src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Thu, 09 Apr 2015 15:58:49 +0200

author
mlarsson
date
Thu, 09 Apr 2015 15:58:49 +0200
changeset 7686
fb69749583e8
parent 6904
0982ec23da03
child 7535
7ae4e26cb1e0
child 8179
110735ab93ec
permissions
-rw-r--r--

8072621: Clean up around VM_GC_Operations
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
    30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
    31 #include "gc_implementation/shared/collectorCounters.hpp"
    32 #include "gc_implementation/shared/markSweep.hpp"
    33 #include "gc_implementation/shared/mutableSpace.hpp"
    34 #include "memory/sharedHeap.hpp"
    35 #include "oops/oop.hpp"
    37 class ParallelScavengeHeap;
    38 class PSAdaptiveSizePolicy;
    39 class PSYoungGen;
    40 class PSOldGen;
    41 class ParCompactionManager;
    42 class ParallelTaskTerminator;
    43 class PSParallelCompact;
    44 class GCTaskManager;
    45 class GCTaskQueue;
    46 class PreGCValues;
    47 class MoveAndUpdateClosure;
    48 class RefProcTaskExecutor;
    49 class ParallelOldTracer;
    50 class STWGCTimer;
    52 // The SplitInfo class holds the information needed to 'split' a source region
    53 // so that the live data can be copied to two destination *spaces*.  Normally,
    54 // all the live data in a region is copied to a single destination space (e.g.,
    55 // everything live in a region in eden is copied entirely into the old gen).
    56 // However, when the heap is nearly full, all the live data in eden may not fit
    57 // into the old gen.  Copying only some of the regions from eden to old gen
    58 // requires finding a region that does not contain a partial object (i.e., no
    59 // live object crosses the region boundary) somewhere near the last object that
    60 // does fit into the old gen.  Since it's not always possible to find such a
    61 // region, splitting is necessary for predictable behavior.
    62 //
    63 // A region is always split at the end of the partial object.  This avoids
    64 // additional tests when calculating the new location of a pointer, which is a
    65 // very hot code path.  The partial object and everything to its left will be
    66 // copied to another space (call it dest_space_1).  The live data to the right
    67 // of the partial object will be copied either within the space itself, or to a
    68 // different destination space (distinct from dest_space_1).
    69 //
    70 // Split points are identified during the summary phase, when region
    71 // destinations are computed:  data about the split, including the
    72 // partial_object_size, is recorded in a SplitInfo record and the
    73 // partial_object_size field in the summary data is set to zero.  The zeroing is
    74 // possible (and necessary) since the partial object will move to a different
    75 // destination space than anything to its right, thus the partial object should
    76 // not affect the locations of any objects to its right.
    77 //
    78 // The recorded data is used during the compaction phase, but only rarely:  when
    79 // the partial object on the split region will be copied across a destination
    80 // region boundary.  This test is made once each time a region is filled, and is
    81 // a simple address comparison, so the overhead is negligible (see
    82 // PSParallelCompact::first_src_addr()).
    83 //
    84 // Notes:
    85 //
    86 // Only regions with partial objects are split; a region without a partial
    87 // object does not need any extra bookkeeping.
    88 //
    89 // At most one region is split per space, so the amount of data required is
    90 // constant.
    91 //
    92 // A region is split only when the destination space would overflow.  Once that
    93 // happens, the destination space is abandoned and no other data (even from
    94 // other source spaces) is targeted to that destination space.  Abandoning the
    95 // destination space may leave a somewhat large unused area at the end, if a
    96 // large object caused the overflow.
    97 //
    98 // Future work:
    99 //
   100 // More bookkeeping would be required to continue to use the destination space.
   101 // The most general solution would allow data from regions in two different
   102 // source spaces to be "joined" in a single destination region.  At the very
   103 // least, additional code would be required in next_src_region() to detect the
   104 // join and skip to an out-of-order source region.  If the join region was also
   105 // the last destination region to which a split region was copied (the most
   106 // likely case), then additional work would be needed to get fill_region() to
   107 // stop iteration and switch to a new source region at the right point.  Basic
   108 // idea would be to use a fake value for the top of the source space.  It is
   109 // doable, if a bit tricky.
   110 //
   111 // A simpler (but less general) solution would fill the remainder of the
   112 // destination region with a dummy object and continue filling the next
   113 // destination region.
   115 class SplitInfo
   116 {
   117 public:
   118   // Return true if this split info is valid (i.e., if a split has been
   119   // recorded).  The very first region cannot have a partial object and thus is
   120   // never split, so 0 is the 'invalid' value.
   121   bool is_valid() const { return _src_region_idx > 0; }
   123   // Return true if this split holds data for the specified source region.
   124   inline bool is_split(size_t source_region) const;
   126   // The index of the split region, the size of the partial object on that
   127   // region and the destination of the partial object.
   128   size_t    src_region_idx() const   { return _src_region_idx; }
   129   size_t    partial_obj_size() const { return _partial_obj_size; }
   130   HeapWord* destination() const      { return _destination; }
   132   // The destination count of the partial object referenced by this split
   133   // (either 1 or 2).  This must be added to the destination count of the
   134   // remainder of the source region.
   135   unsigned int destination_count() const { return _destination_count; }
   137   // If a word within the partial object will be written to the first word of a
   138   // destination region, this is the address of the destination region;
   139   // otherwise this is NULL.
   140   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
   142   // If a word within the partial object will be written to the first word of a
   143   // destination region, this is the address of that word within the partial
   144   // object; otherwise this is NULL.
   145   HeapWord* first_src_addr() const       { return _first_src_addr; }
   147   // Record the data necessary to split the region src_region_idx.
   148   void record(size_t src_region_idx, size_t partial_obj_size,
   149               HeapWord* destination);
   151   void clear();
   153   DEBUG_ONLY(void verify_clear();)
   155 private:
   156   size_t       _src_region_idx;
   157   size_t       _partial_obj_size;
   158   HeapWord*    _destination;
   159   unsigned int _destination_count;
   160   HeapWord*    _dest_region_addr;
   161   HeapWord*    _first_src_addr;
   162 };
   164 inline bool SplitInfo::is_split(size_t region_idx) const
   165 {
   166   return _src_region_idx == region_idx && is_valid();
   167 }
   169 class SpaceInfo
   170 {
   171  public:
   172   MutableSpace* space() const { return _space; }
   174   // Where the free space will start after the collection.  Valid only after the
   175   // summary phase completes.
   176   HeapWord* new_top() const { return _new_top; }
   178   // Allows new_top to be set.
