3874   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3875   int encode = prefixq_and_encode(dst->encoding());
  3876   emit_byte(0xFF);
  3877   emit_byte(0xC0 | encode);
  3880 void Assembler::incq(Address dst) {
  3881   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3882   InstructionMark im(this);
  3883   prefixq(dst);
  3884   emit_byte(0xFF);
  3885   emit_operand(rax, dst);
  3888 void Assembler::lea(Register dst, Address src) {
  3889   leaq(dst, src);
  3892 void Assembler::leaq(Register dst, Address src) {
  3893   InstructionMark im(this);
  3894   prefixq(src, dst);
  3895   emit_byte(0x8D);
  3896   emit_operand(dst, src);
  3899 void Assembler::mov64(Register dst, int64_t imm64) {
  3900   InstructionMark im(this);
  3901   int encode = prefixq_and_encode(dst->encoding());
  3902   emit_byte(0xB8 | encode);
  3903   emit_long64(imm64);
  3906 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  3907   InstructionMark im(this);
  3908   int encode = prefixq_and_encode(dst->encoding());
  3909   emit_byte(0xB8 | encode);
  3910   emit_data64(imm64, rspec);
  3913 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3914   InstructionMark im(this);
  3915   int encode = prefix_and_encode(dst->encoding());
  3916   emit_byte(0xB8 | encode);
  3917   emit_data((int)imm32, rspec, narrow_oop_operand);
  3920 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3921   InstructionMark im(this);
  3922   prefix(dst);
  3923   emit_byte(0xC7);
  3924   emit_operand(rax, dst, 4);
  3925   emit_data((int)imm32, rspec, narrow_oop_operand);
  3928 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3929   InstructionMark im(this);
  3930   int encode = prefix_and_encode(src1->encoding());
  3931   emit_byte(0x81);
  3932   emit_byte(0xF8 | encode);
  3933   emit_data((int)imm32, rspec, narrow_oop_operand);
  3936 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3937   InstructionMark im(this);
  3938   prefix(src1);
  3939   emit_byte(0x81);
  3940   emit_operand(rax, src1, 4);
  3941   emit_data((int)imm32, rspec, narrow_oop_operand);
  3944 void Assembler::movdq(XMMRegister dst, Register src) {
  3945   // table D-1 says MMX/SSE2
  3946   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  3947   emit_byte(0x66);
  3948   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3949   emit_byte(0x0F);
  3950   emit_byte(0x6E);
  3951   emit_byte(0xC0 | encode);
  3954 void Assembler::movdq(Register dst, XMMRegister src) {
  3955   // table D-1 says MMX/SSE2
  3956   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  3957   emit_byte(0x66);
  3958   // swap src/dst to get correct prefix
  3959   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  3960   emit_byte(0x0F);
  3961   emit_byte(0x7E);
  3962   emit_byte(0xC0 | encode);
  3965 void Assembler::movq(Register dst, Register src) {
  3966   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3967   emit_byte(0x8B);
  3968   emit_byte(0xC0 | encode);
  3971 void Assembler::movq(Register dst, Address src) {
  3972   InstructionMark im(this);
  3973   prefixq(src, dst);
  3974   emit_byte(0x8B);
  3975   emit_operand(dst, src);
  3978 void Assembler::movq(Address dst, Register src) {
  3979   InstructionMark im(this);
  3980   prefixq(dst, src);
  3981   emit_byte(0x89);
  3982   emit_operand(src, dst);
  3985 void Assembler::movsbq(Register dst, Address src) {
  3986   InstructionMark im(this);
  3987   prefixq(src, dst);
  3988   emit_byte(0x0F);
  3989   emit_byte(0xBE);
  3990   emit_operand(dst, src);
  3993 void Assembler::movsbq(Register dst, Register src) {
  3994   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3995   emit_byte(0x0F);
  3996   emit_byte(0xBE);
  3997   emit_byte(0xC0 | encode);
  4000 void Assembler::movslq(Register dst, int32_t imm32) {
  4001   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4002   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4003   // as a result we shouldn't use until tested at runtime...
  4004   ShouldNotReachHere();
  4005   InstructionMark im(this);
  4006   int encode = prefixq_and_encode(dst->encoding());
  4007   emit_byte(0xC7 | encode);
  4008   emit_long(imm32);
  4011 void Assembler::movslq(Address dst, int32_t imm32) {
  4012   assert(is_simm32(imm32), "lost bits");
  4013   InstructionMark im(this);
  4014   prefixq(dst);
  4015   emit_byte(0xC7);
  4016   emit_operand(rax, dst, 4);
  4017   emit_long(imm32);
  4020 void Assembler::movslq(Register dst, Address src) {
  4021   InstructionMark im(this);
  4022   prefixq(src, dst);
  4023   emit_byte(0x63);
  4024   emit_operand(dst, src);
  4027 void Assembler::movslq(Register dst, Register src) {
  4028   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4029   emit_byte(0x63);
  4030   emit_byte(0xC0 | encode);
  4033 void Assembler::movswq(Register dst, Address src) {
  4034   InstructionMark im(this);
  4035   prefixq(src, dst);
  4036   emit_byte(0x0F);
  4037   emit_byte(0xBF);
  4038   emit_operand(dst, src);
  4041 void Assembler::movswq(Register dst, Register src) {
  4042   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4043   emit_byte(0x0F);
  4044   emit_byte(0xBF);
  4045   emit_byte(0xC0 | encode);
  4048 void Assembler::movzbq(Register dst, Address src) {
  4049   InstructionMark im(this);
  4050   prefixq(src, dst);
  4051   emit_byte(0x0F);
  4052   emit_byte(0xB6);
  4053   emit_operand(dst, src);
  4056 void Assembler::movzbq(Register dst, Register src) {
  4057   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4058   emit_byte(0x0F);
  4059   emit_byte(0xB6);
  4060   emit_byte(0xC0 | encode);
  4063 void Assembler::movzwq(Register dst, Address src) {
  4064   InstructionMark im(this);
  4065   prefixq(src, dst);
  4066   emit_byte(0x0F);
  4067   emit_byte(0xB7);
  4068   emit_operand(dst, src);
  4071 void Assembler::movzwq(Register dst, Register src) {
  4072   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4073   emit_byte(0x0F);
  4074   emit_byte(0xB7);
  4075   emit_byte(0xC0 | encode);
  4078 void Assembler::negq(Register dst) {
  4079   int encode = prefixq_and_encode(dst->encoding());
  4080   emit_byte(0xF7);
  4081   emit_byte(0xD8 | encode);
  4084 void Assembler::notq(Register dst) {
  4085   int encode = prefixq_and_encode(dst->encoding());
  4086   emit_byte(0xF7);
  4087   emit_byte(0xD0 | encode);
  4090 void Assembler::orq(Address dst, int32_t imm32) {
  4091   InstructionMark im(this);
  4092   prefixq(dst);
  4093   emit_byte(0x81);
  4094   emit_operand(rcx, dst, 4);
  4095   emit_long(imm32);
  4098 void Assembler::orq(Register dst, int32_t imm32) {
  4099   (void) prefixq_and_encode(dst->encoding());
  4100   emit_arith(0x81, 0xC8, dst, imm32);
  4103 void Assembler::orq(Register dst, Address src) {
  4104   InstructionMark im(this);
  4105   prefixq(src, dst);
  4106   emit_byte(0x0B);
  4107   emit_operand(dst, src);
  4110 void Assembler::orq(Register dst, Register src) {
  4111   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4112   emit_arith(0x0B, 0xC0, dst, src);
  4115 void Assembler::popa() { // 64bit
  4116   movq(r15, Address(rsp, 0));
  4117   movq(r14, Address(rsp, wordSize));
  4118   movq(r13, Address(rsp, 2 * wordSize));
  4119   movq(r12, Address(rsp, 3 * wordSize));
  4120   movq(r11, Address(rsp, 4 * wordSize));
  4121   movq(r10, Address(rsp, 5 * wordSize));
  4122   movq(r9,  Address(rsp, 6 * wordSize));
  4123   movq(r8,  Address(rsp, 7 * wordSize));
  4124   movq(rdi, Address(rsp, 8 * wordSize));
  4125   movq(rsi, Address(rsp, 9 * wordSize));
  4126   movq(rbp, Address(rsp, 10 * wordSize));
  4127   // skip rsp
  4128   movq(rbx, Address(rsp, 12 * wordSize));
  4129   movq(rdx, Address(rsp, 13 * wordSize));
  4130   movq(rcx, Address(rsp, 14 * wordSize));
  4131   movq(rax, Address(rsp, 15 * wordSize));
  4133   addq(rsp, 16 * wordSize);
  4136 void Assembler::popcntq(Register dst, Address src) {
  4137   assert(VM_Version::supports_popcnt(), "must support");
  4138   InstructionMark im(this);
  4139   emit_byte(0xF3);
  4140   prefixq(src, dst);
  4141   emit_byte(0x0F);
  4142   emit_byte(0xB8);
  4143   emit_operand(dst, src);
  4146 void Assembler::popcntq(Register dst, Register src) {
  4147   assert(VM_Version::supports_popcnt(), "must support");
  4148   emit_byte(0xF3);
  4149   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4150   emit_byte(0x0F);
  4151   emit_byte(0xB8);
  4152   emit_byte(0xC0 | encode);
  4155 void Assembler::popq(Address dst) {
  4156   InstructionMark im(this);
  4157   prefixq(dst);
  4158   emit_byte(0x8F);
  4159   emit_operand(rax, dst);
  4162 void Assembler::pusha() { // 64bit
  4163   // we have to store original rsp.  ABI says that 128 bytes
  4164   // below rsp are local scratch.
  4165   movq(Address(rsp, -5 * wordSize), rsp);
  4167   subq(rsp, 16 * wordSize);
  4169   movq(Address(rsp, 15 * wordSize), rax);
  4170   movq(Address(rsp, 14 * wordSize), rcx);
  4171   movq(Address(rsp, 13 * wordSize), rdx);
  4172   movq(Address(rsp, 12 * wordSize), rbx);
  4173   // skip rsp
  4174   movq(Address(rsp, 10 * wordSize), rbp);
  4175   movq(Address(rsp, 9 * wordSize), rsi);
  4176   movq(Address(rsp, 8 * wordSize), rdi);
  4177   movq(Address(rsp, 7 * wordSize), r8);
  4178   movq(Address(rsp, 6 * wordSize), r9);
  4179   movq(Address(rsp, 5 * wordSize), r10);
  4180   movq(Address(rsp, 4 * wordSize), r11);
  4181   movq(Address(rsp, 3 * wordSize), r12);
  4182   movq(Address(rsp, 2 * wordSize), r13);
  4183   movq(Address(rsp, wordSize), r14);
  4184   movq(Address(rsp, 0), r15);
  4187 void Assembler::pushq(Address src) {
  4188   InstructionMark im(this);
  4189   prefixq(src);
  4190   emit_byte(0xFF);
  4191   emit_operand(rsi, src);
  4194 void Assembler::rclq(Register dst, int imm8) {
  4195   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4196   int encode = prefixq_and_encode(dst->encoding());
  4197   if (imm8 == 1) {
  4198     emit_byte(0xD1);
  4199     emit_byte(0xD0 | encode);
  4200   } else {
  4201     emit_byte(0xC1);
  4202     emit_byte(0xD0 | encode);
  4203     emit_byte(imm8);
  4206 void Assembler::sarq(Register dst, int imm8) {
  4207   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4208   int encode = prefixq_and_encode(dst->encoding());
  4209   if (imm8 == 1) {
  4210     emit_byte(0xD1);
  4211     emit_byte(0xF8 | encode);
  4212   } else {
  4213     emit_byte(0xC1);
  4214     emit_byte(0xF8 | encode);
  4215     emit_byte(imm8);
  4219 void Assembler::sarq(Register dst) {
  4220   int encode = prefixq_and_encode(dst->encoding());
  4221   emit_byte(0xD3);
  4222   emit_byte(0xF8 | encode);
  4224 void Assembler::sbbq(Address dst, int32_t imm32) {
  4225   InstructionMark im(this);
  4226   prefixq(dst);
  4227   emit_arith_operand(0x81, rbx, dst, imm32);
  4230 void Assembler::sbbq(Register dst, int32_t imm32) {
  4231   (void) prefixq_and_encode(dst->encoding());
  4232   emit_arith(0x81, 0xD8, dst, imm32);
  4235 void Assembler::sbbq(Register dst, Address src) {
  4236   InstructionMark im(this);
  4237   prefixq(src, dst);
  4238   emit_byte(0x1B);
  4239   emit_operand(dst, src);
  4242 void Assembler::sbbq(Register dst, Register src) {
  4243   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4244   emit_arith(0x1B, 0xC0, dst, src);
  4247 void Assembler::shlq(Register dst, int imm8) {
  4248   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4249   int encode = prefixq_and_encode(dst->encoding());
  4250   if (imm8 == 1) {
  4251     emit_byte(0xD1);
  4252     emit_byte(0xE0 | encode);
  4253   } else {
  4254     emit_byte(0xC1);
  4255     emit_byte(0xE0 | encode);
  4256     emit_byte(imm8);
  4260 void Assembler::shlq(Register dst) {
  4261   int encode = prefixq_and_encode(dst->encoding());
  4262   emit_byte(0xD3);
  4263   emit_byte(0xE0 | encode);
  4266 void Assembler::shrq(Register dst, int imm8) {
  4267   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4268   int encode = prefixq_and_encode(dst->encoding());
  4269   emit_byte(0xC1);
  4270   emit_byte(0xE8 | encode);
  4271   emit_byte(imm8);
  4274 void Assembler::shrq(Register dst) {
  4275   int encode = prefixq_and_encode(dst->encoding());
  4276   emit_byte(0xD3);
  4277   emit_byte(0xE8 | encode);
  4280 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  4281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4282   InstructionMark im(this);
  4283   emit_byte(0xF2);
  4284   prefix(src, dst);
  4285   emit_byte(0x0F);
  4286   emit_byte(0x51);
  4287   emit_operand(dst, src);
  4290 void Assembler::subq(Address dst, int32_t imm32) {
  4291   InstructionMark im(this);
  4292   prefixq(dst);
  4293   if (is8bit(imm32)) {
  4294     emit_byte(0x83);
  4295     emit_operand(rbp, dst, 1);
  4296     emit_byte(imm32 & 0xFF);
  4297   } else {
  4298     emit_byte(0x81);
  4299     emit_operand(rbp, dst, 4);
  4300     emit_long(imm32);
  4304 void Assembler::subq(Register dst, int32_t imm32) {
  4305   (void) prefixq_and_encode(dst->encoding());
  4306   emit_arith(0x81, 0xE8, dst, imm32);
  4309 void Assembler::subq(Address dst, Register src) {
  4310   InstructionMark im(this);
  4311   prefixq(dst, src);
  4312   emit_byte(0x29);
  4313   emit_operand(src, dst);
  4316 void Assembler::subq(Register dst, Address src) {
  4317   InstructionMark im(this);
  4318   prefixq(src, dst);
  4319   emit_byte(0x2B);
  4320   emit_operand(dst, src);
  4323 void Assembler::subq(Register dst, Register src) {
  4324   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4325   emit_arith(0x2B, 0xC0, dst, src);
  4328 void Assembler::testq(Register dst, int32_t imm32) {
  4329   // not using emit_arith because test
  4330   // doesn't support sign-extension of
  4331   // 8bit operands
  4332   int encode = dst->encoding();
  4333   if (encode == 0) {
  4334     prefix(REX_W);
  4335     emit_byte(0xA9);
  4336   } else {
  4337     encode = prefixq_and_encode(encode);
  4338     emit_byte(0xF7);
  4339     emit_byte(0xC0 | encode);
  4341   emit_long(imm32);
  4344 void Assembler::testq(Register dst, Register src) {
  4345   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4346   emit_arith(0x85, 0xC0, dst, src);
  4349 void Assembler::xaddq(Address dst, Register src) {
  4350   InstructionMark im(this);
  4351   prefixq(dst, src);
  4352   emit_byte(0x0F);
  4353   emit_byte(0xC1);
  4354   emit_operand(src, dst);
  4357 void Assembler::xchgq(Register dst, Address src) {
  4358   InstructionMark im(this);
  4359   prefixq(src, dst);
  4360   emit_byte(0x87);
  4361   emit_operand(dst, src);
  4364 void Assembler::xchgq(Register dst, Register src) {
  4365   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4366   emit_byte(0x87);
  4367   emit_byte(0xc0 | encode);
  4370 void Assembler::xorq(Register dst, Register src) {
  4371   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4372   emit_arith(0x33, 0xC0, dst, src);
  4375 void Assembler::xorq(Register dst, Address src) {
  4376   InstructionMark im(this);
  4377   prefixq(src, dst);
  4378   emit_byte(0x33);
  4379   emit_operand(dst, src);
  4382 #endif // !LP64
  4384 static Assembler::Condition reverse[] = {
  4385     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4386     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4387     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4388     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4389     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4390     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4391     Assembler::above          /* belowEqual    = 0x6 */ ,
  4392     Assembler::belowEqual     /* above         = 0x7 */ ,
  4393     Assembler::positive       /* negative      = 0x8 */ ,
  4394     Assembler::negative       /* positive      = 0x9 */ ,
  4395     Assembler::noParity       /* parity        = 0xa */ ,
  4396     Assembler::parity         /* noParity      = 0xb */ ,
  4397     Assembler::greaterEqual   /* less          = 0xc */ ,
  4398     Assembler::less           /* greaterEqual  = 0xd */ ,
  4399     Assembler::greater        /* lessEqual     = 0xe */ ,
  4400     Assembler::lessEqual      /* greater       = 0xf, */
  4402 };
  4405 // Implementation of MacroAssembler
  4407 // First all the versions that have distinct versions depending on 32/64 bit
  4408 // Unless the difference is trivial (1 line or so).
