src/share/vm/gc_implementation/parallelScavenge/psYoungGen.cpp

Thu, 09 Apr 2015 15:58:49 +0200

author
mlarsson
date
Thu, 09 Apr 2015 15:58:49 +0200
changeset 7686
fb69749583e8
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8072621: Clean up around VM_GC_Operations
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    27 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    28 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    29 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    30 #include "gc_implementation/shared/gcUtil.hpp"
    31 #include "gc_implementation/shared/mutableNUMASpace.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "runtime/java.hpp"
    36 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    38 PSYoungGen::PSYoungGen(size_t        initial_size,
    39                        size_t        min_size,
    40                        size_t        max_size) :
    41   _init_gen_size(initial_size),
    42   _min_gen_size(min_size),
    43   _max_gen_size(max_size)
    44 {}
    46 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
    47   assert(_init_gen_size != 0, "Should have a finite size");
    48   _virtual_space = new PSVirtualSpace(rs, alignment);
    49   if (!virtual_space()->expand_by(_init_gen_size)) {
    50     vm_exit_during_initialization("Could not reserve enough space for "
    51                                   "object heap");
    52   }
    53 }
    55 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
    56   initialize_virtual_space(rs, alignment);
    57   initialize_work();
    58 }
    60 void PSYoungGen::initialize_work() {
    62   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
    63                         (HeapWord*)virtual_space()->high_boundary());
    65   MemRegion cmr((HeapWord*)virtual_space()->low(),
    66                 (HeapWord*)virtual_space()->high());
    67   Universe::heap()->barrier_set()->resize_covered_region(cmr);
    69   if (ZapUnusedHeapArea) {
    70     // Mangle newly committed space immediately because it
    71     // can be done here more simply that after the new
    72     // spaces have been computed.
    73     SpaceMangler::mangle_region(cmr);
    74   }
    76   if (UseNUMA) {
    77     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
    78   } else {
    79     _eden_space = new MutableSpace(virtual_space()->alignment());
    80   }
    81   _from_space = new MutableSpace(virtual_space()->alignment());
    82   _to_space   = new MutableSpace(virtual_space()->alignment());
    84   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
    85     vm_exit_during_initialization("Could not allocate a young gen space");
    86   }
    88   // Allocate the mark sweep views of spaces
    89   _eden_mark_sweep =
    90       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
    91   _from_mark_sweep =
    92       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
    93   _to_mark_sweep =
    94       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
    96   if (_eden_mark_sweep == NULL ||
    97       _from_mark_sweep == NULL ||
    98       _to_mark_sweep == NULL) {
    99     vm_exit_during_initialization("Could not complete allocation"
   100                                   " of the young generation");
   101   }
   103   // Generation Counters - generation 0, 3 subspaces
   104   _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
   106   // Compute maximum space sizes for performance counters
   107   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   108   size_t alignment = heap->space_alignment();
   109   size_t size = virtual_space()->reserved_size();
   111   size_t max_survivor_size;
   112   size_t max_eden_size;
   114   if (UseAdaptiveSizePolicy) {
   115     max_survivor_size = size / MinSurvivorRatio;
   117     // round the survivor space size down to the nearest alignment
   118     // and make sure its size is greater than 0.
   119     max_survivor_size = align_size_down(max_survivor_size, alignment);
   120     max_survivor_size = MAX2(max_survivor_size, alignment);
   122     // set the maximum size of eden to be the size of the young gen
   123     // less two times the minimum survivor size. The minimum survivor
   124     // size for UseAdaptiveSizePolicy is one alignment.
   125     max_eden_size = size - 2 * alignment;
   126   } else {
   127     max_survivor_size = size / InitialSurvivorRatio;
   129     // round the survivor space size down to the nearest alignment
   130     // and make sure its size is greater than 0.
   131     max_survivor_size = align_size_down(max_survivor_size, alignment);
   132     max_survivor_size = MAX2(max_survivor_size, alignment);
   134     // set the maximum size of eden to be the size of the young gen
   135     // less two times the survivor size when the generation is 100%
   136     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
   137     // is dependent on the committed portion (current capacity) of the
   138     // generation - the less space committed, the smaller the survivor
   139     // space, possibly as small as an alignment. However, we are interested
   140     // in the case where the young generation is 100% committed, as this
   141     // is the point where eden reachs its maximum size. At this point,
   142     // the size of a survivor space is max_survivor_size.