   179   HeapWord** new_top_addr() { return &_new_top; }
   181   // Where the smallest allowable dense prefix ends (used only for perm gen).
   182   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
   184   // Where the dense prefix ends, or the compacted region begins.
   185   HeapWord* dense_prefix() const { return _dense_prefix; }
   187   // The start array for the (generation containing the) space, or NULL if there
   188   // is no start array.
   189   ObjectStartArray* start_array() const { return _start_array; }
   191   SplitInfo& split_info() { return _split_info; }
   193   void set_space(MutableSpace* s)           { _space = s; }
   194   void set_new_top(HeapWord* addr)          { _new_top = addr; }
   195   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
   196   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
   197   void set_start_array(ObjectStartArray* s) { _start_array = s; }
   199   void publish_new_top() const              { _space->set_top(_new_top); }
   201  private:
   202   MutableSpace*     _space;
   203   HeapWord*         _new_top;
   204   HeapWord*         _min_dense_prefix;
   205   HeapWord*         _dense_prefix;
   206   ObjectStartArray* _start_array;
   207   SplitInfo         _split_info;
   208 };
   210 class ParallelCompactData
   211 {
   212 public:
   213   // Sizes are in HeapWords, unless indicated otherwise.
   214   static const size_t Log2RegionSize;
   215   static const size_t RegionSize;
   216   static const size_t RegionSizeBytes;
   218   // Mask for the bits in a size_t to get an offset within a region.
   219   static const size_t RegionSizeOffsetMask;
   220   // Mask for the bits in a pointer to get an offset within a region.
   221   static const size_t RegionAddrOffsetMask;
   222   // Mask for the bits in a pointer to get the address of the start of a region.
   223   static const size_t RegionAddrMask;
   225   static const size_t Log2BlockSize;
   226   static const size_t BlockSize;
   227   static const size_t BlockSizeBytes;
   229   static const size_t BlockSizeOffsetMask;
   230   static const size_t BlockAddrOffsetMask;
   231   static const size_t BlockAddrMask;
   233   static const size_t BlocksPerRegion;
   234   static const size_t Log2BlocksPerRegion;
   236   class RegionData
   237   {
   238   public:
   239     // Destination address of the region.
   240     HeapWord* destination() const { return _destination; }
   242     // The first region containing data destined for this region.
   243     size_t source_region() const { return _source_region; }
   245     // The object (if any) starting in this region and ending in a different
   246     // region that could not be updated during the main (parallel) compaction
   247     // phase.  This is different from _partial_obj_addr, which is an object that
   248     // extends onto a source region.  However, the two uses do not overlap in
   249     // time, so the same field is used to save space.
   250     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   252     // The starting address of the partial object extending onto the region.
   253     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   255     // Size of the partial object extending onto the region (words).
   256     size_t partial_obj_size() const { return _partial_obj_size; }
   258     // Size of live data that lies within this region due to objects that start
   259     // in this region (words).  This does not include the partial object
   260     // extending onto the region (if any), or the part of an object that extends
   261     // onto the next region (if any).
   262     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   264     // Total live data that lies within the region (words).
   265     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   267     // The destination_count is the number of other regions to which data from
   268     // this region will be copied.  At the end of the summary phase, the valid
   269     // values of destination_count are
   270     //
   271     // 0 - data from the region will be compacted completely into itself, or the
   272     //     region is empty.  The region can be claimed and then filled.
   273     // 1 - data from the region will be compacted into 1 other region; some
   274     //     data from the region may also be compacted into the region itself.
   275     // 2 - data from the region will be copied to 2 other regions.
   276     //
   277     // During compaction as regions are emptied, the destination_count is
   278     // decremented (atomically) and when it reaches 0, it can be claimed and
   279     // then filled.
   280     //
   281     // A region is claimed for processing by atomically changing the
   282     // destination_count to the claimed value (dc_claimed).  After a region has
   283     // been filled, the destination_count should be set to the completed value
   284     // (dc_completed).
   285     inline uint destination_count() const;
   286     inline uint destination_count_raw() const;
   288     // Whether the block table for this region has been filled.
   289     inline bool blocks_filled() const;
   291     // Number of times the block table was filled.
   292     DEBUG_ONLY(inline size_t blocks_filled_count() const;)
   294     // The location of the java heap data that corresponds to this region.
   295     inline HeapWord* data_location() const;
   297     // The highest address referenced by objects in this region.
   298     inline HeapWord* highest_ref() const;
   300     // Whether this region is available to be claimed, has been claimed, or has
   301     // been completed.
   302     //
   303     // Minor subtlety:  claimed() returns true if the region is marked
   304     // completed(), which is desirable since a region must be claimed before it
   305     // can be completed.
   306     bool available() const { return _dc_and_los < dc_one; }
   307     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   308     bool completed() const { return _dc_and_los >= dc_completed; }
   310     // These are not atomic.
   311     void set_destination(HeapWord* addr)       { _destination = addr; }
   312     void set_source_region(size_t region)      { _source_region = region; }
   313     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   314     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   315     void set_partial_obj_size(size_t words)    {
   316       _partial_obj_size = (region_sz_t) words;
   317     }
   318     inline void set_blocks_filled();
   320     inline void set_destination_count(uint count);
   321     inline void set_live_obj_size(size_t words);
   322     inline void set_data_location(HeapWord* addr);
   323     inline void set_completed();
   324     inline bool claim_unsafe();
   326     // These are atomic.
   327     inline void add_live_obj(size_t words);
   328     inline void set_highest_ref(HeapWord* addr);
   329     inline void decrement_destination_count();
   330     inline bool claim();
   332   private:
   333     // The type used to represent object sizes within a region.
   334     typedef uint region_sz_t;
   336     // Constants for manipulating the _dc_and_los field, which holds both the
   337     // destination count and live obj size.  The live obj size lives at the
   338     // least significant end so no masking is necessary when adding.
   339     static const region_sz_t dc_shift;           // Shift amount.
   340     static const region_sz_t dc_mask;            // Mask for destination count.
   341     static const region_sz_t dc_one;             // 1, shifted appropriately.
   342     static const region_sz_t dc_claimed;         // Region has been claimed.
   343     static const region_sz_t dc_completed;       // Region has been completed.
   344     static const region_sz_t los_mask;           // Mask for live obj size.
   346     HeapWord*            _destination;
   347     size_t               _source_region;
   348     HeapWord*            _partial_obj_addr;
   349     region_sz_t          _partial_obj_size;
   350     region_sz_t volatile _dc_and_los;
   351     bool                 _blocks_filled;
   353 #ifdef ASSERT
   354     size_t               _blocks_filled_count;   // Number of block table fills.