  4410 #ifndef _LP64
  4412 // 32bit versions
  4414 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4415   return Address(adr.target(), adr.rspec());
  4418 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4419   return Address::make_array(adr);
  4422 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4423                                          Register obj_reg,
  4424                                          Register swap_reg,
  4425                                          Register tmp_reg,
  4426                                          bool swap_reg_contains_mark,
  4427                                          Label& done,
  4428                                          Label* slow_case,
  4429                                          BiasedLockingCounters* counters) {
  4430   assert(UseBiasedLocking, "why call this otherwise?");
  4431   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4432   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4434   if (PrintBiasedLockingStatistics && counters == NULL)
  4435     counters = BiasedLocking::counters();
  4437   bool need_tmp_reg = false;
  4438   if (tmp_reg == noreg) {
  4439     need_tmp_reg = true;
  4440     tmp_reg = lock_reg;
  4441   } else {
  4442     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4444   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4445   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4446   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4447   Address saved_mark_addr(lock_reg, 0);
  4449   // Biased locking
  4450   // See whether the lock is currently biased toward our thread and
  4451   // whether the epoch is still valid
  4452   // Note that the runtime guarantees sufficient alignment of JavaThread
  4453   // pointers to allow age to be placed into low bits
  4454   // First check to see whether biasing is even enabled for this object
  4455   Label cas_label;
  4456   int null_check_offset = -1;
  4457   if (!swap_reg_contains_mark) {
  4458     null_check_offset = offset();
  4459     movl(swap_reg, mark_addr);
  4461   if (need_tmp_reg) {
  4462     push(tmp_reg);
  4464   movl(tmp_reg, swap_reg);
  4465   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4466   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4467   if (need_tmp_reg) {
  4468     pop(tmp_reg);
  4470   jcc(Assembler::notEqual, cas_label);
  4471   // The bias pattern is present in the object's header. Need to check
  4472   // whether the bias owner and the epoch are both still current.
  4473   // Note that because there is no current thread register on x86 we
  4474   // need to store off the mark word we read out of the object to
  4475   // avoid reloading it and needing to recheck invariants below. This
  4476   // store is unfortunate but it makes the overall code shorter and
  4477   // simpler.
  4478   movl(saved_mark_addr, swap_reg);
  4479   if (need_tmp_reg) {
  4480     push(tmp_reg);
  4482   get_thread(tmp_reg);
  4483   xorl(swap_reg, tmp_reg);
  4484   if (swap_reg_contains_mark) {
  4485     null_check_offset = offset();
  4487   movl(tmp_reg, klass_addr);
  4488   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4489   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4490   if (need_tmp_reg) {
  4491     pop(tmp_reg);
  4493   if (counters != NULL) {
  4494     cond_inc32(Assembler::zero,
  4495                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4497   jcc(Assembler::equal, done);
  4499   Label try_revoke_bias;
  4500   Label try_rebias;
  4502   // At this point we know that the header has the bias pattern and
  4503   // that we are not the bias owner in the current epoch. We need to
  4504   // figure out more details about the state of the header in order to
  4505   // know what operations can be legally performed on the object's
  4506   // header.
  4508   // If the low three bits in the xor result aren't clear, that means
  4509   // the prototype header is no longer biased and we have to revoke
  4510   // the bias on this object.
  4511   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4512   jcc(Assembler::notZero, try_revoke_bias);
  4514   // Biasing is still enabled for this data type. See whether the
  4515   // epoch of the current bias is still valid, meaning that the epoch
  4516   // bits of the mark word are equal to the epoch bits of the
  4517   // prototype header. (Note that the prototype header's epoch bits
  4518   // only change at a safepoint.) If not, attempt to rebias the object
  4519   // toward the current thread. Note that we must be absolutely sure
  4520   // that the current epoch is invalid in order to do this because
  4521   // otherwise the manipulations it performs on the mark word are
  4522   // illegal.
  4523   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4524   jcc(Assembler::notZero, try_rebias);
  4526   // The epoch of the current bias is still valid but we know nothing
  4527   // about the owner; it might be set or it might be clear. Try to
  4528   // acquire the bias of the object using an atomic operation. If this
  4529   // fails we will go in to the runtime to revoke the object's bias.
  4530   // Note that we first construct the presumed unbiased header so we
  4531   // don't accidentally blow away another thread's valid bias.
  4532   movl(swap_reg, saved_mark_addr);
  4533   andl(swap_reg,
  4534        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4535   if (need_tmp_reg) {
  4536     push(tmp_reg);
  4538   get_thread(tmp_reg);
  4539   orl(tmp_reg, swap_reg);
  4540   if (os::is_MP()) {
  4541     lock();
  4543   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4544   if (need_tmp_reg) {
  4545     pop(tmp_reg);
  4547   // If the biasing toward our thread failed, this means that
  4548   // another thread succeeded in biasing it toward itself and we
  4549   // need to revoke that bias. The revocation will occur in the
  4550   // interpreter runtime in the slow case.
  4551   if (counters != NULL) {
  4552     cond_inc32(Assembler::zero,
  4553                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4555   if (slow_case != NULL) {
  4556     jcc(Assembler::notZero, *slow_case);
  4558   jmp(done);
  4560   bind(try_rebias);
  4561   // At this point we know the epoch has expired, meaning that the
  4562   // current "bias owner", if any, is actually invalid. Under these
  4563   // circumstances _only_, we are allowed to use the current header's
  4564   // value as the comparison value when doing the cas to acquire the
  4565   // bias in the current epoch. In other words, we allow transfer of
  4566   // the bias from one thread to another directly in this situation.
  4567   //
  4568   // FIXME: due to a lack of registers we currently blow away the age
  4569   // bits in this situation. Should attempt to preserve them.
  4570   if (need_tmp_reg) {
  4571     push(tmp_reg);
  4573   get_thread(tmp_reg);
  4574   movl(swap_reg, klass_addr);
  4575   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4576   movl(swap_reg, saved_mark_addr);
  4577   if (os::is_MP()) {
  4578     lock();
  4580   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4581   if (need_tmp_reg) {
  4582     pop(tmp_reg);
  4584   // If the biasing toward our thread failed, then another thread
  4585   // succeeded in biasing it toward itself and we need to revoke that
  4586   // bias. The revocation will occur in the runtime in the slow case.
  4587   if (counters != NULL) {
  4588     cond_inc32(Assembler::zero,
  4589                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4591   if (slow_case != NULL) {
  4592     jcc(Assembler::notZero, *slow_case);
  4594   jmp(done);
  4596   bind(try_revoke_bias);
  4597   // The prototype mark in the klass doesn't have the bias bit set any
  4598   // more, indicating that objects of this data type are not supposed
  4599   // to be biased any more. We are going to try to reset the mark of
  4600   // this object to the prototype value and fall through to the
  4601   // CAS-based locking scheme. Note that if our CAS fails, it means
  4602   // that another thread raced us for the privilege of revoking the
  4603   // bias of this particular object, so it's okay to continue in the
  4604   // normal locking code.
  4605   //
  4606   // FIXME: due to a lack of registers we currently blow away the age
  4607   // bits in this situation. Should attempt to preserve them.
  4608   movl(swap_reg, saved_mark_addr);
  4609   if (need_tmp_reg) {
  4610     push(tmp_reg);
  4612   movl(tmp_reg, klass_addr);
  4613   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4614   if (os::is_MP()) {
  4615     lock();
  4617   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4618   if (need_tmp_reg) {
  4619     pop(tmp_reg);
  4621   // Fall through to the normal CAS-based lock, because no matter what
  4622   // the result of the above CAS, some thread must have succeeded in
  4623   // removing the bias bit from the object's header.
  4624   if (counters != NULL) {
  4625     cond_inc32(Assembler::zero,
  4626                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4629   bind(cas_label);
  4631   return null_check_offset;
  4633 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4634                                        int number_of_arguments) {
  4635   call(RuntimeAddress(entry_point));
  4636   increment(rsp, number_of_arguments * wordSize);
  4639 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4640   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4643 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4644   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4647 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4648   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4649   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4650     cdql();
  4651   } else {
  4652     movl(hi, lo);
  4653     sarl(hi, 31);
  4657 void MacroAssembler::fat_nop() {
  4658   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4659   emit_byte(0x26); // es:
  4660   emit_byte(0x2e); // cs:
  4661   emit_byte(0x64); // fs:
  4662   emit_byte(0x65); // gs:
  4663   emit_byte(0x90);
  4666 void MacroAssembler::jC2(Register tmp, Label& L) {
  4667   // set parity bit if FPU flag C2 is set (via rax)
  4668   save_rax(tmp);
  4669   fwait(); fnstsw_ax();
  4670   sahf();
  4671   restore_rax(tmp);
  4672   // branch
  4673   jcc(Assembler::parity, L);
  4676 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4677   // set parity bit if FPU flag C2 is set (via rax)
  4678   save_rax(tmp);
  4679   fwait(); fnstsw_ax();
  4680   sahf();
  4681   restore_rax(tmp);
  4682   // branch
  4683   jcc(Assembler::noParity, L);
  4686 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4687 // to be installed in the Address class
  4688 void MacroAssembler::jump(ArrayAddress entry) {
  4689   jmp(as_Address(entry));
  4692 // Note: y_lo will be destroyed
  4693 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4694   // Long compare for Java (semantics as described in JVM spec.)
  4695   Label high, low, done;
  4697   cmpl(x_hi, y_hi);
  4698   jcc(Assembler::less, low);
  4699   jcc(Assembler::greater, high);
  4700   // x_hi is the return register
  4701   xorl(x_hi, x_hi);
  4702   cmpl(x_lo, y_lo);
  4703   jcc(Assembler::below, low);
  4704   jcc(Assembler::equal, done);
  4706   bind(high);
  4707   xorl(x_hi, x_hi);
  4708   increment(x_hi);
  4709   jmp(done);
  4711   bind(low);
  4712   xorl(x_hi, x_hi);
  4713   decrementl(x_hi);
  4715   bind(done);
  4718 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4719     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4722 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4723   // leal(dst, as_Address(adr));
  4724   // see note in movl as to why we must use a move
  4725   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4728 void MacroAssembler::leave() {
  4729   mov(rsp, rbp);
  4730   pop(rbp);
  4733 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4734   // Multiplication of two Java long values stored on the stack
  4735   // as illustrated below. Result is in rdx:rax.
  4736   //
  4737   // rsp ---> [  ??  ] \               \
  4738   //            ....    | y_rsp_offset  |
  4739   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4740   //          [ y_hi ]                  | (in bytes)
  4741   //            ....                    |
  4742   //          [ x_lo ]                 /
  4743   //          [ x_hi ]
  4744   //            ....
  4745   //
  4746   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4747   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4748   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4749   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4750   Label quick;
  4751   // load x_hi, y_hi and check if quick
  4752   // multiplication is possible
  4753   movl(rbx, x_hi);
  4754   movl(rcx, y_hi);
  4755   movl(rax, rbx);
  4756   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4757   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4758   // do full multiplication
  4759   // 1st step
  4760   mull(y_lo);                                    // x_hi * y_lo
  4761   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4762   // 2nd step
  4763   movl(rax, x_lo);
  4764   mull(rcx);                                     // x_lo * y_hi
  4765   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4766   // 3rd step
  4767   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4768   movl(rax, x_lo);
  4769   mull(y_lo);                                    // x_lo * y_lo
  4770   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4773 void MacroAssembler::lneg(Register hi, Register lo) {
  4774   negl(lo);
  4775   adcl(hi, 0);
  4776   negl(hi);
  4779 void MacroAssembler::lshl(Register hi, Register lo) {
  4780   // Java shift left long support (semantics as described in JVM spec., p.305)
  4781   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4782   // shift value is in rcx !
  4783   assert(hi != rcx, "must not use rcx");
  4784   assert(lo != rcx, "must not use rcx");
  4785   const Register s = rcx;                        // shift count
  4786   const int      n = BitsPerWord;
  4787   Label L;
  4788   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4789   cmpl(s, n);                                    // if (s < n)
  4790   jcc(Assembler::less, L);                       // else (s >= n)
  4791   movl(hi, lo);                                  // x := x << n
  4792   xorl(lo, lo);
  4793   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4794   bind(L);                                       // s (mod n) < n
  4795   shldl(hi, lo);                                 // x := x << s
  4796   shll(lo);
  4800 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4801   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4802   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4803   assert(hi != rcx, "must not use rcx");
  4804   assert(lo != rcx, "must not use rcx");
  4805   const Register s = rcx;                        // shift count
  4806   const int      n = BitsPerWord;
  4807   Label L;
  4808   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4809   cmpl(s, n);                                    // if (s < n)
  4810   jcc(Assembler::less, L);                       // else (s >= n)
  4811   movl(lo, hi);                                  // x := x >> n
  4812   if (sign_extension) sarl(hi, 31);
  4813   else                xorl(hi, hi);
  4814   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4815   bind(L);                                       // s (mod n) < n
  4816   shrdl(lo, hi);                                 // x := x >> s
  4817   if (sign_extension) sarl(hi);
  4818   else                shrl(hi);
  4821 void MacroAssembler::movoop(Register dst, jobject obj) {
  4822   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4825 void MacroAssembler::movoop(Address dst, jobject obj) {
  4826   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4829 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4830   if (src.is_lval()) {
  4831     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4832   } else {
  4833     movl(dst, as_Address(src));
  4837 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4838   movl(as_Address(dst), src);
  4841 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4842   movl(dst, as_Address(src));
  4845 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4846 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4847   movl(dst, src);
  4851 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  4852   movsd(dst, as_Address(src));
  4855 void MacroAssembler::pop_callee_saved_registers() {
  4856   pop(rcx);
  4857   pop(rdx);
  4858   pop(rdi);
  4859   pop(rsi);
  4862 void MacroAssembler::pop_fTOS() {
  4863   fld_d(Address(rsp, 0));
  4864   addl(rsp, 2 * wordSize);
  4867 void MacroAssembler::push_callee_saved_registers() {
  4868   push(rsi);
  4869   push(rdi);
  4870   push(rdx);
  4871   push(rcx);
  4874 void MacroAssembler::push_fTOS() {
  4875   subl(rsp, 2 * wordSize);
  4876   fstp_d(Address(rsp, 0));
  4880 void MacroAssembler::pushoop(jobject obj) {
  4881   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  4885 void MacroAssembler::pushptr(AddressLiteral src) {
  4886   if (src.is_lval()) {
  4887     push_literal32((int32_t)src.target(), src.rspec());
  4888   } else {
  4889     pushl(as_Address(src));
  4893 void MacroAssembler::set_word_if_not_zero(Register dst) {
  4894   xorl(dst, dst);
  4895   set_byte_if_not_zero(dst);
  4898 static void pass_arg0(MacroAssembler* masm, Register arg) {
  4899   masm->push(arg);
  4902 static void pass_arg1(MacroAssembler* masm, Register arg) {
  4903   masm->push(arg);
  4906 static void pass_arg2(MacroAssembler* masm, Register arg) {
  4907   masm->push(arg);
  4910 static void pass_arg3(MacroAssembler* masm, Register arg) {
  4911   masm->push(arg);
  4914 #ifndef PRODUCT
  4915 extern "C" void findpc(intptr_t x);
  4916 #endif
  4918 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  4919   // In order to get locks to work, we need to fake a in_VM state
  4920   JavaThread* thread = JavaThread::current();
  4921   JavaThreadState saved_state = thread->thread_state();
  4922   thread->set_thread_state(_thread_in_vm);
  4923   if (ShowMessageBoxOnError) {
  4924     JavaThread* thread = JavaThread::current();
  4925     JavaThreadState saved_state = thread->thread_state();
  4926     thread->set_thread_state(_thread_in_vm);
  4927     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  4928       ttyLocker ttyl;
  4929       BytecodeCounter::print();
  4931     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  4932     // This is the value of eip which points to where verify_oop will return.
