src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Thu, 09 Apr 2015 15:58:49 +0200

author
mlarsson
date
Thu, 09 Apr 2015 15:58:49 +0200
changeset 7686
fb69749583e8
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8072621: Clean up around VM_GC_Operations
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "oops/oop.hpp"
    30 #include "utilities/bitMap.hpp"
    32 class ParMarkBitMapClosure;
    33 class PSVirtualSpace;
    35 class ParMarkBitMap: public CHeapObj<mtGC>
    36 {
    37 public:
    38   typedef BitMap::idx_t idx_t;
    40   // Values returned by the iterate() methods.
    41   enum IterationStatus { incomplete, complete, full, would_overflow };
    43   inline ParMarkBitMap();
    44   bool initialize(MemRegion covered_region);
    46   // Atomically mark an object as live.
    47   bool mark_obj(HeapWord* addr, size_t size);
    48   inline bool mark_obj(oop obj, int size);
    50   // Return whether the specified begin or end bit is set.
    51   inline bool is_obj_beg(idx_t bit) const;
    52   inline bool is_obj_end(idx_t bit) const;
    54   // Traditional interface for testing whether an object is marked or not (these
    55   // test only the begin bits).
    56   inline bool is_marked(idx_t bit)      const;
    57   inline bool is_marked(HeapWord* addr) const;
    58   inline bool is_marked(oop obj)        const;
    60   inline bool is_unmarked(idx_t bit)      const;
    61   inline bool is_unmarked(HeapWord* addr) const;
    62   inline bool is_unmarked(oop obj)        const;
    64   // Convert sizes from bits to HeapWords and back.  An object that is n bits
    65   // long will be bits_to_words(n) words long.  An object that is m words long
    66   // will take up words_to_bits(m) bits in the bitmap.
    67   inline static size_t bits_to_words(idx_t bits);
    68   inline static idx_t  words_to_bits(size_t words);
    70   // Return the size in words of an object given a begin bit and an end bit, or
    71   // the equivalent beg_addr and end_addr.
    72   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
    73   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
    75   // Return the size in words of the object (a search is done for the end bit).
    76   inline size_t obj_size(idx_t beg_bit)  const;
    77   inline size_t obj_size(HeapWord* addr) const;
    79   // Apply live_closure to each live object that lies completely within the
    80   // range [live_range_beg, live_range_end).  This is used to iterate over the
    81   // compacted region of the heap.  Return values:
    82   //
    83   // incomplete         The iteration is not complete.  The last object that
    84   //                    begins in the range does not end in the range;
    85   //                    closure->source() is set to the start of that object.
    86   //
    87   // complete           The iteration is complete.  All objects in the range
    88   //                    were processed and the closure is not full;
    89   //                    closure->source() is set one past the end of the range.
    90   //
    91   // full               The closure is full; closure->source() is set to one
    92   //                    past the end of the last object processed.
    93   //
    94   // would_overflow     The next object in the range would overflow the closure;
    95   //                    closure->source() is set to the start of that object.
    96   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
    97                           idx_t range_beg, idx_t range_end) const;
    98   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
    99                                  HeapWord* range_beg,
   100                                  HeapWord* range_end) const;
   102   // Apply live closure as above and additionally apply dead_closure to all dead
   103   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
   104   // must be >= range_end.  This is used to iterate over the dense prefix.
   105   //
   106   // This method assumes that if the first bit in the range (range_beg) is not
   107   // marked, then dead space begins at that point and the dead_closure is
   108   // applied.  Thus callers must ensure that range_beg is not in the middle of a
   109   // live object.
   110   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   111                           ParMarkBitMapClosure* dead_closure,
   112                           idx_t range_beg, idx_t range_end,
   113                           idx_t dead_range_end) const;
   114   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   115                                  ParMarkBitMapClosure* dead_closure,
   116                                  HeapWord* range_beg,
   117                                  HeapWord* range_end,
   118                                  HeapWord* dead_range_end) const;
   120   // Return the number of live words in the range [beg_addr, end_obj) due to
   121   // objects that start in the range.  If a live object extends onto the range,
   122   // the caller must detect and account for any live words due to that object.