   356     // These enable optimizations that are only partially implemented.  Use
   357     // debug builds to prevent the code fragments from breaking.
   358     HeapWord*            _data_location;
   359     HeapWord*            _highest_ref;
   360 #endif  // #ifdef ASSERT
   362 #ifdef ASSERT
   363    public:
   364     uint                 _pushed;   // 0 until region is pushed onto a stack
   365    private:
   366 #endif
   367   };
   369   // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
   370   // holds an offset, which is the amount of live data in the Region to the left
   371   // of the first live object that starts in the Block.
   372   class BlockData
   373   {
   374   public:
   375     typedef unsigned short int blk_ofs_t;
   377     blk_ofs_t offset() const    { return _offset; }
   378     void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
   380   private:
   381     blk_ofs_t _offset;
   382   };
   384 public:
   385   ParallelCompactData();
   386   bool initialize(MemRegion covered_region);
   388   size_t region_count() const { return _region_count; }
   389   size_t reserved_byte_size() const { return _reserved_byte_size; }
   391   // Convert region indices to/from RegionData pointers.
   392   inline RegionData* region(size_t region_idx) const;
   393   inline size_t     region(const RegionData* const region_ptr) const;
   395   size_t block_count() const { return _block_count; }
   396   inline BlockData* block(size_t block_idx) const;
   397   inline size_t     block(const BlockData* block_ptr) const;
   399   void add_obj(HeapWord* addr, size_t len);
   400   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   402   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   403   // destination of region n is simply the start of region n.  The argument beg
   404   // must be region-aligned; end need not be.
   405   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   407   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
   408                                   HeapWord* destination, HeapWord* target_end,
   409                                   HeapWord** target_next);
   410   bool summarize(SplitInfo& split_info,
   411                  HeapWord* source_beg, HeapWord* source_end,
   412                  HeapWord** source_next,
   413                  HeapWord* target_beg, HeapWord* target_end,
   414                  HeapWord** target_next);
   416   void clear();
   417   void clear_range(size_t beg_region, size_t end_region);
   418   void clear_range(HeapWord* beg, HeapWord* end) {
   419     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   420   }
   422   // Return the number of words between addr and the start of the region
   423   // containing addr.
   424   inline size_t     region_offset(const HeapWord* addr) const;
   426   // Convert addresses to/from a region index or region pointer.
   427   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   428   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   429   inline HeapWord*  region_to_addr(size_t region) const;
   430   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   431   inline HeapWord*  region_to_addr(const RegionData* region) const;
   433   inline HeapWord*  region_align_down(HeapWord* addr) const;
   434   inline HeapWord*  region_align_up(HeapWord* addr) const;
   435   inline bool       is_region_aligned(HeapWord* addr) const;
   437   // Analogous to region_offset() for blocks.
   438   size_t     block_offset(const HeapWord* addr) const;
   439   size_t     addr_to_block_idx(const HeapWord* addr) const;
   440   size_t     addr_to_block_idx(const oop obj) const {
   441     return addr_to_block_idx((HeapWord*) obj);
   442   }
   443   inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
   444   inline HeapWord*  block_to_addr(size_t block) const;
   445   inline size_t     region_to_block_idx(size_t region) const;
   447   inline HeapWord*  block_align_down(HeapWord* addr) const;
   448   inline HeapWord*  block_align_up(HeapWord* addr) const;
   449   inline bool       is_block_aligned(HeapWord* addr) const;
   451   // Return the address one past the end of the partial object.
   452   HeapWord* partial_obj_end(size_t region_idx) const;
   454   // Return the location of the object after compaction.
   455   HeapWord* calc_new_pointer(HeapWord* addr);
   457   HeapWord* calc_new_pointer(oop p) {
   458     return calc_new_pointer((HeapWord*) p);
   459   }
   461 #ifdef  ASSERT
   462   void verify_clear(const PSVirtualSpace* vspace);
   463   void verify_clear();
   464 #endif  // #ifdef ASSERT
   466 private:
   467   bool initialize_block_data();
   468   bool initialize_region_data(size_t region_size);
   469   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   471 private:
   472   HeapWord*       _region_start;
   473 #ifdef  ASSERT
   474   HeapWord*       _region_end;
   475 #endif  // #ifdef ASSERT
   477   PSVirtualSpace* _region_vspace;
   478   size_t          _reserved_byte_size;
   479   RegionData*     _region_data;
   480   size_t          _region_count;
   482   PSVirtualSpace* _block_vspace;
   483   BlockData*      _block_data;
   484   size_t          _block_count;
   485 };
   487 inline uint
   488 ParallelCompactData::RegionData::destination_count_raw() const
   489 {
   490   return _dc_and_los & dc_mask;
   491 }
   493 inline uint
   494 ParallelCompactData::RegionData::destination_count() const
   495 {
   496   return destination_count_raw() >> dc_shift;
   497 }
   499 inline bool
   500 ParallelCompactData::RegionData::blocks_filled() const
   501 {
   502   return _blocks_filled;
   503 }
   505 #ifdef ASSERT
   506 inline size_t
   507 ParallelCompactData::RegionData::blocks_filled_count() const
   508 {
   509   return _blocks_filled_count;
   510 }
   511 #endif // #ifdef ASSERT
   513 inline void
   514 ParallelCompactData::RegionData::set_blocks_filled()
   515 {
   516   _blocks_filled = true;
   517   // Debug builds count the number of times the table was filled.
   518   DEBUG_ONLY(Atomic::inc_ptr(&_blocks_filled_count));
   519 }
   521 inline void
   522 ParallelCompactData::RegionData::set_destination_count(uint count)
   523 {
   524   assert(count <= (dc_completed >> dc_shift), "count too large");
   525   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   526   _dc_and_los = (count << dc_shift) | live_sz;
   527 }
   529 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   530 {
   531   assert(words <= los_mask, "would overflow");
   532   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   533 }
   535 inline void ParallelCompactData::RegionData::decrement_destination_count()
   536 {
   537   assert(_dc_and_los < dc_claimed, "already claimed");
   538   assert(_dc_and_los >= dc_one, "count would go negative");
   539   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   540 }
   542 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   543 {
   544   DEBUG_ONLY(return _data_location;)
   545   NOT_DEBUG(return NULL;)
   546 }
   548 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   549 {
   550   DEBUG_ONLY(return _highest_ref;)
   551   NOT_DEBUG(return NULL;)
   552 }
   554 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   555 {
   556   DEBUG_ONLY(_data_location = addr;)
   557 }
   559 inline void ParallelCompactData::RegionData::set_completed()
   560 {
   561   assert(claimed(), "must be claimed first");
   562   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   563 }
   565 // MT-unsafe claiming of a region.  Should only be used during single threaded
   566 // execution.