   143     max_eden_size = size - 2 * max_survivor_size;
   144   }
   146   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
   147                                      _gen_counters);
   148   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
   149                                      _gen_counters);
   150   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
   151                                    _gen_counters);
   153   compute_initial_space_boundaries();
   154 }
   156 void PSYoungGen::compute_initial_space_boundaries() {
   157   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   158   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   160   // Compute sizes
   161   size_t alignment = heap->space_alignment();
   162   size_t size = virtual_space()->committed_size();
   163   assert(size >= 3 * alignment, "Young space is not large enough for eden + 2 survivors");
   165   size_t survivor_size = size / InitialSurvivorRatio;
   166   survivor_size = align_size_down(survivor_size, alignment);
   167   // ... but never less than an alignment
   168   survivor_size = MAX2(survivor_size, alignment);
   170   // Young generation is eden + 2 survivor spaces
   171   size_t eden_size = size - (2 * survivor_size);
   173   // Now go ahead and set 'em.
   174   set_space_boundaries(eden_size, survivor_size);
   175   space_invariants();
   177   if (UsePerfData) {
   178     _eden_counters->update_capacity();
   179     _from_counters->update_capacity();
   180     _to_counters->update_capacity();
   181   }
   182 }
   184 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
   185   assert(eden_size < virtual_space()->committed_size(), "just checking");
   186   assert(eden_size > 0  && survivor_size > 0, "just checking");
   188   // Initial layout is Eden, to, from. After swapping survivor spaces,
   189   // that leaves us with Eden, from, to, which is step one in our two
   190   // step resize-with-live-data procedure.
   191   char *eden_start = virtual_space()->low();
   192   char *to_start   = eden_start + eden_size;
   193   char *from_start = to_start   + survivor_size;
   194   char *from_end   = from_start + survivor_size;
   196   assert(from_end == virtual_space()->high(), "just checking");
   197   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
   198   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
   199   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
   201   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
   202   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
   203   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
   205   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
   206     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
   207   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
   208 }
   210 #ifndef PRODUCT
   211 void PSYoungGen::space_invariants() {
   212   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   213   const size_t alignment = heap->space_alignment();
   215   // Currently, our eden size cannot shrink to zero
   216   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
   217   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
   218   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
   220   // Relationship of spaces to each other
   221   char* eden_start = (char*)eden_space()->bottom();
   222   char* eden_end   = (char*)eden_space()->end();
   223   char* from_start = (char*)from_space()->bottom();
   224   char* from_end   = (char*)from_space()->end();
   225   char* to_start   = (char*)to_space()->bottom();
   226   char* to_end     = (char*)to_space()->end();
   228   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
   229   guarantee(eden_start < eden_end, "eden space consistency");
   230   guarantee(from_start < from_end, "from space consistency");
   231   guarantee(to_start < to_end, "to space consistency");
   233   // Check whether from space is below to space
   234   if (from_start < to_start) {
   235     // Eden, from, to
   236     guarantee(eden_end <= from_start, "eden/from boundary");
   237     guarantee(from_end <= to_start,   "from/to boundary");
   238     guarantee(to_end <= virtual_space()->high(), "to end");
   239   } else {
   240     // Eden, to, from
   241     guarantee(eden_end <= to_start, "eden/to boundary");
   242     guarantee(to_end <= from_start, "to/from boundary");
   243     guarantee(from_end <= virtual_space()->high(), "from end");
   244   }
   246   // More checks that the virtual space is consistent with the spaces
   247   assert(virtual_space()->committed_size() >=
   248     (eden_space()->capacity_in_bytes() +
   249      to_space()->capacity_in_bytes() +
   250      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
   251   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
   252     "Space invariant");
   253   char* eden_top = (char*)eden_space()->top();
   254   char* from_top = (char*)from_space()->top();
   255   char* to_top = (char*)to_space()->top();
   256   assert(eden_top <= virtual_space()->high(), "eden top");
   257   assert(from_top <= virtual_space()->high(), "from top");
   258   assert(to_top <= virtual_space()->high(), "to top");
   260   virtual_space()->verify();
   261 }
   262 #endif
   264 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
   265   // Resize the generation if needed. If the generation resize
   266   // reports false, do not attempt to resize the spaces.