   123   // If a live object extends beyond the end of the range, only the words within
   124   // the range are included in the result. The end of the range must be a live object,
   125   // which is the case when updating pointers.  This allows a branch to be removed
   126   // from inside the loop.
   127   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
   129   inline HeapWord* region_start() const;
   130   inline HeapWord* region_end() const;
   131   inline size_t    region_size() const;
   132   inline size_t    size() const;
   134   size_t reserved_byte_size() const { return _reserved_byte_size; }
   136   // Convert a heap address to/from a bit index.
   137   inline idx_t     addr_to_bit(HeapWord* addr) const;
   138   inline HeapWord* bit_to_addr(idx_t bit) const;
   140   // Return the bit index of the first marked object that begins (or ends,
   141   // respectively) in the range [beg, end).  If no object is found, return end.
   142   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
   143   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
   145   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
   146   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
   148   // Clear a range of bits or the entire bitmap (both begin and end bits are
   149   // cleared).
   150   inline void clear_range(idx_t beg, idx_t end);
   152   // Return the number of bits required to represent the specified number of
   153   // HeapWords, or the specified region.
   154   static inline idx_t bits_required(size_t words);
   155   static inline idx_t bits_required(MemRegion covered_region);
   157   void print_on_error(outputStream* st) const {
   158     st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, p2i(this));
   159     _beg_bits.print_on_error(st, " Begin Bits: ");
   160     _end_bits.print_on_error(st, " End Bits:   ");
   161   }
   163 #ifdef  ASSERT
   164   void verify_clear() const;
   165   inline void verify_bit(idx_t bit) const;
   166   inline void verify_addr(HeapWord* addr) const;
   167 #endif  // #ifdef ASSERT
   169 private:
   170   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
   171   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
   172   // granularity is 2, 64-bit is 1.
   173   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
   174   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
   176   HeapWord*       _region_start;
   177   size_t          _region_size;
   178   BitMap          _beg_bits;
   179   BitMap          _end_bits;
   180   PSVirtualSpace* _virtual_space;
   181   size_t          _reserved_byte_size;
   182 };
   184 inline ParMarkBitMap::ParMarkBitMap():
   185   _beg_bits(), _end_bits(), _region_start(NULL), _region_size(0), _virtual_space(NULL), _reserved_byte_size(0)
   186 { }
   188 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
   189 {
   190   _beg_bits.clear_range(beg, end);
   191   _end_bits.clear_range(beg, end);
   192 }
   194 inline ParMarkBitMap::idx_t
   195 ParMarkBitMap::bits_required(size_t words)
   196 {
   197   // Need two bits (one begin bit, one end bit) for each unit of 'object
   198   // granularity' in the heap.
   199   return words_to_bits(words * 2);
   200 }
   202 inline ParMarkBitMap::idx_t
   203 ParMarkBitMap::bits_required(MemRegion covered_region)
   204 {
   205   return bits_required(covered_region.word_size());
   206 }
   208 inline HeapWord*
   209 ParMarkBitMap::region_start() const
   210 {
   211   return _region_start;
   212 }
   214 inline HeapWord*
   215 ParMarkBitMap::region_end() const
   216 {
   217   return region_start() + region_size();
   218 }
   220 inline size_t
   221 ParMarkBitMap::region_size() const
   222 {
   223   return _region_size;
   224 }
   226 inline size_t
   227 ParMarkBitMap::size() const
   228 {
   229   return _beg_bits.size();
   230 }
   232 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
   233 {
   234   return _beg_bits.at(bit);
   235 }
   237 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
   238 {
   239   return _end_bits.at(bit);
   240 }
   242 inline bool ParMarkBitMap::is_marked(idx_t bit) const
   243 {
   244   return is_obj_beg(bit);
   245 }
   247 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
   248 {
   249   return is_marked(addr_to_bit(addr));
   250 }
   252 inline bool ParMarkBitMap::is_marked(oop obj) const
   253 {
   254   return is_marked((HeapWord*)obj);
   255 }
   257 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
   258 {
   259   return !is_marked(bit);
   260 }
   262 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
   263 {
   264   return !is_marked(addr);
   265 }
   267 inline bool ParMarkBitMap::is_unmarked(oop obj) const
   268 {
   269   return !is_marked(obj);
   270 }
   272 inline size_t
   273 ParMarkBitMap::bits_to_words(idx_t bits)
   274 {
   275   return bits << obj_granularity_shift();
   276 }
   278 inline ParMarkBitMap::idx_t
   279 ParMarkBitMap::words_to_bits(size_t words)
   280 {
   281   return words >> obj_granularity_shift();
   282 }
   284 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
   285 {
   286   DEBUG_ONLY(verify_bit(beg_bit);)
   287   DEBUG_ONLY(verify_bit(end_bit);)
   288   return bits_to_words(end_bit - beg_bit + 1);
   289 }
   291 inline size_t
   292 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
   293 {
   294   DEBUG_ONLY(verify_addr(beg_addr);)
   295   DEBUG_ONLY(verify_addr(end_addr);)
   296   return pointer_delta(end_addr, beg_addr) + obj_granularity();
   297 }
   299 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
   300 {
   301   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
   302   assert(is_marked(beg_bit), "obj not marked");
   303   assert(end_bit < size(), "end bit missing");
   304   return obj_size(beg_bit, end_bit);
   305 }
   307 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
   308 {
   309   return obj_size(addr_to_bit(addr));
   310 }
   312 inline ParMarkBitMap::IterationStatus
   313 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   314                        HeapWord* range_beg,
   315                        HeapWord* range_end) const
   316 {
   317   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
   318 }
   320 inline ParMarkBitMap::IterationStatus
   321 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   322                        ParMarkBitMapClosure* dead_closure,
   323                        HeapWord* range_beg,
   324                        HeapWord* range_end,
   325                        HeapWord* dead_range_end) const
   326 {
   327   return iterate(live_closure, dead_closure,
   328                  addr_to_bit(range_beg), addr_to_bit(range_end),
   329                  addr_to_bit(dead_range_end));
   330 }
   332 inline bool
   333 ParMarkBitMap::mark_obj(oop obj, int size)
   334 {
   335   return mark_obj((HeapWord*)obj, (size_t)size);
   336 }
   338 inline BitMap::idx_t
   339 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
   340 {
   341   DEBUG_ONLY(verify_addr(addr);)
   342   return words_to_bits(pointer_delta(addr, region_start()));
   343 }
   345 inline HeapWord*
   346 ParMarkBitMap::bit_to_addr(idx_t bit) const
   347 {
   348   DEBUG_ONLY(verify_bit(bit);)
   349   return region_start() + bits_to_words(bit);
   350 }
   352 inline ParMarkBitMap::idx_t
   353 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
   354 {
   355   return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
   356 }
   358 inline ParMarkBitMap::idx_t
   359 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
   360 {
   361   return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
   362 }
   364 inline HeapWord*
   365 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
   366 {
   367   const idx_t beg_bit = addr_to_bit(beg);
   368   const idx_t end_bit = addr_to_bit(end);
   369   const idx_t search_end = BitMap::word_align_up(end_bit);
   370   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
   371   return bit_to_addr(res_bit);
   372 }
   374 inline HeapWord*
   375 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
   376 {
   377   const idx_t beg_bit = addr_to_bit(beg);
   378   const idx_t end_bit = addr_to_bit(end);
   379   const idx_t search_end = BitMap::word_align_up(end_bit);
   380   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
   381   return bit_to_addr(res_bit);
   382 }
   384 #ifdef  ASSERT
   385 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
   386   // Allow one past the last valid bit; useful for loop bounds.
   387   assert(bit <= _beg_bits.size(), "bit out of range");
   388 }
   390 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
   391   // Allow one past the last valid address; useful for loop bounds.
   392   assert(addr >= region_start(),
   393       err_msg("addr too small, addr: " PTR_FORMAT " region start: " PTR_FORMAT, p2i(addr), p2i(region_start())));
   394   assert(addr <= region_end(),
   395       err_msg("addr too big, addr: " PTR_FORMAT " region end: " PTR_FORMAT, p2i(addr), p2i(region_end())));
   396 }
   397 #endif  // #ifdef ASSERT
   399 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP

mercurial