   567 inline bool ParallelCompactData::RegionData::claim_unsafe()
   568 {
   569   if (available()) {
   570     _dc_and_los |= dc_claimed;
   571     return true;
   572   }
   573   return false;
   574 }
   576 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   577 {
   578   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   579   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   580 }
   582 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   583 {
   584 #ifdef ASSERT
   585   HeapWord* tmp = _highest_ref;
   586   while (addr > tmp) {
   587     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   588   }
   589 #endif  // #ifdef ASSERT
   590 }
   592 inline bool ParallelCompactData::RegionData::claim()
   593 {
   594   const int los = (int) live_obj_size();
   595   const int old = Atomic::cmpxchg(dc_claimed | los,
   596                                   (volatile int*) &_dc_and_los, los);
   597   return old == los;
   598 }
   600 inline ParallelCompactData::RegionData*
   601 ParallelCompactData::region(size_t region_idx) const
   602 {
   603   assert(region_idx <= region_count(), "bad arg");
   604   return _region_data + region_idx;
   605 }
   607 inline size_t
   608 ParallelCompactData::region(const RegionData* const region_ptr) const
   609 {
   610   assert(region_ptr >= _region_data, "bad arg");
   611   assert(region_ptr <= _region_data + region_count(), "bad arg");
   612   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   613 }
   615 inline ParallelCompactData::BlockData*
   616 ParallelCompactData::block(size_t n) const {
   617   assert(n < block_count(), "bad arg");
   618   return _block_data + n;
   619 }
   621 inline size_t
   622 ParallelCompactData::region_offset(const HeapWord* addr) const
   623 {
   624   assert(addr >= _region_start, "bad addr");
   625   assert(addr <= _region_end, "bad addr");
   626   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   627 }
   629 inline size_t
   630 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   631 {
   632   assert(addr >= _region_start, "bad addr");
   633   assert(addr <= _region_end, "bad addr");
   634   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   635 }
   637 inline ParallelCompactData::RegionData*
   638 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   639 {
   640   return region(addr_to_region_idx(addr));
   641 }
   643 inline HeapWord*
   644 ParallelCompactData::region_to_addr(size_t region) const
   645 {
   646   assert(region <= _region_count, "region out of range");
   647   return _region_start + (region << Log2RegionSize);
   648 }
   650 inline HeapWord*
   651 ParallelCompactData::region_to_addr(const RegionData* region) const
   652 {
   653   return region_to_addr(pointer_delta(region, _region_data,
   654                                       sizeof(RegionData)));
   655 }
   657 inline HeapWord*
   658 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   659 {
   660   assert(region <= _region_count, "region out of range");
   661   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   662   return region_to_addr(region) + offset;
   663 }
   665 inline HeapWord*
   666 ParallelCompactData::region_align_down(HeapWord* addr) const
   667 {
   668   assert(addr >= _region_start, "bad addr");
   669   assert(addr < _region_end + RegionSize, "bad addr");
   670   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   671 }
   673 inline HeapWord*
   674 ParallelCompactData::region_align_up(HeapWord* addr) const
   675 {
   676   assert(addr >= _region_start, "bad addr");
   677   assert(addr <= _region_end, "bad addr");
   678   return region_align_down(addr + RegionSizeOffsetMask);
   679 }
   681 inline bool
   682 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   683 {
   684   return region_offset(addr) == 0;
   685 }
   687 inline size_t
   688 ParallelCompactData::block_offset(const HeapWord* addr) const
   689 {
   690   assert(addr >= _region_start, "bad addr");
   691   assert(addr <= _region_end, "bad addr");
   692   return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
   693 }
   695 inline size_t
   696 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
   697 {
   698   assert(addr >= _region_start, "bad addr");
   699   assert(addr <= _region_end, "bad addr");
   700   return pointer_delta(addr, _region_start) >> Log2BlockSize;
   701 }
   703 inline ParallelCompactData::BlockData*
   704 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
   705 {
   706   return block(addr_to_block_idx(addr));
   707 }
   709 inline HeapWord*
   710 ParallelCompactData::block_to_addr(size_t block) const
   711 {
   712   assert(block < _block_count, "block out of range");
   713   return _region_start + (block << Log2BlockSize);
   714 }
   716 inline size_t
   717 ParallelCompactData::region_to_block_idx(size_t region) const
   718 {
   719   return region << Log2BlocksPerRegion;
   720 }
   722 inline HeapWord*
   723 ParallelCompactData::block_align_down(HeapWord* addr) const
   724 {
   725   assert(addr >= _region_start, "bad addr");
   726   assert(addr < _region_end + RegionSize, "bad addr");
   727   return (HeapWord*)(size_t(addr) & BlockAddrMask);
   728 }
   730 inline HeapWord*
   731 ParallelCompactData::block_align_up(HeapWord* addr) const
   732 {
   733   assert(addr >= _region_start, "bad addr");
   734   assert(addr <= _region_end, "bad addr");
   735   return block_align_down(addr + BlockSizeOffsetMask);
   736 }
   738 inline bool
   739 ParallelCompactData::is_block_aligned(HeapWord* addr) const
   740 {
   741   return block_offset(addr) == 0;
   742 }
   744 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   745 // do_addr() method.
   746 //
   747 // The closure is initialized with the number of heap words to process
   748 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   749 // methods in subclasses should update the total as words are processed.  Since
   750 // only one subclass actually uses this mechanism to terminate iteration, the
   751 // default initial value is > 0.  The implementation is here and not in the
   752 // single subclass that uses it to avoid making is_full() virtual, and thus
   753 // adding a virtual call per live object.
   755 class ParMarkBitMapClosure: public StackObj {
   756  public:
   757   typedef ParMarkBitMap::idx_t idx_t;
   758   typedef ParMarkBitMap::IterationStatus IterationStatus;
   760  public:
   761   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   762                               size_t words = max_uintx);
   764   inline ParCompactionManager* compaction_manager() const;
   765   inline ParMarkBitMap*        bitmap() const;
   766   inline size_t                words_remaining() const;
   767   inline bool                  is_full() const;
   768   inline HeapWord*             source() const;
   770   inline void                  set_source(HeapWord* addr);
   772   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   774  protected:
   775   inline void decrement_words_remaining(size_t words);
   777  private:
   778   ParMarkBitMap* const        _bitmap;
   779   ParCompactionManager* const _compaction_manager;
   780   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   781   size_t                      _words_remaining; // Words left to copy.