   267   if (resize_generation(eden_size, survivor_size)) {
   268     // Then we lay out the spaces inside the generation
   269     resize_spaces(eden_size, survivor_size);
   271     space_invariants();
   273     if (PrintAdaptiveSizePolicy && Verbose) {
   274       gclog_or_tty->print_cr("Young generation size: "
   275         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
   276         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
   277         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
   278         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
   279         _max_gen_size, min_gen_size());
   280     }
   281   }
   282 }
   285 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
   286   const size_t alignment = virtual_space()->alignment();
   287   size_t orig_size = virtual_space()->committed_size();
   288   bool size_changed = false;
   290   // There used to be this guarantee there.
   291   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
   292   // Code below forces this requirement.  In addition the desired eden
   293   // size and disired survivor sizes are desired goals and may
   294   // exceed the total generation size.
   296   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
   298   // Adjust new generation size
   299   const size_t eden_plus_survivors =
   300           align_size_up(eden_size + 2 * survivor_size, alignment);
   301   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
   302                              min_gen_size());
   303   assert(desired_size <= max_size(), "just checking");
   305   if (desired_size > orig_size) {
   306     // Grow the generation
   307     size_t change = desired_size - orig_size;
   308     assert(change % alignment == 0, "just checking");
   309     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
   310     if (!virtual_space()->expand_by(change)) {
   311       return false; // Error if we fail to resize!
   312     }
   313     if (ZapUnusedHeapArea) {
   314       // Mangle newly committed space immediately because it
   315       // can be done here more simply that after the new
   316       // spaces have been computed.
   317       HeapWord* new_high = (HeapWord*) virtual_space()->high();
   318       MemRegion mangle_region(prev_high, new_high);
   319       SpaceMangler::mangle_region(mangle_region);
   320     }
   321     size_changed = true;
   322   } else if (desired_size < orig_size) {
   323     size_t desired_change = orig_size - desired_size;
   324     assert(desired_change % alignment == 0, "just checking");
   326     desired_change = limit_gen_shrink(desired_change);
   328     if (desired_change > 0) {
   329       virtual_space()->shrink_by(desired_change);
   330       reset_survivors_after_shrink();
   332       size_changed = true;
   333     }
   334   } else {
   335     if (Verbose && PrintGC) {
   336       if (orig_size == gen_size_limit()) {
   337         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
   338           SIZE_FORMAT "K", orig_size/K);
   339       } else if (orig_size == min_gen_size()) {
   340         gclog_or_tty->print_cr("PSYoung generation size at minium: "
   341           SIZE_FORMAT "K", orig_size/K);
   342       }
   343     }
   344   }
   346   if (size_changed) {
   347     post_resize();
   349     if (Verbose && PrintGC) {
   350       size_t current_size  = virtual_space()->committed_size();
   351       gclog_or_tty->print_cr("PSYoung generation size changed: "
   352                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
   353                              orig_size/K, current_size/K);
   354     }
   355   }
   357   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
   358             virtual_space()->committed_size() == max_size(), "Sanity");
   360   return true;
   361 }
   363 #ifndef PRODUCT
   364 // In the numa case eden is not mangled so a survivor space
   365 // moving into a region previously occupied by a survivor
   366 // may find an unmangled region.  Also in the PS case eden
   367 // to-space and from-space may not touch (i.e., there may be
   368 // gaps between them due to movement while resizing the
   369 // spaces).  Those gaps must be mangled.
   370 void PSYoungGen::mangle_survivors(MutableSpace* s1,
   371                                   MemRegion s1MR,
   372                                   MutableSpace* s2,
   373                                   MemRegion s2MR) {
   374   // Check eden and gap between eden and from-space, in deciding
   375   // what to mangle in from-space.  Check the gap between from-space
   376   // and to-space when deciding what to mangle.