  4933     if (os::message_box(msg, "Execution stopped, print registers?")) {
  4934       ttyLocker ttyl;
  4935       tty->print_cr("eip = 0x%08x", eip);
  4936 #ifndef PRODUCT
  4937       tty->cr();
  4938       findpc(eip);
  4939       tty->cr();
  4940 #endif
  4941       tty->print_cr("rax, = 0x%08x", rax);
  4942       tty->print_cr("rbx, = 0x%08x", rbx);
  4943       tty->print_cr("rcx = 0x%08x", rcx);
  4944       tty->print_cr("rdx = 0x%08x", rdx);
  4945       tty->print_cr("rdi = 0x%08x", rdi);
  4946       tty->print_cr("rsi = 0x%08x", rsi);
  4947       tty->print_cr("rbp, = 0x%08x", rbp);
  4948       tty->print_cr("rsp = 0x%08x", rsp);
  4949       BREAKPOINT;
  4951   } else {
  4952     ttyLocker ttyl;
  4953     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  4954     assert(false, "DEBUG MESSAGE");
  4956   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  4959 void MacroAssembler::stop(const char* msg) {
  4960   ExternalAddress message((address)msg);
  4961   // push address of message
  4962   pushptr(message.addr());
  4963   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  4964   pusha();                                           // push registers
  4965   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  4966   hlt();
  4969 void MacroAssembler::warn(const char* msg) {
  4970   push_CPU_state();
  4972   ExternalAddress message((address) msg);
  4973   // push address of message
  4974   pushptr(message.addr());
  4976   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  4977   addl(rsp, wordSize);       // discard argument
  4978   pop_CPU_state();
  4981 #else // _LP64
  4983 // 64 bit versions
  4985 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4986   // amd64 always does this as a pc-rel
  4987   // we can be absolute or disp based on the instruction type
  4988   // jmp/call are displacements others are absolute
  4989   assert(!adr.is_lval(), "must be rval");
  4990   assert(reachable(adr), "must be");
  4991   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  4995 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4996   AddressLiteral base = adr.base();
  4997   lea(rscratch1, base);
  4998   Address index = adr.index();
  4999   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5000   Address array(rscratch1, index._index, index._scale, index._disp);
  5001   return array;
  5004 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5005                                          Register obj_reg,
  5006                                          Register swap_reg,
  5007                                          Register tmp_reg,
  5008                                          bool swap_reg_contains_mark,
  5009                                          Label& done,
  5010                                          Label* slow_case,
  5011                                          BiasedLockingCounters* counters) {
  5012   assert(UseBiasedLocking, "why call this otherwise?");
  5013   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5014   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5015   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5016   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5017   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5018   Address saved_mark_addr(lock_reg, 0);
  5020   if (PrintBiasedLockingStatistics && counters == NULL)
  5021     counters = BiasedLocking::counters();
  5023   // Biased locking
  5024   // See whether the lock is currently biased toward our thread and
  5025   // whether the epoch is still valid
  5026   // Note that the runtime guarantees sufficient alignment of JavaThread
  5027   // pointers to allow age to be placed into low bits
  5028   // First check to see whether biasing is even enabled for this object
  5029   Label cas_label;
  5030   int null_check_offset = -1;
  5031   if (!swap_reg_contains_mark) {
  5032     null_check_offset = offset();
  5033     movq(swap_reg, mark_addr);
  5035   movq(tmp_reg, swap_reg);
  5036   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5037   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5038   jcc(Assembler::notEqual, cas_label);
  5039   // The bias pattern is present in the object's header. Need to check
  5040   // whether the bias owner and the epoch are both still current.
  5041   load_prototype_header(tmp_reg, obj_reg);
  5042   orq(tmp_reg, r15_thread);
  5043   xorq(tmp_reg, swap_reg);
  5044   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5045   if (counters != NULL) {
  5046     cond_inc32(Assembler::zero,
  5047                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5049   jcc(Assembler::equal, done);
  5051   Label try_revoke_bias;
  5052   Label try_rebias;
  5054   // At this point we know that the header has the bias pattern and
  5055   // that we are not the bias owner in the current epoch. We need to
  5056   // figure out more details about the state of the header in order to
  5057   // know what operations can be legally performed on the object's
  5058   // header.
  5060   // If the low three bits in the xor result aren't clear, that means
  5061   // the prototype header is no longer biased and we have to revoke
  5062   // the bias on this object.
  5063   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5064   jcc(Assembler::notZero, try_revoke_bias);
  5066   // Biasing is still enabled for this data type. See whether the
  5067   // epoch of the current bias is still valid, meaning that the epoch
  5068   // bits of the mark word are equal to the epoch bits of the
  5069   // prototype header. (Note that the prototype header's epoch bits
  5070   // only change at a safepoint.) If not, attempt to rebias the object
  5071   // toward the current thread. Note that we must be absolutely sure
  5072   // that the current epoch is invalid in order to do this because
  5073   // otherwise the manipulations it performs on the mark word are
  5074   // illegal.
  5075   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5076   jcc(Assembler::notZero, try_rebias);
  5078   // The epoch of the current bias is still valid but we know nothing
  5079   // about the owner; it might be set or it might be clear. Try to
  5080   // acquire the bias of the object using an atomic operation. If this
  5081   // fails we will go in to the runtime to revoke the object's bias.
  5082   // Note that we first construct the presumed unbiased header so we
  5083   // don't accidentally blow away another thread's valid bias.
  5084   andq(swap_reg,
  5085        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5086   movq(tmp_reg, swap_reg);
  5087   orq(tmp_reg, r15_thread);
  5088   if (os::is_MP()) {
  5089     lock();
  5091   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5092   // If the biasing toward our thread failed, this means that
  5093   // another thread succeeded in biasing it toward itself and we
  5094   // need to revoke that bias. The revocation will occur in the
  5095   // interpreter runtime in the slow case.
  5096   if (counters != NULL) {
  5097     cond_inc32(Assembler::zero,
  5098                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5100   if (slow_case != NULL) {
  5101     jcc(Assembler::notZero, *slow_case);
  5103   jmp(done);
  5105   bind(try_rebias);
  5106   // At this point we know the epoch has expired, meaning that the
  5107   // current "bias owner", if any, is actually invalid. Under these
  5108   // circumstances _only_, we are allowed to use the current header's
  5109   // value as the comparison value when doing the cas to acquire the
  5110   // bias in the current epoch. In other words, we allow transfer of
  5111   // the bias from one thread to another directly in this situation.
  5112   //
  5113   // FIXME: due to a lack of registers we currently blow away the age
  5114   // bits in this situation. Should attempt to preserve them.
  5115   load_prototype_header(tmp_reg, obj_reg);
  5116   orq(tmp_reg, r15_thread);
  5117   if (os::is_MP()) {
  5118     lock();
  5120   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5121   // If the biasing toward our thread failed, then another thread
  5122   // succeeded in biasing it toward itself and we need to revoke that
  5123   // bias. The revocation will occur in the runtime in the slow case.
  5124   if (counters != NULL) {
  5125     cond_inc32(Assembler::zero,
  5126                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5128   if (slow_case != NULL) {
  5129     jcc(Assembler::notZero, *slow_case);
  5131   jmp(done);
  5133   bind(try_revoke_bias);
  5134   // The prototype mark in the klass doesn't have the bias bit set any
  5135   // more, indicating that objects of this data type are not supposed
  5136   // to be biased any more. We are going to try to reset the mark of
  5137   // this object to the prototype value and fall through to the
  5138   // CAS-based locking scheme. Note that if our CAS fails, it means
  5139   // that another thread raced us for the privilege of revoking the
  5140   // bias of this particular object, so it's okay to continue in the
  5141   // normal locking code.
  5142   //
  5143   // FIXME: due to a lack of registers we currently blow away the age
  5144   // bits in this situation. Should attempt to preserve them.
  5145   load_prototype_header(tmp_reg, obj_reg);
  5146   if (os::is_MP()) {
  5147     lock();
  5149   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5150   // Fall through to the normal CAS-based lock, because no matter what
  5151   // the result of the above CAS, some thread must have succeeded in
  5152   // removing the bias bit from the object's header.
  5153   if (counters != NULL) {
  5154     cond_inc32(Assembler::zero,
  5155                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5158   bind(cas_label);
  5160   return null_check_offset;
  5163 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5164   Label L, E;
  5166 #ifdef _WIN64
  5167   // Windows always allocates space for it's register args
  5168   assert(num_args <= 4, "only register arguments supported");
  5169   subq(rsp,  frame::arg_reg_save_area_bytes);
  5170 #endif
  5172   // Align stack if necessary
  5173   testl(rsp, 15);
  5174   jcc(Assembler::zero, L);
  5176   subq(rsp, 8);
  5178     call(RuntimeAddress(entry_point));
  5180   addq(rsp, 8);
  5181   jmp(E);
  5183   bind(L);
  5185     call(RuntimeAddress(entry_point));
  5188   bind(E);
  5190 #ifdef _WIN64
  5191   // restore stack pointer
  5192   addq(rsp, frame::arg_reg_save_area_bytes);
  5193 #endif
  5197 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5198   assert(!src2.is_lval(), "should use cmpptr");
  5200   if (reachable(src2)) {
  5201     cmpq(src1, as_Address(src2));
  5202   } else {
  5203     lea(rscratch1, src2);
  5204     Assembler::cmpq(src1, Address(rscratch1, 0));
  5208 int MacroAssembler::corrected_idivq(Register reg) {
  5209   // Full implementation of Java ldiv and lrem; checks for special
  5210   // case as described in JVM spec., p.243 & p.271.  The function
  5211   // returns the (pc) offset of the idivl instruction - may be needed
  5212   // for implicit exceptions.
  5213   //
  5214   //         normal case                           special case
  5215   //
  5216   // input : rax: dividend                         min_long
  5217   //         reg: divisor   (may not be eax/edx)   -1
  5218   //
  5219   // output: rax: quotient  (= rax idiv reg)       min_long
  5220   //         rdx: remainder (= rax irem reg)       0
  5221   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5222   static const int64_t min_long = 0x8000000000000000;
  5223   Label normal_case, special_case;
  5225   // check for special case
  5226   cmp64(rax, ExternalAddress((address) &min_long));
  5227   jcc(Assembler::notEqual, normal_case);
  5228   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5229                   // remainder = 0)
  5230   cmpq(reg, -1);
  5231   jcc(Assembler::equal, special_case);
  5233   // handle normal case
  5234   bind(normal_case);
  5235   cdqq();
  5236   int idivq_offset = offset();
  5237   idivq(reg);
  5239   // normal and special case exit
  5240   bind(special_case);
  5242   return idivq_offset;
  5245 void MacroAssembler::decrementq(Register reg, int value) {
  5246   if (value == min_jint) { subq(reg, value); return; }
  5247   if (value <  0) { incrementq(reg, -value); return; }
  5248   if (value == 0) {                        ; return; }
  5249   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5250   /* else */      { subq(reg, value)       ; return; }
  5253 void MacroAssembler::decrementq(Address dst, int value) {
  5254   if (value == min_jint) { subq(dst, value); return; }
  5255   if (value <  0) { incrementq(dst, -value); return; }
  5256   if (value == 0) {                        ; return; }
  5257   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5258   /* else */      { subq(dst, value)       ; return; }
  5261 void MacroAssembler::fat_nop() {
  5262   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5263   // Recommened sequence from 'Software Optimization Guide for the AMD
  5264   // Hammer Processor'
  5265   emit_byte(0x66);
  5266   emit_byte(0x66);
  5267   emit_byte(0x90);
  5268   emit_byte(0x66);
  5269   emit_byte(0x90);
  5272 void MacroAssembler::incrementq(Register reg, int value) {
  5273   if (value == min_jint) { addq(reg, value); return; }
  5274   if (value <  0) { decrementq(reg, -value); return; }
  5275   if (value == 0) {                        ; return; }
  5276   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5277   /* else */      { addq(reg, value)       ; return; }
  5280 void MacroAssembler::incrementq(Address dst, int value) {
  5281   if (value == min_jint) { addq(dst, value); return; }
  5282   if (value <  0) { decrementq(dst, -value); return; }
  5283   if (value == 0) {                        ; return; }
  5284   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5285   /* else */      { addq(dst, value)       ; return; }
  5288 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5289 // to be installed in the Address class
  5290 void MacroAssembler::jump(ArrayAddress entry) {
  5291   lea(rscratch1, entry.base());
  5292   Address dispatch = entry.index();
  5293   assert(dispatch._base == noreg, "must be");
  5294   dispatch._base = rscratch1;
  5295   jmp(dispatch);
  5298 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5299   ShouldNotReachHere(); // 64bit doesn't use two regs
  5300   cmpq(x_lo, y_lo);
  5303 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5304     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5307 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5308   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5309   movptr(dst, rscratch1);
  5312 void MacroAssembler::leave() {
  5313   // %%% is this really better? Why not on 32bit too?
  5314   emit_byte(0xC9); // LEAVE
  5317 void MacroAssembler::lneg(Register hi, Register lo) {
  5318   ShouldNotReachHere(); // 64bit doesn't use two regs
  5319   negq(lo);
  5322 void MacroAssembler::movoop(Register dst, jobject obj) {
  5323   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5326 void MacroAssembler::movoop(Address dst, jobject obj) {
  5327   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5328   movq(dst, rscratch1);
  5331 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5332   if (src.is_lval()) {
  5333     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5334   } else {
  5335     if (reachable(src)) {
  5336       movq(dst, as_Address(src));
  5337     } else {
  5338       lea(rscratch1, src);
  5339       movq(dst, Address(rscratch1,0));
  5344 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5345   movq(as_Address(dst), src);
  5348 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5349   movq(dst, as_Address(src));
  5352 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5353 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5354   mov64(rscratch1, src);
  5355   movq(dst, rscratch1);
  5358 // These are mostly for initializing NULL
  5359 void MacroAssembler::movptr(Address dst, int32_t src) {
  5360   movslq(dst, src);
  5363 void MacroAssembler::movptr(Register dst, int32_t src) {
  5364   mov64(dst, (intptr_t)src);
  5367 void MacroAssembler::pushoop(jobject obj) {
  5368   movoop(rscratch1, obj);
  5369   push(rscratch1);
  5372 void MacroAssembler::pushptr(AddressLiteral src) {
  5373   lea(rscratch1, src);
  5374   if (src.is_lval()) {
  5375     push(rscratch1);
  5376   } else {
  5377     pushq(Address(rscratch1, 0));
  5381 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5382                                            bool clear_pc) {
  5383   // we must set sp to zero to clear frame
  5384   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5385   // must clear fp, so that compiled frames are not confused; it is
  5386   // possible that we need it only for debugging
  5387   if (clear_fp) {
  5388     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5391   if (clear_pc) {
  5392     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5396 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5397                                          Register last_java_fp,
  5398                                          address  last_java_pc) {
  5399   // determine last_java_sp register
  5400   if (!last_java_sp->is_valid()) {
  5401     last_java_sp = rsp;
  5404   // last_java_fp is optional
  5405   if (last_java_fp->is_valid()) {
  5406     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5407            last_java_fp);
  5410   // last_java_pc is optional
  5411   if (last_java_pc != NULL) {
  5412     Address java_pc(r15_thread,
  5413                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5414     lea(rscratch1, InternalAddress(last_java_pc));
  5415     movptr(java_pc, rscratch1);
  5418   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5421 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5422   if (c_rarg0 != arg ) {
  5423     masm->mov(c_rarg0, arg);
  5427 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5428   if (c_rarg1 != arg ) {
  5429     masm->mov(c_rarg1, arg);
  5433 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5434   if (c_rarg2 != arg ) {
  5435     masm->mov(c_rarg2, arg);
  5439 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5440   if (c_rarg3 != arg ) {
  5441     masm->mov(c_rarg3, arg);
  5445 void MacroAssembler::stop(const char* msg) {
  5446   address rip = pc();
  5447   pusha(); // get regs on stack
  5448   lea(c_rarg0, ExternalAddress((address) msg));
  5449   lea(c_rarg1, InternalAddress(rip));
  5450   movq(c_rarg2, rsp); // pass pointer to regs array
  5451   andq(rsp, -16); // align stack as required by ABI
  5452   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5453   hlt();
  5456 void MacroAssembler::warn(const char* msg) {
  5457   push(r12);
  5458   movq(r12, rsp);
  5459   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5461   push_CPU_state();   // keeps alignment at 16 bytes
  5462   lea(c_rarg0, ExternalAddress((address) msg));
  5463   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5464   pop_CPU_state();
  5466   movq(rsp, r12);
  5467   pop(r12);
  5470 #ifndef PRODUCT
  5471 extern "C" void findpc(intptr_t x);
  5472 #endif
  5474 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5475   // In order to get locks to work, we need to fake a in_VM state
  5476   if (ShowMessageBoxOnError ) {
  5477     JavaThread* thread = JavaThread::current();
  5478     JavaThreadState saved_state = thread->thread_state();
  5479     thread->set_thread_state(_thread_in_vm);
  5480 #ifndef PRODUCT
  5481     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5482       ttyLocker ttyl;
  5483       BytecodeCounter::print();
  5485 #endif
  5486     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5487     // XXX correct this offset for amd64
  5488     // This is the value of eip which points to where verify_oop will return.