   783  protected:
   784   HeapWord*                   _source;          // Next addr that would be read.
   785 };
   787 inline
   788 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   789                                            ParCompactionManager* cm,
   790                                            size_t words):
   791   _bitmap(bitmap), _compaction_manager(cm)
   792 #ifdef  ASSERT
   793   , _initial_words_remaining(words)
   794 #endif
   795 {
   796   _words_remaining = words;
   797   _source = NULL;
   798 }
   800 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   801   return _compaction_manager;
   802 }
   804 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   805   return _bitmap;
   806 }
   808 inline size_t ParMarkBitMapClosure::words_remaining() const {
   809   return _words_remaining;
   810 }
   812 inline bool ParMarkBitMapClosure::is_full() const {
   813   return words_remaining() == 0;
   814 }
   816 inline HeapWord* ParMarkBitMapClosure::source() const {
   817   return _source;
   818 }
   820 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   821   _source = addr;
   822 }
   824 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   825   assert(_words_remaining >= words, "processed too many words");
   826   _words_remaining -= words;
   827 }
   829 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   830 // does parts of the collection using parallel threads.  The collection includes
   831 // the tenured generation and the young generation.  The permanent generation is
   832 // collected at the same time as the other two generations but the permanent
   833 // generation is collect by a single GC thread.  The permanent generation is
   834 // collected serially because of the requirement that during the processing of a
   835 // klass AAA, any objects reference by AAA must already have been processed.
   836 // This requirement is enforced by a left (lower address) to right (higher
   837 // address) sliding compaction.
   838 //
   839 // There are four phases of the collection.
   840 //
   841 //      - marking phase
   842 //      - summary phase
   843 //      - compacting phase
   844 //      - clean up phase
   845 //
   846 // Roughly speaking these phases correspond, respectively, to
   847 //      - mark all the live objects
   848 //      - calculate the destination of each object at the end of the collection
   849 //      - move the objects to their destination
   850 //      - update some references and reinitialize some variables
   851 //
   852 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   853 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   854 // complete marking of the heap.  The summary phase is implemented in
   855 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   856 // in PSParallelCompact::compact().
   857 //
   858 // A space that is being collected is divided into regions and with each region
   859 // is associated an object of type ParallelCompactData.  Each region is of a
   860 // fixed size and typically will contain more than 1 object and may have parts
   861 // of objects at the front and back of the region.
   862 //
   863 // region            -----+---------------------+----------
   864 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   865 //
   866 // The marking phase does a complete marking of all live objects in the heap.
   867 // The marking also compiles the size of the data for all live objects covered
   868 // by the region.  This size includes the part of any live object spanning onto
   869 // the region (part of AAA if it is live) from the front, all live objects
   870 // contained in the region (BBB and/or CCC if they are live), and the part of
   871 // any live objects covered by the region that extends off the region (part of
   872 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   873 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   874 // done atomically as is the accumulation of the size of the live objects
   875 // covered by a region.
   876 //
   877 // The summary phase calculates the total live data to the left of each region
   878 // XXX.  Based on that total and the bottom of the space, it can calculate the
   879 // starting location of the live data in XXX.  The summary phase calculates for
   880 // each region XXX quantites such as
   881 //
   882 //      - the amount of live data at the beginning of a region from an object
   883 //        entering the region.
   884 //      - the location of the first live data on the region
   885 //      - a count of the number of regions receiving live data from XXX.
   886 //
   887 // See ParallelCompactData for precise details.  The summary phase also
   888 // calculates the dense prefix for the compaction.  The dense prefix is a
   889 // portion at the beginning of the space that is not moved.  The objects in the
   890 // dense prefix do need to have their object references updated.  See method
   891 // summarize_dense_prefix().
   892 //
   893 // The summary phase is done using 1 GC thread.
   894 //
   895 // The compaction phase moves objects to their new location and updates all
   896 // references in the object.
   897 //
   898 // A current exception is that objects that cross a region boundary are moved
   899 // but do not have their references updated.  References are not updated because
   900 // it cannot easily be determined if the klass pointer KKK for the object AAA
   901 // has been updated.  KKK likely resides in a region to the left of the region
   902 // containing AAA.  These AAA's have there references updated at the end in a
   903 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   904 // An alternate strategy is being investigated for this deferral of updating.
   905 //
   906 // Compaction is done on a region basis.  A region that is ready to be filled is
   907 // put on a ready list and GC threads take region off the list and fill them.  A
   908 // region is ready to be filled if it empty of live objects.  Such a region may
   909 // have been initially empty (only contained dead objects) or may have had all
   910 // its live objects copied out already.  A region that compacts into itself is
   911 // also ready for filling.  The ready list is initially filled with empty
   912 // regions and regions compacting into themselves.  There is always at least 1
   913 // region that can be put on the ready list.  The regions are atomically added
   914 // and removed from the ready list.
   916 class PSParallelCompact : AllStatic {
   917  public:
   918   // Convenient access to type names.
   919   typedef ParMarkBitMap::idx_t idx_t;
   920   typedef ParallelCompactData::RegionData RegionData;
   921   typedef ParallelCompactData::BlockData BlockData;
   923   typedef enum {
   924     old_space_id, eden_space_id,
   925     from_space_id, to_space_id, last_space_id
   926   } SpaceId;
   928  public:
   929   // Inline closure decls
   930   //
   931   class IsAliveClosure: public BoolObjectClosure {
   932    public:
   933     virtual bool do_object_b(oop p);
   934   };
   936   class KeepAliveClosure: public OopClosure {
   937    private:
   938     ParCompactionManager* _compaction_manager;
   939    protected:
   940     template <class T> inline void do_oop_work(T* p);
   941    public:
   942     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   943     virtual void do_oop(oop* p);
   944     virtual void do_oop(narrowOop* p);
   945   };
   947   class FollowStackClosure: public VoidClosure {
   948    private:
   949     ParCompactionManager* _compaction_manager;
   950    public:
   951     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   952     virtual void do_void();
   953   };
   955   class AdjustPointerClosure: public OopClosure {
   956    public:
   957     virtual void do_oop(oop* p);
   958     virtual void do_oop(narrowOop* p);
   959     // do not walk from thread stacks to the code cache on this phase
   960     virtual void do_code_blob(CodeBlob* cb) const { }
   961   };
   963   class AdjustKlassClosure : public KlassClosure {
   964    public:
   965     void do_klass(Klass* klass);
   966   };
   968   friend class KeepAliveClosure;
   969   friend class FollowStackClosure;
   970   friend class AdjustPointerClosure;
   971   friend class AdjustKlassClosure;
   972   friend class FollowKlassClosure;
   973   friend class InstanceClassLoaderKlass;
   974   friend class RefProcTaskProxy;
   976  private:
   977   static STWGCTimer           _gc_timer;
   978   static ParallelOldTracer    _gc_tracer;
   979   static elapsedTimer         _accumulated_time;
   980   static unsigned int         _total_invocations;
   981   static unsigned int         _maximum_compaction_gc_num;
   982   static jlong                _time_of_last_gc;   // ms
   983   static CollectorCounters*   _counters;
   984   static ParMarkBitMap        _mark_bitmap;
   985   static ParallelCompactData  _summary_data;
   986   static IsAliveClosure       _is_alive_closure;
   987   static SpaceInfo            _space_info[last_space_id];
   988   static bool                 _print_phases;
   989   static AdjustPointerClosure _adjust_pointer_closure;
   990   static AdjustKlassClosure   _adjust_klass_closure;
   992   // Reference processing (used in ...follow_contents)
   993   static ReferenceProcessor*  _ref_processor;
   995   // Updated location of intArrayKlassObj.