   377   //
   378   //      +--------+   +----+    +---+
   379   //      | eden   |   |s1  |    |s2 |
   380   //      +--------+   +----+    +---+
   381   //                 +-------+ +-----+
   382   //                 |s1MR   | |s2MR |
   383   //                 +-------+ +-----+
   384   // All of survivor-space is properly mangled so find the
   385   // upper bound on the mangling for any portion above current s1.
   386   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
   387   MemRegion delta1_left;
   388   if (s1MR.start() < delta_end) {
   389     delta1_left = MemRegion(s1MR.start(), delta_end);
   390     s1->mangle_region(delta1_left);
   391   }
   392   // Find any portion to the right of the current s1.
   393   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
   394   MemRegion delta1_right;
   395   if (delta_start < s1MR.end()) {
   396     delta1_right = MemRegion(delta_start, s1MR.end());
   397     s1->mangle_region(delta1_right);
   398   }
   400   // Similarly for the second survivor space except that
   401   // any of the new region that overlaps with the current
   402   // region of the first survivor space has already been
   403   // mangled.
   404   delta_end = MIN2(s2->bottom(), s2MR.end());
   405   delta_start = MAX2(s2MR.start(), s1->end());
   406   MemRegion delta2_left;
   407   if (s2MR.start() < delta_end) {
   408     delta2_left = MemRegion(s2MR.start(), delta_end);
   409     s2->mangle_region(delta2_left);
   410   }
   411   delta_start = MAX2(s2->end(), s2MR.start());
   412   MemRegion delta2_right;
   413   if (delta_start < s2MR.end()) {
   414     s2->mangle_region(delta2_right);
   415   }
   417   if (TraceZapUnusedHeapArea) {
   418     // s1
   419     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
   420       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
   421       s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
   422     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
   423       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
   424       delta1_left.start(), delta1_left.end(), delta1_right.start(),
   425       delta1_right.end());
   427     // s2
   428     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
   429       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
   430       s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
   431     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
   432       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
   433       delta2_left.start(), delta2_left.end(), delta2_right.start(),
   434       delta2_right.end());
   435   }
   437 }
   438 #endif // NOT PRODUCT
   440 void PSYoungGen::resize_spaces(size_t requested_eden_size,
   441                                size_t requested_survivor_size) {
   442   assert(UseAdaptiveSizePolicy, "sanity check");
   443   assert(requested_eden_size > 0  && requested_survivor_size > 0,
   444          "just checking");
   446   // We require eden and to space to be empty
   447   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
   448     return;
   449   }
   451   if (PrintAdaptiveSizePolicy && Verbose) {
   452     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
   453                   SIZE_FORMAT
   454                   ", requested_survivor_size: " SIZE_FORMAT ")",
   455                   requested_eden_size, requested_survivor_size);
   456     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
   457                   SIZE_FORMAT,
   458                   eden_space()->bottom(),
   459                   eden_space()->end(),
   460                   pointer_delta(eden_space()->end(),
   461                                 eden_space()->bottom(),
   462                                 sizeof(char)));
   463     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
   464                   SIZE_FORMAT,
   465                   from_space()->bottom(),
   466                   from_space()->end(),
   467                   pointer_delta(from_space()->end(),
   468                                 from_space()->bottom(),
   469                                 sizeof(char)));
   470     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
   471                   SIZE_FORMAT,
   472                   to_space()->bottom(),
   473                   to_space()->end(),
   474                   pointer_delta(  to_space()->end(),
   475                                   to_space()->bottom(),
   476                                   sizeof(char)));
   477   }
   479   // There's nothing to do if the new sizes are the same as the current
   480   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
   481       requested_survivor_size == from_space()->capacity_in_bytes() &&
   482       requested_eden_size == eden_space()->capacity_in_bytes()) {
   483     if (PrintAdaptiveSizePolicy && Verbose) {
   484       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
   485     }
   486     return;
   487   }
   489   char* eden_start = (char*)eden_space()->bottom();
   490   char* eden_end   = (char*)eden_space()->end();
   491   char* from_start = (char*)from_space()->bottom();
   492   char* from_end   = (char*)from_space()->end();
   493   char* to_start   = (char*)to_space()->bottom();
   494   char* to_end     = (char*)to_space()->end();
   496   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   497   const size_t alignment = heap->space_alignment();
   498   const bool maintain_minimum =
   499     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
   501   bool eden_from_to_order = from_start < to_start;
   502   // Check whether from space is below to space
   503   if (eden_from_to_order) {
   504     // Eden, from, to
   505     eden_from_to_order = true;
   506     if (PrintAdaptiveSizePolicy && Verbose) {
   507       gclog_or_tty->print_cr("  Eden, from, to:");
   508     }
   510     // Set eden
   511     // "requested_eden_size" is a goal for the size of eden
   512     // and may not be attainable.  "eden_size" below is
   513     // calculated based on the location of from-space and
   514     // the goal for the size of eden.  from-space is
   515     // fixed in place because it contains live data.