  5489     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5490       ttyLocker ttyl;
  5491       tty->print_cr("rip = 0x%016lx", pc);
  5492 #ifndef PRODUCT
  5493       tty->cr();
  5494       findpc(pc);
  5495       tty->cr();
  5496 #endif
  5497       tty->print_cr("rax = 0x%016lx", regs[15]);
  5498       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5499       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5500       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5501       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5502       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5503       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5504       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5505       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5506       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5507       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5508       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5509       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5510       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5511       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5512       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5513       BREAKPOINT;
  5515     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5516   } else {
  5517     ttyLocker ttyl;
  5518     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5519                     msg);
  5523 #endif // _LP64
  5525 // Now versions that are common to 32/64 bit
  5527 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5528   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5531 void MacroAssembler::addptr(Register dst, Register src) {
  5532   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5535 void MacroAssembler::addptr(Address dst, Register src) {
  5536   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5539 void MacroAssembler::align(int modulus) {
  5540   if (offset() % modulus != 0) {
  5541     nop(modulus - (offset() % modulus));
  5545 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5546   andpd(dst, as_Address(src));
  5549 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5550   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5553 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5554   pushf();
  5555   if (os::is_MP())
  5556     lock();
  5557   incrementl(counter_addr);
  5558   popf();
  5561 // Writes to stack successive pages until offset reached to check for
  5562 // stack overflow + shadow pages.  This clobbers tmp.
  5563 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5564   movptr(tmp, rsp);
  5565   // Bang stack for total size given plus shadow page size.
  5566   // Bang one page at a time because large size can bang beyond yellow and
  5567   // red zones.
  5568   Label loop;
  5569   bind(loop);
  5570   movl(Address(tmp, (-os::vm_page_size())), size );
  5571   subptr(tmp, os::vm_page_size());
  5572   subl(size, os::vm_page_size());
  5573   jcc(Assembler::greater, loop);
  5575   // Bang down shadow pages too.
  5576   // The -1 because we already subtracted 1 page.
  5577   for (int i = 0; i< StackShadowPages-1; i++) {
  5578     // this could be any sized move but this is can be a debugging crumb
  5579     // so the bigger the better.
  5580     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5584 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5585   assert(UseBiasedLocking, "why call this otherwise?");
  5587   // Check for biased locking unlock case, which is a no-op
  5588   // Note: we do not have to check the thread ID for two reasons.
  5589   // First, the interpreter checks for IllegalMonitorStateException at
  5590   // a higher level. Second, if the bias was revoked while we held the
  5591   // lock, the object could not be rebiased toward another thread, so
  5592   // the bias bit would be clear.
  5593   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5594   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5595   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5596   jcc(Assembler::equal, done);
  5599 void MacroAssembler::c2bool(Register x) {
  5600   // implements x == 0 ? 0 : 1
  5601   // note: must only look at least-significant byte of x
  5602   //       since C-style booleans are stored in one byte
  5603   //       only! (was bug)
  5604   andl(x, 0xFF);
  5605   setb(Assembler::notZero, x);
  5608 // Wouldn't need if AddressLiteral version had new name
  5609 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5610   Assembler::call(L, rtype);
  5613 void MacroAssembler::call(Register entry) {
  5614   Assembler::call(entry);
  5617 void MacroAssembler::call(AddressLiteral entry) {
  5618   if (reachable(entry)) {
  5619     Assembler::call_literal(entry.target(), entry.rspec());
  5620   } else {
  5621     lea(rscratch1, entry);
  5622     Assembler::call(rscratch1);
  5626 // Implementation of call_VM versions
  5628 void MacroAssembler::call_VM(Register oop_result,
  5629                              address entry_point,
  5630                              bool check_exceptions) {
  5631   Label C, E;
  5632   call(C, relocInfo::none);
  5633   jmp(E);
  5635   bind(C);
  5636   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5637   ret(0);
  5639   bind(E);
  5642 void MacroAssembler::call_VM(Register oop_result,
  5643                              address entry_point,
  5644                              Register arg_1,
  5645                              bool check_exceptions) {
  5646   Label C, E;
  5647   call(C, relocInfo::none);
  5648   jmp(E);
  5650   bind(C);
  5651   pass_arg1(this, arg_1);
  5652   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5653   ret(0);
  5655   bind(E);
  5658 void MacroAssembler::call_VM(Register oop_result,
  5659                              address entry_point,
  5660                              Register arg_1,
  5661                              Register arg_2,
  5662                              bool check_exceptions) {
  5663   Label C, E;
  5664   call(C, relocInfo::none);
  5665   jmp(E);
  5667   bind(C);
  5669   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5671   pass_arg2(this, arg_2);
  5672   pass_arg1(this, arg_1);
  5673   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5674   ret(0);
  5676   bind(E);
  5679 void MacroAssembler::call_VM(Register oop_result,
  5680                              address entry_point,
  5681                              Register arg_1,
  5682                              Register arg_2,
  5683                              Register arg_3,
  5684                              bool check_exceptions) {
  5685   Label C, E;
  5686   call(C, relocInfo::none);
  5687   jmp(E);
  5689   bind(C);
  5691   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5692   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5693   pass_arg3(this, arg_3);
  5695   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5696   pass_arg2(this, arg_2);
  5698   pass_arg1(this, arg_1);
  5699   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5700   ret(0);
  5702   bind(E);
  5705 void MacroAssembler::call_VM(Register oop_result,
  5706                              Register last_java_sp,
  5707                              address entry_point,
  5708                              int number_of_arguments,
  5709                              bool check_exceptions) {
  5710   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5711   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5714 void MacroAssembler::call_VM(Register oop_result,
  5715                              Register last_java_sp,
  5716                              address entry_point,
  5717                              Register arg_1,
  5718                              bool check_exceptions) {
  5719   pass_arg1(this, arg_1);
  5720   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5723 void MacroAssembler::call_VM(Register oop_result,
  5724                              Register last_java_sp,
  5725                              address entry_point,
  5726                              Register arg_1,
  5727                              Register arg_2,
  5728                              bool check_exceptions) {
  5730   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5731   pass_arg2(this, arg_2);
  5732   pass_arg1(this, arg_1);
  5733   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5736 void MacroAssembler::call_VM(Register oop_result,
  5737                              Register last_java_sp,
  5738                              address entry_point,
  5739                              Register arg_1,
  5740                              Register arg_2,
  5741                              Register arg_3,
  5742                              bool check_exceptions) {
  5743   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5744   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5745   pass_arg3(this, arg_3);
  5746   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5747   pass_arg2(this, arg_2);
  5748   pass_arg1(this, arg_1);
  5749   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5752 void MacroAssembler::call_VM_base(Register oop_result,
  5753                                   Register java_thread,
  5754                                   Register last_java_sp,
  5755                                   address  entry_point,
  5756                                   int      number_of_arguments,
  5757                                   bool     check_exceptions) {
  5758   // determine java_thread register
  5759   if (!java_thread->is_valid()) {
  5760 #ifdef _LP64
  5761     java_thread = r15_thread;
  5762 #else
  5763     java_thread = rdi;
  5764     get_thread(java_thread);
  5765 #endif // LP64
  5767   // determine last_java_sp register
  5768   if (!last_java_sp->is_valid()) {
  5769     last_java_sp = rsp;
  5771   // debugging support
  5772   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5773   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5774   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5775   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5777   // push java thread (becomes first argument of C function)
  5779   NOT_LP64(push(java_thread); number_of_arguments++);
  5780   LP64_ONLY(mov(c_rarg0, r15_thread));
  5782   // set last Java frame before call
  5783   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5785   // Only interpreter should have to set fp
  5786   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5788   // do the call, remove parameters
  5789   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5791   // restore the thread (cannot use the pushed argument since arguments
  5792   // may be overwritten by C code generated by an optimizing compiler);
  5793   // however can use the register value directly if it is callee saved.
  5794   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5795     // rdi & rsi (also r15) are callee saved -> nothing to do
  5796 #ifdef ASSERT
  5797     guarantee(java_thread != rax, "change this code");
  5798     push(rax);
  5799     { Label L;
  5800       get_thread(rax);
  5801       cmpptr(java_thread, rax);
  5802       jcc(Assembler::equal, L);
  5803       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5804       bind(L);
  5806     pop(rax);
  5807 #endif
  5808   } else {
  5809     get_thread(java_thread);
  5811   // reset last Java frame
  5812   // Only interpreter should have to clear fp
  5813   reset_last_Java_frame(java_thread, true, false);
  5815 #ifndef CC_INTERP
  5816    // C++ interp handles this in the interpreter
  5817   check_and_handle_popframe(java_thread);
  5818   check_and_handle_earlyret(java_thread);
  5819 #endif /* CC_INTERP */
  5821   if (check_exceptions) {
  5822     // check for pending exceptions (java_thread is set upon return)
  5823     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5824 #ifndef _LP64
  5825     jump_cc(Assembler::notEqual,
  5826             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5827 #else
  5828     // This used to conditionally jump to forward_exception however it is
  5829     // possible if we relocate that the branch will not reach. So we must jump
  5830     // around so we can always reach
  5832     Label ok;
  5833     jcc(Assembler::equal, ok);
  5834     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5835     bind(ok);
  5836 #endif // LP64
  5839   // get oop result if there is one and reset the value in the thread
  5840   if (oop_result->is_valid()) {
  5841     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5842     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5843     verify_oop(oop_result, "broken oop in call_VM_base");
  5847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5849   // Calculate the value for last_Java_sp
  5850   // somewhat subtle. call_VM does an intermediate call
  5851   // which places a return address on the stack just under the
  5852   // stack pointer as the user finsihed with it. This allows
  5853   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5854   // On 32bit we then have to push additional args on the stack to accomplish
  5855   // the actual requested call. On 64bit call_VM only can use register args
  5856   // so the only extra space is the return address that call_VM created.
  5857   // This hopefully explains the calculations here.
  5859 #ifdef _LP64
  5860   // We've pushed one address, correct last_Java_sp
  5861   lea(rax, Address(rsp, wordSize));
  5862 #else
  5863   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  5864 #endif // LP64
  5866   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  5870 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  5871   call_VM_leaf_base(entry_point, number_of_arguments);
  5874 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  5875   pass_arg0(this, arg_0);
  5876   call_VM_leaf(entry_point, 1);
  5879 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  5881   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5882   pass_arg1(this, arg_1);
  5883   pass_arg0(this, arg_0);
  5884   call_VM_leaf(entry_point, 2);
  5887 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  5888   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  5889   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5890   pass_arg2(this, arg_2);
  5891   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5892   pass_arg1(this, arg_1);
  5893   pass_arg0(this, arg_0);
  5894   call_VM_leaf(entry_point, 3);
  5897 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  5900 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  5903 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  5904   if (reachable(src1)) {
  5905     cmpl(as_Address(src1), imm);
  5906   } else {
  5907     lea(rscratch1, src1);
  5908     cmpl(Address(rscratch1, 0), imm);
  5912 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  5913   assert(!src2.is_lval(), "use cmpptr");
  5914   if (reachable(src2)) {
  5915     cmpl(src1, as_Address(src2));
  5916   } else {
  5917     lea(rscratch1, src2);
  5918     cmpl(src1, Address(rscratch1, 0));
  5922 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  5923   Assembler::cmpl(src1, imm);
  5926 void MacroAssembler::cmp32(Register src1, Address src2) {
  5927   Assembler::cmpl(src1, src2);
  5930 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  5931   ucomisd(opr1, opr2);
  5933   Label L;
  5934   if (unordered_is_less) {
  5935     movl(dst, -1);
  5936     jcc(Assembler::parity, L);
  5937     jcc(Assembler::below , L);
  5938     movl(dst, 0);
  5939     jcc(Assembler::equal , L);
  5940     increment(dst);
  5941   } else { // unordered is greater
  5942     movl(dst, 1);
  5943     jcc(Assembler::parity, L);
  5944     jcc(Assembler::above , L);
  5945     movl(dst, 0);
  5946     jcc(Assembler::equal , L);
  5947     decrementl(dst);
  5949   bind(L);
  5952 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  5953   ucomiss(opr1, opr2);
  5955   Label L;
  5956   if (unordered_is_less) {
  5957     movl(dst, -1);
  5958     jcc(Assembler::parity, L);
  5959     jcc(Assembler::below , L);
  5960     movl(dst, 0);
  5961     jcc(Assembler::equal , L);
  5962     increment(dst);
  5963   } else { // unordered is greater
  5964     movl(dst, 1);
  5965     jcc(Assembler::parity, L);
  5966     jcc(Assembler::above , L);
  5967     movl(dst, 0);
  5968     jcc(Assembler::equal , L);
  5969     decrementl(dst);
  5971   bind(L);
  5975 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  5976   if (reachable(src1)) {
  5977     cmpb(as_Address(src1), imm);
  5978   } else {
  5979     lea(rscratch1, src1);
  5980     cmpb(Address(rscratch1, 0), imm);
  5984 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  5985 #ifdef _LP64
  5986   if (src2.is_lval()) {
  5987     movptr(rscratch1, src2);
  5988     Assembler::cmpq(src1, rscratch1);
  5989   } else if (reachable(src2)) {
  5990     cmpq(src1, as_Address(src2));
  5991   } else {
  5992     lea(rscratch1, src2);
  5993     Assembler::cmpq(src1, Address(rscratch1, 0));
  5995 #else
  5996   if (src2.is_lval()) {
  5997     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  5998   } else {
  5999     cmpl(src1, as_Address(src2));
  6001 #endif // _LP64
  6004 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6005   assert(src2.is_lval(), "not a mem-mem compare");
  6006 #ifdef _LP64
  6007   // moves src2's literal address
  6008   movptr(rscratch1, src2);
  6009   Assembler::cmpq(src1, rscratch1);
  6010 #else
  6011   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6012 #endif // _LP64
  6015 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6016   if (reachable(adr)) {
  6017     if (os::is_MP())
  6018       lock();
  6019     cmpxchgptr(reg, as_Address(adr));
  6020   } else {
  6021     lea(rscratch1, adr);
  6022     if (os::is_MP())
  6023       lock();
  6024     cmpxchgptr(reg, Address(rscratch1, 0));
  6028 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6029   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6032 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6033   comisd(dst, as_Address(src));
  6036 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6037   comiss(dst, as_Address(src));
  6041 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6042   Condition negated_cond = negate_condition(cond);
  6043   Label L;
  6044   jcc(negated_cond, L);
  6045   atomic_incl(counter_addr);
  6046   bind(L);
  6049 int MacroAssembler::corrected_idivl(Register reg) {
  6050   // Full implementation of Java idiv and irem; checks for
  6051   // special case as described in JVM spec., p.243 & p.271.
  6052   // The function returns the (pc) offset of the idivl
  6053   // instruction - may be needed for implicit exceptions.