   996   static Klass* _updated_int_array_klass_obj;
   998   // Values computed at initialization and used by dead_wood_limiter().
   999   static double _dwl_mean;
  1000   static double _dwl_std_dev;
  1001   static double _dwl_first_term;
  1002   static double _dwl_adjustment;
  1003 #ifdef  ASSERT
  1004   static bool   _dwl_initialized;
  1005 #endif  // #ifdef ASSERT
  1008  public:
  1009   static ParallelOldTracer* gc_tracer() { return &_gc_tracer; }
  1011  private:
  1013   static void initialize_space_info();
  1015   // Return true if details about individual phases should be printed.
  1016   static inline bool print_phases();
  1018   // Clear the marking bitmap and summary data that cover the specified space.
  1019   static void clear_data_covering_space(SpaceId id);
  1021   static void pre_compact(PreGCValues* pre_gc_values);
  1022   static void post_compact();
  1024   // Mark live objects
  1025   static void marking_phase(ParCompactionManager* cm,
  1026                             bool maximum_heap_compaction,
  1027                             ParallelOldTracer *gc_tracer);
  1029   template <class T>
  1030   static inline void follow_root(ParCompactionManager* cm, T* p);
  1032   // Compute the dense prefix for the designated space.  This is an experimental
  1033   // implementation currently not used in production.
  1034   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
  1035                                                     bool maximum_compaction);
  1037   // Methods used to compute the dense prefix.
  1039   // Compute the value of the normal distribution at x = density.  The mean and
  1040   // standard deviation are values saved by initialize_dead_wood_limiter().
  1041   static inline double normal_distribution(double density);
  1043   // Initialize the static vars used by dead_wood_limiter().
  1044   static void initialize_dead_wood_limiter();
  1046   // Return the percentage of space that can be treated as "dead wood" (i.e.,
  1047   // not reclaimed).
  1048   static double dead_wood_limiter(double density, size_t min_percent);
  1050   // Find the first (left-most) region in the range [beg, end) that has at least
  1051   // dead_words of dead space to the left.  The argument beg must be the first
  1052   // region in the space that is not completely live.
  1053   static RegionData* dead_wood_limit_region(const RegionData* beg,
  1054                                             const RegionData* end,
  1055                                             size_t dead_words);
  1057   // Return a pointer to the first region in the range [beg, end) that is not
  1058   // completely full.
  1059   static RegionData* first_dead_space_region(const RegionData* beg,
  1060                                              const RegionData* end);
  1062   // Return a value indicating the benefit or 'yield' if the compacted region
  1063   // were to start (or equivalently if the dense prefix were to end) at the
  1064   // candidate region.  Higher values are better.
  1065   //
  1066   // The value is based on the amount of space reclaimed vs. the costs of (a)
  1067   // updating references in the dense prefix plus (b) copying objects and
  1068   // updating references in the compacted region.
  1069   static inline double reclaimed_ratio(const RegionData* const candidate,
  1070                                        HeapWord* const bottom,
  1071                                        HeapWord* const top,
  1072                                        HeapWord* const new_top);
  1074   // Compute the dense prefix for the designated space.
  1075   static HeapWord* compute_dense_prefix(const SpaceId id,
  1076                                         bool maximum_compaction);
  1078   // Return true if dead space crosses onto the specified Region; bit must be
  1079   // the bit index corresponding to the first word of the Region.
  1080   static inline bool dead_space_crosses_boundary(const RegionData* region,
  1081                                                  idx_t bit);
  1083   // Summary phase utility routine to fill dead space (if any) at the dense
  1084   // prefix boundary.  Should only be called if the the dense prefix is
  1085   // non-empty.
  1086   static void fill_dense_prefix_end(SpaceId id);
  1088   // Clear the summary data source_region field for the specified addresses.
  1089   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
  1091 #ifndef PRODUCT
  1092   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
  1094   // Fill the region [start, start + words) with live object(s).  Only usable
  1095   // for the old and permanent generations.
  1096   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
  1097                                      size_t words);
  1098   // Include the new objects in the summary data.
  1099   static void summarize_new_objects(SpaceId id, HeapWord* start);
  1101   // Add live objects to a survivor space since it's rare that both survivors
  1102   // are non-empty.
  1103   static void provoke_split_fill_survivor(SpaceId id);
  1105   // Add live objects and/or choose the dense prefix to provoke splitting.
  1106   static void provoke_split(bool & maximum_compaction);
  1107 #endif
  1109   static void summarize_spaces_quick();
  1110   static void summarize_space(SpaceId id, bool maximum_compaction);
  1111   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
  1113   // Adjust addresses in roots.  Does not adjust addresses in heap.
  1114   static void adjust_roots();
  1116   DEBUG_ONLY(static void write_block_fill_histogram(outputStream* const out);)
  1118   // Move objects to new locations.
  1119   static void compact_perm(ParCompactionManager* cm);
  1120   static void compact();
  1122   // Add available regions to the stack and draining tasks to the task queue.
  1123   static void enqueue_region_draining_tasks(GCTaskQueue* q,
  1124                                             uint parallel_gc_threads);
  1126   // Add dense prefix update tasks to the task queue.
  1127   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
  1128                                          uint parallel_gc_threads);
  1130   // Add region stealing tasks to the task queue.
  1131   static void enqueue_region_stealing_tasks(
  1132                                        GCTaskQueue* q,
  1133                                        ParallelTaskTerminator* terminator_ptr,
  1134                                        uint parallel_gc_threads);
  1136   // If objects are left in eden after a collection, try to move the boundary
  1137   // and absorb them into the old gen.  Returns true if eden was emptied.