   516     // The calculation is done this way to avoid 32bit
   517     // overflow (i.e., eden_start + requested_eden_size
   518     // may too large for representation in 32bits).
   519     size_t eden_size;
   520     if (maintain_minimum) {
   521       // Only make eden larger than the requested size if
   522       // the minimum size of the generation has to be maintained.
   523       // This could be done in general but policy at a higher
   524       // level is determining a requested size for eden and that
   525       // should be honored unless there is a fundamental reason.
   526       eden_size = pointer_delta(from_start,
   527                                 eden_start,
   528                                 sizeof(char));
   529     } else {
   530       eden_size = MIN2(requested_eden_size,
   531                        pointer_delta(from_start, eden_start, sizeof(char)));
   532     }
   534     eden_end = eden_start + eden_size;
   535     assert(eden_end >= eden_start, "addition overflowed");
   537     // To may resize into from space as long as it is clear of live data.
   538     // From space must remain page aligned, though, so we need to do some
   539     // extra calculations.
   541     // First calculate an optimal to-space
   542     to_end   = (char*)virtual_space()->high();
   543     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
   544                                     sizeof(char));
   546     // Does the optimal to-space overlap from-space?
   547     if (to_start < (char*)from_space()->end()) {
   548       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   550       // Calculate the minimum offset possible for from_end
   551       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
   553       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
   554       if (from_size == 0) {
   555         from_size = alignment;
   556       } else {
   557         from_size = align_size_up(from_size, alignment);
   558       }
   560       from_end = from_start + from_size;
   561       assert(from_end > from_start, "addition overflow or from_size problem");
   563       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
   565       // Now update to_start with the new from_end
   566       to_start = MAX2(from_end, to_start);
   567     }
   569     guarantee(to_start != to_end, "to space is zero sized");
   571     if (PrintAdaptiveSizePolicy && Verbose) {
   572       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
   573                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   574                     eden_start,
   575                     eden_end,
   576                     pointer_delta(eden_end, eden_start, sizeof(char)));
   577       gclog_or_tty->print_cr("    [from_start .. from_end): "
   578                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   579                     from_start,
   580                     from_end,
   581                     pointer_delta(from_end, from_start, sizeof(char)));
   582       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
   583                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   584                     to_start,
   585                     to_end,
   586                     pointer_delta(  to_end,   to_start, sizeof(char)));
   587     }
   588   } else {
   589     // Eden, to, from
   590     if (PrintAdaptiveSizePolicy && Verbose) {
   591       gclog_or_tty->print_cr("  Eden, to, from:");
   592     }
   594     // To space gets priority over eden resizing. Note that we position
   595     // to space as if we were able to resize from space, even though from
   596     // space is not modified.
   597     // Giving eden priority was tried and gave poorer performance.
   598     to_end   = (char*)pointer_delta(virtual_space()->high(),
   599                                     (char*)requested_survivor_size,
   600                                     sizeof(char));
   601     to_end   = MIN2(to_end, from_start);
   602     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
   603                                     sizeof(char));
   604     // if the space sizes are to be increased by several times then
   605     // 'to_start' will point beyond the young generation. In this case
   606     // 'to_start' should be adjusted.
   607     to_start = MAX2(to_start, eden_start + alignment);
   609     // Compute how big eden can be, then adjust end.
   610     // See  comments above on calculating eden_end.
   611     size_t eden_size;
   612     if (maintain_minimum) {
   613       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
   614     } else {
   615       eden_size = MIN2(requested_eden_size,
   616                        pointer_delta(to_start, eden_start, sizeof(char)));
   617     }
   618     eden_end = eden_start + eden_size;
   619     assert(eden_end >= eden_start, "addition overflowed");
   621     // Could choose to not let eden shrink
   622     // to_start = MAX2(to_start, eden_end);
   624     // Don't let eden shrink down to 0 or less.
   625     eden_end = MAX2(eden_end, eden_start + alignment);
   626     to_start = MAX2(to_start, eden_end);
   628     if (PrintAdaptiveSizePolicy && Verbose) {
   629       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
   630                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   631                     eden_start,
   632                     eden_end,
   633                     pointer_delta(eden_end, eden_start, sizeof(char)));
   634       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
   635                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   636                     to_start,
   637                     to_end,
   638                     pointer_delta(  to_end,   to_start, sizeof(char)));
   639       gclog_or_tty->print_cr("    [from_start .. from_end): "
   640                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   641                     from_start,
   642                     from_end,
   643                     pointer_delta(from_end, from_start, sizeof(char)));
   644     }
   645   }
   648   guarantee((HeapWord*)from_start <= from_space()->bottom(),
   649             "from start moved to the right");
   650   guarantee((HeapWord*)from_end >= from_space()->top(),
   651             "from end moved into live data");
   652   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
   653   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
   654   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
   656   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
   657   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
   658   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
   660   // Let's make sure the call to initialize doesn't reset "top"!
   661   HeapWord* old_from_top = from_space()->top();
   663   // For PrintAdaptiveSizePolicy block  below
   664   size_t old_from = from_space()->capacity_in_bytes();
   665   size_t old_to   = to_space()->capacity_in_bytes();
   667   if (ZapUnusedHeapArea) {
   668     // NUMA is a special case because a numa space is not mangled
   669     // in order to not prematurely bind its address to memory to
   670     // the wrong memory (i.e., don't want the GC thread to first
   671     // touch the memory).  The survivor spaces are not numa
   672     // spaces and are mangled.
   673     if (UseNUMA) {
   674       if (eden_from_to_order) {
   675         mangle_survivors(from_space(), fromMR, to_space(), toMR);
   676       } else {
   677         mangle_survivors(to_space(), toMR, from_space(), fromMR);
   678       }
   679     }
   681     // If not mangling the spaces, do some checking to verify that
   682     // the spaces are already mangled.
   683     // The spaces should be correctly mangled at this point so
   684     // do some checking here. Note that they are not being mangled
   685     // in the calls to initialize().
   686     // Must check mangling before the spaces are reshaped.  Otherwise,
   687     // the bottom or end of one space may have moved into an area
   688     // covered by another space and a failure of the check may
   689     // not correctly indicate which space is not properly mangled.
   690     HeapWord* limit = (HeapWord*) virtual_space()->high();
   691     eden_space()->check_mangled_unused_area(limit);
   692     from_space()->check_mangled_unused_area(limit);
   693       to_space()->check_mangled_unused_area(limit);
   694   }
   695   // When an existing space is being initialized, it is not
   696   // mangled because the space has been previously mangled.
   697   eden_space()->initialize(edenMR,
   698                            SpaceDecorator::Clear,
   699                            SpaceDecorator::DontMangle);
   700     to_space()->initialize(toMR,
   701                            SpaceDecorator::Clear,
   702                            SpaceDecorator::DontMangle);
   703   from_space()->initialize(fromMR,
   704                            SpaceDecorator::DontClear,
   705                            SpaceDecorator::DontMangle);
   707   assert(from_space()->top() == old_from_top, "from top changed!");
   709   if (PrintAdaptiveSizePolicy) {
   710     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   711     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   713     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
   714                   "collection: %d "
   715                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
   716                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
   717                   heap->total_collections(),
   718                   old_from, old_to,
   719                   from_space()->capacity_in_bytes(),
   720                   to_space()->capacity_in_bytes());
   721     gclog_or_tty->cr();
   722   }
   723 }
   725 void PSYoungGen::swap_spaces() {
   726   MutableSpace* s    = from_space();
   727   _from_space        = to_space();
   728   _to_space          = s;
   730   // Now update the decorators.
   731   PSMarkSweepDecorator* md = from_mark_sweep();
   732   _from_mark_sweep           = to_mark_sweep();
   733   _to_mark_sweep             = md;
   735   assert(from_mark_sweep()->space() == from_space(), "Sanity");
   736   assert(to_mark_sweep()->space() == to_space(), "Sanity");
   737 }
   739 size_t PSYoungGen::capacity_in_bytes() const {
   740   return eden_space()->capacity_in_bytes()
   741        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
   742 }
   745 size_t PSYoungGen::used_in_bytes() const {
   746   return eden_space()->used_in_bytes()
   747        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
   748 }
   751 size_t PSYoungGen::free_in_bytes() const {
   752   return eden_space()->free_in_bytes()
   753        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
   754 }
   756 size_t PSYoungGen::capacity_in_words() const {
   757   return eden_space()->capacity_in_words()
   758        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
   759 }
   762 size_t PSYoungGen::used_in_words() const {
   763   return eden_space()->used_in_words()
   764        + from_space()->used_in_words();      // to_space() is only used during scavenge
   765 }
   768 size_t PSYoungGen::free_in_words() const {
   769   return eden_space()->free_in_words()
   770        + from_space()->free_in_words();      // to_space() is only used during scavenge
   771 }
   773 void PSYoungGen::object_iterate(ObjectClosure* blk) {
   774   eden_space()->object_iterate(blk);
   775   from_space()->object_iterate(blk);
   776   to_space()->object_iterate(blk);
   777 }
   779 void PSYoungGen::precompact() {
   780   eden_mark_sweep()->precompact();
   781   from_mark_sweep()->precompact();
   782   to_mark_sweep()->precompact();
   783 }
   785 void PSYoungGen::adjust_pointers() {
   786   eden_mark_sweep()->adjust_pointers();
   787   from_mark_sweep()->adjust_pointers();
   788   to_mark_sweep()->adjust_pointers();
   789 }
   791 void PSYoungGen::compact() {
   792   eden_mark_sweep()->compact(ZapUnusedHeapArea);
   793   from_mark_sweep()->compact(ZapUnusedHeapArea);
   794   // Mark sweep stores preserved markOops in to space, don't disturb!
   795   to_mark_sweep()->compact(false);
   796 }
   798 void PSYoungGen::print() const { print_on(tty); }
   799 void PSYoungGen::print_on(outputStream* st) const {
   800   st->print(" %-15s", "PSYoungGen");
   801   if (PrintGCDetails && Verbose) {
   802     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
   803                capacity_in_bytes(), used_in_bytes());
   804   } else {
   805     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
   806                capacity_in_bytes()/K, used_in_bytes()/K);
   807   }
   808   virtual_space()->print_space_boundaries_on(st);
   809   st->print("  eden"); eden_space()->print_on(st);
   810   st->print("  from"); from_space()->print_on(st);
   811   st->print("  to  "); to_space()->print_on(st);
   812 }
   814 // Note that a space is not printed before the [NAME:
   815 void PSYoungGen::print_used_change(size_t prev_used) const {
   816   gclog_or_tty->print("[%s:", name());
   817   gclog_or_tty->print(" "  SIZE_FORMAT "K"
   818                       "->" SIZE_FORMAT "K"
   819                       "("  SIZE_FORMAT "K)",
   820                       prev_used / K, used_in_bytes() / K,
   821                       capacity_in_bytes() / K);
   822   gclog_or_tty->print("]");
   823 }
   825 size_t PSYoungGen::available_for_expansion() {
   826   ShouldNotReachHere();
   827   return 0;
   828 }
   830 size_t PSYoungGen::available_for_contraction() {
   831   ShouldNotReachHere();
   832   return 0;
   833 }
   835 size_t PSYoungGen::available_to_min_gen() {
   836   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
   837   return virtual_space()->committed_size() - min_gen_size();
   838 }
   840 // This method assumes that from-space has live data and that
   841 // any shrinkage of the young gen is limited by location of
   842 // from-space.
   843 size_t PSYoungGen::available_to_live() {
   844   size_t delta_in_survivor = 0;
   845   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   846   const size_t space_alignment = heap->space_alignment();
   847   const size_t gen_alignment = heap->generation_alignment();
   849   MutableSpace* space_shrinking = NULL;
   850   if (from_space()->end() > to_space()->end()) {
   851     space_shrinking = from_space();
   852   } else {
   853     space_shrinking = to_space();
   854   }
   856   // Include any space that is committed but not included in
   857   // the survivor spaces.
   858   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
   859     "Survivor space beyond high end");
   860   size_t unused_committed = pointer_delta(virtual_space()->high(),
   861     space_shrinking->end(), sizeof(char));
   863   if (space_shrinking->is_empty()) {
   864     // Don't let the space shrink to 0
   865     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
   866       "Space is too small");
   867     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
   868   } else {
   869     delta_in_survivor = pointer_delta(space_shrinking->end(),
   870                                       space_shrinking->top(),
   871                                       sizeof(char));
   872   }
   874   size_t delta_in_bytes = unused_committed + delta_in_survivor;
   875   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
   876   return delta_in_bytes;
   877 }
   879 // Return the number of bytes available for resizing down the young
   880 // generation.  This is the minimum of
   881 //      input "bytes"
   882 //      bytes to the minimum young gen size
   883 //      bytes to the size currently being used + some small extra
   884 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
   885   // Allow shrinkage into the current eden but keep eden large enough
   886   // to maintain the minimum young gen size
   887   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
   888   return align_size_down(bytes, virtual_space()->alignment());
   889 }
   891 void PSYoungGen::reset_after_change() {
   892   ShouldNotReachHere();
   893 }
   895 void PSYoungGen::reset_survivors_after_shrink() {
   896   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
   897                         (HeapWord*)virtual_space()->high_boundary());
   898   PSScavenge::reference_processor()->set_span(_reserved);
   900   MutableSpace* space_shrinking = NULL;
   901   if (from_space()->end() > to_space()->end()) {
   902     space_shrinking = from_space();
   903   } else {
   904     space_shrinking = to_space();
   905   }
   907   HeapWord* new_end = (HeapWord*)virtual_space()->high();
   908   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
   909   // Was there a shrink of the survivor space?
   910   if (new_end < space_shrinking->end()) {
   911     MemRegion mr(space_shrinking->bottom(), new_end);
   912     space_shrinking->initialize(mr,
   913                                 SpaceDecorator::DontClear,
   914                                 SpaceDecorator::Mangle);
   915   }
   916 }
   918 // This method currently does not expect to expand into eden (i.e.,
   919 // the virtual space boundaries is expected to be consistent
   920 // with the eden boundaries..
   921 void PSYoungGen::post_resize() {
   922   assert_locked_or_safepoint(Heap_lock);
   923   assert((eden_space()->bottom() < to_space()->bottom()) &&
   924          (eden_space()->bottom() < from_space()->bottom()),
   925          "Eden is assumed to be below the survivor spaces");
   927   MemRegion cmr((HeapWord*)virtual_space()->low(),
   928                 (HeapWord*)virtual_space()->high());
   929   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   930   space_invariants();
   931 }
   935 void PSYoungGen::update_counters() {
   936   if (UsePerfData) {
   937     _eden_counters->update_all();
   938     _from_counters->update_all();
   939     _to_counters->update_all();
   940     _gen_counters->update_all();
   941   }
   942 }
   944 void PSYoungGen::verify() {
   945   eden_space()->verify();
   946   from_space()->verify();
   947   to_space()->verify();
   948 }
   950 #ifndef PRODUCT
   951 void PSYoungGen::record_spaces_top() {
   952   assert(ZapUnusedHeapArea, "Not mangling unused space");
   953   eden_space()->set_top_for_allocations();
   954   from_space()->set_top_for_allocations();
   955   to_space()->set_top_for_allocations();
   956 }
   957 #endif

mercurial