  6054   //
  6055   //         normal case                           special case
  6056   //
  6057   // input : rax,: dividend                         min_int
  6058   //         reg: divisor   (may not be rax,/rdx)   -1
  6059   //
  6060   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6061   //         rdx: remainder (= rax, irem reg)       0
  6062   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6063   const int min_int = 0x80000000;
  6064   Label normal_case, special_case;
  6066   // check for special case
  6067   cmpl(rax, min_int);
  6068   jcc(Assembler::notEqual, normal_case);
  6069   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6070   cmpl(reg, -1);
  6071   jcc(Assembler::equal, special_case);
  6073   // handle normal case
  6074   bind(normal_case);
  6075   cdql();
  6076   int idivl_offset = offset();
  6077   idivl(reg);
  6079   // normal and special case exit
  6080   bind(special_case);
  6082   return idivl_offset;
  6087 void MacroAssembler::decrementl(Register reg, int value) {
  6088   if (value == min_jint) {subl(reg, value) ; return; }
  6089   if (value <  0) { incrementl(reg, -value); return; }
  6090   if (value == 0) {                        ; return; }
  6091   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6092   /* else */      { subl(reg, value)       ; return; }
  6095 void MacroAssembler::decrementl(Address dst, int value) {
  6096   if (value == min_jint) {subl(dst, value) ; return; }
  6097   if (value <  0) { incrementl(dst, -value); return; }
  6098   if (value == 0) {                        ; return; }
  6099   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6100   /* else */      { subl(dst, value)       ; return; }
  6103 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6104   assert (shift_value > 0, "illegal shift value");
  6105   Label _is_positive;
  6106   testl (reg, reg);
  6107   jcc (Assembler::positive, _is_positive);
  6108   int offset = (1 << shift_value) - 1 ;
  6110   if (offset == 1) {
  6111     incrementl(reg);
  6112   } else {
  6113     addl(reg, offset);
  6116   bind (_is_positive);
  6117   sarl(reg, shift_value);
  6120 // !defined(COMPILER2) is because of stupid core builds
  6121 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6122 void MacroAssembler::empty_FPU_stack() {
  6123   if (VM_Version::supports_mmx()) {
  6124     emms();
  6125   } else {
  6126     for (int i = 8; i-- > 0; ) ffree(i);
  6129 #endif // !LP64 || C1 || !C2
  6132 // Defines obj, preserves var_size_in_bytes
  6133 void MacroAssembler::eden_allocate(Register obj,
  6134                                    Register var_size_in_bytes,
  6135                                    int con_size_in_bytes,
  6136                                    Register t1,
  6137                                    Label& slow_case) {
  6138   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6139   assert_different_registers(obj, var_size_in_bytes, t1);
  6140   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6141     jmp(slow_case);
  6142   } else {
  6143     Register end = t1;
  6144     Label retry;
  6145     bind(retry);
  6146     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6147     movptr(obj, heap_top);
  6148     if (var_size_in_bytes == noreg) {
  6149       lea(end, Address(obj, con_size_in_bytes));
  6150     } else {
  6151       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6153     // if end < obj then we wrapped around => object too long => slow case
  6154     cmpptr(end, obj);
  6155     jcc(Assembler::below, slow_case);
  6156     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6157     jcc(Assembler::above, slow_case);
  6158     // Compare obj with the top addr, and if still equal, store the new top addr in
  6159     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6160     // it otherwise. Use lock prefix for atomicity on MPs.
  6161     locked_cmpxchgptr(end, heap_top);
  6162     jcc(Assembler::notEqual, retry);
  6166 void MacroAssembler::enter() {
  6167   push(rbp);
  6168   mov(rbp, rsp);
  6171 void MacroAssembler::fcmp(Register tmp) {
  6172   fcmp(tmp, 1, true, true);
  6175 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6176   assert(!pop_right || pop_left, "usage error");
  6177   if (VM_Version::supports_cmov()) {
  6178     assert(tmp == noreg, "unneeded temp");
  6179     if (pop_left) {
  6180       fucomip(index);
  6181     } else {
  6182       fucomi(index);
  6184     if (pop_right) {
  6185       fpop();
  6187   } else {
  6188     assert(tmp != noreg, "need temp");
  6189     if (pop_left) {
  6190       if (pop_right) {
  6191         fcompp();
  6192       } else {
  6193         fcomp(index);
  6195     } else {
  6196       fcom(index);
  6198     // convert FPU condition into eflags condition via rax,
  6199     save_rax(tmp);
  6200     fwait(); fnstsw_ax();
  6201     sahf();
  6202     restore_rax(tmp);
  6204   // condition codes set as follows:
  6205   //
  6206   // CF (corresponds to C0) if x < y
  6207   // PF (corresponds to C2) if unordered
  6208   // ZF (corresponds to C3) if x = y
  6211 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6212   fcmp2int(dst, unordered_is_less, 1, true, true);
  6215 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6216   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6217   Label L;
  6218   if (unordered_is_less) {
  6219     movl(dst, -1);
  6220     jcc(Assembler::parity, L);
  6221     jcc(Assembler::below , L);
  6222     movl(dst, 0);
  6223     jcc(Assembler::equal , L);
  6224     increment(dst);
  6225   } else { // unordered is greater
  6226     movl(dst, 1);
  6227     jcc(Assembler::parity, L);
  6228     jcc(Assembler::above , L);
  6229     movl(dst, 0);
  6230     jcc(Assembler::equal , L);
  6231     decrementl(dst);
  6233   bind(L);
  6236 void MacroAssembler::fld_d(AddressLiteral src) {
  6237   fld_d(as_Address(src));
  6240 void MacroAssembler::fld_s(AddressLiteral src) {
  6241   fld_s(as_Address(src));
  6244 void MacroAssembler::fld_x(AddressLiteral src) {
  6245   Assembler::fld_x(as_Address(src));
  6248 void MacroAssembler::fldcw(AddressLiteral src) {
  6249   Assembler::fldcw(as_Address(src));
  6252 void MacroAssembler::fpop() {
  6253   ffree();
  6254   fincstp();
  6257 void MacroAssembler::fremr(Register tmp) {
  6258   save_rax(tmp);
  6259   { Label L;
  6260     bind(L);
  6261     fprem();
  6262     fwait(); fnstsw_ax();
  6263 #ifdef _LP64
  6264     testl(rax, 0x400);
  6265     jcc(Assembler::notEqual, L);
  6266 #else
  6267     sahf();
  6268     jcc(Assembler::parity, L);
  6269 #endif // _LP64
  6271   restore_rax(tmp);
  6272   // Result is in ST0.
  6273   // Note: fxch & fpop to get rid of ST1
  6274   // (otherwise FPU stack could overflow eventually)
  6275   fxch(1);
  6276   fpop();
  6280 void MacroAssembler::incrementl(AddressLiteral dst) {
  6281   if (reachable(dst)) {
  6282     incrementl(as_Address(dst));
  6283   } else {
  6284     lea(rscratch1, dst);
  6285     incrementl(Address(rscratch1, 0));
  6289 void MacroAssembler::incrementl(ArrayAddress dst) {
  6290   incrementl(as_Address(dst));
  6293 void MacroAssembler::incrementl(Register reg, int value) {
  6294   if (value == min_jint) {addl(reg, value) ; return; }
  6295   if (value <  0) { decrementl(reg, -value); return; }
  6296   if (value == 0) {                        ; return; }
  6297   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6298   /* else */      { addl(reg, value)       ; return; }
  6301 void MacroAssembler::incrementl(Address dst, int value) {
  6302   if (value == min_jint) {addl(dst, value) ; return; }
  6303   if (value <  0) { decrementl(dst, -value); return; }
  6304   if (value == 0) {                        ; return; }
  6305   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6306   /* else */      { addl(dst, value)       ; return; }
  6309 void MacroAssembler::jump(AddressLiteral dst) {
  6310   if (reachable(dst)) {
  6311     jmp_literal(dst.target(), dst.rspec());
  6312   } else {
  6313     lea(rscratch1, dst);
  6314     jmp(rscratch1);
  6318 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6319   if (reachable(dst)) {
  6320     InstructionMark im(this);
  6321     relocate(dst.reloc());
  6322     const int short_size = 2;
  6323     const int long_size = 6;
  6324     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6325     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6326       // 0111 tttn #8-bit disp
  6327       emit_byte(0x70 | cc);
  6328       emit_byte((offs - short_size) & 0xFF);
  6329     } else {
  6330       // 0000 1111 1000 tttn #32-bit disp
  6331       emit_byte(0x0F);
  6332       emit_byte(0x80 | cc);
  6333       emit_long(offs - long_size);
  6335   } else {
  6336 #ifdef ASSERT
  6337     warning("reversing conditional branch");
  6338 #endif /* ASSERT */
  6339     Label skip;
  6340     jccb(reverse[cc], skip);
  6341     lea(rscratch1, dst);
  6342     Assembler::jmp(rscratch1);
  6343     bind(skip);
  6347 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6348   if (reachable(src)) {
  6349     Assembler::ldmxcsr(as_Address(src));
  6350   } else {
  6351     lea(rscratch1, src);
  6352     Assembler::ldmxcsr(Address(rscratch1, 0));
  6356 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6357   int off;
  6358   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6359     off = offset();
  6360     movsbl(dst, src); // movsxb
  6361   } else {
  6362     off = load_unsigned_byte(dst, src);
  6363     shll(dst, 24);
  6364     sarl(dst, 24);
  6366   return off;
  6369 // Note: load_signed_short used to be called load_signed_word.
  6370 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6371 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6372 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6373 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6374   int off;
  6375   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6376     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6377     // version but this is what 64bit has always done. This seems to imply
  6378     // that users are only using 32bits worth.
  6379     off = offset();
  6380     movswl(dst, src); // movsxw
  6381   } else {
  6382     off = load_unsigned_short(dst, src);
  6383     shll(dst, 16);
  6384     sarl(dst, 16);
  6386   return off;
  6389 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6390   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6391   // and "3.9 Partial Register Penalties", p. 22).
  6392   int off;
  6393   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6394     off = offset();
  6395     movzbl(dst, src); // movzxb
  6396   } else {
  6397     xorl(dst, dst);
  6398     off = offset();
  6399     movb(dst, src);
  6401   return off;
  6404 // Note: load_unsigned_short used to be called load_unsigned_word.
  6405 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6406   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6407   // and "3.9 Partial Register Penalties", p. 22).
  6408   int off;
  6409   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6410     off = offset();
  6411     movzwl(dst, src); // movzxw
  6412   } else {
  6413     xorl(dst, dst);
  6414     off = offset();
  6415     movw(dst, src);
  6417   return off;
  6420 void MacroAssembler::load_sized_value(Register dst, Address src,
  6421                                       int size_in_bytes, bool is_signed) {
  6422   switch (size_in_bytes ^ (is_signed ? -1 : 0)) {
  6423 #ifndef _LP64
  6424   // For case 8, caller is responsible for manually loading
  6425   // the second word into another register.
  6426   case ~8:  // fall through:
  6427   case  8:  movl(                dst, src ); break;
  6428 #else
  6429   case ~8:  // fall through:
  6430   case  8:  movq(                dst, src ); break;
  6431 #endif
  6432   case ~4:  // fall through:
  6433   case  4:  movl(                dst, src ); break;
  6434   case ~2:  load_signed_short(   dst, src ); break;
  6435   case  2:  load_unsigned_short( dst, src ); break;
  6436   case ~1:  load_signed_byte(    dst, src ); break;
  6437   case  1:  load_unsigned_byte(  dst, src ); break;
  6438   default:  ShouldNotReachHere();
  6442 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6443   if (reachable(dst)) {
  6444     movl(as_Address(dst), src);
  6445   } else {
  6446     lea(rscratch1, dst);
  6447     movl(Address(rscratch1, 0), src);
  6451 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6452   if (reachable(src)) {
  6453     movl(dst, as_Address(src));
  6454   } else {
  6455     lea(rscratch1, src);
  6456     movl(dst, Address(rscratch1, 0));
  6460 // C++ bool manipulation
  6462 void MacroAssembler::movbool(Register dst, Address src) {
  6463   if(sizeof(bool) == 1)
  6464     movb(dst, src);
  6465   else if(sizeof(bool) == 2)
  6466     movw(dst, src);
  6467   else if(sizeof(bool) == 4)
  6468     movl(dst, src);
  6469   else
  6470     // unsupported
  6471     ShouldNotReachHere();
  6474 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6475   if(sizeof(bool) == 1)
  6476     movb(dst, (int) boolconst);
  6477   else if(sizeof(bool) == 2)
  6478     movw(dst, (int) boolconst);
  6479   else if(sizeof(bool) == 4)
  6480     movl(dst, (int) boolconst);
  6481   else
  6482     // unsupported
  6483     ShouldNotReachHere();
  6486 void MacroAssembler::movbool(Address dst, Register src) {
  6487   if(sizeof(bool) == 1)
  6488     movb(dst, src);
  6489   else if(sizeof(bool) == 2)
  6490     movw(dst, src);
  6491   else if(sizeof(bool) == 4)
  6492     movl(dst, src);
  6493   else
  6494     // unsupported
  6495     ShouldNotReachHere();
  6498 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6499   movb(as_Address(dst), src);
  6502 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6503   if (reachable(src)) {
  6504     if (UseXmmLoadAndClearUpper) {
  6505       movsd (dst, as_Address(src));
  6506     } else {
  6507       movlpd(dst, as_Address(src));
  6509   } else {
  6510     lea(rscratch1, src);
  6511     if (UseXmmLoadAndClearUpper) {
  6512       movsd (dst, Address(rscratch1, 0));
  6513     } else {
  6514       movlpd(dst, Address(rscratch1, 0));
  6519 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6520   if (reachable(src)) {
  6521     movss(dst, as_Address(src));
  6522   } else {
  6523     lea(rscratch1, src);
  6524     movss(dst, Address(rscratch1, 0));
  6528 void MacroAssembler::movptr(Register dst, Register src) {
  6529   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6532 void MacroAssembler::movptr(Register dst, Address src) {
  6533   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6536 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6537 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6538   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6541 void MacroAssembler::movptr(Address dst, Register src) {
  6542   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6545 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6546   if (reachable(src)) {
  6547     movss(dst, as_Address(src));
  6548   } else {
  6549     lea(rscratch1, src);
  6550     movss(dst, Address(rscratch1, 0));
  6554 void MacroAssembler::null_check(Register reg, int offset) {
  6555   if (needs_explicit_null_check(offset)) {
  6556     // provoke OS NULL exception if reg = NULL by
  6557     // accessing M[reg] w/o changing any (non-CC) registers
  6558     // NOTE: cmpl is plenty here to provoke a segv
  6559     cmpptr(rax, Address(reg, 0));
  6560     // Note: should probably use testl(rax, Address(reg, 0));
  6561     //       may be shorter code (however, this version of
  6562     //       testl needs to be implemented first)
  6563   } else {
  6564     // nothing to do, (later) access of M[reg + offset]
  6565     // will provoke OS NULL exception if reg = NULL
  6569 void MacroAssembler::os_breakpoint() {
  6570   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6571   // (e.g., MSVC can't call ps() otherwise)
  6572   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6575 void MacroAssembler::pop_CPU_state() {
  6576   pop_FPU_state();
  6577   pop_IU_state();
  6580 void MacroAssembler::pop_FPU_state() {
  6581   NOT_LP64(frstor(Address(rsp, 0));)
  6582   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6583   addptr(rsp, FPUStateSizeInWords * wordSize);
  6586 void MacroAssembler::pop_IU_state() {
  6587   popa();
  6588   LP64_ONLY(addq(rsp, 8));
  6589   popf();
  6592 // Save Integer and Float state
  6593 // Warning: Stack must be 16 byte aligned (64bit)
  6594 void MacroAssembler::push_CPU_state() {
  6595   push_IU_state();
  6596   push_FPU_state();
  6599 void MacroAssembler::push_FPU_state() {
  6600   subptr(rsp, FPUStateSizeInWords * wordSize);
  6601 #ifndef _LP64
  6602   fnsave(Address(rsp, 0));
  6603   fwait();
  6604 #else
  6605   fxsave(Address(rsp, 0));
  6606 #endif // LP64
  6609 void MacroAssembler::push_IU_state() {
  6610   // Push flags first because pusha kills them
  6611   pushf();
  6612   // Make sure rsp stays 16-byte aligned
  6613   LP64_ONLY(subq(rsp, 8));
  6614   pusha();
  6617 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6618   // determine java_thread register
  6619   if (!java_thread->is_valid()) {
  6620     java_thread = rdi;
  6621     get_thread(java_thread);
  6623   // we must set sp to zero to clear frame
  6624   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6625   if (clear_fp) {
  6626     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6629   if (clear_pc)
  6630     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6634 void MacroAssembler::restore_rax(Register tmp) {
  6635   if (tmp == noreg) pop(rax);
  6636   else if (tmp != rax) mov(rax, tmp);
  6639 void MacroAssembler::round_to(Register reg, int modulus) {
  6640   addptr(reg, modulus - 1);
  6641   andptr(reg, -modulus);
  6644 void MacroAssembler::save_rax(Register tmp) {
  6645   if (tmp == noreg) push(rax);
  6646   else if (tmp != rax) mov(tmp, rax);
  6649 // Write serialization page so VM thread can do a pseudo remote membar.
  6650 // We use the current thread pointer to calculate a thread specific
  6651 // offset to write to within the page. This minimizes bus traffic
  6652 // due to cache line collision.
  6653 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6654   movl(tmp, thread);
  6655   shrl(tmp, os::get_serialize_page_shift_count());
  6656   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6658   Address index(noreg, tmp, Address::times_1);
  6659   ExternalAddress page(os::get_memory_serialize_page());
  6661   // Size of store must match masking code above
  6662   movl(as_Address(ArrayAddress(page, index)), tmp);
  6665 // Calls to C land
  6666 //
  6667 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6668 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6669 // has to be reset to 0. This is required to allow proper stack traversal.
  6670 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6671                                          Register last_java_sp,
  6672                                          Register last_java_fp,
  6673                                          address  last_java_pc) {
  6674   // determine java_thread register
  6675   if (!java_thread->is_valid()) {
  6676     java_thread = rdi;
  6677     get_thread(java_thread);
  6679   // determine last_java_sp register
  6680   if (!last_java_sp->is_valid()) {
  6681     last_java_sp = rsp;
  6684   // last_java_fp is optional
  6686   if (last_java_fp->is_valid()) {
  6687     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6690   // last_java_pc is optional
  6692   if (last_java_pc != NULL) {
  6693     lea(Address(java_thread,
  6694                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6695         InternalAddress(last_java_pc));
  6698   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6701 void MacroAssembler::shlptr(Register dst, int imm8) {
  6702   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6705 void MacroAssembler::shrptr(Register dst, int imm8) {
  6706   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6709 void MacroAssembler::sign_extend_byte(Register reg) {
  6710   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6711     movsbl(reg, reg); // movsxb
  6712   } else {
  6713     shll(reg, 24);
  6714     sarl(reg, 24);
  6718 void MacroAssembler::sign_extend_short(Register reg) {
  6719   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6720     movswl(reg, reg); // movsxw
  6721   } else {
  6722     shll(reg, 16);
  6723     sarl(reg, 16);
  6727 //////////////////////////////////////////////////////////////////////////////////
  6728 #ifndef SERIALGC
  6730 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6731 #ifndef _LP64
  6732                                           Register thread,
  6733 #endif
  6734                                           Register tmp,
  6735                                           Register tmp2,
  6736                                           bool tosca_live) {
  6737   LP64_ONLY(Register thread = r15_thread;)
  6738   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6739                                        PtrQueue::byte_offset_of_active()));
  6741   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6742                                        PtrQueue::byte_offset_of_index()));
  6743   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6744                                        PtrQueue::byte_offset_of_buf()));
  6747   Label done;
  6748   Label runtime;
  6750   // if (!marking_in_progress) goto done;
  6751   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6752     cmpl(in_progress, 0);
  6753   } else {
  6754     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6755     cmpb(in_progress, 0);
  6757   jcc(Assembler::equal, done);
  6759   // if (x.f == NULL) goto done;
  6760   cmpptr(Address(obj, 0), NULL_WORD);
  6761   jcc(Assembler::equal, done);
  6763   // Can we store original value in the thread's buffer?
  6765   LP64_ONLY(movslq(tmp, index);)
  6766   movptr(tmp2, Address(obj, 0));
  6767 #ifdef _LP64
  6768   cmpq(tmp, 0);
  6769 #else
  6770   cmpl(index, 0);
  6771 #endif
  6772   jcc(Assembler::equal, runtime);
  6773 #ifdef _LP64
  6774   subq(tmp, wordSize);
  6775   movl(index, tmp);
  6776   addq(tmp, buffer);
  6777 #else
  6778   subl(index, wordSize);
  6779   movl(tmp, buffer);
  6780   addl(tmp, index);
  6781 #endif
  6782   movptr(Address(tmp, 0), tmp2);
  6783   jmp(done);
  6784   bind(runtime);
  6785   // save the live input values
  6786   if(tosca_live) push(rax);
  6787   push(obj);
  6788 #ifdef _LP64
  6789   movq(c_rarg0, Address(obj, 0));
  6790   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, r15_thread);
  6791 #else
  6792   push(thread);
  6793   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6794   pop(thread);
  6795 #endif
  6796   pop(obj);
  6797   if(tosca_live) pop(rax);
  6798   bind(done);
  6802 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6803                                            Register new_val,
  6804 #ifndef _LP64
  6805                                            Register thread,
  6806 #endif
  6807                                            Register tmp,
  6808                                            Register tmp2) {
  6810   LP64_ONLY(Register thread = r15_thread;)
  6811   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6812                                        PtrQueue::byte_offset_of_index()));
  6813   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6814                                        PtrQueue::byte_offset_of_buf()));
  6815   BarrierSet* bs = Universe::heap()->barrier_set();
  6816   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6817   Label done;
  6818   Label runtime;
  6820   // Does store cross heap regions?
  6822   movptr(tmp, store_addr);
  6823   xorptr(tmp, new_val);
  6824   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  6825   jcc(Assembler::equal, done);
  6827   // crosses regions, storing NULL?
  6829   cmpptr(new_val, (int32_t) NULL_WORD);
  6830   jcc(Assembler::equal, done);
  6832   // storing region crossing non-NULL, is card already dirty?
  6834   ExternalAddress cardtable((address) ct->byte_map_base);
  6835   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6836 #ifdef _LP64
  6837   const Register card_addr = tmp;
  6839   movq(card_addr, store_addr);
  6840   shrq(card_addr, CardTableModRefBS::card_shift);
  6842   lea(tmp2, cardtable);
  6844   // get the address of the card
  6845   addq(card_addr, tmp2);
  6846 #else
  6847   const Register card_index = tmp;
  6849   movl(card_index, store_addr);
  6850   shrl(card_index, CardTableModRefBS::card_shift);
  6852   Address index(noreg, card_index, Address::times_1);
  6853   const Register card_addr = tmp;
  6854   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  6855 #endif
  6856   cmpb(Address(card_addr, 0), 0);
  6857   jcc(Assembler::equal, done);
  6859   // storing a region crossing, non-NULL oop, card is clean.
  6860   // dirty card and log.
  6862   movb(Address(card_addr, 0), 0);
  6864   cmpl(queue_index, 0);
  6865   jcc(Assembler::equal, runtime);
  6866   subl(queue_index, wordSize);
  6867   movptr(tmp2, buffer);
  6868 #ifdef _LP64
  6869   movslq(rscratch1, queue_index);
  6870   addq(tmp2, rscratch1);
  6871   movq(Address(tmp2, 0), card_addr);
  6872 #else
  6873   addl(tmp2, queue_index);
  6874   movl(Address(tmp2, 0), card_index);
  6875 #endif
  6876   jmp(done);
  6878   bind(runtime);
  6879   // save the live input values
  6880   push(store_addr);
  6881   push(new_val);
  6882 #ifdef _LP64
  6883   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  6884 #else
  6885   push(thread);
  6886   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  6887   pop(thread);
  6888 #endif
  6889   pop(new_val);
  6890   pop(store_addr);
  6892   bind(done);
  6896 #endif // SERIALGC
  6897 //////////////////////////////////////////////////////////////////////////////////
  6900 void MacroAssembler::store_check(Register obj) {
  6901   // Does a store check for the oop in register obj. The content of
  6902   // register obj is destroyed afterwards.
  6903   store_check_part_1(obj);
  6904   store_check_part_2(obj);
  6907 void MacroAssembler::store_check(Register obj, Address dst) {
  6908   store_check(obj);
  6912 // split the store check operation so that other instructions can be scheduled inbetween
  6913 void MacroAssembler::store_check_part_1(Register obj) {
  6914   BarrierSet* bs = Universe::heap()->barrier_set();
  6915   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6916   shrptr(obj, CardTableModRefBS::card_shift);
  6919 void MacroAssembler::store_check_part_2(Register obj) {
  6920   BarrierSet* bs = Universe::heap()->barrier_set();
  6921   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6922   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6923   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6925   // The calculation for byte_map_base is as follows:
  6926   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  6927   // So this essentially converts an address to a displacement and
  6928   // it will never need to be relocated. On 64bit however the value may be too
  6929   // large for a 32bit displacement
  6931   intptr_t disp = (intptr_t) ct->byte_map_base;
  6932   if (is_simm32(disp)) {
  6933     Address cardtable(noreg, obj, Address::times_1, disp);
  6934     movb(cardtable, 0);
  6935   } else {
  6936     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  6937     // displacement and done in a single instruction given favorable mapping and
  6938     // a smarter version of as_Address. Worst case it is two instructions which
  6939     // is no worse off then loading disp into a register and doing as a simple
  6940     // Address() as above.
  6941     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  6942     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  6943     // in some cases we'll get a single instruction version.
  6945     ExternalAddress cardtable((address)disp);
  6946     Address index(noreg, obj, Address::times_1);
  6947     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  6951 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  6952   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  6955 void MacroAssembler::subptr(Register dst, Register src) {
  6956   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  6959 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  6960   // src2 must be rval
  6962   if (reachable(src2)) {
  6963     testl(src1, as_Address(src2));
  6964   } else {
  6965     lea(rscratch1, src2);
  6966     testl(src1, Address(rscratch1, 0));
  6970 // C++ bool manipulation
  6971 void MacroAssembler::testbool(Register dst) {
  6972   if(sizeof(bool) == 1)
  6973     testb(dst, 0xff);
  6974   else if(sizeof(bool) == 2) {
  6975     // testw implementation needed for two byte bools
  6976     ShouldNotReachHere();
  6977   } else if(sizeof(bool) == 4)
  6978     testl(dst, dst);
  6979   else
  6980     // unsupported
  6981     ShouldNotReachHere();
  6984 void MacroAssembler::testptr(Register dst, Register src) {
  6985   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  6988 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  6989 void MacroAssembler::tlab_allocate(Register obj,
  6990                                    Register var_size_in_bytes,
  6991                                    int con_size_in_bytes,
  6992                                    Register t1,
  6993                                    Register t2,
  6994                                    Label& slow_case) {
  6995   assert_different_registers(obj, t1, t2);
  6996   assert_different_registers(obj, var_size_in_bytes, t1);
  6997   Register end = t2;
  6998   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7000   verify_tlab();
  7002   NOT_LP64(get_thread(thread));
  7004   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7005   if (var_size_in_bytes == noreg) {
  7006     lea(end, Address(obj, con_size_in_bytes));
  7007   } else {
  7008     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7010   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7011   jcc(Assembler::above, slow_case);
  7013   // update the tlab top pointer
  7014   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7016   // recover var_size_in_bytes if necessary
  7017   if (var_size_in_bytes == end) {
  7018     subptr(var_size_in_bytes, obj);
  7020   verify_tlab();
  7023 // Preserves rbx, and rdx.
  7024 void MacroAssembler::tlab_refill(Label& retry,
  7025                                  Label& try_eden,
  7026                                  Label& slow_case) {
  7027   Register top = rax;
  7028   Register t1  = rcx;
  7029   Register t2  = rsi;
  7030   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7031   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7032   Label do_refill, discard_tlab;
  7034   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7035     // No allocation in the shared eden.
  7036     jmp(slow_case);
  7039   NOT_LP64(get_thread(thread_reg));
  7041   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7042   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7044   // calculate amount of free space
  7045   subptr(t1, top);
  7046   shrptr(t1, LogHeapWordSize);
  7048   // Retain tlab and allocate object in shared space if
  7049   // the amount free in the tlab is too large to discard.
  7050   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7051   jcc(Assembler::lessEqual, discard_tlab);
  7053   // Retain
  7054   // %%% yuck as movptr...
  7055   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7056   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7057   if (TLABStats) {
  7058     // increment number of slow_allocations
  7059     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7061   jmp(try_eden);
  7063   bind(discard_tlab);
  7064   if (TLABStats) {
  7065     // increment number of refills
  7066     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7067     // accumulate wastage -- t1 is amount free in tlab
  7068     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7071   // if tlab is currently allocated (top or end != null) then
  7072   // fill [top, end + alignment_reserve) with array object
  7073   testptr (top, top);
  7074   jcc(Assembler::zero, do_refill);
  7076   // set up the mark word
  7077   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7078   // set the length to the remaining space
  7079   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7080   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7081   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7082   movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7083   // set klass to intArrayKlass
  7084   // dubious reloc why not an oop reloc?
  7085   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  7086   // store klass last.  concurrent gcs assumes klass length is valid if
  7087   // klass field is not null.
  7088   store_klass(top, t1);
  7090   // refill the tlab with an eden allocation
  7091   bind(do_refill);
  7092   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7093   shlptr(t1, LogHeapWordSize);
  7094   // add object_size ??
  7095   eden_allocate(top, t1, 0, t2, slow_case);
  7097   // Check that t1 was preserved in eden_allocate.
  7098 #ifdef ASSERT
  7099   if (UseTLAB) {
  7100     Label ok;
  7101     Register tsize = rsi;
  7102     assert_different_registers(tsize, thread_reg, t1);
  7103     push(tsize);
  7104     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7105     shlptr(tsize, LogHeapWordSize);
  7106     cmpptr(t1, tsize);
  7107     jcc(Assembler::equal, ok);
  7108     stop("assert(t1 != tlab size)");
  7109     should_not_reach_here();
  7111     bind(ok);
  7112     pop(tsize);
  7114 #endif
  7115   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7116   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7117   addptr(top, t1);
  7118   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7119   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7120   verify_tlab();
  7121   jmp(retry);
  7124 static const double     pi_4 =  0.7853981633974483;
  7126 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7127   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7128   // was attempted in this code; unfortunately it appears that the
  7129   // switch to 80-bit precision and back causes this to be
  7130   // unprofitable compared with simply performing a runtime call if
  7131   // the argument is out of the (-pi/4, pi/4) range.
  7133   Register tmp = noreg;
  7134   if (!VM_Version::supports_cmov()) {
  7135     // fcmp needs a temporary so preserve rbx,
  7136     tmp = rbx;
  7137     push(tmp);
  7140   Label slow_case, done;
  7142   ExternalAddress pi4_adr = (address)&pi_4;
  7143   if (reachable(pi4_adr)) {
  7144     // x ?<= pi/4
  7145     fld_d(pi4_adr);
  7146     fld_s(1);                // Stack:  X  PI/4  X
  7147     fabs();                  // Stack: |X| PI/4  X
  7148     fcmp(tmp);
  7149     jcc(Assembler::above, slow_case);
  7151     // fastest case: -pi/4 <= x <= pi/4
  7152     switch(trig) {
  7153     case 's':
  7154       fsin();
  7155       break;
  7156     case 'c':
  7157       fcos();
  7158       break;
  7159     case 't':
  7160       ftan();
  7161       break;
  7162     default:
  7163       assert(false, "bad intrinsic");
  7164       break;
  7166     jmp(done);
  7169   // slow case: runtime call
  7170   bind(slow_case);
  7171   // Preserve registers across runtime call
  7172   pusha();
  7173   int incoming_argument_and_return_value_offset = -1;
  7174   if (num_fpu_regs_in_use > 1) {
  7175     // Must preserve all other FPU regs (could alternatively convert
  7176     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7177     // FPU state, but can not trust C compiler)
  7178     NEEDS_CLEANUP;
  7179     // NOTE that in this case we also push the incoming argument to
  7180     // the stack and restore it later; we also use this stack slot to
  7181     // hold the return value from dsin or dcos.
  7182     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7183       subptr(rsp, sizeof(jdouble));
  7184       fstp_d(Address(rsp, 0));
  7186     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7187     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7189   subptr(rsp, sizeof(jdouble));
  7190   fstp_d(Address(rsp, 0));
  7191 #ifdef _LP64
  7192   movdbl(xmm0, Address(rsp, 0));
  7193 #endif // _LP64
  7195   // NOTE: we must not use call_VM_leaf here because that requires a
  7196   // complete interpreter frame in debug mode -- same bug as 4387334
  7197   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7198   // do proper 64bit abi
  7200   NEEDS_CLEANUP;
  7201   // Need to add stack banging before this runtime call if it needs to
  7202   // be taken; however, there is no generic stack banging routine at
  7203   // the MacroAssembler level
  7204   switch(trig) {
  7205   case 's':
  7207       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7209     break;
  7210   case 'c':
  7212       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7214     break;
  7215   case 't':
  7217       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7219     break;
  7220   default:
  7221     assert(false, "bad intrinsic");
  7222     break;
  7224 #ifdef _LP64
  7225     movsd(Address(rsp, 0), xmm0);
  7226     fld_d(Address(rsp, 0));
  7227 #endif // _LP64
  7228   addptr(rsp, sizeof(jdouble));
  7229   if (num_fpu_regs_in_use > 1) {
  7230     // Must save return value to stack and then restore entire FPU stack
  7231     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7232     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7233       fld_d(Address(rsp, 0));
  7234       addptr(rsp, sizeof(jdouble));
  7237   popa();
  7239   // Come here with result in F-TOS
  7240   bind(done);
  7242   if (tmp != noreg) {
  7243     pop(tmp);
  7248 // Look up the method for a megamorphic invokeinterface call.
  7249 // The target method is determined by <intf_klass, itable_index>.
  7250 // The receiver klass is in recv_klass.
  7251 // On success, the result will be in method_result, and execution falls through.
  7252 // On failure, execution transfers to the given label.
  7253 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7254                                              Register intf_klass,
  7255                                              RegisterOrConstant itable_index,
  7256                                              Register method_result,
  7257                                              Register scan_temp,
  7258                                              Label& L_no_such_interface) {
  7259   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7260   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7261          "caller must use same register for non-constant itable index as for method");
  7263   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7264   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7265   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7266   int scan_step   = itableOffsetEntry::size() * wordSize;
  7267   int vte_size    = vtableEntry::size() * wordSize;
  7268   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7269   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7271   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7273   // %%% Could store the aligned, prescaled offset in the klassoop.
  7274   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7275   if (HeapWordsPerLong > 1) {
  7276     // Round up to align_object_offset boundary
  7277     // see code for instanceKlass::start_of_itable!
  7278     round_to(scan_temp, BytesPerLong);
  7281   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7282   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7283   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7285   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7286   //   if (scan->interface() == intf) {
  7287   //     result = (klass + scan->offset() + itable_index);
  7288   //   }
  7289   // }
  7290   Label search, found_method;
  7292   for (int peel = 1; peel >= 0; peel--) {
  7293     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7294     cmpptr(intf_klass, method_result);
  7296     if (peel) {
  7297       jccb(Assembler::equal, found_method);
  7298     } else {
  7299       jccb(Assembler::notEqual, search);
  7300       // (invert the test to fall through to found_method...)
  7303     if (!peel)  break;
  7305     bind(search);
  7307     // Check that the previous entry is non-null.  A null entry means that
  7308     // the receiver class doesn't implement the interface, and wasn't the
  7309     // same as when the caller was compiled.
  7310     testptr(method_result, method_result);
  7311     jcc(Assembler::zero, L_no_such_interface);
  7312     addptr(scan_temp, scan_step);
  7315   bind(found_method);
  7317   // Got a hit.
  7318   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7319   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7323 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7324                            Register super_klass,
  7325                            Register temp_reg,
  7326                            Label& L_success) {
  7327   Label L_failure;
  7328   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7329   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7330   bind(L_failure);
  7334 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7335                                                    Register super_klass,
  7336                                                    Register temp_reg,
  7337                                                    Label* L_success,
  7338                                                    Label* L_failure,
  7339                                                    Label* L_slow_path,
  7340                                         RegisterOrConstant super_check_offset) {
  7341   assert_different_registers(sub_klass, super_klass, temp_reg);
  7342   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7343   if (super_check_offset.is_register()) {
  7344     assert_different_registers(sub_klass, super_klass,
  7345                                super_check_offset.as_register());
  7346   } else if (must_load_sco) {
  7347     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7350   Label L_fallthrough;
  7351   int label_nulls = 0;
  7352   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7353   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7354   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7355   assert(label_nulls <= 1, "at most one NULL in the batch");
  7357   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7358                    Klass::secondary_super_cache_offset_in_bytes());
  7359   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7360                     Klass::super_check_offset_offset_in_bytes());
  7361   Address super_check_offset_addr(super_klass, sco_offset);
  7363   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7364   // range of a jccb.  If this routine grows larger, reconsider at
  7365   // least some of these.
  7366 #define local_jcc(assembler_cond, label)                                \
  7367   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7368   else                             jcc( assembler_cond, label) /*omit semi*/
  7370   // Hacked jmp, which may only be used just before L_fallthrough.
  7371 #define final_jmp(label)                                                \
  7372   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7373   else                            jmp(label)                /*omit semi*/
  7375   // If the pointers are equal, we are done (e.g., String[] elements).
  7376   // This self-check enables sharing of secondary supertype arrays among
  7377   // non-primary types such as array-of-interface.  Otherwise, each such
  7378   // type would need its own customized SSA.
  7379   // We move this check to the front of the fast path because many
  7380   // type checks are in fact trivially successful in this manner,
  7381   // so we get a nicely predicted branch right at the start of the check.
  7382   cmpptr(sub_klass, super_klass);
  7383   local_jcc(Assembler::equal, *L_success);
  7385   // Check the supertype display:
  7386   if (must_load_sco) {
  7387     // Positive movl does right thing on LP64.
  7388     movl(temp_reg, super_check_offset_addr);
  7389     super_check_offset = RegisterOrConstant(temp_reg);
  7391   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7392   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7394   // This check has worked decisively for primary supers.
  7395   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7396   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7397   // This works in the same check above because of a tricky aliasing
  7398   // between the super_cache and the primary super display elements.
  7399   // (The 'super_check_addr' can address either, as the case requires.)
  7400   // Note that the cache is updated below if it does not help us find
  7401   // what we need immediately.
  7402   // So if it was a primary super, we can just fail immediately.
  7403   // Otherwise, it's the slow path for us (no success at this point).
  7405   if (super_check_offset.is_register()) {
  7406     local_jcc(Assembler::equal, *L_success);
  7407     cmpl(super_check_offset.as_register(), sc_offset);
  7408     if (L_failure == &L_fallthrough) {
  7409       local_jcc(Assembler::equal, *L_slow_path);
  7410     } else {
  7411       local_jcc(Assembler::notEqual, *L_failure);
  7412       final_jmp(*L_slow_path);
  7414   } else if (super_check_offset.as_constant() == sc_offset) {
  7415     // Need a slow path; fast failure is impossible.
  7416     if (L_slow_path == &L_fallthrough) {
  7417       local_jcc(Assembler::equal, *L_success);
  7418     } else {
  7419       local_jcc(Assembler::notEqual, *L_slow_path);
  7420       final_jmp(*L_success);
  7422   } else {
  7423     // No slow path; it's a fast decision.
  7424     if (L_failure == &L_fallthrough) {
  7425       local_jcc(Assembler::equal, *L_success);
  7426     } else {
  7427       local_jcc(Assembler::notEqual, *L_failure);
  7428       final_jmp(*L_success);
  7432   bind(L_fallthrough);
  7434 #undef local_jcc
  7435 #undef final_jmp
  7439 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7440                                                    Register super_klass,
  7441                                                    Register temp_reg,
  7442                                                    Register temp2_reg,
  7443                                                    Label* L_success,
  7444                                                    Label* L_failure,
  7445                                                    bool set_cond_codes) {
  7446   assert_different_registers(sub_klass, super_klass, temp_reg);
  7447   if (temp2_reg != noreg)
  7448     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7449 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7451   Label L_fallthrough;
  7452   int label_nulls = 0;
  7453   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7454   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7455   assert(label_nulls <= 1, "at most one NULL in the batch");
  7457   // a couple of useful fields in sub_klass:
  7458   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7459                    Klass::secondary_supers_offset_in_bytes());
  7460   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7461                    Klass::secondary_super_cache_offset_in_bytes());
  7462   Address secondary_supers_addr(sub_klass, ss_offset);
  7463   Address super_cache_addr(     sub_klass, sc_offset);
  7465   // Do a linear scan of the secondary super-klass chain.
  7466   // This code is rarely used, so simplicity is a virtue here.
  7467   // The repne_scan instruction uses fixed registers, which we must spill.
  7468   // Don't worry too much about pre-existing connections with the input regs.
  7470   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7471   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7473   // Get super_klass value into rax (even if it was in rdi or rcx).
  7474   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7475   if (super_klass != rax || UseCompressedOops) {
  7476     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7477     mov(rax, super_klass);
  7479   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7480   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7482 #ifndef PRODUCT
  7483   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7484   ExternalAddress pst_counter_addr((address) pst_counter);
  7485   NOT_LP64(  incrementl(pst_counter_addr) );
  7486   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7487   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7488 #endif //PRODUCT
  7490   // We will consult the secondary-super array.
  7491   movptr(rdi, secondary_supers_addr);
  7492   // Load the array length.  (Positive movl does right thing on LP64.)
  7493   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7494   // Skip to start of data.
  7495   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7497   // Scan RCX words at [RDI] for an occurrence of RAX.
  7498   // Set NZ/Z based on last compare.
  7499 #ifdef _LP64
  7500   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7501   // and we store values in objArrays always encoded, thus we need to encode
  7502   // the value of rax before repne.  Note that rax is dead after the repne.
  7503   if (UseCompressedOops) {
  7504     encode_heap_oop_not_null(rax);
  7505     // The superclass is never null; it would be a basic system error if a null
  7506     // pointer were to sneak in here.  Note that we have already loaded the
  7507     // Klass::super_check_offset from the super_klass in the fast path,
  7508     // so if there is a null in that register, we are already in the afterlife.
  7509     repne_scanl();
  7510   } else
  7511 #endif // _LP64
  7512     repne_scan();
  7514   // Unspill the temp. registers:
  7515   if (pushed_rdi)  pop(rdi);
  7516   if (pushed_rcx)  pop(rcx);
  7517   if (pushed_rax)  pop(rax);
  7519   if (set_cond_codes) {
  7520     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7521     assert(!pushed_rdi, "rdi must be left non-NULL");
  7522     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7525   if (L_failure == &L_fallthrough)
  7526         jccb(Assembler::notEqual, *L_failure);
  7527   else  jcc(Assembler::notEqual, *L_failure);
  7529   // Success.  Cache the super we found and proceed in triumph.
  7530   movptr(super_cache_addr, super_klass);
  7532   if (L_success != &L_fallthrough) {
  7533     jmp(*L_success);
  7536 #undef IS_A_TEMP
  7538   bind(L_fallthrough);
  7542 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7543   ucomisd(dst, as_Address(src));
  7546 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7547   ucomiss(dst, as_Address(src));
  7550 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7551   if (reachable(src)) {
  7552     xorpd(dst, as_Address(src));
  7553   } else {
  7554     lea(rscratch1, src);
  7555     xorpd(dst, Address(rscratch1, 0));
  7559 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7560   if (reachable(src)) {
  7561     xorps(dst, as_Address(src));
  7562   } else {
  7563     lea(rscratch1, src);
  7564     xorps(dst, Address(rscratch1, 0));
  7568 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7569   if (!VerifyOops) return;
  7571   // Pass register number to verify_oop_subroutine
  7572   char* b = new char[strlen(s) + 50];
  7573   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7574   push(rax);                          // save rax,
  7575   push(reg);                          // pass register argument
  7576   ExternalAddress buffer((address) b);
  7577   // avoid using pushptr, as it modifies scratch registers
  7578   // and our contract is not to modify anything
  7579   movptr(rax, buffer.addr());
  7580   push(rax);
  7581   // call indirectly to solve generation ordering problem
  7582   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7583   call(rax);
  7587 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7588                                                       Register tmp,
  7589                                                       int offset) {
  7590   intptr_t value = *delayed_value_addr;
  7591   if (value != 0)
  7592     return RegisterOrConstant(value + offset);
  7594   // load indirectly to solve generation ordering problem
  7595   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7597 #ifdef ASSERT
  7598   Label L;
  7599   testl(tmp, tmp);
  7600   jccb(Assembler::notZero, L);
  7601   hlt();
  7602   bind(L);
  7603 #endif
  7605   if (offset != 0)
  7606     addptr(tmp, offset);
  7608   return RegisterOrConstant(tmp);
  7612 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7613   if (!VerifyOops) return;
  7615   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7616   // Pass register number to verify_oop_subroutine
  7617   char* b = new char[strlen(s) + 50];
  7618   sprintf(b, "verify_oop_addr: %s", s);
  7620   push(rax);                          // save rax,
  7621   // addr may contain rsp so we will have to adjust it based on the push
  7622   // we just did
  7623   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7624   // stores rax into addr which is backwards of what was intended.
  7625   if (addr.uses(rsp)) {
  7626     lea(rax, addr);
  7627     pushptr(Address(rax, BytesPerWord));
  7628   } else {
  7629     pushptr(addr);
  7632   ExternalAddress buffer((address) b);
  7633   // pass msg argument
  7634   // avoid using pushptr, as it modifies scratch registers
  7635   // and our contract is not to modify anything
  7636   movptr(rax, buffer.addr());
  7637   push(rax);
  7639   // call indirectly to solve generation ordering problem
  7640   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7641   call(rax);
  7642   // Caller pops the arguments and restores rax, from the stack
  7645 void MacroAssembler::verify_tlab() {
  7646 #ifdef ASSERT
  7647   if (UseTLAB && VerifyOops) {
  7648     Label next, ok;
  7649     Register t1 = rsi;
  7650     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7652     push(t1);
  7653     NOT_LP64(push(thread_reg));
  7654     NOT_LP64(get_thread(thread_reg));
  7656     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7657     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7658     jcc(Assembler::aboveEqual, next);
  7659     stop("assert(top >= start)");
  7660     should_not_reach_here();
  7662     bind(next);
  7663     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7664     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7665     jcc(Assembler::aboveEqual, ok);
  7666     stop("assert(top <= end)");
  7667     should_not_reach_here();
  7669     bind(ok);
  7670     NOT_LP64(pop(thread_reg));
  7671     pop(t1);
  7673 #endif
  7676 class ControlWord {
  7677  public:
  7678   int32_t _value;
  7680   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  7681   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  7682   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7683   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7684   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7685   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7686   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7687   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7689   void print() const {
  7690     // rounding control
  7691     const char* rc;
  7692     switch (rounding_control()) {
  7693       case 0: rc = "round near"; break;
  7694       case 1: rc = "round down"; break;
  7695       case 2: rc = "round up  "; break;
  7696       case 3: rc = "chop      "; break;
  7697     };
  7698     // precision control
  7699     const char* pc;
  7700     switch (precision_control()) {
  7701       case 0: pc = "24 bits "; break;
  7702       case 1: pc = "reserved"; break;
  7703       case 2: pc = "53 bits "; break;
  7704       case 3: pc = "64 bits "; break;
  7705     };
  7706     // flags
  7707     char f[9];
  7708     f[0] = ' ';
  7709     f[1] = ' ';
  7710     f[2] = (precision   ()) ? 'P' : 'p';
  7711     f[3] = (underflow   ()) ? 'U' : 'u';
  7712     f[4] = (overflow    ()) ? 'O' : 'o';
  7713     f[5] = (zero_divide ()) ? 'Z' : 'z';
  7714     f[6] = (denormalized()) ? 'D' : 'd';
  7715     f[7] = (invalid     ()) ? 'I' : 'i';
  7716     f[8] = '\x0';
  7717     // output
  7718     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  7721 };
  7723 class StatusWord {
  7724  public:
  7725   int32_t _value;
  7727   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  7728   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  7729   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  7730   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  7731   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  7732   int  top() const                     { return  (_value >> 11) & 7      ; }
  7733   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  7734   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  7735   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7736   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7737   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7738   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7739   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7740   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7742   void print() const {
  7743     // condition codes
  7744     char c[5];
  7745     c[0] = (C3()) ? '3' : '-';
  7746     c[1] = (C2()) ? '2' : '-';
  7747     c[2] = (C1()) ? '1' : '-';
  7748     c[3] = (C0()) ? '0' : '-';
  7749     c[4] = '\x0';
  7750     // flags
  7751     char f[9];
  7752     f[0] = (error_status()) ? 'E' : '-';
  7753     f[1] = (stack_fault ()) ? 'S' : '-';
  7754     f[2] = (precision   ()) ? 'P' : '-';
  7755     f[3] = (underflow   ()) ? 'U' : '-';
  7756     f[4] = (overflow    ()) ? 'O' : '-';
  7757     f[5] = (zero_divide ()) ? 'Z' : '-';
  7758     f[6] = (denormalized()) ? 'D' : '-';
  7759     f[7] = (invalid     ()) ? 'I' : '-';
  7760     f[8] = '\x0';
  7761     // output
  7762     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  7765 };
  7767 class TagWord {
  7768  public:
  7769   int32_t _value;
  7771   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  7773   void print() const {
  7774     printf("%04x", _value & 0xFFFF);
  7777 };
  7779 class FPU_Register {
  7780  public:
  7781   int32_t _m0;
  7782   int32_t _m1;
  7783   int16_t _ex;
  7785   bool is_indefinite() const           {
  7786     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  7789   void print() const {
  7790     char  sign = (_ex < 0) ? '-' : '+';
  7791     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  7792     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  7793   };
  7795 };
  7797 class FPU_State {
  7798  public:
  7799   enum {
  7800     register_size       = 10,
  7801     number_of_registers =  8,
  7802     register_mask       =  7
  7803   };
  7805   ControlWord  _control_word;
  7806   StatusWord   _status_word;
  7807   TagWord      _tag_word;
  7808   int32_t      _error_offset;
  7809   int32_t      _error_selector;
  7810   int32_t      _data_offset;
  7811   int32_t      _data_selector;
  7812   int8_t       _register[register_size * number_of_registers];
  7814   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  7815   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  7817   const char* tag_as_string(int tag) const {
  7818     switch (tag) {
  7819       case 0: return "valid";
  7820       case 1: return "zero";
  7821       case 2: return "special";
  7822       case 3: return "empty";
  7824     ShouldNotReachHere()
  7825     return NULL;
  7828   void print() const {
  7829     // print computation registers
  7830     { int t = _status_word.top();
  7831       for (int i = 0; i < number_of_registers; i++) {
  7832         int j = (i - t) & register_mask;
  7833         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  7834         st(j)->print();
  7835         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  7838     printf("\n");
  7839     // print control registers
  7840     printf("ctrl = "); _control_word.print(); printf("\n");
  7841     printf("stat = "); _status_word .print(); printf("\n");
  7842     printf("tags = "); _tag_word    .print(); printf("\n");
  7845 };
  7847 class Flag_Register {
  7848  public:
  7849   int32_t _value;
  7851   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  7852   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  7853   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  7854   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  7855   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  7856   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  7857   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  7859   void print() const {
  7860     // flags
  7861     char f[8];
  7862     f[0] = (overflow       ()) ? 'O' : '-';
  7863     f[1] = (direction      ()) ? 'D' : '-';
  7864     f[2] = (sign           ()) ? 'S' : '-';
  7865     f[3] = (zero           ()) ? 'Z' : '-';
  7866     f[4] = (auxiliary_carry()) ? 'A' : '-';
  7867     f[5] = (parity         ()) ? 'P' : '-';
  7868     f[6] = (carry          ()) ? 'C' : '-';
  7869     f[7] = '\x0';
  7870     // output
  7871     printf("%08x  flags = %s", _value, f);
  7874 };
  7876 class IU_Register {
  7877  public:
  7878   int32_t _value;
  7880   void print() const {
  7881     printf("%08x  %11d", _value, _value);
  7884 };
  7886 class IU_State {
  7887  public:
  7888   Flag_Register _eflags;
  7889   IU_Register   _rdi;
  7890   IU_Register   _rsi;
  7891   IU_Register   _rbp;
  7892   IU_Register   _rsp;
  7893   IU_Register   _rbx;
  7894   IU_Register   _rdx;
  7895   IU_Register   _rcx;
  7896   IU_Register   _rax;
  7898   void print() const {
  7899     // computation registers
  7900     printf("rax,  = "); _rax.print(); printf("\n");
  7901     printf("rbx,  = "); _rbx.print(); printf("\n");
  7902     printf("rcx  = "); _rcx.print(); printf("\n");
  7903     printf("rdx  = "); _rdx.print(); printf("\n");
  7904     printf("rdi  = "); _rdi.print(); printf("\n");
  7905     printf("rsi  = "); _rsi.print(); printf("\n");
  7906     printf("rbp,  = "); _rbp.print(); printf("\n");
  7907     printf("rsp  = "); _rsp.print(); printf("\n");
  7908     printf("\n");
  7909     // control registers
  7910     printf("flgs = "); _eflags.print(); printf("\n");
  7912 };
  7915 class CPU_State {
  7916  public:
  7917   FPU_State _fpu_state;
  7918   IU_State  _iu_state;
  7920   void print() const {
  7921     printf("--------------------------------------------------\n");
  7922     _iu_state .print();
  7923     printf("\n");
  7924     _fpu_state.print();
  7925     printf("--------------------------------------------------\n");
  7928 };
  7931 static void _print_CPU_state(CPU_State* state) {
  7932   state->print();
  7933 };
  7936 void MacroAssembler::print_CPU_state() {
  7937   push_CPU_state();
  7938   push(rsp);                // pass CPU state
  7939   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  7940   addptr(rsp, wordSize);       // discard argument
  7941   pop_CPU_state();
  7945 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  7946   static int counter = 0;
  7947   FPU_State* fs = &state->_fpu_state;
  7948   counter++;
  7949   // For leaf calls, only verify that the top few elements remain empty.
  7950   // We only need 1 empty at the top for C2 code.
  7951   if( stack_depth < 0 ) {
  7952     if( fs->tag_for_st(7) != 3 ) {
  7953       printf("FPR7 not empty\n");
  7954       state->print();
  7955       assert(false, "error");
  7956       return false;
  7958     return true;                // All other stack states do not matter
  7961   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  7962          "bad FPU control word");
  7964   // compute stack depth
  7965   int i = 0;
  7966   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  7967   int d = i;
  7968   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  7969   // verify findings
  7970   if (i != FPU_State::number_of_registers) {
  7971     // stack not contiguous
  7972     printf("%s: stack not contiguous at ST%d\n", s, i);
  7973     state->print();
  7974     assert(false, "error");
  7975     return false;
  7977   // check if computed stack depth corresponds to expected stack depth
  7978   if (stack_depth < 0) {
  7979     // expected stack depth is -stack_depth or less
  7980     if (d > -stack_depth) {
  7981       // too many elements on the stack
  7982       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  7983       state->print();
  7984       assert(false, "error");
  7985       return false;
  7987   } else {
  7988     // expected stack depth is stack_depth
  7989     if (d != stack_depth) {
  7990       // wrong stack depth
  7991       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  7992       state->print();
  7993       assert(false, "error");
  7994       return false;
  7997   // everything is cool
  7998   return true;
  8002 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8003   if (!VerifyFPU) return;
  8004   push_CPU_state();
  8005   push(rsp);                // pass CPU state
  8006   ExternalAddress msg((address) s);
  8007   // pass message string s
  8008   pushptr(msg.addr());
  8009   push(stack_depth);        // pass stack depth
  8010   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8011   addptr(rsp, 3 * wordSize);   // discard arguments
  8012   // check for error
  8013   { Label L;
  8014     testl(rax, rax);
  8015     jcc(Assembler::notZero, L);
  8016     int3();                  // break if error condition
  8017     bind(L);
  8019   pop_CPU_state();
  8022 void MacroAssembler::load_klass(Register dst, Register src) {
  8023 #ifdef _LP64
  8024   if (UseCompressedOops) {
  8025     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8026     decode_heap_oop_not_null(dst);
  8027   } else
  8028 #endif
  8029     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8032 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8033 #ifdef _LP64
  8034   if (UseCompressedOops) {
  8035     assert (Universe::heap() != NULL, "java heap should be initialized");
  8036     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8037     if (Universe::narrow_oop_shift() != 0) {
  8038       assert(Address::times_8 == LogMinObjAlignmentInBytes &&
  8039              Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
  8040       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8041     } else {
  8042       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8044   } else
  8045 #endif
  8047     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8048     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8052 void MacroAssembler::store_klass(Register dst, Register src) {
  8053 #ifdef _LP64
  8054   if (UseCompressedOops) {
  8055     encode_heap_oop_not_null(src);
  8056     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8057   } else
  8058 #endif
  8059     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8062 #ifdef _LP64
  8063 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8064   if (UseCompressedOops) {
  8065     // Store to klass gap in destination
  8066     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8070 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8071   if (UseCompressedOops) {
  8072     movl(dst, src);
  8073     decode_heap_oop(dst);
  8074   } else {
  8075     movq(dst, src);
  8079 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8080   if (UseCompressedOops) {
  8081     assert(!dst.uses(src), "not enough registers");
  8082     encode_heap_oop(src);
  8083     movl(dst, src);
  8084   } else {
  8085     movq(dst, src);
  8089 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8090 void MacroAssembler::encode_heap_oop(Register r) {
  8091   assert (UseCompressedOops, "should be compressed");
  8092   assert (Universe::heap() != NULL, "java heap should be initialized");
  8093   if (Universe::narrow_oop_base() == NULL) {
  8094     verify_oop(r, "broken oop in encode_heap_oop");
  8095     if (Universe::narrow_oop_shift() != 0) {
  8096       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8097       shrq(r, LogMinObjAlignmentInBytes);
  8099     return;
  8101 #ifdef ASSERT
  8102   if (CheckCompressedOops) {
  8103     Label ok;
  8104     push(rscratch1); // cmpptr trashes rscratch1
  8105     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8106     jcc(Assembler::equal, ok);
  8107     stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8108     bind(ok);
  8109     pop(rscratch1);
  8111 #endif
  8112   verify_oop(r, "broken oop in encode_heap_oop");
  8113   testq(r, r);
  8114   cmovq(Assembler::equal, r, r12_heapbase);
  8115   subq(r, r12_heapbase);
  8116   shrq(r, LogMinObjAlignmentInBytes);
  8119 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8120   assert (UseCompressedOops, "should be compressed");
  8121   assert (Universe::heap() != NULL, "java heap should be initialized");
  8122 #ifdef ASSERT
  8123   if (CheckCompressedOops) {
  8124     Label ok;
  8125     testq(r, r);
  8126     jcc(Assembler::notEqual, ok);
  8127     stop("null oop passed to encode_heap_oop_not_null");
  8128     bind(ok);
  8130 #endif
  8131   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8132   if (Universe::narrow_oop_base() != NULL) {
  8133     subq(r, r12_heapbase);
  8135   if (Universe::narrow_oop_shift() != 0) {
  8136     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8137     shrq(r, LogMinObjAlignmentInBytes);
  8141 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8142   assert (UseCompressedOops, "should be compressed");
  8143   assert (Universe::heap() != NULL, "java heap should be initialized");
  8144 #ifdef ASSERT
  8145   if (CheckCompressedOops) {
  8146     Label ok;
  8147     testq(src, src);
  8148     jcc(Assembler::notEqual, ok);
  8149     stop("null oop passed to encode_heap_oop_not_null2");
  8150     bind(ok);
  8152 #endif
  8153   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8154   if (dst != src) {
  8155     movq(dst, src);
  8157   if (Universe::narrow_oop_base() != NULL) {
  8158     subq(dst, r12_heapbase);
  8160   if (Universe::narrow_oop_shift() != 0) {
  8161     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8162     shrq(dst, LogMinObjAlignmentInBytes);
  8166 void  MacroAssembler::decode_heap_oop(Register r) {
  8167   assert (UseCompressedOops, "should be compressed");
  8168   assert (Universe::heap() != NULL, "java heap should be initialized");
  8169   if (Universe::narrow_oop_base() == NULL) {
  8170     if (Universe::narrow_oop_shift() != 0) {
  8171       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8172       shlq(r, LogMinObjAlignmentInBytes);
  8174     verify_oop(r, "broken oop in decode_heap_oop");
  8175     return;
  8177 #ifdef ASSERT
  8178   if (CheckCompressedOops) {
  8179     Label ok;
  8180     push(rscratch1);
  8181     cmpptr(r12_heapbase,
  8182            ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8183     jcc(Assembler::equal, ok);
  8184     stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8185     bind(ok);
  8186     pop(rscratch1);
  8188 #endif
  8190   Label done;
  8191   shlq(r, LogMinObjAlignmentInBytes);
  8192   jccb(Assembler::equal, done);
  8193   addq(r, r12_heapbase);
  8194 #if 0
  8195    // alternate decoding probably a wash.
  8196    testq(r, r);
  8197    jccb(Assembler::equal, done);
  8198    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  8199 #endif
  8200   bind(done);
  8201   verify_oop(r, "broken oop in decode_heap_oop");
  8204 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8205   assert (UseCompressedOops, "should only be used for compressed headers");
  8206   assert (Universe::heap() != NULL, "java heap should be initialized");
  8207   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8208   // vtableStubs also counts instructions in pd_code_size_limit.
  8209   // Also do not verify_oop as this is called by verify_oop.
  8210   if (Universe::narrow_oop_base() == NULL) {
  8211     if (Universe::narrow_oop_shift() != 0) {
  8212       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8213       shlq(r, LogMinObjAlignmentInBytes);
  8215   } else {
  8216       assert (Address::times_8 == LogMinObjAlignmentInBytes &&
  8217               Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
  8218     leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  8222 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8223   assert (UseCompressedOops, "should only be used for compressed headers");
  8224   assert (Universe::heap() != NULL, "java heap should be initialized");
  8225   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8226   // vtableStubs also counts instructions in pd_code_size_limit.
  8227   // Also do not verify_oop as this is called by verify_oop.
  8228   if (Universe::narrow_oop_shift() != 0) {
  8229     assert (Address::times_8 == LogMinObjAlignmentInBytes &&
  8230             Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
  8231     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8232   } else if (dst != src) {
  8233     movq(dst, src);
  8237 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8238   assert (UseCompressedOops, "should only be used for compressed headers");
  8239   assert (Universe::heap() != NULL, "java heap should be initialized");
  8240   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8241   int oop_index = oop_recorder()->find_index(obj);
  8242   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8243   mov_narrow_oop(dst, oop_index, rspec);
  8246 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8247   assert (UseCompressedOops, "should only be used for compressed headers");
  8248   assert (Universe::heap() != NULL, "java heap should be initialized");
  8249   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8250   int oop_index = oop_recorder()->find_index(obj);
  8251   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8252   mov_narrow_oop(dst, oop_index, rspec);
  8255 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8256   assert (UseCompressedOops, "should only be used for compressed headers");
  8257   assert (Universe::heap() != NULL, "java heap should be initialized");
  8258   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8259   int oop_index = oop_recorder()->find_index(obj);
  8260   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8261   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8264 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8265   assert (UseCompressedOops, "should only be used for compressed headers");
  8266   assert (Universe::heap() != NULL, "java heap should be initialized");
  8267   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8268   int oop_index = oop_recorder()->find_index(obj);
  8269   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8270   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8273 void MacroAssembler::reinit_heapbase() {
  8274   if (UseCompressedOops) {
  8275     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8278 #endif // _LP64
  8280 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  8281   switch (cond) {
  8282     // Note some conditions are synonyms for others
  8283     case Assembler::zero:         return Assembler::notZero;
  8284     case Assembler::notZero:      return Assembler::zero;
  8285     case Assembler::less:         return Assembler::greaterEqual;
  8286     case Assembler::lessEqual:    return Assembler::greater;
  8287     case Assembler::greater:      return Assembler::lessEqual;
  8288     case Assembler::greaterEqual: return Assembler::less;
  8289     case Assembler::below:        return Assembler::aboveEqual;
  8290     case Assembler::belowEqual:   return Assembler::above;
  8291     case Assembler::above:        return Assembler::belowEqual;
  8292     case Assembler::aboveEqual:   return Assembler::below;
  8293     case Assembler::overflow:     return Assembler::noOverflow;
  8294     case Assembler::noOverflow:   return Assembler::overflow;
  8295     case Assembler::negative:     return Assembler::positive;
  8296     case Assembler::positive:     return Assembler::negative;
  8297     case Assembler::parity:       return Assembler::noParity;
  8298     case Assembler::noParity:     return Assembler::parity;
  8300   ShouldNotReachHere(); return Assembler::overflow;
  8303 SkipIfEqual::SkipIfEqual(
  8304     MacroAssembler* masm, const bool* flag_addr, bool value) {
  8305   _masm = masm;
  8306   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  8307   _masm->jcc(Assembler::equal, _label);
  8310 SkipIfEqual::~SkipIfEqual() {
  8311   _masm->bind(_label);

mercurial