  1138   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  1139                                          PSYoungGen* young_gen,
  1140                                          PSOldGen* old_gen);
  1142   // Reset time since last full gc
  1143   static void reset_millis_since_last_gc();
  1145  public:
  1146   class MarkAndPushClosure: public OopClosure {
  1147    private:
  1148     ParCompactionManager* _compaction_manager;
  1149    public:
  1150     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
  1151     virtual void do_oop(oop* p);
  1152     virtual void do_oop(narrowOop* p);
  1153   };
  1155   // The one and only place to start following the classes.
  1156   // Should only be applied to the ClassLoaderData klasses list.
  1157   class FollowKlassClosure : public KlassClosure {
  1158    private:
  1159     MarkAndPushClosure* _mark_and_push_closure;
  1160    public:
  1161     FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
  1162         _mark_and_push_closure(mark_and_push_closure) { }
  1163     void do_klass(Klass* klass);
  1164   };
  1166   PSParallelCompact();
  1168   // Convenient accessor for Universe::heap().
  1169   static ParallelScavengeHeap* gc_heap() {
  1170     return (ParallelScavengeHeap*)Universe::heap();
  1173   static void invoke(bool maximum_heap_compaction);
  1174   static bool invoke_no_policy(bool maximum_heap_compaction);
  1176   static void post_initialize();
  1177   // Perform initialization for PSParallelCompact that requires
  1178   // allocations.  This should be called during the VM initialization
  1179   // at a pointer where it would be appropriate to return a JNI_ENOMEM
  1180   // in the event of a failure.
  1181   static bool initialize();
  1183   // Closure accessors
  1184   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
  1185   static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
  1186   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
  1188   // Public accessors
  1189   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  1190   static unsigned int total_invocations() { return _total_invocations; }
  1191   static CollectorCounters* counters()    { return _counters; }
  1193   // Used to add tasks
  1194   static GCTaskManager* const gc_task_manager();
  1195   static Klass* updated_int_array_klass_obj() {
  1196     return _updated_int_array_klass_obj;
  1199   // Marking support
  1200   static inline bool mark_obj(oop obj);
  1201   static inline bool is_marked(oop obj);
  1202   // Check mark and maybe push on marking stack
  1203   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
  1204                                                       T* p);
  1205   template <class T> static inline void adjust_pointer(T* p);
  1207   static inline void follow_klass(ParCompactionManager* cm, Klass* klass);
  1209   static void follow_class_loader(ParCompactionManager* cm,
  1210                                   ClassLoaderData* klass);
  1212   // Compaction support.
  1213   // Return true if p is in the range [beg_addr, end_addr).
  1214   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  1215   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
  1217   // Convenience wrappers for per-space data kept in _space_info.
  1218   static inline MutableSpace*     space(SpaceId space_id);
  1219   static inline HeapWord*         new_top(SpaceId space_id);
  1220   static inline HeapWord*         dense_prefix(SpaceId space_id);
  1221   static inline ObjectStartArray* start_array(SpaceId space_id);
  1223   // Move and update the live objects in the specified space.
  1224   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
  1226   // Process the end of the given region range in the dense prefix.
  1227   // This includes saving any object not updated.
  1228   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
  1229                                             size_t region_start_index,
  1230                                             size_t region_end_index,
  1231                                             idx_t exiting_object_offset,
  1232                                             idx_t region_offset_start,
  1233                                             idx_t region_offset_end);
  1235   // Update a region in the dense prefix.  For each live object
  1236   // in the region, update it's interior references.  For each
  1237   // dead object, fill it with deadwood. Dead space at the end
  1238   // of a region range will be filled to the start of the next
  1239   // live object regardless of the region_index_end.  None of the
  1240   // objects in the dense prefix move and dead space is dead
  1241   // (holds only dead objects that don't need any processing), so
  1242   // dead space can be filled in any order.
  1243   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  1244                                                   SpaceId space_id,
  1245                                                   size_t region_index_start,
  1246                                                   size_t region_index_end);
  1248   // Return the address of the count + 1st live word in the range [beg, end).
  1249   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
  1251   // Return the address of the word to be copied to dest_addr, which must be
  1252   // aligned to a region boundary.
  1253   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1254                                   SpaceId src_space_id,
  1255                                   size_t src_region_idx);
  1257   // Determine the next source region, set closure.source() to the start of the
  1258   // new region return the region index.  Parameter end_addr is the address one
  1259   // beyond the end of source range just processed.  If necessary, switch to a
  1260   // new source space and set src_space_id (in-out parameter) and src_space_top
  1261   // (out parameter) accordingly.
  1262   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1263                                 SpaceId& src_space_id,
  1264                                 HeapWord*& src_space_top,
  1265                                 HeapWord* end_addr);
  1267   // Decrement the destination count for each non-empty source region in the
  1268   // range [beg_region, region(region_align_up(end_addr))).  If the destination
  1269   // count for a region goes to 0 and it needs to be filled, enqueue it.
  1270   static void decrement_destination_counts(ParCompactionManager* cm,
  1271                                            SpaceId src_space_id,
  1272                                            size_t beg_region,
  1273                                            HeapWord* end_addr);
  1275   // Fill a region, copying objects from one or more source regions.
  1276   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1277   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1278     fill_region(cm, region);
  1281   // Fill in the block table for the specified region.
  1282   static void fill_blocks(size_t region_idx);
  1284   // Update the deferred objects in the space.
  1285   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1287   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1288   static ParallelCompactData& summary_data() { return _summary_data; }
  1290   // Reference Processing
  1291   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1293   static STWGCTimer* gc_timer() { return &_gc_timer; }
  1295   // Return the SpaceId for the given address.
  1296   static SpaceId space_id(HeapWord* addr);
  1298   // Time since last full gc (in milliseconds).
  1299   static jlong millis_since_last_gc();
  1301   static void print_on_error(outputStream* st);
  1303 #ifndef PRODUCT
  1304   // Debugging support.
  1305   static const char* space_names[last_space_id];
  1306   static void print_region_ranges();
  1307   static void print_dense_prefix_stats(const char* const algorithm,
  1308                                        const SpaceId id,
  1309                                        const bool maximum_compaction,
  1310                                        HeapWord* const addr);
  1311   static void summary_phase_msg(SpaceId dst_space_id,
  1312                                 HeapWord* dst_beg, HeapWord* dst_end,
  1313                                 SpaceId src_space_id,
  1314                                 HeapWord* src_beg, HeapWord* src_end);
  1315 #endif  // #ifndef PRODUCT
  1317 #ifdef  ASSERT
  1318   // Sanity check the new location of a word in the heap.
  1319   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  1320   // Verify that all the regions have been emptied.
  1321   static void verify_complete(SpaceId space_id);
  1322 #endif  // #ifdef ASSERT
  1323 };
  1325 inline bool PSParallelCompact::mark_obj(oop obj) {
  1326   const int obj_size = obj->size();
  1327   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1328     _summary_data.add_obj(obj, obj_size);
  1329     return true;
  1330   } else {
  1331     return false;
  1335 inline bool PSParallelCompact::is_marked(oop obj) {
  1336   return mark_bitmap()->is_marked(obj);
  1339 template <class T>
  1340 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1341   assert(!Universe::heap()->is_in_reserved(p),
  1342          "roots shouldn't be things within the heap");
  1344   T heap_oop = oopDesc::load_heap_oop(p);
  1345   if (!oopDesc::is_null(heap_oop)) {
  1346     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1347     if (mark_bitmap()->is_unmarked(obj)) {
  1348       if (mark_obj(obj)) {
  1349         obj->follow_contents(cm);
  1353   cm->follow_marking_stacks();
  1356 template <class T>
  1357 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1358   T heap_oop = oopDesc::load_heap_oop(p);
  1359   if (!oopDesc::is_null(heap_oop)) {
  1360     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1361     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
  1362       cm->push(obj);
  1367 template <class T>
  1368 inline void PSParallelCompact::adjust_pointer(T* p) {
  1369   T heap_oop = oopDesc::load_heap_oop(p);
  1370   if (!oopDesc::is_null(heap_oop)) {
  1371     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1372     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1373     assert(new_obj != NULL,                    // is forwarding ptr?
  1374            "should be forwarded");
  1375     // Just always do the update unconditionally?
  1376     if (new_obj != NULL) {
  1377       assert(Universe::heap()->is_in_reserved(new_obj),
  1378              "should be in object space");
  1379       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1384 inline void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  1385   oop holder = klass->klass_holder();
  1386   PSParallelCompact::mark_and_push(cm, &holder);
  1389 template <class T>
  1390 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1391   mark_and_push(_compaction_manager, p);
  1394 inline bool PSParallelCompact::print_phases() {
  1395   return _print_phases;
  1398 inline double PSParallelCompact::normal_distribution(double density) {
  1399   assert(_dwl_initialized, "uninitialized");
  1400   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1401   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1404 inline bool
  1405 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1406                                                idx_t bit)
  1408   assert(bit > 0, "cannot call this for the first bit/region");
  1409   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1410          "sanity check");
  1412   // Dead space crosses the boundary if (1) a partial object does not extend
  1413   // onto the region, (2) an object does not start at the beginning of the
  1414   // region, and (3) an object does not end at the end of the prior region.
  1415   return region->partial_obj_size() == 0 &&
  1416     !_mark_bitmap.is_obj_beg(bit) &&
  1417     !_mark_bitmap.is_obj_end(bit - 1);
  1420 inline bool
  1421 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1422   return p >= beg_addr && p < end_addr;
  1425 inline bool
  1426 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1427   return is_in((HeapWord*)p, beg_addr, end_addr);
  1430 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1431   assert(id < last_space_id, "id out of range");
  1432   return _space_info[id].space();
  1435 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1436   assert(id < last_space_id, "id out of range");
  1437   return _space_info[id].new_top();
  1440 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1441   assert(id < last_space_id, "id out of range");
  1442   return _space_info[id].dense_prefix();
  1445 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1446   assert(id < last_space_id, "id out of range");
  1447   return _space_info[id].start_array();
  1450 #ifdef ASSERT
  1451 inline void
  1452 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
  1454   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
  1455          "must move left or to a different space");
  1456   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
  1457          "checking alignment");
  1459 #endif // ASSERT
  1461 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1462  public:
  1463   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1464                               ObjectStartArray* start_array,
  1465                               HeapWord* destination, size_t words);
  1467   // Accessors.
  1468   HeapWord* destination() const         { return _destination; }
  1470   // If the object will fit (size <= words_remaining()), copy it to the current
  1471   // destination, update the interior oops and the start array and return either
  1472   // full (if the closure is full) or incomplete.  If the object will not fit,
  1473   // return would_overflow.
  1474   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1476   // Copy enough words to fill this closure, starting at source().  Interior
  1477   // oops and the start array are not updated.  Return full.
  1478   IterationStatus copy_until_full();
  1480   // Copy enough words to fill this closure or to the end of an object,
  1481   // whichever is smaller, starting at source().  Interior oops and the start
  1482   // array are not updated.
  1483   void copy_partial_obj();
  1485  protected:
  1486   // Update variables to indicate that word_count words were processed.
  1487   inline void update_state(size_t word_count);
  1489  protected:
  1490   ObjectStartArray* const _start_array;
  1491   HeapWord*               _destination;         // Next addr to be written.
  1492 };
  1494 inline
  1495 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1496                                            ParCompactionManager* cm,
  1497                                            ObjectStartArray* start_array,
  1498                                            HeapWord* destination,
  1499                                            size_t words) :
  1500   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1502   _destination = destination;
  1505 inline void MoveAndUpdateClosure::update_state(size_t words)
  1507   decrement_words_remaining(words);
  1508   _source += words;
  1509   _destination += words;
  1512 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1513  private:
  1514   const PSParallelCompact::SpaceId _space_id;
  1515   ObjectStartArray* const          _start_array;
  1517  public:
  1518   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1519                     ParCompactionManager* cm,
  1520                     PSParallelCompact::SpaceId space_id);
  1522   // Update the object.
  1523   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1525   inline void do_addr(HeapWord* addr);
  1526 };
  1528 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1530   _start_array->allocate_block(addr);
  1531   oop(addr)->update_contents(compaction_manager());
  1534 class FillClosure: public ParMarkBitMapClosure
  1536 public:
  1537   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1538     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1539     _start_array(PSParallelCompact::start_array(space_id))
  1541     assert(space_id == PSParallelCompact::old_space_id,
  1542            "cannot use FillClosure in the young gen");
  1545   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1546     CollectedHeap::fill_with_objects(addr, size);
  1547     HeapWord* const end = addr + size;
  1548     do {
  1549       _start_array->allocate_block(addr);
  1550       addr += oop(addr)->size();
  1551     } while (addr < end);
  1552     return ParMarkBitMap::incomplete;
  1555 private:
  1556   ObjectStartArray* const _start_array;
  1557 };
  1559 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial