src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 18 May 2010 11:02:18 -0700

author
jcoomes
date
Tue, 18 May 2010 11:02:18 -0700
changeset 1902
fb1a39993f69
parent 1900
cc387008223e
child 1907
c18cbe5936b8
child 1926
2d127394260e
permissions
-rw-r--r--

6951319: enable solaris builds using Sun Studio 12 update 1
Reviewed-by: kamg, ysr, dholmes, johnc

     1 /*
     2  * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    30 // turn it on so that the contents of the young list (scan-only /
    31 // to-be-collected) are printed at "strategic" points before / during
    32 // / after the collection --- this is useful for debugging
    33 #define YOUNG_LIST_VERBOSE 0
    34 // CURRENT STATUS
    35 // This file is under construction.  Search for "FIXME".
    37 // INVARIANTS/NOTES
    38 //
    39 // All allocation activity covered by the G1CollectedHeap interface is
    40 //   serialized by acquiring the HeapLock.  This happens in
    41 //   mem_allocate_work, which all such allocation functions call.
    42 //   (Note that this does not apply to TLAB allocation, which is not part
    43 //   of this interface: it is done by clients of this interface.)
    45 // Local to this file.
    47 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    48   SuspendibleThreadSet* _sts;
    49   G1RemSet* _g1rs;
    50   ConcurrentG1Refine* _cg1r;
    51   bool _concurrent;
    52 public:
    53   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    54                               G1RemSet* g1rs,
    55                               ConcurrentG1Refine* cg1r) :
    56     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    57   {}
    58   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    59     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    60     if (_concurrent && _sts->should_yield()) {
    61       // Caller will actually yield.
    62       return false;
    63     }
    64     // Otherwise, we finished successfully; return true.
    65     return true;
    66   }
    67   void set_concurrent(bool b) { _concurrent = b; }
    68 };
    71 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    72   int _calls;
    73   G1CollectedHeap* _g1h;
    74   CardTableModRefBS* _ctbs;
    75   int _histo[256];
    76 public:
    77   ClearLoggedCardTableEntryClosure() :
    78     _calls(0)
    79   {
    80     _g1h = G1CollectedHeap::heap();
    81     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    82     for (int i = 0; i < 256; i++) _histo[i] = 0;
    83   }
    84   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    85     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    86       _calls++;
    87       unsigned char* ujb = (unsigned char*)card_ptr;
    88       int ind = (int)(*ujb);
    89       _histo[ind]++;
    90       *card_ptr = -1;
    91     }
    92     return true;
    93   }
    94   int calls() { return _calls; }
    95   void print_histo() {
    96     gclog_or_tty->print_cr("Card table value histogram:");
    97     for (int i = 0; i < 256; i++) {
    98       if (_histo[i] != 0) {
    99         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   100       }
   101     }
   102   }
   103 };
   105 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   106   int _calls;
   107   G1CollectedHeap* _g1h;
   108   CardTableModRefBS* _ctbs;
   109 public:
   110   RedirtyLoggedCardTableEntryClosure() :
   111     _calls(0)
   112   {
   113     _g1h = G1CollectedHeap::heap();
   114     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   115   }
   116   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   117     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   118       _calls++;
   119       *card_ptr = 0;
   120     }
   121     return true;
   122   }
   123   int calls() { return _calls; }
   124 };
   126 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   127 public:
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     *card_ptr = CardTableModRefBS::dirty_card_val();
   130     return true;
   131   }
   132 };
   134 YoungList::YoungList(G1CollectedHeap* g1h)
   135   : _g1h(g1h), _head(NULL),
   136     _length(0),
   137     _last_sampled_rs_lengths(0),
   138     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   139 {
   140   guarantee( check_list_empty(false), "just making sure..." );
   141 }
   143 void YoungList::push_region(HeapRegion *hr) {
   144   assert(!hr->is_young(), "should not already be young");
   145   assert(hr->get_next_young_region() == NULL, "cause it should!");
   147   hr->set_next_young_region(_head);
   148   _head = hr;
   150   hr->set_young();
   151   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   152   ++_length;
   153 }
   155 void YoungList::add_survivor_region(HeapRegion* hr) {
   156   assert(hr->is_survivor(), "should be flagged as survivor region");
   157   assert(hr->get_next_young_region() == NULL, "cause it should!");
   159   hr->set_next_young_region(_survivor_head);
   160   if (_survivor_head == NULL) {
   161     _survivor_tail = hr;
   162   }
   163   _survivor_head = hr;
   165   ++_survivor_length;
   166 }
   168 void YoungList::empty_list(HeapRegion* list) {
   169   while (list != NULL) {
   170     HeapRegion* next = list->get_next_young_region();
   171     list->set_next_young_region(NULL);
   172     list->uninstall_surv_rate_group();
   173     list->set_not_young();
   174     list = next;
   175   }
   176 }
   178 void YoungList::empty_list() {
   179   assert(check_list_well_formed(), "young list should be well formed");
   181   empty_list(_head);
   182   _head = NULL;
   183   _length = 0;
   185   empty_list(_survivor_head);
   186   _survivor_head = NULL;
   187   _survivor_tail = NULL;
   188   _survivor_length = 0;
   190   _last_sampled_rs_lengths = 0;
   192   assert(check_list_empty(false), "just making sure...");
   193 }
   195 bool YoungList::check_list_well_formed() {
   196   bool ret = true;
   198   size_t length = 0;
   199   HeapRegion* curr = _head;
   200   HeapRegion* last = NULL;
   201   while (curr != NULL) {
   202     if (!curr->is_young()) {
   203       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   204                              "incorrectly tagged (y: %d, surv: %d)",
   205                              curr->bottom(), curr->end(),
   206                              curr->is_young(), curr->is_survivor());
   207       ret = false;
   208     }
   209     ++length;
   210     last = curr;
   211     curr = curr->get_next_young_region();
   212   }
   213   ret = ret && (length == _length);
   215   if (!ret) {
   216     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   217     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   218                            length, _length);
   219   }
   221   return ret;
   222 }
   224 bool YoungList::check_list_empty(bool check_sample) {
   225   bool ret = true;
   227   if (_length != 0) {
   228     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   229                   _length);
   230     ret = false;
   231   }
   232   if (check_sample && _last_sampled_rs_lengths != 0) {
   233     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   234     ret = false;
   235   }
   236   if (_head != NULL) {
   237     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   238     ret = false;
   239   }
   240   if (!ret) {
   241     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   242   }
   244   return ret;
   245 }
   247 void
   248 YoungList::rs_length_sampling_init() {
   249   _sampled_rs_lengths = 0;
   250   _curr               = _head;
   251 }
   253 bool
   254 YoungList::rs_length_sampling_more() {
   255   return _curr != NULL;
   256 }
   258 void
   259 YoungList::rs_length_sampling_next() {
   260   assert( _curr != NULL, "invariant" );
   261   size_t rs_length = _curr->rem_set()->occupied();
   263   _sampled_rs_lengths += rs_length;
   265   // The current region may not yet have been added to the
   266   // incremental collection set (it gets added when it is
   267   // retired as the current allocation region).
   268   if (_curr->in_collection_set()) {
   269     // Update the collection set policy information for this region
   270     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   271   }
   273   _curr = _curr->get_next_young_region();
   274   if (_curr == NULL) {
   275     _last_sampled_rs_lengths = _sampled_rs_lengths;
   276     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   277   }
   278 }
   280 void
   281 YoungList::reset_auxilary_lists() {
   282   guarantee( is_empty(), "young list should be empty" );
   283   assert(check_list_well_formed(), "young list should be well formed");
   285   // Add survivor regions to SurvRateGroup.
   286   _g1h->g1_policy()->note_start_adding_survivor_regions();
   287   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   289   for (HeapRegion* curr = _survivor_head;
   290        curr != NULL;
   291        curr = curr->get_next_young_region()) {
   292     _g1h->g1_policy()->set_region_survivors(curr);
   294     // The region is a non-empty survivor so let's add it to
   295     // the incremental collection set for the next evacuation
   296     // pause.
   297     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   298   }
   299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   301   _head   = _survivor_head;
   302   _length = _survivor_length;
   303   if (_survivor_head != NULL) {
   304     assert(_survivor_tail != NULL, "cause it shouldn't be");
   305     assert(_survivor_length > 0, "invariant");
   306     _survivor_tail->set_next_young_region(NULL);
   307   }
   309   // Don't clear the survivor list handles until the start of
   310   // the next evacuation pause - we need it in order to re-tag
   311   // the survivor regions from this evacuation pause as 'young'
   312   // at the start of the next.
   314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   316   assert(check_list_well_formed(), "young list should be well formed");
   317 }
   319 void YoungList::print() {
   320   HeapRegion* lists[] = {_head,   _survivor_head};
   321   const char* names[] = {"YOUNG", "SURVIVOR"};
   323   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   325     HeapRegion *curr = lists[list];
   326     if (curr == NULL)
   327       gclog_or_tty->print_cr("  empty");
   328     while (curr != NULL) {
   329       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   330                              "age: %4d, y: %d, surv: %d",
   331                              curr->bottom(), curr->end(),
   332                              curr->top(),
   333                              curr->prev_top_at_mark_start(),
   334                              curr->next_top_at_mark_start(),
   335                              curr->top_at_conc_mark_count(),
   336                              curr->age_in_surv_rate_group_cond(),
   337                              curr->is_young(),
   338                              curr->is_survivor());
   339       curr = curr->get_next_young_region();
   340     }
   341   }
   343   gclog_or_tty->print_cr("");
   344 }
   346 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   347 {
   348   // Claim the right to put the region on the dirty cards region list
   349   // by installing a self pointer.
   350   HeapRegion* next = hr->get_next_dirty_cards_region();
   351   if (next == NULL) {
   352     HeapRegion* res = (HeapRegion*)
   353       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   354                           NULL);
   355     if (res == NULL) {
   356       HeapRegion* head;
   357       do {
   358         // Put the region to the dirty cards region list.
   359         head = _dirty_cards_region_list;
   360         next = (HeapRegion*)
   361           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   362         if (next == head) {
   363           assert(hr->get_next_dirty_cards_region() == hr,
   364                  "hr->get_next_dirty_cards_region() != hr");
   365           if (next == NULL) {
   366             // The last region in the list points to itself.
   367             hr->set_next_dirty_cards_region(hr);
   368           } else {
   369             hr->set_next_dirty_cards_region(next);
   370           }
   371         }
   372       } while (next != head);
   373     }
   374   }
   375 }
   377 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   378 {
   379   HeapRegion* head;
   380   HeapRegion* hr;
   381   do {
   382     head = _dirty_cards_region_list;
   383     if (head == NULL) {
   384       return NULL;
   385     }
   386     HeapRegion* new_head = head->get_next_dirty_cards_region();
   387     if (head == new_head) {
   388       // The last region.
   389       new_head = NULL;
   390     }
   391     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   392                                           head);
   393   } while (hr != head);
   394   assert(hr != NULL, "invariant");
   395   hr->set_next_dirty_cards_region(NULL);
   396   return hr;
   397 }
   399 void G1CollectedHeap::stop_conc_gc_threads() {
   400   _cg1r->stop();
   401   _czft->stop();
   402   _cmThread->stop();
   403 }
   406 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   407   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   408   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   410   // Count the dirty cards at the start.
   411   CountNonCleanMemRegionClosure count1(this);
   412   ct_bs->mod_card_iterate(&count1);
   413   int orig_count = count1.n();
   415   // First clear the logged cards.
   416   ClearLoggedCardTableEntryClosure clear;
   417   dcqs.set_closure(&clear);
   418   dcqs.apply_closure_to_all_completed_buffers();
   419   dcqs.iterate_closure_all_threads(false);
   420   clear.print_histo();
   422   // Now ensure that there's no dirty cards.
   423   CountNonCleanMemRegionClosure count2(this);
   424   ct_bs->mod_card_iterate(&count2);
   425   if (count2.n() != 0) {
   426     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   427                            count2.n(), orig_count);
   428   }
   429   guarantee(count2.n() == 0, "Card table should be clean.");
   431   RedirtyLoggedCardTableEntryClosure redirty;
   432   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   433   dcqs.apply_closure_to_all_completed_buffers();
   434   dcqs.iterate_closure_all_threads(false);
   435   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   436                          clear.calls(), orig_count);
   437   guarantee(redirty.calls() == clear.calls(),
   438             "Or else mechanism is broken.");
   440   CountNonCleanMemRegionClosure count3(this);
   441   ct_bs->mod_card_iterate(&count3);
   442   if (count3.n() != orig_count) {
   443     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   444                            orig_count, count3.n());
   445     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   446   }
   448   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   449 }
   451 // Private class members.
   453 G1CollectedHeap* G1CollectedHeap::_g1h;
   455 // Private methods.
   457 // Finds a HeapRegion that can be used to allocate a given size of block.
   460 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   461                                                  bool do_expand,
   462                                                  bool zero_filled) {
   463   ConcurrentZFThread::note_region_alloc();
   464   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   465   if (res == NULL && do_expand) {
   466     expand(word_size * HeapWordSize);
   467     res = alloc_free_region_from_lists(zero_filled);
   468     assert(res == NULL ||
   469            (!res->isHumongous() &&
   470             (!zero_filled ||
   471              res->zero_fill_state() == HeapRegion::Allocated)),
   472            "Alloc Regions must be zero filled (and non-H)");
   473   }
   474   if (res != NULL) {
   475     if (res->is_empty()) {
   476       _free_regions--;
   477     }
   478     assert(!res->isHumongous() &&
   479            (!zero_filled || res->zero_fill_state() == HeapRegion::Allocated),
   480            err_msg("Non-young alloc Regions must be zero filled (and non-H):"
   481                    " res->isHumongous()=%d, zero_filled=%d, res->zero_fill_state()=%d",
   482                    res->isHumongous(), zero_filled, res->zero_fill_state()));
   483     assert(!res->is_on_unclean_list(),
   484            "Alloc Regions must not be on the unclean list");
   485     if (G1PrintHeapRegions) {
   486       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   487                              "top "PTR_FORMAT,
   488                              res->hrs_index(), res->bottom(), res->end(), res->top());
   489     }
   490   }
   491   return res;
   492 }
   494 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   495                                                          size_t word_size,
   496                                                          bool zero_filled) {
   497   HeapRegion* alloc_region = NULL;
   498   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   499     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   500     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   501       alloc_region->set_survivor();
   502     }
   503     ++_gc_alloc_region_counts[purpose];
   504   } else {
   505     g1_policy()->note_alloc_region_limit_reached(purpose);
   506   }
   507   return alloc_region;
   508 }
   510 // If could fit into free regions w/o expansion, try.
   511 // Otherwise, if can expand, do so.
   512 // Otherwise, if using ex regions might help, try with ex given back.
   513 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   514   assert(regions_accounted_for(), "Region leakage!");
   516   // We can't allocate H regions while cleanupComplete is running, since
   517   // some of the regions we find to be empty might not yet be added to the
   518   // unclean list.  (If we're already at a safepoint, this call is
   519   // unnecessary, not to mention wrong.)
   520   if (!SafepointSynchronize::is_at_safepoint())
   521     wait_for_cleanup_complete();
   523   size_t num_regions =
   524     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   526   // Special case if < one region???
   528   // Remember the ft size.
   529   size_t x_size = expansion_regions();
   531   HeapWord* res = NULL;
   532   bool eliminated_allocated_from_lists = false;
   534   // Can the allocation potentially fit in the free regions?
   535   if (free_regions() >= num_regions) {
   536     res = _hrs->obj_allocate(word_size);
   537   }
   538   if (res == NULL) {
   539     // Try expansion.
   540     size_t fs = _hrs->free_suffix();
   541     if (fs + x_size >= num_regions) {
   542       expand((num_regions - fs) * HeapRegion::GrainBytes);
   543       res = _hrs->obj_allocate(word_size);
   544       assert(res != NULL, "This should have worked.");
   545     } else {
   546       // Expansion won't help.  Are there enough free regions if we get rid
   547       // of reservations?
   548       size_t avail = free_regions();
   549       if (avail >= num_regions) {
   550         res = _hrs->obj_allocate(word_size);
   551         if (res != NULL) {
   552           remove_allocated_regions_from_lists();
   553           eliminated_allocated_from_lists = true;
   554         }
   555       }
   556     }
   557   }
   558   if (res != NULL) {
   559     // Increment by the number of regions allocated.
   560     // FIXME: Assumes regions all of size GrainBytes.
   561 #ifndef PRODUCT
   562     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   563                                            HeapRegion::GrainWords));
   564 #endif
   565     if (!eliminated_allocated_from_lists)
   566       remove_allocated_regions_from_lists();
   567     _summary_bytes_used += word_size * HeapWordSize;
   568     _free_regions -= num_regions;
   569     _num_humongous_regions += (int) num_regions;
   570   }
   571   assert(regions_accounted_for(), "Region Leakage");
   572   return res;
   573 }
   575 HeapWord*
   576 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   577                                          bool permit_collection_pause) {
   578   HeapWord* res = NULL;
   579   HeapRegion* allocated_young_region = NULL;
   581   assert( SafepointSynchronize::is_at_safepoint() ||
   582           Heap_lock->owned_by_self(), "pre condition of the call" );
   584   if (isHumongous(word_size)) {
   585     // Allocation of a humongous object can, in a sense, complete a
   586     // partial region, if the previous alloc was also humongous, and
   587     // caused the test below to succeed.
   588     if (permit_collection_pause)
   589       do_collection_pause_if_appropriate(word_size);
   590     res = humongousObjAllocate(word_size);
   591     assert(_cur_alloc_region == NULL
   592            || !_cur_alloc_region->isHumongous(),
   593            "Prevent a regression of this bug.");
   595   } else {
   596     // We may have concurrent cleanup working at the time. Wait for it
   597     // to complete. In the future we would probably want to make the
   598     // concurrent cleanup truly concurrent by decoupling it from the
   599     // allocation.
   600     if (!SafepointSynchronize::is_at_safepoint())
   601       wait_for_cleanup_complete();
   602     // If we do a collection pause, this will be reset to a non-NULL
   603     // value.  If we don't, nulling here ensures that we allocate a new
   604     // region below.
   605     if (_cur_alloc_region != NULL) {
   606       // We're finished with the _cur_alloc_region.
   607       // As we're builing (at least the young portion) of the collection
   608       // set incrementally we'll add the current allocation region to
   609       // the collection set here.
   610       if (_cur_alloc_region->is_young()) {
   611         g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
   612       }
   613       _summary_bytes_used += _cur_alloc_region->used();
   614       _cur_alloc_region = NULL;
   615     }
   616     assert(_cur_alloc_region == NULL, "Invariant.");
   617     // Completion of a heap region is perhaps a good point at which to do
   618     // a collection pause.
   619     if (permit_collection_pause)
   620       do_collection_pause_if_appropriate(word_size);
   621     // Make sure we have an allocation region available.
   622     if (_cur_alloc_region == NULL) {
   623       if (!SafepointSynchronize::is_at_safepoint())
   624         wait_for_cleanup_complete();
   625       bool next_is_young = should_set_young_locked();
   626       // If the next region is not young, make sure it's zero-filled.
   627       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   628       if (_cur_alloc_region != NULL) {
   629         _summary_bytes_used -= _cur_alloc_region->used();
   630         if (next_is_young) {
   631           set_region_short_lived_locked(_cur_alloc_region);
   632           allocated_young_region = _cur_alloc_region;
   633         }
   634       }
   635     }
   636     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   637            "Prevent a regression of this bug.");
   639     // Now retry the allocation.
   640     if (_cur_alloc_region != NULL) {
   641       res = _cur_alloc_region->allocate(word_size);
   642     }
   643   }
   645   // NOTE: fails frequently in PRT
   646   assert(regions_accounted_for(), "Region leakage!");
   648   if (res != NULL) {
   649     if (!SafepointSynchronize::is_at_safepoint()) {
   650       assert( permit_collection_pause, "invariant" );
   651       assert( Heap_lock->owned_by_self(), "invariant" );
   652       Heap_lock->unlock();
   653     }
   655     if (allocated_young_region != NULL) {
   656       HeapRegion* hr = allocated_young_region;
   657       HeapWord* bottom = hr->bottom();
   658       HeapWord* end = hr->end();
   659       MemRegion mr(bottom, end);
   660       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   661     }
   662   }
   664   assert( SafepointSynchronize::is_at_safepoint() ||
   665           (res == NULL && Heap_lock->owned_by_self()) ||
   666           (res != NULL && !Heap_lock->owned_by_self()),
   667           "post condition of the call" );
   669   return res;
   670 }
   672 HeapWord*
   673 G1CollectedHeap::mem_allocate(size_t word_size,
   674                               bool   is_noref,
   675                               bool   is_tlab,
   676                               bool* gc_overhead_limit_was_exceeded) {
   677   debug_only(check_for_valid_allocation_state());
   678   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   679   HeapWord* result = NULL;
   681   // Loop until the allocation is satisified,
   682   // or unsatisfied after GC.
   683   for (int try_count = 1; /* return or throw */; try_count += 1) {
   684     int gc_count_before;
   685     {
   686       Heap_lock->lock();
   687       result = attempt_allocation(word_size);
   688       if (result != NULL) {
   689         // attempt_allocation should have unlocked the heap lock
   690         assert(is_in(result), "result not in heap");
   691         return result;
   692       }
   693       // Read the gc count while the heap lock is held.
   694       gc_count_before = SharedHeap::heap()->total_collections();
   695       Heap_lock->unlock();
   696     }
   698     // Create the garbage collection operation...
   699     VM_G1CollectForAllocation op(word_size,
   700                                  gc_count_before);
   702     // ...and get the VM thread to execute it.
   703     VMThread::execute(&op);
   704     if (op.prologue_succeeded()) {
   705       result = op.result();
   706       assert(result == NULL || is_in(result), "result not in heap");
   707       return result;
   708     }
   710     // Give a warning if we seem to be looping forever.
   711     if ((QueuedAllocationWarningCount > 0) &&
   712         (try_count % QueuedAllocationWarningCount == 0)) {
   713       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   714               try_count);
   715     }
   716   }
   717 }
   719 void G1CollectedHeap::abandon_cur_alloc_region() {
   720   if (_cur_alloc_region != NULL) {
   721     // We're finished with the _cur_alloc_region.
   722     if (_cur_alloc_region->is_empty()) {
   723       _free_regions++;
   724       free_region(_cur_alloc_region);
   725     } else {
   726       // As we're builing (at least the young portion) of the collection
   727       // set incrementally we'll add the current allocation region to
   728       // the collection set here.
   729       if (_cur_alloc_region->is_young()) {
   730         g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
   731       }
   732       _summary_bytes_used += _cur_alloc_region->used();
   733     }
   734     _cur_alloc_region = NULL;
   735   }
   736 }
   738 void G1CollectedHeap::abandon_gc_alloc_regions() {
   739   // first, make sure that the GC alloc region list is empty (it should!)
   740   assert(_gc_alloc_region_list == NULL, "invariant");
   741   release_gc_alloc_regions(true /* totally */);
   742 }
   744 class PostMCRemSetClearClosure: public HeapRegionClosure {
   745   ModRefBarrierSet* _mr_bs;
   746 public:
   747   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   748   bool doHeapRegion(HeapRegion* r) {
   749     r->reset_gc_time_stamp();
   750     if (r->continuesHumongous())
   751       return false;
   752     HeapRegionRemSet* hrrs = r->rem_set();
   753     if (hrrs != NULL) hrrs->clear();
   754     // You might think here that we could clear just the cards
   755     // corresponding to the used region.  But no: if we leave a dirty card
   756     // in a region we might allocate into, then it would prevent that card
   757     // from being enqueued, and cause it to be missed.
   758     // Re: the performance cost: we shouldn't be doing full GC anyway!
   759     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   760     return false;
   761   }
   762 };
   765 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   766   ModRefBarrierSet* _mr_bs;
   767 public:
   768   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   769   bool doHeapRegion(HeapRegion* r) {
   770     if (r->continuesHumongous()) return false;
   771     if (r->used_region().word_size() != 0) {
   772       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   773     }
   774     return false;
   775   }
   776 };
   778 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   779   G1CollectedHeap*   _g1h;
   780   UpdateRSOopClosure _cl;
   781   int                _worker_i;
   782 public:
   783   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   784     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   785     _worker_i(worker_i),
   786     _g1h(g1)
   787   { }
   788   bool doHeapRegion(HeapRegion* r) {
   789     if (!r->continuesHumongous()) {
   790       _cl.set_from(r);
   791       r->oop_iterate(&_cl);
   792     }
   793     return false;
   794   }
   795 };
   797 class ParRebuildRSTask: public AbstractGangTask {
   798   G1CollectedHeap* _g1;
   799 public:
   800   ParRebuildRSTask(G1CollectedHeap* g1)
   801     : AbstractGangTask("ParRebuildRSTask"),
   802       _g1(g1)
   803   { }
   805   void work(int i) {
   806     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   807     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   808                                          HeapRegion::RebuildRSClaimValue);
   809   }
   810 };
   812 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   813                                     size_t word_size) {
   814   if (GC_locker::check_active_before_gc()) {
   815     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   816   }
   818   ResourceMark rm;
   820   if (PrintHeapAtGC) {
   821     Universe::print_heap_before_gc();
   822   }
   824   if (full && DisableExplicitGC) {
   825     return;
   826   }
   828   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   829   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   831   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   832                            collector_policy()->should_clear_all_soft_refs();
   834   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   836   {
   837     IsGCActiveMark x;
   839     // Timing
   840     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   841     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   842     TraceTime t(full ? "Full GC (System.gc())" : "Full GC",
   843                 PrintGC, true, gclog_or_tty);
   845     TraceMemoryManagerStats tms(true /* fullGC */);
   847     double start = os::elapsedTime();
   848     g1_policy()->record_full_collection_start();
   850     gc_prologue(true);
   851     increment_total_collections(true /* full gc */);
   853     size_t g1h_prev_used = used();
   854     assert(used() == recalculate_used(), "Should be equal");
   856     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   857       HandleMark hm;  // Discard invalid handles created during verification
   858       prepare_for_verify();
   859       gclog_or_tty->print(" VerifyBeforeGC:");
   860       Universe::verify(true);
   861     }
   862     assert(regions_accounted_for(), "Region leakage!");
   864     COMPILER2_PRESENT(DerivedPointerTable::clear());
   866     // We want to discover references, but not process them yet.
   867     // This mode is disabled in
   868     // instanceRefKlass::process_discovered_references if the
   869     // generation does some collection work, or
   870     // instanceRefKlass::enqueue_discovered_references if the
   871     // generation returns without doing any work.
   872     ref_processor()->disable_discovery();
   873     ref_processor()->abandon_partial_discovery();
   874     ref_processor()->verify_no_references_recorded();
   876     // Abandon current iterations of concurrent marking and concurrent
   877     // refinement, if any are in progress.
   878     concurrent_mark()->abort();
   880     // Make sure we'll choose a new allocation region afterwards.
   881     abandon_cur_alloc_region();
   882     abandon_gc_alloc_regions();
   883     assert(_cur_alloc_region == NULL, "Invariant.");
   884     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   885     tear_down_region_lists();
   886     set_used_regions_to_need_zero_fill();
   888     // We may have added regions to the current incremental collection
   889     // set between the last GC or pause and now. We need to clear the
   890     // incremental collection set and then start rebuilding it afresh
   891     // after this full GC.
   892     abandon_collection_set(g1_policy()->inc_cset_head());
   893     g1_policy()->clear_incremental_cset();
   894     g1_policy()->stop_incremental_cset_building();
   896     if (g1_policy()->in_young_gc_mode()) {
   897       empty_young_list();
   898       g1_policy()->set_full_young_gcs(true);
   899     }
   901     // Temporarily make reference _discovery_ single threaded (non-MT).
   902     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   904     // Temporarily make refs discovery atomic
   905     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   907     // Temporarily clear _is_alive_non_header
   908     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   910     ref_processor()->enable_discovery();
   911     ref_processor()->setup_policy(do_clear_all_soft_refs);
   913     // Do collection work
   914     {
   915       HandleMark hm;  // Discard invalid handles created during gc
   916       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
   917     }
   918     // Because freeing humongous regions may have added some unclean
   919     // regions, it is necessary to tear down again before rebuilding.
   920     tear_down_region_lists();
   921     rebuild_region_lists();
   923     _summary_bytes_used = recalculate_used();
   925     ref_processor()->enqueue_discovered_references();
   927     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   929     MemoryService::track_memory_usage();
   931     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   932       HandleMark hm;  // Discard invalid handles created during verification
   933       gclog_or_tty->print(" VerifyAfterGC:");
   934       prepare_for_verify();
   935       Universe::verify(false);
   936     }
   937     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   939     reset_gc_time_stamp();
   940     // Since everything potentially moved, we will clear all remembered
   941     // sets, and clear all cards.  Later we will rebuild remebered
   942     // sets. We will also reset the GC time stamps of the regions.
   943     PostMCRemSetClearClosure rs_clear(mr_bs());
   944     heap_region_iterate(&rs_clear);
   946     // Resize the heap if necessary.
   947     resize_if_necessary_after_full_collection(full ? 0 : word_size);
   949     if (_cg1r->use_cache()) {
   950       _cg1r->clear_and_record_card_counts();
   951       _cg1r->clear_hot_cache();
   952     }
   954     // Rebuild remembered sets of all regions.
   955     if (ParallelGCThreads > 0) {
   956       ParRebuildRSTask rebuild_rs_task(this);
   957       assert(check_heap_region_claim_values(
   958              HeapRegion::InitialClaimValue), "sanity check");
   959       set_par_threads(workers()->total_workers());
   960       workers()->run_task(&rebuild_rs_task);
   961       set_par_threads(0);
   962       assert(check_heap_region_claim_values(
   963              HeapRegion::RebuildRSClaimValue), "sanity check");
   964       reset_heap_region_claim_values();
   965     } else {
   966       RebuildRSOutOfRegionClosure rebuild_rs(this);
   967       heap_region_iterate(&rebuild_rs);
   968     }
   970     if (PrintGC) {
   971       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
   972     }
   974     if (true) { // FIXME
   975       // Ask the permanent generation to adjust size for full collections
   976       perm()->compute_new_size();
   977     }
   979     // Start a new incremental collection set for the next pause
   980     assert(g1_policy()->collection_set() == NULL, "must be");
   981     g1_policy()->start_incremental_cset_building();
   983     // Clear the _cset_fast_test bitmap in anticipation of adding
   984     // regions to the incremental collection set for the next
   985     // evacuation pause.
   986     clear_cset_fast_test();
   988     double end = os::elapsedTime();
   989     g1_policy()->record_full_collection_end();
   991 #ifdef TRACESPINNING
   992     ParallelTaskTerminator::print_termination_counts();
   993 #endif
   995     gc_epilogue(true);
   997     // Discard all rset updates
   998     JavaThread::dirty_card_queue_set().abandon_logs();
   999     assert(!G1DeferredRSUpdate
  1000            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1001     assert(regions_accounted_for(), "Region leakage!");
  1004   if (g1_policy()->in_young_gc_mode()) {
  1005     _young_list->reset_sampled_info();
  1006     // At this point there should be no regions in the
  1007     // entire heap tagged as young.
  1008     assert( check_young_list_empty(true /* check_heap */),
  1009             "young list should be empty at this point");
  1012   if (PrintHeapAtGC) {
  1013     Universe::print_heap_after_gc();
  1017 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1018   do_collection(true, clear_all_soft_refs, 0);
  1021 // This code is mostly copied from TenuredGeneration.
  1022 void
  1023 G1CollectedHeap::
  1024 resize_if_necessary_after_full_collection(size_t word_size) {
  1025   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1027   // Include the current allocation, if any, and bytes that will be
  1028   // pre-allocated to support collections, as "used".
  1029   const size_t used_after_gc = used();
  1030   const size_t capacity_after_gc = capacity();
  1031   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1033   // We don't have floating point command-line arguments
  1034   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1035   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1036   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1037   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1039   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1040   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1042   // Don't shrink less than the initial size.
  1043   minimum_desired_capacity =
  1044     MAX2(minimum_desired_capacity,
  1045          collector_policy()->initial_heap_byte_size());
  1046   maximum_desired_capacity =
  1047     MAX2(maximum_desired_capacity,
  1048          collector_policy()->initial_heap_byte_size());
  1050   // We are failing here because minimum_desired_capacity is
  1051   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1052   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1054   if (PrintGC && Verbose) {
  1055     const double free_percentage = ((double)free_after_gc) / capacity();
  1056     gclog_or_tty->print_cr("Computing new size after full GC ");
  1057     gclog_or_tty->print_cr("  "
  1058                            "  minimum_free_percentage: %6.2f",
  1059                            minimum_free_percentage);
  1060     gclog_or_tty->print_cr("  "
  1061                            "  maximum_free_percentage: %6.2f",
  1062                            maximum_free_percentage);
  1063     gclog_or_tty->print_cr("  "
  1064                            "  capacity: %6.1fK"
  1065                            "  minimum_desired_capacity: %6.1fK"
  1066                            "  maximum_desired_capacity: %6.1fK",
  1067                            capacity() / (double) K,
  1068                            minimum_desired_capacity / (double) K,
  1069                            maximum_desired_capacity / (double) K);
  1070     gclog_or_tty->print_cr("  "
  1071                            "   free_after_gc   : %6.1fK"
  1072                            "   used_after_gc   : %6.1fK",
  1073                            free_after_gc / (double) K,
  1074                            used_after_gc / (double) K);
  1075     gclog_or_tty->print_cr("  "
  1076                            "   free_percentage: %6.2f",
  1077                            free_percentage);
  1079   if (capacity() < minimum_desired_capacity) {
  1080     // Don't expand unless it's significant
  1081     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1082     expand(expand_bytes);
  1083     if (PrintGC && Verbose) {
  1084       gclog_or_tty->print_cr("    expanding:"
  1085                              "  minimum_desired_capacity: %6.1fK"
  1086                              "  expand_bytes: %6.1fK",
  1087                              minimum_desired_capacity / (double) K,
  1088                              expand_bytes / (double) K);
  1091     // No expansion, now see if we want to shrink
  1092   } else if (capacity() > maximum_desired_capacity) {
  1093     // Capacity too large, compute shrinking size
  1094     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1095     shrink(shrink_bytes);
  1096     if (PrintGC && Verbose) {
  1097       gclog_or_tty->print_cr("  "
  1098                              "  shrinking:"
  1099                              "  initSize: %.1fK"
  1100                              "  maximum_desired_capacity: %.1fK",
  1101                              collector_policy()->initial_heap_byte_size() / (double) K,
  1102                              maximum_desired_capacity / (double) K);
  1103       gclog_or_tty->print_cr("  "
  1104                              "  shrink_bytes: %.1fK",
  1105                              shrink_bytes / (double) K);
  1111 HeapWord*
  1112 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1113   HeapWord* result = NULL;
  1115   // In a G1 heap, we're supposed to keep allocation from failing by
  1116   // incremental pauses.  Therefore, at least for now, we'll favor
  1117   // expansion over collection.  (This might change in the future if we can
  1118   // do something smarter than full collection to satisfy a failed alloc.)
  1120   result = expand_and_allocate(word_size);
  1121   if (result != NULL) {
  1122     assert(is_in(result), "result not in heap");
  1123     return result;
  1126   // OK, I guess we have to try collection.
  1128   do_collection(false, false, word_size);
  1130   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1132   if (result != NULL) {
  1133     assert(is_in(result), "result not in heap");
  1134     return result;
  1137   // Try collecting soft references.
  1138   do_collection(false, true, word_size);
  1139   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1140   if (result != NULL) {
  1141     assert(is_in(result), "result not in heap");
  1142     return result;
  1145   assert(!collector_policy()->should_clear_all_soft_refs(),
  1146     "Flag should have been handled and cleared prior to this point");
  1148   // What else?  We might try synchronous finalization later.  If the total
  1149   // space available is large enough for the allocation, then a more
  1150   // complete compaction phase than we've tried so far might be
  1151   // appropriate.
  1152   return NULL;
  1155 // Attempting to expand the heap sufficiently
  1156 // to support an allocation of the given "word_size".  If
  1157 // successful, perform the allocation and return the address of the
  1158 // allocated block, or else "NULL".
  1160 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1161   size_t expand_bytes = word_size * HeapWordSize;
  1162   if (expand_bytes < MinHeapDeltaBytes) {
  1163     expand_bytes = MinHeapDeltaBytes;
  1165   expand(expand_bytes);
  1166   assert(regions_accounted_for(), "Region leakage!");
  1167   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1168   return result;
  1171 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1172   size_t pre_used = 0;
  1173   size_t cleared_h_regions = 0;
  1174   size_t freed_regions = 0;
  1175   UncleanRegionList local_list;
  1176   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1177                                     freed_regions, &local_list);
  1179   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1180                           &local_list);
  1181   return pre_used;
  1184 void
  1185 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1186                                                    size_t& pre_used,
  1187                                                    size_t& cleared_h,
  1188                                                    size_t& freed_regions,
  1189                                                    UncleanRegionList* list,
  1190                                                    bool par) {
  1191   assert(!hr->continuesHumongous(), "should have filtered these out");
  1192   size_t res = 0;
  1193   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1194       !hr->is_young()) {
  1195     if (G1PolicyVerbose > 0)
  1196       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1197                                                                                " during cleanup", hr, hr->used());
  1198     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1202 // FIXME: both this and shrink could probably be more efficient by
  1203 // doing one "VirtualSpace::expand_by" call rather than several.
  1204 void G1CollectedHeap::expand(size_t expand_bytes) {
  1205   size_t old_mem_size = _g1_storage.committed_size();
  1206   // We expand by a minimum of 1K.
  1207   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1208   size_t aligned_expand_bytes =
  1209     ReservedSpace::page_align_size_up(expand_bytes);
  1210   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1211                                        HeapRegion::GrainBytes);
  1212   expand_bytes = aligned_expand_bytes;
  1213   while (expand_bytes > 0) {
  1214     HeapWord* base = (HeapWord*)_g1_storage.high();
  1215     // Commit more storage.
  1216     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1217     if (!successful) {
  1218         expand_bytes = 0;
  1219     } else {
  1220       expand_bytes -= HeapRegion::GrainBytes;
  1221       // Expand the committed region.
  1222       HeapWord* high = (HeapWord*) _g1_storage.high();
  1223       _g1_committed.set_end(high);
  1224       // Create a new HeapRegion.
  1225       MemRegion mr(base, high);
  1226       bool is_zeroed = !_g1_max_committed.contains(base);
  1227       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1229       // Now update max_committed if necessary.
  1230       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1232       // Add it to the HeapRegionSeq.
  1233       _hrs->insert(hr);
  1234       // Set the zero-fill state, according to whether it's already
  1235       // zeroed.
  1237         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1238         if (is_zeroed) {
  1239           hr->set_zero_fill_complete();
  1240           put_free_region_on_list_locked(hr);
  1241         } else {
  1242           hr->set_zero_fill_needed();
  1243           put_region_on_unclean_list_locked(hr);
  1246       _free_regions++;
  1247       // And we used up an expansion region to create it.
  1248       _expansion_regions--;
  1249       // Tell the cardtable about it.
  1250       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1251       // And the offset table as well.
  1252       _bot_shared->resize(_g1_committed.word_size());
  1255   if (Verbose && PrintGC) {
  1256     size_t new_mem_size = _g1_storage.committed_size();
  1257     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1258                            old_mem_size/K, aligned_expand_bytes/K,
  1259                            new_mem_size/K);
  1263 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1265   size_t old_mem_size = _g1_storage.committed_size();
  1266   size_t aligned_shrink_bytes =
  1267     ReservedSpace::page_align_size_down(shrink_bytes);
  1268   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1269                                          HeapRegion::GrainBytes);
  1270   size_t num_regions_deleted = 0;
  1271   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1273   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1274   if (mr.byte_size() > 0)
  1275     _g1_storage.shrink_by(mr.byte_size());
  1276   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1278   _g1_committed.set_end(mr.start());
  1279   _free_regions -= num_regions_deleted;
  1280   _expansion_regions += num_regions_deleted;
  1282   // Tell the cardtable about it.
  1283   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1285   // And the offset table as well.
  1286   _bot_shared->resize(_g1_committed.word_size());
  1288   HeapRegionRemSet::shrink_heap(n_regions());
  1290   if (Verbose && PrintGC) {
  1291     size_t new_mem_size = _g1_storage.committed_size();
  1292     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1293                            old_mem_size/K, aligned_shrink_bytes/K,
  1294                            new_mem_size/K);
  1298 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1299   release_gc_alloc_regions(true /* totally */);
  1300   tear_down_region_lists();  // We will rebuild them in a moment.
  1301   shrink_helper(shrink_bytes);
  1302   rebuild_region_lists();
  1305 // Public methods.
  1307 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1308 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1309 #endif // _MSC_VER
  1312 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1313   SharedHeap(policy_),
  1314   _g1_policy(policy_),
  1315   _dirty_card_queue_set(false),
  1316   _ref_processor(NULL),
  1317   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1318   _bot_shared(NULL),
  1319   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1320   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1321   _evac_failure_scan_stack(NULL) ,
  1322   _mark_in_progress(false),
  1323   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1324   _cur_alloc_region(NULL),
  1325   _refine_cte_cl(NULL),
  1326   _free_region_list(NULL), _free_region_list_size(0),
  1327   _free_regions(0),
  1328   _full_collection(false),
  1329   _unclean_region_list(),
  1330   _unclean_regions_coming(false),
  1331   _young_list(new YoungList(this)),
  1332   _gc_time_stamp(0),
  1333   _surviving_young_words(NULL),
  1334   _in_cset_fast_test(NULL),
  1335   _in_cset_fast_test_base(NULL),
  1336   _dirty_cards_region_list(NULL) {
  1337   _g1h = this; // To catch bugs.
  1338   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1339     vm_exit_during_initialization("Failed necessary allocation.");
  1342   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1344   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1345   _task_queues = new RefToScanQueueSet(n_queues);
  1347   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1348   assert(n_rem_sets > 0, "Invariant.");
  1350   HeapRegionRemSetIterator** iter_arr =
  1351     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1352   for (int i = 0; i < n_queues; i++) {
  1353     iter_arr[i] = new HeapRegionRemSetIterator();
  1355   _rem_set_iterator = iter_arr;
  1357   for (int i = 0; i < n_queues; i++) {
  1358     RefToScanQueue* q = new RefToScanQueue();
  1359     q->initialize();
  1360     _task_queues->register_queue(i, q);
  1363   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1364     _gc_alloc_regions[ap]          = NULL;
  1365     _gc_alloc_region_counts[ap]    = 0;
  1366     _retained_gc_alloc_regions[ap] = NULL;
  1367     // by default, we do not retain a GC alloc region for each ap;
  1368     // we'll override this, when appropriate, below
  1369     _retain_gc_alloc_region[ap]    = false;
  1372   // We will try to remember the last half-full tenured region we
  1373   // allocated to at the end of a collection so that we can re-use it
  1374   // during the next collection.
  1375   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1377   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1380 jint G1CollectedHeap::initialize() {
  1381   CollectedHeap::pre_initialize();
  1382   os::enable_vtime();
  1384   // Necessary to satisfy locking discipline assertions.
  1386   MutexLocker x(Heap_lock);
  1388   // While there are no constraints in the GC code that HeapWordSize
  1389   // be any particular value, there are multiple other areas in the
  1390   // system which believe this to be true (e.g. oop->object_size in some
  1391   // cases incorrectly returns the size in wordSize units rather than
  1392   // HeapWordSize).
  1393   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1395   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1396   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1398   // Ensure that the sizes are properly aligned.
  1399   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1400   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1402   _cg1r = new ConcurrentG1Refine();
  1404   // Reserve the maximum.
  1405   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1406   // Includes the perm-gen.
  1408   const size_t total_reserved = max_byte_size + pgs->max_size();
  1409   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1411   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1412                         HeapRegion::GrainBytes,
  1413                         false /*ism*/, addr);
  1415   if (UseCompressedOops) {
  1416     if (addr != NULL && !heap_rs.is_reserved()) {
  1417       // Failed to reserve at specified address - the requested memory
  1418       // region is taken already, for example, by 'java' launcher.
  1419       // Try again to reserver heap higher.
  1420       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1421       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1422                              false /*ism*/, addr);
  1423       if (addr != NULL && !heap_rs0.is_reserved()) {
  1424         // Failed to reserve at specified address again - give up.
  1425         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1426         assert(addr == NULL, "");
  1427         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1428                                false /*ism*/, addr);
  1429         heap_rs = heap_rs1;
  1430       } else {
  1431         heap_rs = heap_rs0;
  1436   if (!heap_rs.is_reserved()) {
  1437     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1438     return JNI_ENOMEM;
  1441   // It is important to do this in a way such that concurrent readers can't
  1442   // temporarily think somethings in the heap.  (I've actually seen this
  1443   // happen in asserts: DLD.)
  1444   _reserved.set_word_size(0);
  1445   _reserved.set_start((HeapWord*)heap_rs.base());
  1446   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1448   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1450   _num_humongous_regions = 0;
  1452   // Create the gen rem set (and barrier set) for the entire reserved region.
  1453   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1454   set_barrier_set(rem_set()->bs());
  1455   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1456     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1457   } else {
  1458     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1459     return JNI_ENOMEM;
  1462   // Also create a G1 rem set.
  1463   if (G1UseHRIntoRS) {
  1464     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1465       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1466     } else {
  1467       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1468       return JNI_ENOMEM;
  1470   } else {
  1471     _g1_rem_set = new StupidG1RemSet(this);
  1474   // Carve out the G1 part of the heap.
  1476   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1477   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1478                            g1_rs.size()/HeapWordSize);
  1479   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1481   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1483   _g1_storage.initialize(g1_rs, 0);
  1484   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1485   _g1_max_committed = _g1_committed;
  1486   _hrs = new HeapRegionSeq(_expansion_regions);
  1487   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1488   guarantee(_cur_alloc_region == NULL, "from constructor");
  1490   // 6843694 - ensure that the maximum region index can fit
  1491   // in the remembered set structures.
  1492   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1493   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1495   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1496   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1497   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1498             "too many cards per region");
  1500   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1501                                              heap_word_size(init_byte_size));
  1503   _g1h = this;
  1505    _in_cset_fast_test_length = max_regions();
  1506    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  1508    // We're biasing _in_cset_fast_test to avoid subtracting the
  1509    // beginning of the heap every time we want to index; basically
  1510    // it's the same with what we do with the card table.
  1511    _in_cset_fast_test = _in_cset_fast_test_base -
  1512                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  1514    // Clear the _cset_fast_test bitmap in anticipation of adding
  1515    // regions to the incremental collection set for the first
  1516    // evacuation pause.
  1517    clear_cset_fast_test();
  1519   // Create the ConcurrentMark data structure and thread.
  1520   // (Must do this late, so that "max_regions" is defined.)
  1521   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1522   _cmThread = _cm->cmThread();
  1524   // ...and the concurrent zero-fill thread, if necessary.
  1525   if (G1ConcZeroFill) {
  1526     _czft = new ConcurrentZFThread();
  1529   // Initialize the from_card cache structure of HeapRegionRemSet.
  1530   HeapRegionRemSet::init_heap(max_regions());
  1532   // Now expand into the initial heap size.
  1533   expand(init_byte_size);
  1535   // Perform any initialization actions delegated to the policy.
  1536   g1_policy()->init();
  1538   g1_policy()->note_start_of_mark_thread();
  1540   _refine_cte_cl =
  1541     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1542                                     g1_rem_set(),
  1543                                     concurrent_g1_refine());
  1544   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1546   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1547                                                SATB_Q_FL_lock,
  1548                                                G1SATBProcessCompletedThreshold,
  1549                                                Shared_SATB_Q_lock);
  1551   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1552                                                 DirtyCardQ_FL_lock,
  1553                                                 concurrent_g1_refine()->yellow_zone(),
  1554                                                 concurrent_g1_refine()->red_zone(),
  1555                                                 Shared_DirtyCardQ_lock);
  1557   if (G1DeferredRSUpdate) {
  1558     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1559                                       DirtyCardQ_FL_lock,
  1560                                       -1, // never trigger processing
  1561                                       -1, // no limit on length
  1562                                       Shared_DirtyCardQ_lock,
  1563                                       &JavaThread::dirty_card_queue_set());
  1565   // In case we're keeping closure specialization stats, initialize those
  1566   // counts and that mechanism.
  1567   SpecializationStats::clear();
  1569   _gc_alloc_region_list = NULL;
  1571   // Do later initialization work for concurrent refinement.
  1572   _cg1r->init();
  1574   return JNI_OK;
  1577 void G1CollectedHeap::ref_processing_init() {
  1578   SharedHeap::ref_processing_init();
  1579   MemRegion mr = reserved_region();
  1580   _ref_processor = ReferenceProcessor::create_ref_processor(
  1581                                          mr,    // span
  1582                                          false, // Reference discovery is not atomic
  1583                                                 // (though it shouldn't matter here.)
  1584                                          true,  // mt_discovery
  1585                                          NULL,  // is alive closure: need to fill this in for efficiency
  1586                                          ParallelGCThreads,
  1587                                          ParallelRefProcEnabled,
  1588                                          true); // Setting next fields of discovered
  1589                                                 // lists requires a barrier.
  1592 size_t G1CollectedHeap::capacity() const {
  1593   return _g1_committed.byte_size();
  1596 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1597                                                  int worker_i) {
  1598   // Clean cards in the hot card cache
  1599   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set());
  1601   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1602   int n_completed_buffers = 0;
  1603   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1604     n_completed_buffers++;
  1606   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1607                                                   (double) n_completed_buffers);
  1608   dcqs.clear_n_completed_buffers();
  1609   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1613 // Computes the sum of the storage used by the various regions.
  1615 size_t G1CollectedHeap::used() const {
  1616   assert(Heap_lock->owner() != NULL,
  1617          "Should be owned on this thread's behalf.");
  1618   size_t result = _summary_bytes_used;
  1619   // Read only once in case it is set to NULL concurrently
  1620   HeapRegion* hr = _cur_alloc_region;
  1621   if (hr != NULL)
  1622     result += hr->used();
  1623   return result;
  1626 size_t G1CollectedHeap::used_unlocked() const {
  1627   size_t result = _summary_bytes_used;
  1628   return result;
  1631 class SumUsedClosure: public HeapRegionClosure {
  1632   size_t _used;
  1633 public:
  1634   SumUsedClosure() : _used(0) {}
  1635   bool doHeapRegion(HeapRegion* r) {
  1636     if (!r->continuesHumongous()) {
  1637       _used += r->used();
  1639     return false;
  1641   size_t result() { return _used; }
  1642 };
  1644 size_t G1CollectedHeap::recalculate_used() const {
  1645   SumUsedClosure blk;
  1646   _hrs->iterate(&blk);
  1647   return blk.result();
  1650 #ifndef PRODUCT
  1651 class SumUsedRegionsClosure: public HeapRegionClosure {
  1652   size_t _num;
  1653 public:
  1654   SumUsedRegionsClosure() : _num(0) {}
  1655   bool doHeapRegion(HeapRegion* r) {
  1656     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1657       _num += 1;
  1659     return false;
  1661   size_t result() { return _num; }
  1662 };
  1664 size_t G1CollectedHeap::recalculate_used_regions() const {
  1665   SumUsedRegionsClosure blk;
  1666   _hrs->iterate(&blk);
  1667   return blk.result();
  1669 #endif // PRODUCT
  1671 size_t G1CollectedHeap::unsafe_max_alloc() {
  1672   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1673   // otherwise, is there space in the current allocation region?
  1675   // We need to store the current allocation region in a local variable
  1676   // here. The problem is that this method doesn't take any locks and
  1677   // there may be other threads which overwrite the current allocation
  1678   // region field. attempt_allocation(), for example, sets it to NULL
  1679   // and this can happen *after* the NULL check here but before the call
  1680   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1681   // to be a problem in the optimized build, since the two loads of the
  1682   // current allocation region field are optimized away.
  1683   HeapRegion* car = _cur_alloc_region;
  1685   // FIXME: should iterate over all regions?
  1686   if (car == NULL) {
  1687     return 0;
  1689   return car->free();
  1692 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1693   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1694   assert(Heap_lock->is_locked(), "Precondition#2");
  1695   GCCauseSetter gcs(this, cause);
  1696   switch (cause) {
  1697     case GCCause::_heap_inspection:
  1698     case GCCause::_heap_dump: {
  1699       HandleMark hm;
  1700       do_full_collection(false);         // don't clear all soft refs
  1701       break;
  1703     default: // XXX FIX ME
  1704       ShouldNotReachHere(); // Unexpected use of this function
  1708 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1709   // The caller doesn't have the Heap_lock
  1710   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1712   int gc_count_before;
  1714     MutexLocker ml(Heap_lock);
  1715     // Read the GC count while holding the Heap_lock
  1716     gc_count_before = SharedHeap::heap()->total_collections();
  1718     // Don't want to do a GC until cleanup is completed.
  1719     wait_for_cleanup_complete();
  1720   } // We give up heap lock; VMThread::execute gets it back below
  1721   switch (cause) {
  1722     case GCCause::_scavenge_alot: {
  1723       // Do an incremental pause, which might sometimes be abandoned.
  1724       VM_G1IncCollectionPause op(gc_count_before, cause);
  1725       VMThread::execute(&op);
  1726       break;
  1728     default: {
  1729       // In all other cases, we currently do a full gc.
  1730       VM_G1CollectFull op(gc_count_before, cause);
  1731       VMThread::execute(&op);
  1736 bool G1CollectedHeap::is_in(const void* p) const {
  1737   if (_g1_committed.contains(p)) {
  1738     HeapRegion* hr = _hrs->addr_to_region(p);
  1739     return hr->is_in(p);
  1740   } else {
  1741     return _perm_gen->as_gen()->is_in(p);
  1745 // Iteration functions.
  1747 // Iterates an OopClosure over all ref-containing fields of objects
  1748 // within a HeapRegion.
  1750 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1751   MemRegion _mr;
  1752   OopClosure* _cl;
  1753 public:
  1754   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1755     : _mr(mr), _cl(cl) {}
  1756   bool doHeapRegion(HeapRegion* r) {
  1757     if (! r->continuesHumongous()) {
  1758       r->oop_iterate(_cl);
  1760     return false;
  1762 };
  1764 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1765   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1766   _hrs->iterate(&blk);
  1767   if (do_perm) {
  1768     perm_gen()->oop_iterate(cl);
  1772 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1773   IterateOopClosureRegionClosure blk(mr, cl);
  1774   _hrs->iterate(&blk);
  1775   if (do_perm) {
  1776     perm_gen()->oop_iterate(cl);
  1780 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1782 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1783   ObjectClosure* _cl;
  1784 public:
  1785   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1786   bool doHeapRegion(HeapRegion* r) {
  1787     if (! r->continuesHumongous()) {
  1788       r->object_iterate(_cl);
  1790     return false;
  1792 };
  1794 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1795   IterateObjectClosureRegionClosure blk(cl);
  1796   _hrs->iterate(&blk);
  1797   if (do_perm) {
  1798     perm_gen()->object_iterate(cl);
  1802 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1803   // FIXME: is this right?
  1804   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1807 // Calls a SpaceClosure on a HeapRegion.
  1809 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1810   SpaceClosure* _cl;
  1811 public:
  1812   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1813   bool doHeapRegion(HeapRegion* r) {
  1814     _cl->do_space(r);
  1815     return false;
  1817 };
  1819 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1820   SpaceClosureRegionClosure blk(cl);
  1821   _hrs->iterate(&blk);
  1824 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1825   _hrs->iterate(cl);
  1828 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1829                                                HeapRegionClosure* cl) {
  1830   _hrs->iterate_from(r, cl);
  1833 void
  1834 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1835   _hrs->iterate_from(idx, cl);
  1838 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1840 void
  1841 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1842                                                  int worker,
  1843                                                  jint claim_value) {
  1844   const size_t regions = n_regions();
  1845   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1846   // try to spread out the starting points of the workers
  1847   const size_t start_index = regions / worker_num * (size_t) worker;
  1849   // each worker will actually look at all regions
  1850   for (size_t count = 0; count < regions; ++count) {
  1851     const size_t index = (start_index + count) % regions;
  1852     assert(0 <= index && index < regions, "sanity");
  1853     HeapRegion* r = region_at(index);
  1854     // we'll ignore "continues humongous" regions (we'll process them
  1855     // when we come across their corresponding "start humongous"
  1856     // region) and regions already claimed
  1857     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1858       continue;
  1860     // OK, try to claim it
  1861     if (r->claimHeapRegion(claim_value)) {
  1862       // success!
  1863       assert(!r->continuesHumongous(), "sanity");
  1864       if (r->startsHumongous()) {
  1865         // If the region is "starts humongous" we'll iterate over its
  1866         // "continues humongous" first; in fact we'll do them
  1867         // first. The order is important. In on case, calling the
  1868         // closure on the "starts humongous" region might de-allocate
  1869         // and clear all its "continues humongous" regions and, as a
  1870         // result, we might end up processing them twice. So, we'll do
  1871         // them first (notice: most closures will ignore them anyway) and
  1872         // then we'll do the "starts humongous" region.
  1873         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1874           HeapRegion* chr = region_at(ch_index);
  1876           // if the region has already been claimed or it's not
  1877           // "continues humongous" we're done
  1878           if (chr->claim_value() == claim_value ||
  1879               !chr->continuesHumongous()) {
  1880             break;
  1883           // Noone should have claimed it directly. We can given
  1884           // that we claimed its "starts humongous" region.
  1885           assert(chr->claim_value() != claim_value, "sanity");
  1886           assert(chr->humongous_start_region() == r, "sanity");
  1888           if (chr->claimHeapRegion(claim_value)) {
  1889             // we should always be able to claim it; noone else should
  1890             // be trying to claim this region
  1892             bool res2 = cl->doHeapRegion(chr);
  1893             assert(!res2, "Should not abort");
  1895             // Right now, this holds (i.e., no closure that actually
  1896             // does something with "continues humongous" regions
  1897             // clears them). We might have to weaken it in the future,
  1898             // but let's leave these two asserts here for extra safety.
  1899             assert(chr->continuesHumongous(), "should still be the case");
  1900             assert(chr->humongous_start_region() == r, "sanity");
  1901           } else {
  1902             guarantee(false, "we should not reach here");
  1907       assert(!r->continuesHumongous(), "sanity");
  1908       bool res = cl->doHeapRegion(r);
  1909       assert(!res, "Should not abort");
  1914 class ResetClaimValuesClosure: public HeapRegionClosure {
  1915 public:
  1916   bool doHeapRegion(HeapRegion* r) {
  1917     r->set_claim_value(HeapRegion::InitialClaimValue);
  1918     return false;
  1920 };
  1922 void
  1923 G1CollectedHeap::reset_heap_region_claim_values() {
  1924   ResetClaimValuesClosure blk;
  1925   heap_region_iterate(&blk);
  1928 #ifdef ASSERT
  1929 // This checks whether all regions in the heap have the correct claim
  1930 // value. I also piggy-backed on this a check to ensure that the
  1931 // humongous_start_region() information on "continues humongous"
  1932 // regions is correct.
  1934 class CheckClaimValuesClosure : public HeapRegionClosure {
  1935 private:
  1936   jint _claim_value;
  1937   size_t _failures;
  1938   HeapRegion* _sh_region;
  1939 public:
  1940   CheckClaimValuesClosure(jint claim_value) :
  1941     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1942   bool doHeapRegion(HeapRegion* r) {
  1943     if (r->claim_value() != _claim_value) {
  1944       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1945                              "claim value = %d, should be %d",
  1946                              r->bottom(), r->end(), r->claim_value(),
  1947                              _claim_value);
  1948       ++_failures;
  1950     if (!r->isHumongous()) {
  1951       _sh_region = NULL;
  1952     } else if (r->startsHumongous()) {
  1953       _sh_region = r;
  1954     } else if (r->continuesHumongous()) {
  1955       if (r->humongous_start_region() != _sh_region) {
  1956         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1957                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1958                                r->bottom(), r->end(),
  1959                                r->humongous_start_region(),
  1960                                _sh_region);
  1961         ++_failures;
  1964     return false;
  1966   size_t failures() {
  1967     return _failures;
  1969 };
  1971 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  1972   CheckClaimValuesClosure cl(claim_value);
  1973   heap_region_iterate(&cl);
  1974   return cl.failures() == 0;
  1976 #endif // ASSERT
  1978 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  1979   HeapRegion* r = g1_policy()->collection_set();
  1980   while (r != NULL) {
  1981     HeapRegion* next = r->next_in_collection_set();
  1982     if (cl->doHeapRegion(r)) {
  1983       cl->incomplete();
  1984       return;
  1986     r = next;
  1990 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  1991                                                   HeapRegionClosure *cl) {
  1992   assert(r->in_collection_set(),
  1993          "Start region must be a member of the collection set.");
  1994   HeapRegion* cur = r;
  1995   while (cur != NULL) {
  1996     HeapRegion* next = cur->next_in_collection_set();
  1997     if (cl->doHeapRegion(cur) && false) {
  1998       cl->incomplete();
  1999       return;
  2001     cur = next;
  2003   cur = g1_policy()->collection_set();
  2004   while (cur != r) {
  2005     HeapRegion* next = cur->next_in_collection_set();
  2006     if (cl->doHeapRegion(cur) && false) {
  2007       cl->incomplete();
  2008       return;
  2010     cur = next;
  2014 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2015   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2019 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2020   Space* res = heap_region_containing(addr);
  2021   if (res == NULL)
  2022     res = perm_gen()->space_containing(addr);
  2023   return res;
  2026 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2027   Space* sp = space_containing(addr);
  2028   if (sp != NULL) {
  2029     return sp->block_start(addr);
  2031   return NULL;
  2034 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2035   Space* sp = space_containing(addr);
  2036   assert(sp != NULL, "block_size of address outside of heap");
  2037   return sp->block_size(addr);
  2040 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2041   Space* sp = space_containing(addr);
  2042   return sp->block_is_obj(addr);
  2045 bool G1CollectedHeap::supports_tlab_allocation() const {
  2046   return true;
  2049 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2050   return HeapRegion::GrainBytes;
  2053 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2054   // Return the remaining space in the cur alloc region, but not less than
  2055   // the min TLAB size.
  2057   // Also, this value can be at most the humongous object threshold,
  2058   // since we can't allow tlabs to grow big enough to accomodate
  2059   // humongous objects.
  2061   // We need to store the cur alloc region locally, since it might change
  2062   // between when we test for NULL and when we use it later.
  2063   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2064   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2066   if (cur_alloc_space == NULL) {
  2067     return max_tlab_size;
  2068   } else {
  2069     return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
  2070                 max_tlab_size);
  2074 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2075   bool dummy;
  2076   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2079 bool G1CollectedHeap::allocs_are_zero_filled() {
  2080   return false;
  2083 size_t G1CollectedHeap::large_typearray_limit() {
  2084   // FIXME
  2085   return HeapRegion::GrainBytes/HeapWordSize;
  2088 size_t G1CollectedHeap::max_capacity() const {
  2089   return g1_reserved_obj_bytes();
  2092 jlong G1CollectedHeap::millis_since_last_gc() {
  2093   // assert(false, "NYI");
  2094   return 0;
  2098 void G1CollectedHeap::prepare_for_verify() {
  2099   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2100     ensure_parsability(false);
  2102   g1_rem_set()->prepare_for_verify();
  2105 class VerifyLivenessOopClosure: public OopClosure {
  2106   G1CollectedHeap* g1h;
  2107 public:
  2108   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2109     g1h = _g1h;
  2111   void do_oop(narrowOop *p) { do_oop_work(p); }
  2112   void do_oop(      oop *p) { do_oop_work(p); }
  2114   template <class T> void do_oop_work(T *p) {
  2115     oop obj = oopDesc::load_decode_heap_oop(p);
  2116     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2117               "Dead object referenced by a not dead object");
  2119 };
  2121 class VerifyObjsInRegionClosure: public ObjectClosure {
  2122 private:
  2123   G1CollectedHeap* _g1h;
  2124   size_t _live_bytes;
  2125   HeapRegion *_hr;
  2126   bool _use_prev_marking;
  2127 public:
  2128   // use_prev_marking == true  -> use "prev" marking information,
  2129   // use_prev_marking == false -> use "next" marking information
  2130   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2131     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2132     _g1h = G1CollectedHeap::heap();
  2134   void do_object(oop o) {
  2135     VerifyLivenessOopClosure isLive(_g1h);
  2136     assert(o != NULL, "Huh?");
  2137     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2138       o->oop_iterate(&isLive);
  2139       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2140         size_t obj_size = o->size();    // Make sure we don't overflow
  2141         _live_bytes += (obj_size * HeapWordSize);
  2145   size_t live_bytes() { return _live_bytes; }
  2146 };
  2148 class PrintObjsInRegionClosure : public ObjectClosure {
  2149   HeapRegion *_hr;
  2150   G1CollectedHeap *_g1;
  2151 public:
  2152   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2153     _g1 = G1CollectedHeap::heap();
  2154   };
  2156   void do_object(oop o) {
  2157     if (o != NULL) {
  2158       HeapWord *start = (HeapWord *) o;
  2159       size_t word_sz = o->size();
  2160       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2161                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2162                           (void*) o, word_sz,
  2163                           _g1->isMarkedPrev(o),
  2164                           _g1->isMarkedNext(o),
  2165                           _hr->obj_allocated_since_prev_marking(o));
  2166       HeapWord *end = start + word_sz;
  2167       HeapWord *cur;
  2168       int *val;
  2169       for (cur = start; cur < end; cur++) {
  2170         val = (int *) cur;
  2171         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2175 };
  2177 class VerifyRegionClosure: public HeapRegionClosure {
  2178 private:
  2179   bool _allow_dirty;
  2180   bool _par;
  2181   bool _use_prev_marking;
  2182   bool _failures;
  2183 public:
  2184   // use_prev_marking == true  -> use "prev" marking information,
  2185   // use_prev_marking == false -> use "next" marking information
  2186   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2187     : _allow_dirty(allow_dirty),
  2188       _par(par),
  2189       _use_prev_marking(use_prev_marking),
  2190       _failures(false) {}
  2192   bool failures() {
  2193     return _failures;
  2196   bool doHeapRegion(HeapRegion* r) {
  2197     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2198               "Should be unclaimed at verify points.");
  2199     if (!r->continuesHumongous()) {
  2200       bool failures = false;
  2201       r->verify(_allow_dirty, _use_prev_marking, &failures);
  2202       if (failures) {
  2203         _failures = true;
  2204       } else {
  2205         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2206         r->object_iterate(&not_dead_yet_cl);
  2207         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2208           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2209                                  "max_live_bytes "SIZE_FORMAT" "
  2210                                  "< calculated "SIZE_FORMAT,
  2211                                  r->bottom(), r->end(),
  2212                                  r->max_live_bytes(),
  2213                                  not_dead_yet_cl.live_bytes());
  2214           _failures = true;
  2218     return false; // stop the region iteration if we hit a failure
  2220 };
  2222 class VerifyRootsClosure: public OopsInGenClosure {
  2223 private:
  2224   G1CollectedHeap* _g1h;
  2225   bool             _use_prev_marking;
  2226   bool             _failures;
  2227 public:
  2228   // use_prev_marking == true  -> use "prev" marking information,
  2229   // use_prev_marking == false -> use "next" marking information
  2230   VerifyRootsClosure(bool use_prev_marking) :
  2231     _g1h(G1CollectedHeap::heap()),
  2232     _use_prev_marking(use_prev_marking),
  2233     _failures(false) { }
  2235   bool failures() { return _failures; }
  2237   template <class T> void do_oop_nv(T* p) {
  2238     T heap_oop = oopDesc::load_heap_oop(p);
  2239     if (!oopDesc::is_null(heap_oop)) {
  2240       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2241       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2242         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2243                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2244         obj->print_on(gclog_or_tty);
  2245         _failures = true;
  2250   void do_oop(oop* p)       { do_oop_nv(p); }
  2251   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2252 };
  2254 // This is the task used for parallel heap verification.
  2256 class G1ParVerifyTask: public AbstractGangTask {
  2257 private:
  2258   G1CollectedHeap* _g1h;
  2259   bool _allow_dirty;
  2260   bool _use_prev_marking;
  2261   bool _failures;
  2263 public:
  2264   // use_prev_marking == true  -> use "prev" marking information,
  2265   // use_prev_marking == false -> use "next" marking information
  2266   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2267                   bool use_prev_marking) :
  2268     AbstractGangTask("Parallel verify task"),
  2269     _g1h(g1h),
  2270     _allow_dirty(allow_dirty),
  2271     _use_prev_marking(use_prev_marking),
  2272     _failures(false) { }
  2274   bool failures() {
  2275     return _failures;
  2278   void work(int worker_i) {
  2279     HandleMark hm;
  2280     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2281     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2282                                           HeapRegion::ParVerifyClaimValue);
  2283     if (blk.failures()) {
  2284       _failures = true;
  2287 };
  2289 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2290   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2293 void G1CollectedHeap::verify(bool allow_dirty,
  2294                              bool silent,
  2295                              bool use_prev_marking) {
  2296   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2297     if (!silent) { gclog_or_tty->print("roots "); }
  2298     VerifyRootsClosure rootsCl(use_prev_marking);
  2299     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2300     process_strong_roots(true,  // activate StrongRootsScope
  2301                          false,
  2302                          SharedHeap::SO_AllClasses,
  2303                          &rootsCl,
  2304                          &blobsCl,
  2305                          &rootsCl);
  2306     bool failures = rootsCl.failures();
  2307     rem_set()->invalidate(perm_gen()->used_region(), false);
  2308     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2309     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2310       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2311              "sanity check");
  2313       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2314       int n_workers = workers()->total_workers();
  2315       set_par_threads(n_workers);
  2316       workers()->run_task(&task);
  2317       set_par_threads(0);
  2318       if (task.failures()) {
  2319         failures = true;
  2322       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2323              "sanity check");
  2325       reset_heap_region_claim_values();
  2327       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2328              "sanity check");
  2329     } else {
  2330       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2331       _hrs->iterate(&blk);
  2332       if (blk.failures()) {
  2333         failures = true;
  2336     if (!silent) gclog_or_tty->print("remset ");
  2337     rem_set()->verify();
  2339     if (failures) {
  2340       gclog_or_tty->print_cr("Heap:");
  2341       print_on(gclog_or_tty, true /* extended */);
  2342       gclog_or_tty->print_cr("");
  2343 #ifndef PRODUCT
  2344       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  2345         concurrent_mark()->print_reachable("at-verification-failure",
  2346                                            use_prev_marking, false /* all */);
  2348 #endif
  2349       gclog_or_tty->flush();
  2351     guarantee(!failures, "there should not have been any failures");
  2352   } else {
  2353     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2357 class PrintRegionClosure: public HeapRegionClosure {
  2358   outputStream* _st;
  2359 public:
  2360   PrintRegionClosure(outputStream* st) : _st(st) {}
  2361   bool doHeapRegion(HeapRegion* r) {
  2362     r->print_on(_st);
  2363     return false;
  2365 };
  2367 void G1CollectedHeap::print() const { print_on(tty); }
  2369 void G1CollectedHeap::print_on(outputStream* st) const {
  2370   print_on(st, PrintHeapAtGCExtended);
  2373 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2374   st->print(" %-20s", "garbage-first heap");
  2375   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2376             capacity()/K, used_unlocked()/K);
  2377   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2378             _g1_storage.low_boundary(),
  2379             _g1_storage.high(),
  2380             _g1_storage.high_boundary());
  2381   st->cr();
  2382   st->print("  region size " SIZE_FORMAT "K, ",
  2383             HeapRegion::GrainBytes/K);
  2384   size_t young_regions = _young_list->length();
  2385   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2386             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2387   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2388   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2389             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2390   st->cr();
  2391   perm()->as_gen()->print_on(st);
  2392   if (extended) {
  2393     st->cr();
  2394     print_on_extended(st);
  2398 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2399   PrintRegionClosure blk(st);
  2400   _hrs->iterate(&blk);
  2403 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2404   if (ParallelGCThreads > 0) {
  2405     workers()->print_worker_threads_on(st);
  2408   _cmThread->print_on(st);
  2409   st->cr();
  2411   _cm->print_worker_threads_on(st);
  2413   _cg1r->print_worker_threads_on(st);
  2415   _czft->print_on(st);
  2416   st->cr();
  2419 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2420   if (ParallelGCThreads > 0) {
  2421     workers()->threads_do(tc);
  2423   tc->do_thread(_cmThread);
  2424   _cg1r->threads_do(tc);
  2425   tc->do_thread(_czft);
  2428 void G1CollectedHeap::print_tracing_info() const {
  2429   // We'll overload this to mean "trace GC pause statistics."
  2430   if (TraceGen0Time || TraceGen1Time) {
  2431     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2432     // to that.
  2433     g1_policy()->print_tracing_info();
  2435   if (G1SummarizeRSetStats) {
  2436     g1_rem_set()->print_summary_info();
  2438   if (G1SummarizeConcMark) {
  2439     concurrent_mark()->print_summary_info();
  2441   if (G1SummarizeZFStats) {
  2442     ConcurrentZFThread::print_summary_info();
  2444   g1_policy()->print_yg_surv_rate_info();
  2446   SpecializationStats::print();
  2450 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2451   HeapRegion* hr = heap_region_containing(addr);
  2452   if (hr == NULL) {
  2453     return 0;
  2454   } else {
  2455     return 1;
  2459 G1CollectedHeap* G1CollectedHeap::heap() {
  2460   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2461          "not a garbage-first heap");
  2462   return _g1h;
  2465 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2466   // always_do_update_barrier = false;
  2467   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2468   // Call allocation profiler
  2469   AllocationProfiler::iterate_since_last_gc();
  2470   // Fill TLAB's and such
  2471   ensure_parsability(true);
  2474 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2475   // FIXME: what is this about?
  2476   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2477   // is set.
  2478   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2479                         "derived pointer present"));
  2480   // always_do_update_barrier = true;
  2483 void G1CollectedHeap::do_collection_pause() {
  2484   // Read the GC count while holding the Heap_lock
  2485   // we need to do this _before_ wait_for_cleanup_complete(), to
  2486   // ensure that we do not give up the heap lock and potentially
  2487   // pick up the wrong count
  2488   int gc_count_before = SharedHeap::heap()->total_collections();
  2490   // Don't want to do a GC pause while cleanup is being completed!
  2491   wait_for_cleanup_complete();
  2493   g1_policy()->record_stop_world_start();
  2495     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2496     VM_G1IncCollectionPause op(gc_count_before);
  2497     VMThread::execute(&op);
  2501 void
  2502 G1CollectedHeap::doConcurrentMark() {
  2503   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2504   if (!_cmThread->in_progress()) {
  2505     _cmThread->set_started();
  2506     CGC_lock->notify();
  2510 class VerifyMarkedObjsClosure: public ObjectClosure {
  2511     G1CollectedHeap* _g1h;
  2512     public:
  2513     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2514     void do_object(oop obj) {
  2515       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2516              "markandsweep mark should agree with concurrent deadness");
  2518 };
  2520 void
  2521 G1CollectedHeap::checkConcurrentMark() {
  2522     VerifyMarkedObjsClosure verifycl(this);
  2523     //    MutexLockerEx x(getMarkBitMapLock(),
  2524     //              Mutex::_no_safepoint_check_flag);
  2525     object_iterate(&verifycl, false);
  2528 void G1CollectedHeap::do_sync_mark() {
  2529   _cm->checkpointRootsInitial();
  2530   _cm->markFromRoots();
  2531   _cm->checkpointRootsFinal(false);
  2534 // <NEW PREDICTION>
  2536 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2537                                                        bool young) {
  2538   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2541 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2542                                                            predicted_time_ms) {
  2543   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2546 size_t G1CollectedHeap::pending_card_num() {
  2547   size_t extra_cards = 0;
  2548   JavaThread *curr = Threads::first();
  2549   while (curr != NULL) {
  2550     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2551     extra_cards += dcq.size();
  2552     curr = curr->next();
  2554   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2555   size_t buffer_size = dcqs.buffer_size();
  2556   size_t buffer_num = dcqs.completed_buffers_num();
  2557   return buffer_size * buffer_num + extra_cards;
  2560 size_t G1CollectedHeap::max_pending_card_num() {
  2561   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2562   size_t buffer_size = dcqs.buffer_size();
  2563   size_t buffer_num  = dcqs.completed_buffers_num();
  2564   int thread_num  = Threads::number_of_threads();
  2565   return (buffer_num + thread_num) * buffer_size;
  2568 size_t G1CollectedHeap::cards_scanned() {
  2569   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2570   return g1_rset->cardsScanned();
  2573 void
  2574 G1CollectedHeap::setup_surviving_young_words() {
  2575   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2576   size_t array_length = g1_policy()->young_cset_length();
  2577   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2578   if (_surviving_young_words == NULL) {
  2579     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2580                           "Not enough space for young surv words summary.");
  2582   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2583 #ifdef ASSERT
  2584   for (size_t i = 0;  i < array_length; ++i) {
  2585     assert( _surviving_young_words[i] == 0, "memset above" );
  2587 #endif // !ASSERT
  2590 void
  2591 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2592   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2593   size_t array_length = g1_policy()->young_cset_length();
  2594   for (size_t i = 0; i < array_length; ++i)
  2595     _surviving_young_words[i] += surv_young_words[i];
  2598 void
  2599 G1CollectedHeap::cleanup_surviving_young_words() {
  2600   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2601   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2602   _surviving_young_words = NULL;
  2605 // </NEW PREDICTION>
  2607 struct PrepareForRSScanningClosure : public HeapRegionClosure {
  2608   bool doHeapRegion(HeapRegion *r) {
  2609     r->rem_set()->set_iter_claimed(0);
  2610     return false;
  2612 };
  2614 void
  2615 G1CollectedHeap::do_collection_pause_at_safepoint() {
  2616   if (GC_locker::check_active_before_gc()) {
  2617     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2620   if (PrintHeapAtGC) {
  2621     Universe::print_heap_before_gc();
  2625     ResourceMark rm;
  2627     // This call will decide whether this pause is an initial-mark
  2628     // pause. If it is, during_initial_mark_pause() will return true
  2629     // for the duration of this pause.
  2630     g1_policy()->decide_on_conc_mark_initiation();
  2632     char verbose_str[128];
  2633     sprintf(verbose_str, "GC pause ");
  2634     if (g1_policy()->in_young_gc_mode()) {
  2635       if (g1_policy()->full_young_gcs())
  2636         strcat(verbose_str, "(young)");
  2637       else
  2638         strcat(verbose_str, "(partial)");
  2640     if (g1_policy()->during_initial_mark_pause())
  2641       strcat(verbose_str, " (initial-mark)");
  2643     // if PrintGCDetails is on, we'll print long statistics information
  2644     // in the collector policy code, so let's not print this as the output
  2645     // is messy if we do.
  2646     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2647     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2648     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2650     TraceMemoryManagerStats tms(false /* fullGC */);
  2652     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2653     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2654     guarantee(!is_gc_active(), "collection is not reentrant");
  2655     assert(regions_accounted_for(), "Region leakage!");
  2657     increment_gc_time_stamp();
  2659     if (g1_policy()->in_young_gc_mode()) {
  2660       assert(check_young_list_well_formed(),
  2661              "young list should be well formed");
  2664     bool abandoned = false;
  2665     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2666       IsGCActiveMark x;
  2668       gc_prologue(false);
  2669       increment_total_collections(false /* full gc */);
  2671 #if G1_REM_SET_LOGGING
  2672       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2673       print();
  2674 #endif
  2676       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2677         HandleMark hm;  // Discard invalid handles created during verification
  2678         prepare_for_verify();
  2679         gclog_or_tty->print(" VerifyBeforeGC:");
  2680         Universe::verify(false);
  2683       COMPILER2_PRESENT(DerivedPointerTable::clear());
  2685       // We want to turn off ref discovery, if necessary, and turn it back on
  2686       // on again later if we do. XXX Dubious: why is discovery disabled?
  2687       bool was_enabled = ref_processor()->discovery_enabled();
  2688       if (was_enabled) ref_processor()->disable_discovery();
  2690       // Forget the current alloc region (we might even choose it to be part
  2691       // of the collection set!).
  2692       abandon_cur_alloc_region();
  2694       // The elapsed time induced by the start time below deliberately elides
  2695       // the possible verification above.
  2696       double start_time_sec = os::elapsedTime();
  2697       size_t start_used_bytes = used();
  2699 #if YOUNG_LIST_VERBOSE
  2700       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  2701       _young_list->print();
  2702       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  2703 #endif // YOUNG_LIST_VERBOSE
  2705       g1_policy()->record_collection_pause_start(start_time_sec,
  2706                                                  start_used_bytes);
  2708 #if YOUNG_LIST_VERBOSE
  2709       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  2710       _young_list->print();
  2711 #endif // YOUNG_LIST_VERBOSE
  2713       if (g1_policy()->during_initial_mark_pause()) {
  2714         concurrent_mark()->checkpointRootsInitialPre();
  2716       save_marks();
  2718       // We must do this before any possible evacuation that should propagate
  2719       // marks.
  2720       if (mark_in_progress()) {
  2721         double start_time_sec = os::elapsedTime();
  2723         _cm->drainAllSATBBuffers();
  2724         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2725         g1_policy()->record_satb_drain_time(finish_mark_ms);
  2727       // Record the number of elements currently on the mark stack, so we
  2728       // only iterate over these.  (Since evacuation may add to the mark
  2729       // stack, doing more exposes race conditions.)  If no mark is in
  2730       // progress, this will be zero.
  2731       _cm->set_oops_do_bound();
  2733       assert(regions_accounted_for(), "Region leakage.");
  2735       if (mark_in_progress())
  2736         concurrent_mark()->newCSet();
  2738 #if YOUNG_LIST_VERBOSE
  2739       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  2740       _young_list->print();
  2741       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  2742 #endif // YOUNG_LIST_VERBOSE
  2744       // Now choose the CS. We may abandon a pause if we find no
  2745       // region that will fit in the MMU pause.
  2746       bool abandoned = g1_policy()->choose_collection_set();
  2748       // Nothing to do if we were unable to choose a collection set.
  2749       if (!abandoned) {
  2750 #if G1_REM_SET_LOGGING
  2751         gclog_or_tty->print_cr("\nAfter pause, heap:");
  2752         print();
  2753 #endif
  2754         PrepareForRSScanningClosure prepare_for_rs_scan;
  2755         collection_set_iterate(&prepare_for_rs_scan);
  2757         setup_surviving_young_words();
  2759         // Set up the gc allocation regions.
  2760         get_gc_alloc_regions();
  2762         // Actually do the work...
  2763         evacuate_collection_set();
  2765         free_collection_set(g1_policy()->collection_set());
  2766         g1_policy()->clear_collection_set();
  2768         cleanup_surviving_young_words();
  2770         // Start a new incremental collection set for the next pause.
  2771         g1_policy()->start_incremental_cset_building();
  2773         // Clear the _cset_fast_test bitmap in anticipation of adding
  2774         // regions to the incremental collection set for the next
  2775         // evacuation pause.
  2776         clear_cset_fast_test();
  2778         if (g1_policy()->in_young_gc_mode()) {
  2779           _young_list->reset_sampled_info();
  2781           // Don't check the whole heap at this point as the
  2782           // GC alloc regions from this pause have been tagged
  2783           // as survivors and moved on to the survivor list.
  2784           // Survivor regions will fail the !is_young() check.
  2785           assert(check_young_list_empty(false /* check_heap */),
  2786               "young list should be empty");
  2788 #if YOUNG_LIST_VERBOSE
  2789           gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  2790           _young_list->print();
  2791 #endif // YOUNG_LIST_VERBOSE
  2793           g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2794                                           _young_list->first_survivor_region(),
  2795                                           _young_list->last_survivor_region());
  2797           _young_list->reset_auxilary_lists();
  2799       } else {
  2800         // We have abandoned the current collection. This can only happen
  2801         // if we're not doing young or partially young collections, and
  2802         // we didn't find an old region that we're able to collect within
  2803         // the allowed time.
  2805         assert(g1_policy()->collection_set() == NULL, "should be");
  2806         assert(_young_list->length() == 0, "because it should be");
  2808         // This should be a no-op.
  2809         abandon_collection_set(g1_policy()->inc_cset_head());
  2811         g1_policy()->clear_incremental_cset();
  2812         g1_policy()->stop_incremental_cset_building();
  2814         // Start a new incremental collection set for the next pause.
  2815         g1_policy()->start_incremental_cset_building();
  2817         // Clear the _cset_fast_test bitmap in anticipation of adding
  2818         // regions to the incremental collection set for the next
  2819         // evacuation pause.
  2820         clear_cset_fast_test();
  2822         // This looks confusing, because the DPT should really be empty
  2823         // at this point -- since we have not done any collection work,
  2824         // there should not be any derived pointers in the table to update;
  2825         // however, there is some additional state in the DPT which is
  2826         // reset at the end of the (null) "gc" here via the following call.
  2827         // A better approach might be to split off that state resetting work
  2828         // into a separate method that asserts that the DPT is empty and call
  2829         // that here. That is deferred for now.
  2830         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2833       if (evacuation_failed()) {
  2834         _summary_bytes_used = recalculate_used();
  2835       } else {
  2836         // The "used" of the the collection set have already been subtracted
  2837         // when they were freed.  Add in the bytes evacuated.
  2838         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2841       if (g1_policy()->in_young_gc_mode() &&
  2842           g1_policy()->during_initial_mark_pause()) {
  2843         concurrent_mark()->checkpointRootsInitialPost();
  2844         set_marking_started();
  2845         // CAUTION: after the doConcurrentMark() call below,
  2846         // the concurrent marking thread(s) could be running
  2847         // concurrently with us. Make sure that anything after
  2848         // this point does not assume that we are the only GC thread
  2849         // running. Note: of course, the actual marking work will
  2850         // not start until the safepoint itself is released in
  2851         // ConcurrentGCThread::safepoint_desynchronize().
  2852         doConcurrentMark();
  2855 #if YOUNG_LIST_VERBOSE
  2856       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  2857       _young_list->print();
  2858       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  2859 #endif // YOUNG_LIST_VERBOSE
  2861       double end_time_sec = os::elapsedTime();
  2862       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2863       g1_policy()->record_pause_time_ms(pause_time_ms);
  2864       g1_policy()->record_collection_pause_end(abandoned);
  2866       assert(regions_accounted_for(), "Region leakage.");
  2868       MemoryService::track_memory_usage();
  2870       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2871         HandleMark hm;  // Discard invalid handles created during verification
  2872         gclog_or_tty->print(" VerifyAfterGC:");
  2873         prepare_for_verify();
  2874         Universe::verify(false);
  2877       if (was_enabled) ref_processor()->enable_discovery();
  2880         size_t expand_bytes = g1_policy()->expansion_amount();
  2881         if (expand_bytes > 0) {
  2882           size_t bytes_before = capacity();
  2883           expand(expand_bytes);
  2887       if (mark_in_progress()) {
  2888         concurrent_mark()->update_g1_committed();
  2891 #ifdef TRACESPINNING
  2892       ParallelTaskTerminator::print_termination_counts();
  2893 #endif
  2895       gc_epilogue(false);
  2898     assert(verify_region_lists(), "Bad region lists.");
  2900     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2901       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2902       print_tracing_info();
  2903       vm_exit(-1);
  2907   if (PrintHeapAtGC) {
  2908     Universe::print_heap_after_gc();
  2910   if (G1SummarizeRSetStats &&
  2911       (G1SummarizeRSetStatsPeriod > 0) &&
  2912       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  2913     g1_rem_set()->print_summary_info();
  2917 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  2919   size_t gclab_word_size;
  2920   switch (purpose) {
  2921     case GCAllocForSurvived:
  2922       gclab_word_size = YoungPLABSize;
  2923       break;
  2924     case GCAllocForTenured:
  2925       gclab_word_size = OldPLABSize;
  2926       break;
  2927     default:
  2928       assert(false, "unknown GCAllocPurpose");
  2929       gclab_word_size = OldPLABSize;
  2930       break;
  2932   return gclab_word_size;
  2936 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2937   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2938   // make sure we don't call set_gc_alloc_region() multiple times on
  2939   // the same region
  2940   assert(r == NULL || !r->is_gc_alloc_region(),
  2941          "shouldn't already be a GC alloc region");
  2942   assert(r == NULL || !r->isHumongous(),
  2943          "humongous regions shouldn't be used as GC alloc regions");
  2945   HeapWord* original_top = NULL;
  2946   if (r != NULL)
  2947     original_top = r->top();
  2949   // We will want to record the used space in r as being there before gc.
  2950   // One we install it as a GC alloc region it's eligible for allocation.
  2951   // So record it now and use it later.
  2952   size_t r_used = 0;
  2953   if (r != NULL) {
  2954     r_used = r->used();
  2956     if (ParallelGCThreads > 0) {
  2957       // need to take the lock to guard against two threads calling
  2958       // get_gc_alloc_region concurrently (very unlikely but...)
  2959       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2960       r->save_marks();
  2963   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2964   _gc_alloc_regions[purpose] = r;
  2965   if (old_alloc_region != NULL) {
  2966     // Replace aliases too.
  2967     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2968       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2969         _gc_alloc_regions[ap] = r;
  2973   if (r != NULL) {
  2974     push_gc_alloc_region(r);
  2975     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2976       // We are using a region as a GC alloc region after it has been used
  2977       // as a mutator allocation region during the current marking cycle.
  2978       // The mutator-allocated objects are currently implicitly marked, but
  2979       // when we move hr->next_top_at_mark_start() forward at the the end
  2980       // of the GC pause, they won't be.  We therefore mark all objects in
  2981       // the "gap".  We do this object-by-object, since marking densely
  2982       // does not currently work right with marking bitmap iteration.  This
  2983       // means we rely on TLAB filling at the start of pauses, and no
  2984       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2985       // to fix the marking bitmap iteration.
  2986       HeapWord* curhw = r->next_top_at_mark_start();
  2987       HeapWord* t = original_top;
  2989       while (curhw < t) {
  2990         oop cur = (oop)curhw;
  2991         // We'll assume parallel for generality.  This is rare code.
  2992         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2993         curhw = curhw + cur->size();
  2995       assert(curhw == t, "Should have parsed correctly.");
  2997     if (G1PolicyVerbose > 1) {
  2998       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2999                           "for survivors:", r->bottom(), original_top, r->end());
  3000       r->print();
  3002     g1_policy()->record_before_bytes(r_used);
  3006 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  3007   assert(Thread::current()->is_VM_thread() ||
  3008          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  3009   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  3010          "Precondition.");
  3011   hr->set_is_gc_alloc_region(true);
  3012   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  3013   _gc_alloc_region_list = hr;
  3016 #ifdef G1_DEBUG
  3017 class FindGCAllocRegion: public HeapRegionClosure {
  3018 public:
  3019   bool doHeapRegion(HeapRegion* r) {
  3020     if (r->is_gc_alloc_region()) {
  3021       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  3022                              r->hrs_index(), r->bottom());
  3024     return false;
  3026 };
  3027 #endif // G1_DEBUG
  3029 void G1CollectedHeap::forget_alloc_region_list() {
  3030   assert(Thread::current()->is_VM_thread(), "Precondition");
  3031   while (_gc_alloc_region_list != NULL) {
  3032     HeapRegion* r = _gc_alloc_region_list;
  3033     assert(r->is_gc_alloc_region(), "Invariant.");
  3034     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  3035     // newly allocated data in order to be able to apply deferred updates
  3036     // before the GC is done for verification purposes (i.e to allow
  3037     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  3038     // collection.
  3039     r->ContiguousSpace::set_saved_mark();
  3040     _gc_alloc_region_list = r->next_gc_alloc_region();
  3041     r->set_next_gc_alloc_region(NULL);
  3042     r->set_is_gc_alloc_region(false);
  3043     if (r->is_survivor()) {
  3044       if (r->is_empty()) {
  3045         r->set_not_young();
  3046       } else {
  3047         _young_list->add_survivor_region(r);
  3050     if (r->is_empty()) {
  3051       ++_free_regions;
  3054 #ifdef G1_DEBUG
  3055   FindGCAllocRegion fa;
  3056   heap_region_iterate(&fa);
  3057 #endif // G1_DEBUG
  3061 bool G1CollectedHeap::check_gc_alloc_regions() {
  3062   // TODO: allocation regions check
  3063   return true;
  3066 void G1CollectedHeap::get_gc_alloc_regions() {
  3067   // First, let's check that the GC alloc region list is empty (it should)
  3068   assert(_gc_alloc_region_list == NULL, "invariant");
  3070   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3071     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  3072     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  3074     // Create new GC alloc regions.
  3075     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  3076     _retained_gc_alloc_regions[ap] = NULL;
  3078     if (alloc_region != NULL) {
  3079       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  3081       // let's make sure that the GC alloc region is not tagged as such
  3082       // outside a GC operation
  3083       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  3085       if (alloc_region->in_collection_set() ||
  3086           alloc_region->top() == alloc_region->end() ||
  3087           alloc_region->top() == alloc_region->bottom() ||
  3088           alloc_region->isHumongous()) {
  3089         // we will discard the current GC alloc region if
  3090         // * it's in the collection set (it can happen!),
  3091         // * it's already full (no point in using it),
  3092         // * it's empty (this means that it was emptied during
  3093         // a cleanup and it should be on the free list now), or
  3094         // * it's humongous (this means that it was emptied
  3095         // during a cleanup and was added to the free list, but
  3096         // has been subseqently used to allocate a humongous
  3097         // object that may be less than the region size).
  3099         alloc_region = NULL;
  3103     if (alloc_region == NULL) {
  3104       // we will get a new GC alloc region
  3105       alloc_region = newAllocRegionWithExpansion(ap, 0);
  3106     } else {
  3107       // the region was retained from the last collection
  3108       ++_gc_alloc_region_counts[ap];
  3109       if (G1PrintHeapRegions) {
  3110         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
  3111                                "top "PTR_FORMAT,
  3112                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
  3116     if (alloc_region != NULL) {
  3117       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3118       set_gc_alloc_region(ap, alloc_region);
  3121     assert(_gc_alloc_regions[ap] == NULL ||
  3122            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3123            "the GC alloc region should be tagged as such");
  3124     assert(_gc_alloc_regions[ap] == NULL ||
  3125            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3126            "the GC alloc region should be the same as the GC alloc list head");
  3128   // Set alternative regions for allocation purposes that have reached
  3129   // their limit.
  3130   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3131     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3132     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3133       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3136   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3139 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3140   // We keep a separate list of all regions that have been alloc regions in
  3141   // the current collection pause. Forget that now. This method will
  3142   // untag the GC alloc regions and tear down the GC alloc region
  3143   // list. It's desirable that no regions are tagged as GC alloc
  3144   // outside GCs.
  3145   forget_alloc_region_list();
  3147   // The current alloc regions contain objs that have survived
  3148   // collection. Make them no longer GC alloc regions.
  3149   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3150     HeapRegion* r = _gc_alloc_regions[ap];
  3151     _retained_gc_alloc_regions[ap] = NULL;
  3152     _gc_alloc_region_counts[ap] = 0;
  3154     if (r != NULL) {
  3155       // we retain nothing on _gc_alloc_regions between GCs
  3156       set_gc_alloc_region(ap, NULL);
  3158       if (r->is_empty()) {
  3159         // we didn't actually allocate anything in it; let's just put
  3160         // it on the free list
  3161         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  3162         r->set_zero_fill_complete();
  3163         put_free_region_on_list_locked(r);
  3164       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3165         // retain it so that we can use it at the beginning of the next GC
  3166         _retained_gc_alloc_regions[ap] = r;
  3172 #ifndef PRODUCT
  3173 // Useful for debugging
  3175 void G1CollectedHeap::print_gc_alloc_regions() {
  3176   gclog_or_tty->print_cr("GC alloc regions");
  3177   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3178     HeapRegion* r = _gc_alloc_regions[ap];
  3179     if (r == NULL) {
  3180       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3181     } else {
  3182       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3183                              ap, r->bottom(), r->used());
  3187 #endif // PRODUCT
  3189 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3190   _drain_in_progress = false;
  3191   set_evac_failure_closure(cl);
  3192   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3195 void G1CollectedHeap::finalize_for_evac_failure() {
  3196   assert(_evac_failure_scan_stack != NULL &&
  3197          _evac_failure_scan_stack->length() == 0,
  3198          "Postcondition");
  3199   assert(!_drain_in_progress, "Postcondition");
  3200   delete _evac_failure_scan_stack;
  3201   _evac_failure_scan_stack = NULL;
  3206 // *** Sequential G1 Evacuation
  3208 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3209   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3210   // let the caller handle alloc failure
  3211   if (alloc_region == NULL) return NULL;
  3212   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3213          "Either the object is humongous or the region isn't");
  3214   HeapWord* block = alloc_region->allocate(word_size);
  3215   if (block == NULL) {
  3216     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3218   return block;
  3221 class G1IsAliveClosure: public BoolObjectClosure {
  3222   G1CollectedHeap* _g1;
  3223 public:
  3224   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3225   void do_object(oop p) { assert(false, "Do not call."); }
  3226   bool do_object_b(oop p) {
  3227     // It is reachable if it is outside the collection set, or is inside
  3228     // and forwarded.
  3230 #ifdef G1_DEBUG
  3231     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3232                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3233                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3234 #endif // G1_DEBUG
  3236     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3238 };
  3240 class G1KeepAliveClosure: public OopClosure {
  3241   G1CollectedHeap* _g1;
  3242 public:
  3243   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3244   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3245   void do_oop(      oop* p) {
  3246     oop obj = *p;
  3247 #ifdef G1_DEBUG
  3248     if (PrintGC && Verbose) {
  3249       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3250                              p, (void*) obj, (void*) *p);
  3252 #endif // G1_DEBUG
  3254     if (_g1->obj_in_cs(obj)) {
  3255       assert( obj->is_forwarded(), "invariant" );
  3256       *p = obj->forwardee();
  3257 #ifdef G1_DEBUG
  3258       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3259                              (void*) obj, (void*) *p);
  3260 #endif // G1_DEBUG
  3263 };
  3265 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3266 private:
  3267   G1CollectedHeap* _g1;
  3268   G1RemSet* _g1_rem_set;
  3269 public:
  3270   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3271     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3273   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3274   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3275   template <class T> void do_oop_work(T* p) {
  3276     assert(_from->is_in_reserved(p), "paranoia");
  3277     T heap_oop = oopDesc::load_heap_oop(p);
  3278     if (!oopDesc::is_null(heap_oop) && !_from->is_survivor()) {
  3279       _g1_rem_set->par_write_ref(_from, p, 0);
  3282 };
  3284 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3285 private:
  3286   G1CollectedHeap* _g1;
  3287   DirtyCardQueue *_dcq;
  3288   CardTableModRefBS* _ct_bs;
  3290 public:
  3291   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3292     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3294   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3295   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3296   template <class T> void do_oop_work(T* p) {
  3297     assert(_from->is_in_reserved(p), "paranoia");
  3298     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3299         !_from->is_survivor()) {
  3300       size_t card_index = _ct_bs->index_for(p);
  3301       if (_ct_bs->mark_card_deferred(card_index)) {
  3302         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3306 };
  3310 class RemoveSelfPointerClosure: public ObjectClosure {
  3311 private:
  3312   G1CollectedHeap* _g1;
  3313   ConcurrentMark* _cm;
  3314   HeapRegion* _hr;
  3315   size_t _prev_marked_bytes;
  3316   size_t _next_marked_bytes;
  3317   OopsInHeapRegionClosure *_cl;
  3318 public:
  3319   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3320     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3321     _next_marked_bytes(0), _cl(cl) {}
  3323   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3324   size_t next_marked_bytes() { return _next_marked_bytes; }
  3326   // The original idea here was to coalesce evacuated and dead objects.
  3327   // However that caused complications with the block offset table (BOT).
  3328   // In particular if there were two TLABs, one of them partially refined.
  3329   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3330   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3331   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3332   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3333   // would point into middle of the filler object.
  3334   //
  3335   // The current approach is to not coalesce and leave the BOT contents intact.
  3336   void do_object(oop obj) {
  3337     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3338       // The object failed to move.
  3339       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3340       _cm->markPrev(obj);
  3341       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3342       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3343       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3344         _cm->markAndGrayObjectIfNecessary(obj);
  3346       obj->set_mark(markOopDesc::prototype());
  3347       // While we were processing RSet buffers during the
  3348       // collection, we actually didn't scan any cards on the
  3349       // collection set, since we didn't want to update remebered
  3350       // sets with entries that point into the collection set, given
  3351       // that live objects fromthe collection set are about to move
  3352       // and such entries will be stale very soon. This change also
  3353       // dealt with a reliability issue which involved scanning a
  3354       // card in the collection set and coming across an array that
  3355       // was being chunked and looking malformed. The problem is
  3356       // that, if evacuation fails, we might have remembered set
  3357       // entries missing given that we skipped cards on the
  3358       // collection set. So, we'll recreate such entries now.
  3359       obj->oop_iterate(_cl);
  3360       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3361     } else {
  3362       // The object has been either evacuated or is dead. Fill it with a
  3363       // dummy object.
  3364       MemRegion mr((HeapWord*)obj, obj->size());
  3365       CollectedHeap::fill_with_object(mr);
  3366       _cm->clearRangeBothMaps(mr);
  3369 };
  3371 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3372   UpdateRSetImmediate immediate_update(_g1h);
  3373   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3374   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3375   OopsInHeapRegionClosure *cl;
  3376   if (G1DeferredRSUpdate) {
  3377     cl = &deferred_update;
  3378   } else {
  3379     cl = &immediate_update;
  3381   HeapRegion* cur = g1_policy()->collection_set();
  3382   while (cur != NULL) {
  3383     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3385     RemoveSelfPointerClosure rspc(_g1h, cl);
  3386     if (cur->evacuation_failed()) {
  3387       assert(cur->in_collection_set(), "bad CS");
  3388       cl->set_region(cur);
  3389       cur->object_iterate(&rspc);
  3391       // A number of manipulations to make the TAMS be the current top,
  3392       // and the marked bytes be the ones observed in the iteration.
  3393       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3394         // The comments below are the postconditions achieved by the
  3395         // calls.  Note especially the last such condition, which says that
  3396         // the count of marked bytes has been properly restored.
  3397         cur->note_start_of_marking(false);
  3398         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3399         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3400         // _next_marked_bytes == prev_marked_bytes.
  3401         cur->note_end_of_marking();
  3402         // _prev_top_at_mark_start == top(),
  3403         // _prev_marked_bytes == prev_marked_bytes
  3405       // If there is no mark in progress, we modified the _next variables
  3406       // above needlessly, but harmlessly.
  3407       if (_g1h->mark_in_progress()) {
  3408         cur->note_start_of_marking(false);
  3409         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3410         // _next_marked_bytes == next_marked_bytes.
  3413       // Now make sure the region has the right index in the sorted array.
  3414       g1_policy()->note_change_in_marked_bytes(cur);
  3416     cur = cur->next_in_collection_set();
  3418   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3420   // Now restore saved marks, if any.
  3421   if (_objs_with_preserved_marks != NULL) {
  3422     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3423     assert(_objs_with_preserved_marks->length() ==
  3424            _preserved_marks_of_objs->length(), "Both or none.");
  3425     guarantee(_objs_with_preserved_marks->length() ==
  3426               _preserved_marks_of_objs->length(), "Both or none.");
  3427     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3428       oop obj   = _objs_with_preserved_marks->at(i);
  3429       markOop m = _preserved_marks_of_objs->at(i);
  3430       obj->set_mark(m);
  3432     // Delete the preserved marks growable arrays (allocated on the C heap).
  3433     delete _objs_with_preserved_marks;
  3434     delete _preserved_marks_of_objs;
  3435     _objs_with_preserved_marks = NULL;
  3436     _preserved_marks_of_objs = NULL;
  3440 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3441   _evac_failure_scan_stack->push(obj);
  3444 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3445   assert(_evac_failure_scan_stack != NULL, "precondition");
  3447   while (_evac_failure_scan_stack->length() > 0) {
  3448      oop obj = _evac_failure_scan_stack->pop();
  3449      _evac_failure_closure->set_region(heap_region_containing(obj));
  3450      obj->oop_iterate_backwards(_evac_failure_closure);
  3454 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3455   markOop m = old->mark();
  3456   // forward to self
  3457   assert(!old->is_forwarded(), "precondition");
  3459   old->forward_to(old);
  3460   handle_evacuation_failure_common(old, m);
  3463 oop
  3464 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3465                                                oop old) {
  3466   markOop m = old->mark();
  3467   oop forward_ptr = old->forward_to_atomic(old);
  3468   if (forward_ptr == NULL) {
  3469     // Forward-to-self succeeded.
  3470     if (_evac_failure_closure != cl) {
  3471       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3472       assert(!_drain_in_progress,
  3473              "Should only be true while someone holds the lock.");
  3474       // Set the global evac-failure closure to the current thread's.
  3475       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3476       set_evac_failure_closure(cl);
  3477       // Now do the common part.
  3478       handle_evacuation_failure_common(old, m);
  3479       // Reset to NULL.
  3480       set_evac_failure_closure(NULL);
  3481     } else {
  3482       // The lock is already held, and this is recursive.
  3483       assert(_drain_in_progress, "This should only be the recursive case.");
  3484       handle_evacuation_failure_common(old, m);
  3486     return old;
  3487   } else {
  3488     // Someone else had a place to copy it.
  3489     return forward_ptr;
  3493 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3494   set_evacuation_failed(true);
  3496   preserve_mark_if_necessary(old, m);
  3498   HeapRegion* r = heap_region_containing(old);
  3499   if (!r->evacuation_failed()) {
  3500     r->set_evacuation_failed(true);
  3501     if (G1PrintHeapRegions) {
  3502       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3503                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3504                           r, r->bottom(), r->end());
  3508   push_on_evac_failure_scan_stack(old);
  3510   if (!_drain_in_progress) {
  3511     // prevent recursion in copy_to_survivor_space()
  3512     _drain_in_progress = true;
  3513     drain_evac_failure_scan_stack();
  3514     _drain_in_progress = false;
  3518 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3519   if (m != markOopDesc::prototype()) {
  3520     if (_objs_with_preserved_marks == NULL) {
  3521       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3522       _objs_with_preserved_marks =
  3523         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3524       _preserved_marks_of_objs =
  3525         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3527     _objs_with_preserved_marks->push(obj);
  3528     _preserved_marks_of_objs->push(m);
  3532 // *** Parallel G1 Evacuation
  3534 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3535                                                   size_t word_size) {
  3536   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3537   // let the caller handle alloc failure
  3538   if (alloc_region == NULL) return NULL;
  3540   HeapWord* block = alloc_region->par_allocate(word_size);
  3541   if (block == NULL) {
  3542     MutexLockerEx x(par_alloc_during_gc_lock(),
  3543                     Mutex::_no_safepoint_check_flag);
  3544     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3546   return block;
  3549 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3550                                             bool par) {
  3551   // Another thread might have obtained alloc_region for the given
  3552   // purpose, and might be attempting to allocate in it, and might
  3553   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3554   // region below until we're sure the last allocation has happened.
  3555   // We ensure this by allocating the remaining space with a garbage
  3556   // object.
  3557   if (par) par_allocate_remaining_space(alloc_region);
  3558   // Now we can do the post-GC stuff on the region.
  3559   alloc_region->note_end_of_copying();
  3560   g1_policy()->record_after_bytes(alloc_region->used());
  3563 HeapWord*
  3564 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3565                                          HeapRegion*    alloc_region,
  3566                                          bool           par,
  3567                                          size_t         word_size) {
  3568   HeapWord* block = NULL;
  3569   // In the parallel case, a previous thread to obtain the lock may have
  3570   // already assigned a new gc_alloc_region.
  3571   if (alloc_region != _gc_alloc_regions[purpose]) {
  3572     assert(par, "But should only happen in parallel case.");
  3573     alloc_region = _gc_alloc_regions[purpose];
  3574     if (alloc_region == NULL) return NULL;
  3575     block = alloc_region->par_allocate(word_size);
  3576     if (block != NULL) return block;
  3577     // Otherwise, continue; this new region is empty, too.
  3579   assert(alloc_region != NULL, "We better have an allocation region");
  3580   retire_alloc_region(alloc_region, par);
  3582   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3583     // Cannot allocate more regions for the given purpose.
  3584     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3585     // Is there an alternative?
  3586     if (purpose != alt_purpose) {
  3587       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3588       // Has not the alternative region been aliased?
  3589       if (alloc_region != alt_region && alt_region != NULL) {
  3590         // Try to allocate in the alternative region.
  3591         if (par) {
  3592           block = alt_region->par_allocate(word_size);
  3593         } else {
  3594           block = alt_region->allocate(word_size);
  3596         // Make an alias.
  3597         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3598         if (block != NULL) {
  3599           return block;
  3601         retire_alloc_region(alt_region, par);
  3603       // Both the allocation region and the alternative one are full
  3604       // and aliased, replace them with a new allocation region.
  3605       purpose = alt_purpose;
  3606     } else {
  3607       set_gc_alloc_region(purpose, NULL);
  3608       return NULL;
  3612   // Now allocate a new region for allocation.
  3613   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3615   // let the caller handle alloc failure
  3616   if (alloc_region != NULL) {
  3618     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3619     assert(alloc_region->saved_mark_at_top(),
  3620            "Mark should have been saved already.");
  3621     // We used to assert that the region was zero-filled here, but no
  3622     // longer.
  3624     // This must be done last: once it's installed, other regions may
  3625     // allocate in it (without holding the lock.)
  3626     set_gc_alloc_region(purpose, alloc_region);
  3628     if (par) {
  3629       block = alloc_region->par_allocate(word_size);
  3630     } else {
  3631       block = alloc_region->allocate(word_size);
  3633     // Caller handles alloc failure.
  3634   } else {
  3635     // This sets other apis using the same old alloc region to NULL, also.
  3636     set_gc_alloc_region(purpose, NULL);
  3638   return block;  // May be NULL.
  3641 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3642   HeapWord* block = NULL;
  3643   size_t free_words;
  3644   do {
  3645     free_words = r->free()/HeapWordSize;
  3646     // If there's too little space, no one can allocate, so we're done.
  3647     if (free_words < (size_t)oopDesc::header_size()) return;
  3648     // Otherwise, try to claim it.
  3649     block = r->par_allocate(free_words);
  3650   } while (block == NULL);
  3651   fill_with_object(block, free_words);
  3654 #ifndef PRODUCT
  3655 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3656   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3657   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3658   return true;
  3660 #endif // PRODUCT
  3662 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3663   : _g1h(g1h),
  3664     _refs(g1h->task_queue(queue_num)),
  3665     _dcq(&g1h->dirty_card_queue_set()),
  3666     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3667     _g1_rem(g1h->g1_rem_set()),
  3668     _hash_seed(17), _queue_num(queue_num),
  3669     _term_attempts(0),
  3670     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  3671     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  3672     _age_table(false),
  3673 #if G1_DETAILED_STATS
  3674     _pushes(0), _pops(0), _steals(0),
  3675     _steal_attempts(0),  _overflow_pushes(0),
  3676 #endif
  3677     _strong_roots_time(0), _term_time(0),
  3678     _alloc_buffer_waste(0), _undo_waste(0)
  3680   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3681   // we "sacrifice" entry 0 to keep track of surviving bytes for
  3682   // non-young regions (where the age is -1)
  3683   // We also add a few elements at the beginning and at the end in
  3684   // an attempt to eliminate cache contention
  3685   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3686   size_t array_length = PADDING_ELEM_NUM +
  3687                         real_length +
  3688                         PADDING_ELEM_NUM;
  3689   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3690   if (_surviving_young_words_base == NULL)
  3691     vm_exit_out_of_memory(array_length * sizeof(size_t),
  3692                           "Not enough space for young surv histo.");
  3693   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3694   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3696   _overflowed_refs = new OverflowQueue(10);
  3698   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  3699   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  3701   _start = os::elapsedTime();
  3704 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3705   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3706   _par_scan_state(par_scan_state) { }
  3708 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  3709   // This is called _after_ do_oop_work has been called, hence after
  3710   // the object has been relocated to its new location and *p points
  3711   // to its new location.
  3713   T heap_oop = oopDesc::load_heap_oop(p);
  3714   if (!oopDesc::is_null(heap_oop)) {
  3715     oop obj = oopDesc::decode_heap_oop(heap_oop);
  3716     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  3717            "shouldn't still be in the CSet if evacuation didn't fail.");
  3718     HeapWord* addr = (HeapWord*)obj;
  3719     if (_g1->is_in_g1_reserved(addr))
  3720       _cm->grayRoot(oop(addr));
  3724 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3725   size_t    word_sz = old->size();
  3726   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3727   // +1 to make the -1 indexes valid...
  3728   int       young_index = from_region->young_index_in_cset()+1;
  3729   assert( (from_region->is_young() && young_index > 0) ||
  3730           (!from_region->is_young() && young_index == 0), "invariant" );
  3731   G1CollectorPolicy* g1p = _g1->g1_policy();
  3732   markOop m = old->mark();
  3733   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3734                                            : m->age();
  3735   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3736                                                              word_sz);
  3737   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3738   oop       obj     = oop(obj_ptr);
  3740   if (obj_ptr == NULL) {
  3741     // This will either forward-to-self, or detect that someone else has
  3742     // installed a forwarding pointer.
  3743     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3744     return _g1->handle_evacuation_failure_par(cl, old);
  3747   // We're going to allocate linearly, so might as well prefetch ahead.
  3748   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3750   oop forward_ptr = old->forward_to_atomic(obj);
  3751   if (forward_ptr == NULL) {
  3752     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3753     if (g1p->track_object_age(alloc_purpose)) {
  3754       // We could simply do obj->incr_age(). However, this causes a
  3755       // performance issue. obj->incr_age() will first check whether
  3756       // the object has a displaced mark by checking its mark word;
  3757       // getting the mark word from the new location of the object
  3758       // stalls. So, given that we already have the mark word and we
  3759       // are about to install it anyway, it's better to increase the
  3760       // age on the mark word, when the object does not have a
  3761       // displaced mark word. We're not expecting many objects to have
  3762       // a displaced marked word, so that case is not optimized
  3763       // further (it could be...) and we simply call obj->incr_age().
  3765       if (m->has_displaced_mark_helper()) {
  3766         // in this case, we have to install the mark word first,
  3767         // otherwise obj looks to be forwarded (the old mark word,
  3768         // which contains the forward pointer, was copied)
  3769         obj->set_mark(m);
  3770         obj->incr_age();
  3771       } else {
  3772         m = m->incr_age();
  3773         obj->set_mark(m);
  3775       _par_scan_state->age_table()->add(obj, word_sz);
  3776     } else {
  3777       obj->set_mark(m);
  3780     // preserve "next" mark bit
  3781     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3782       if (!use_local_bitmaps ||
  3783           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3784         // if we couldn't mark it on the local bitmap (this happens when
  3785         // the object was not allocated in the GCLab), we have to bite
  3786         // the bullet and do the standard parallel mark
  3787         _cm->markAndGrayObjectIfNecessary(obj);
  3789 #if 1
  3790       if (_g1->isMarkedNext(old)) {
  3791         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  3793 #endif
  3796     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  3797     surv_young_words[young_index] += word_sz;
  3799     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  3800       arrayOop(old)->set_length(0);
  3801       oop* old_p = set_partial_array_mask(old);
  3802       _par_scan_state->push_on_queue(old_p);
  3803     } else {
  3804       // No point in using the slower heap_region_containing() method,
  3805       // given that we know obj is in the heap.
  3806       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  3807       obj->oop_iterate_backwards(_scanner);
  3809   } else {
  3810     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  3811     obj = forward_ptr;
  3813   return obj;
  3816 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
  3817 template <class T>
  3818 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
  3819 ::do_oop_work(T* p) {
  3820   oop obj = oopDesc::load_decode_heap_oop(p);
  3821   assert(barrier != G1BarrierRS || obj != NULL,
  3822          "Precondition: G1BarrierRS implies obj is nonNull");
  3824   // here the null check is implicit in the cset_fast_test() test
  3825   if (_g1->in_cset_fast_test(obj)) {
  3826 #if G1_REM_SET_LOGGING
  3827     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  3828                            "into CS.", p, (void*) obj);
  3829 #endif
  3830     if (obj->is_forwarded()) {
  3831       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  3832     } else {
  3833       oop copy_oop = copy_to_survivor_space(obj);
  3834       oopDesc::encode_store_heap_oop(p, copy_oop);
  3836     // When scanning the RS, we only care about objs in CS.
  3837     if (barrier == G1BarrierRS) {
  3838       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3842   if (barrier == G1BarrierEvac && obj != NULL) {
  3843     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3846   if (do_gen_barrier && obj != NULL) {
  3847     par_do_barrier(p);
  3851 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  3852 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  3854 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  3855   assert(has_partial_array_mask(p), "invariant");
  3856   oop old = clear_partial_array_mask(p);
  3857   assert(old->is_objArray(), "must be obj array");
  3858   assert(old->is_forwarded(), "must be forwarded");
  3859   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  3861   objArrayOop obj = objArrayOop(old->forwardee());
  3862   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  3863   // Process ParGCArrayScanChunk elements now
  3864   // and push the remainder back onto queue
  3865   int start     = arrayOop(old)->length();
  3866   int end       = obj->length();
  3867   int remainder = end - start;
  3868   assert(start <= end, "just checking");
  3869   if (remainder > 2 * ParGCArrayScanChunk) {
  3870     // Test above combines last partial chunk with a full chunk
  3871     end = start + ParGCArrayScanChunk;
  3872     arrayOop(old)->set_length(end);
  3873     // Push remainder.
  3874     oop* old_p = set_partial_array_mask(old);
  3875     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  3876     _par_scan_state->push_on_queue(old_p);
  3877   } else {
  3878     // Restore length so that the heap remains parsable in
  3879     // case of evacuation failure.
  3880     arrayOop(old)->set_length(end);
  3882   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  3883   // process our set of indices (include header in first chunk)
  3884   obj->oop_iterate_range(&_scanner, start, end);
  3887 class G1ParEvacuateFollowersClosure : public VoidClosure {
  3888 protected:
  3889   G1CollectedHeap*              _g1h;
  3890   G1ParScanThreadState*         _par_scan_state;
  3891   RefToScanQueueSet*            _queues;
  3892   ParallelTaskTerminator*       _terminator;
  3894   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  3895   RefToScanQueueSet*      queues()         { return _queues; }
  3896   ParallelTaskTerminator* terminator()     { return _terminator; }
  3898 public:
  3899   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  3900                                 G1ParScanThreadState* par_scan_state,
  3901                                 RefToScanQueueSet* queues,
  3902                                 ParallelTaskTerminator* terminator)
  3903     : _g1h(g1h), _par_scan_state(par_scan_state),
  3904       _queues(queues), _terminator(terminator) {}
  3906   void do_void() {
  3907     G1ParScanThreadState* pss = par_scan_state();
  3908     while (true) {
  3909       pss->trim_queue();
  3910       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  3912       StarTask stolen_task;
  3913       if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  3914         IF_G1_DETAILED_STATS(pss->note_steal());
  3916         // slightly paranoid tests; I'm trying to catch potential
  3917         // problems before we go into push_on_queue to know where the
  3918         // problem is coming from
  3919         assert((oop*)stolen_task != NULL, "Error");
  3920         if (stolen_task.is_narrow()) {
  3921           assert(UseCompressedOops, "Error");
  3922           narrowOop* p = (narrowOop*) stolen_task;
  3923           assert(has_partial_array_mask(p) ||
  3924                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "Error");
  3925           pss->push_on_queue(p);
  3926         } else {
  3927           oop* p = (oop*) stolen_task;
  3928           assert(has_partial_array_mask(p) || _g1h->is_in_g1_reserved(*p), "Error");
  3929           pss->push_on_queue(p);
  3931         continue;
  3933       pss->start_term_time();
  3934       if (terminator()->offer_termination()) break;
  3935       pss->end_term_time();
  3937     pss->end_term_time();
  3938     pss->retire_alloc_buffers();
  3940 };
  3942 class G1ParTask : public AbstractGangTask {
  3943 protected:
  3944   G1CollectedHeap*       _g1h;
  3945   RefToScanQueueSet      *_queues;
  3946   ParallelTaskTerminator _terminator;
  3947   int _n_workers;
  3949   Mutex _stats_lock;
  3950   Mutex* stats_lock() { return &_stats_lock; }
  3952   size_t getNCards() {
  3953     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  3954       / G1BlockOffsetSharedArray::N_bytes;
  3957 public:
  3958   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  3959     : AbstractGangTask("G1 collection"),
  3960       _g1h(g1h),
  3961       _queues(task_queues),
  3962       _terminator(workers, _queues),
  3963       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  3964       _n_workers(workers)
  3965   {}
  3967   RefToScanQueueSet* queues() { return _queues; }
  3969   RefToScanQueue *work_queue(int i) {
  3970     return queues()->queue(i);
  3973   void work(int i) {
  3974     if (i >= _n_workers) return;  // no work needed this round
  3975     ResourceMark rm;
  3976     HandleMark   hm;
  3978     G1ParScanThreadState            pss(_g1h, i);
  3979     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  3980     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  3981     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  3983     pss.set_evac_closure(&scan_evac_cl);
  3984     pss.set_evac_failure_closure(&evac_failure_cl);
  3985     pss.set_partial_scan_closure(&partial_scan_cl);
  3987     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  3988     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  3989     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  3990     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  3992     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  3993     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  3994     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  3996     OopsInHeapRegionClosure        *scan_root_cl;
  3997     OopsInHeapRegionClosure        *scan_perm_cl;
  3999     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4000       scan_root_cl = &scan_mark_root_cl;
  4001       scan_perm_cl = &scan_mark_perm_cl;
  4002     } else {
  4003       scan_root_cl = &only_scan_root_cl;
  4004       scan_perm_cl = &only_scan_perm_cl;
  4007     pss.start_strong_roots();
  4008     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4009                                   SharedHeap::SO_AllClasses,
  4010                                   scan_root_cl,
  4011                                   &push_heap_rs_cl,
  4012                                   scan_perm_cl,
  4013                                   i);
  4014     pss.end_strong_roots();
  4016       double start = os::elapsedTime();
  4017       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4018       evac.do_void();
  4019       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4020       double term_ms = pss.term_time()*1000.0;
  4021       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4022       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4024     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4025     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4027     // Clean up any par-expanded rem sets.
  4028     HeapRegionRemSet::par_cleanup();
  4030     MutexLocker x(stats_lock());
  4031     if (ParallelGCVerbose) {
  4032       gclog_or_tty->print("Thread %d complete:\n", i);
  4033 #if G1_DETAILED_STATS
  4034       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4035                           pss.pushes(),
  4036                           pss.pops(),
  4037                           pss.overflow_pushes(),
  4038                           pss.steals(),
  4039                           pss.steal_attempts());
  4040 #endif
  4041       double elapsed      = pss.elapsed();
  4042       double strong_roots = pss.strong_roots_time();
  4043       double term         = pss.term_time();
  4044       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4045                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4046                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4047                           elapsed * 1000.0,
  4048                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4049                           term * 1000.0, (term*100.0/elapsed),
  4050                           pss.term_attempts());
  4051       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4052       gclog_or_tty->print("  Waste: %8dK\n"
  4053                  "    Alloc Buffer: %8dK\n"
  4054                  "    Undo: %8dK\n",
  4055                  (total_waste * HeapWordSize) / K,
  4056                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4057                  (pss.undo_waste() * HeapWordSize) / K);
  4060     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4061     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4063 };
  4065 // *** Common G1 Evacuation Stuff
  4067 void
  4068 G1CollectedHeap::
  4069 g1_process_strong_roots(bool collecting_perm_gen,
  4070                         SharedHeap::ScanningOption so,
  4071                         OopClosure* scan_non_heap_roots,
  4072                         OopsInHeapRegionClosure* scan_rs,
  4073                         OopsInGenClosure* scan_perm,
  4074                         int worker_i) {
  4075   // First scan the strong roots, including the perm gen.
  4076   double ext_roots_start = os::elapsedTime();
  4077   double closure_app_time_sec = 0.0;
  4079   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4080   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4081   buf_scan_perm.set_generation(perm_gen());
  4083   // Walk the code cache w/o buffering, because StarTask cannot handle
  4084   // unaligned oop locations.
  4085   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4087   process_strong_roots(false, // no scoping; this is parallel code
  4088                        collecting_perm_gen, so,
  4089                        &buf_scan_non_heap_roots,
  4090                        &eager_scan_code_roots,
  4091                        &buf_scan_perm);
  4093   // Finish up any enqueued closure apps.
  4094   buf_scan_non_heap_roots.done();
  4095   buf_scan_perm.done();
  4096   double ext_roots_end = os::elapsedTime();
  4097   g1_policy()->reset_obj_copy_time(worker_i);
  4098   double obj_copy_time_sec =
  4099     buf_scan_non_heap_roots.closure_app_seconds() +
  4100     buf_scan_perm.closure_app_seconds();
  4101   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4102   double ext_root_time_ms =
  4103     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4104   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4106   // Scan strong roots in mark stack.
  4107   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4108     concurrent_mark()->oops_do(scan_non_heap_roots);
  4110   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4111   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4113   // XXX What should this be doing in the parallel case?
  4114   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4115   // Now scan the complement of the collection set.
  4116   if (scan_rs != NULL) {
  4117     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4119   // Finish with the ref_processor roots.
  4120   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4121     ref_processor()->oops_do(scan_non_heap_roots);
  4123   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4124   _process_strong_tasks->all_tasks_completed();
  4127 void
  4128 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4129                                        OopClosure* non_root_closure) {
  4130   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4131   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4135 class SaveMarksClosure: public HeapRegionClosure {
  4136 public:
  4137   bool doHeapRegion(HeapRegion* r) {
  4138     r->save_marks();
  4139     return false;
  4141 };
  4143 void G1CollectedHeap::save_marks() {
  4144   if (ParallelGCThreads == 0) {
  4145     SaveMarksClosure sm;
  4146     heap_region_iterate(&sm);
  4148   // We do this even in the parallel case
  4149   perm_gen()->save_marks();
  4152 void G1CollectedHeap::evacuate_collection_set() {
  4153   set_evacuation_failed(false);
  4155   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4156   concurrent_g1_refine()->set_use_cache(false);
  4157   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4159   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4160   set_par_threads(n_workers);
  4161   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4163   init_for_evac_failure(NULL);
  4165   rem_set()->prepare_for_younger_refs_iterate(true);
  4167   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4168   double start_par = os::elapsedTime();
  4169   if (ParallelGCThreads > 0) {
  4170     // The individual threads will set their evac-failure closures.
  4171     StrongRootsScope srs(this);
  4172     workers()->run_task(&g1_par_task);
  4173   } else {
  4174     StrongRootsScope srs(this);
  4175     g1_par_task.work(0);
  4178   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4179   g1_policy()->record_par_time(par_time);
  4180   set_par_threads(0);
  4181   // Is this the right thing to do here?  We don't save marks
  4182   // on individual heap regions when we allocate from
  4183   // them in parallel, so this seems like the correct place for this.
  4184   retire_all_alloc_regions();
  4186     G1IsAliveClosure is_alive(this);
  4187     G1KeepAliveClosure keep_alive(this);
  4188     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4190   release_gc_alloc_regions(false /* totally */);
  4191   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4193   concurrent_g1_refine()->clear_hot_cache();
  4194   concurrent_g1_refine()->set_use_cache(true);
  4196   finalize_for_evac_failure();
  4198   // Must do this before removing self-forwarding pointers, which clears
  4199   // the per-region evac-failure flags.
  4200   concurrent_mark()->complete_marking_in_collection_set();
  4202   if (evacuation_failed()) {
  4203     remove_self_forwarding_pointers();
  4204     if (PrintGCDetails) {
  4205       gclog_or_tty->print(" (evacuation failed)");
  4206     } else if (PrintGC) {
  4207       gclog_or_tty->print("--");
  4211   if (G1DeferredRSUpdate) {
  4212     RedirtyLoggedCardTableEntryFastClosure redirty;
  4213     dirty_card_queue_set().set_closure(&redirty);
  4214     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4216     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4217     dcq.merge_bufferlists(&dirty_card_queue_set());
  4218     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4220   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4223 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4224   size_t pre_used = 0;
  4225   size_t cleared_h_regions = 0;
  4226   size_t freed_regions = 0;
  4227   UncleanRegionList local_list;
  4229   HeapWord* start = hr->bottom();
  4230   HeapWord* end   = hr->prev_top_at_mark_start();
  4231   size_t used_bytes = hr->used();
  4232   size_t live_bytes = hr->max_live_bytes();
  4233   if (used_bytes > 0) {
  4234     guarantee( live_bytes <= used_bytes, "invariant" );
  4235   } else {
  4236     guarantee( live_bytes == 0, "invariant" );
  4239   size_t garbage_bytes = used_bytes - live_bytes;
  4240   if (garbage_bytes > 0)
  4241     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4243   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4244                    &local_list);
  4245   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4246                           &local_list);
  4249 void
  4250 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4251                                   size_t& pre_used,
  4252                                   size_t& cleared_h_regions,
  4253                                   size_t& freed_regions,
  4254                                   UncleanRegionList* list,
  4255                                   bool par) {
  4256   pre_used += hr->used();
  4257   if (hr->isHumongous()) {
  4258     assert(hr->startsHumongous(),
  4259            "Only the start of a humongous region should be freed.");
  4260     int ind = _hrs->find(hr);
  4261     assert(ind != -1, "Should have an index.");
  4262     // Clear the start region.
  4263     hr->hr_clear(par, true /*clear_space*/);
  4264     list->insert_before_head(hr);
  4265     cleared_h_regions++;
  4266     freed_regions++;
  4267     // Clear any continued regions.
  4268     ind++;
  4269     while ((size_t)ind < n_regions()) {
  4270       HeapRegion* hrc = _hrs->at(ind);
  4271       if (!hrc->continuesHumongous()) break;
  4272       // Otherwise, does continue the H region.
  4273       assert(hrc->humongous_start_region() == hr, "Huh?");
  4274       hrc->hr_clear(par, true /*clear_space*/);
  4275       cleared_h_regions++;
  4276       freed_regions++;
  4277       list->insert_before_head(hrc);
  4278       ind++;
  4280   } else {
  4281     hr->hr_clear(par, true /*clear_space*/);
  4282     list->insert_before_head(hr);
  4283     freed_regions++;
  4284     // If we're using clear2, this should not be enabled.
  4285     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4289 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4290                                               size_t cleared_h_regions,
  4291                                               size_t freed_regions,
  4292                                               UncleanRegionList* list) {
  4293   if (list != NULL && list->sz() > 0) {
  4294     prepend_region_list_on_unclean_list(list);
  4296   // Acquire a lock, if we're parallel, to update possibly-shared
  4297   // variables.
  4298   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4300     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4301     _summary_bytes_used -= pre_used;
  4302     _num_humongous_regions -= (int) cleared_h_regions;
  4303     _free_regions += freed_regions;
  4308 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4309   while (list != NULL) {
  4310     guarantee( list->is_young(), "invariant" );
  4312     HeapWord* bottom = list->bottom();
  4313     HeapWord* end = list->end();
  4314     MemRegion mr(bottom, end);
  4315     ct_bs->dirty(mr);
  4317     list = list->get_next_young_region();
  4322 class G1ParCleanupCTTask : public AbstractGangTask {
  4323   CardTableModRefBS* _ct_bs;
  4324   G1CollectedHeap* _g1h;
  4325   HeapRegion* volatile _su_head;
  4326 public:
  4327   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4328                      G1CollectedHeap* g1h,
  4329                      HeapRegion* survivor_list) :
  4330     AbstractGangTask("G1 Par Cleanup CT Task"),
  4331     _ct_bs(ct_bs),
  4332     _g1h(g1h),
  4333     _su_head(survivor_list)
  4334   { }
  4336   void work(int i) {
  4337     HeapRegion* r;
  4338     while (r = _g1h->pop_dirty_cards_region()) {
  4339       clear_cards(r);
  4341     // Redirty the cards of the survivor regions.
  4342     dirty_list(&this->_su_head);
  4345   void clear_cards(HeapRegion* r) {
  4346     // Cards for Survivor regions will be dirtied later.
  4347     if (!r->is_survivor()) {
  4348       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4352   void dirty_list(HeapRegion* volatile * head_ptr) {
  4353     HeapRegion* head;
  4354     do {
  4355       // Pop region off the list.
  4356       head = *head_ptr;
  4357       if (head != NULL) {
  4358         HeapRegion* r = (HeapRegion*)
  4359           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  4360         if (r == head) {
  4361           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  4362           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  4365     } while (*head_ptr != NULL);
  4367 };
  4370 #ifndef PRODUCT
  4371 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4372   CardTableModRefBS* _ct_bs;
  4373 public:
  4374   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  4375     : _ct_bs(ct_bs)
  4376   { }
  4377   virtual bool doHeapRegion(HeapRegion* r)
  4379     MemRegion mr(r->bottom(), r->end());
  4380     if (r->is_survivor()) {
  4381       _ct_bs->verify_dirty_region(mr);
  4382     } else {
  4383       _ct_bs->verify_clean_region(mr);
  4385     return false;
  4387 };
  4388 #endif
  4390 void G1CollectedHeap::cleanUpCardTable() {
  4391   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4392   double start = os::elapsedTime();
  4394   // Iterate over the dirty cards region list.
  4395   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  4396                                   _young_list->first_survivor_region());
  4398   if (ParallelGCThreads > 0) {
  4399     set_par_threads(workers()->total_workers());
  4400     workers()->run_task(&cleanup_task);
  4401     set_par_threads(0);
  4402   } else {
  4403     while (_dirty_cards_region_list) {
  4404       HeapRegion* r = _dirty_cards_region_list;
  4405       cleanup_task.clear_cards(r);
  4406       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4407       if (_dirty_cards_region_list == r) {
  4408         // The last region.
  4409         _dirty_cards_region_list = NULL;
  4411       r->set_next_dirty_cards_region(NULL);
  4413     // now, redirty the cards of the survivor regions
  4414     // (it seemed faster to do it this way, instead of iterating over
  4415     // all regions and then clearing / dirtying as appropriate)
  4416     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4419   double elapsed = os::elapsedTime() - start;
  4420   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4421 #ifndef PRODUCT
  4422   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4423     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  4424     heap_region_iterate(&cleanup_verifier);
  4426 #endif
  4429 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4430   if (g1_policy()->should_do_collection_pause(word_size)) {
  4431     do_collection_pause();
  4435 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4436   double young_time_ms     = 0.0;
  4437   double non_young_time_ms = 0.0;
  4439   // Since the collection set is a superset of the the young list,
  4440   // all we need to do to clear the young list is clear its
  4441   // head and length, and unlink any young regions in the code below
  4442   _young_list->clear();
  4444   G1CollectorPolicy* policy = g1_policy();
  4446   double start_sec = os::elapsedTime();
  4447   bool non_young = true;
  4449   HeapRegion* cur = cs_head;
  4450   int age_bound = -1;
  4451   size_t rs_lengths = 0;
  4453   while (cur != NULL) {
  4454     if (non_young) {
  4455       if (cur->is_young()) {
  4456         double end_sec = os::elapsedTime();
  4457         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4458         non_young_time_ms += elapsed_ms;
  4460         start_sec = os::elapsedTime();
  4461         non_young = false;
  4463     } else {
  4464       if (!cur->is_on_free_list()) {
  4465         double end_sec = os::elapsedTime();
  4466         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4467         young_time_ms += elapsed_ms;
  4469         start_sec = os::elapsedTime();
  4470         non_young = true;
  4474     rs_lengths += cur->rem_set()->occupied();
  4476     HeapRegion* next = cur->next_in_collection_set();
  4477     assert(cur->in_collection_set(), "bad CS");
  4478     cur->set_next_in_collection_set(NULL);
  4479     cur->set_in_collection_set(false);
  4481     if (cur->is_young()) {
  4482       int index = cur->young_index_in_cset();
  4483       guarantee( index != -1, "invariant" );
  4484       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4485       size_t words_survived = _surviving_young_words[index];
  4486       cur->record_surv_words_in_group(words_survived);
  4488       // At this point the we have 'popped' cur from the collection set
  4489       // (linked via next_in_collection_set()) but it is still in the
  4490       // young list (linked via next_young_region()). Clear the
  4491       // _next_young_region field.
  4492       cur->set_next_young_region(NULL);
  4493     } else {
  4494       int index = cur->young_index_in_cset();
  4495       guarantee( index == -1, "invariant" );
  4498     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4499             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4500             "invariant" );
  4502     if (!cur->evacuation_failed()) {
  4503       // And the region is empty.
  4504       assert(!cur->is_empty(),
  4505              "Should not have empty regions in a CS.");
  4506       free_region(cur);
  4507     } else {
  4508       cur->uninstall_surv_rate_group();
  4509       if (cur->is_young())
  4510         cur->set_young_index_in_cset(-1);
  4511       cur->set_not_young();
  4512       cur->set_evacuation_failed(false);
  4514     cur = next;
  4517   policy->record_max_rs_lengths(rs_lengths);
  4518   policy->cset_regions_freed();
  4520   double end_sec = os::elapsedTime();
  4521   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4522   if (non_young)
  4523     non_young_time_ms += elapsed_ms;
  4524   else
  4525     young_time_ms += elapsed_ms;
  4527   policy->record_young_free_cset_time_ms(young_time_ms);
  4528   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4531 // This routine is similar to the above but does not record
  4532 // any policy statistics or update free lists; we are abandoning
  4533 // the current incremental collection set in preparation of a
  4534 // full collection. After the full GC we will start to build up
  4535 // the incremental collection set again.
  4536 // This is only called when we're doing a full collection
  4537 // and is immediately followed by the tearing down of the young list.
  4539 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  4540   HeapRegion* cur = cs_head;
  4542   while (cur != NULL) {
  4543     HeapRegion* next = cur->next_in_collection_set();
  4544     assert(cur->in_collection_set(), "bad CS");
  4545     cur->set_next_in_collection_set(NULL);
  4546     cur->set_in_collection_set(false);
  4547     cur->set_young_index_in_cset(-1);
  4548     cur = next;
  4552 HeapRegion*
  4553 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4554   assert(ZF_mon->owned_by_self(), "Precondition");
  4555   HeapRegion* res = pop_unclean_region_list_locked();
  4556   if (res != NULL) {
  4557     assert(!res->continuesHumongous() &&
  4558            res->zero_fill_state() != HeapRegion::Allocated,
  4559            "Only free regions on unclean list.");
  4560     if (zero_filled) {
  4561       res->ensure_zero_filled_locked();
  4562       res->set_zero_fill_allocated();
  4565   return res;
  4568 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4569   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4570   return alloc_region_from_unclean_list_locked(zero_filled);
  4573 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4574   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4575   put_region_on_unclean_list_locked(r);
  4576   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4579 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4580   MutexLockerEx x(Cleanup_mon);
  4581   set_unclean_regions_coming_locked(b);
  4584 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4585   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4586   _unclean_regions_coming = b;
  4587   // Wake up mutator threads that might be waiting for completeCleanup to
  4588   // finish.
  4589   if (!b) Cleanup_mon->notify_all();
  4592 void G1CollectedHeap::wait_for_cleanup_complete() {
  4593   MutexLockerEx x(Cleanup_mon);
  4594   wait_for_cleanup_complete_locked();
  4597 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4598   assert(Cleanup_mon->owned_by_self(), "precondition");
  4599   while (_unclean_regions_coming) {
  4600     Cleanup_mon->wait();
  4604 void
  4605 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4606   assert(ZF_mon->owned_by_self(), "precondition.");
  4607 #ifdef ASSERT
  4608   if (r->is_gc_alloc_region()) {
  4609     ResourceMark rm;
  4610     stringStream region_str;
  4611     print_on(&region_str);
  4612     assert(!r->is_gc_alloc_region(), err_msg("Unexpected GC allocation region: %s",
  4613                                              region_str.as_string()));
  4615 #endif
  4616   _unclean_region_list.insert_before_head(r);
  4619 void
  4620 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4621   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4622   prepend_region_list_on_unclean_list_locked(list);
  4623   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4626 void
  4627 G1CollectedHeap::
  4628 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4629   assert(ZF_mon->owned_by_self(), "precondition.");
  4630   _unclean_region_list.prepend_list(list);
  4633 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4634   assert(ZF_mon->owned_by_self(), "precondition.");
  4635   HeapRegion* res = _unclean_region_list.pop();
  4636   if (res != NULL) {
  4637     // Inform ZF thread that there's a new unclean head.
  4638     if (_unclean_region_list.hd() != NULL && should_zf())
  4639       ZF_mon->notify_all();
  4641   return res;
  4644 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4645   assert(ZF_mon->owned_by_self(), "precondition.");
  4646   return _unclean_region_list.hd();
  4650 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4651   assert(ZF_mon->owned_by_self(), "Precondition");
  4652   HeapRegion* r = peek_unclean_region_list_locked();
  4653   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4654     // Result of below must be equal to "r", since we hold the lock.
  4655     (void)pop_unclean_region_list_locked();
  4656     put_free_region_on_list_locked(r);
  4657     return true;
  4658   } else {
  4659     return false;
  4663 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4664   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4665   return move_cleaned_region_to_free_list_locked();
  4669 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4670   assert(ZF_mon->owned_by_self(), "precondition.");
  4671   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4672   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4673         "Regions on free list must be zero filled");
  4674   assert(!r->isHumongous(), "Must not be humongous.");
  4675   assert(r->is_empty(), "Better be empty");
  4676   assert(!r->is_on_free_list(),
  4677          "Better not already be on free list");
  4678   assert(!r->is_on_unclean_list(),
  4679          "Better not already be on unclean list");
  4680   r->set_on_free_list(true);
  4681   r->set_next_on_free_list(_free_region_list);
  4682   _free_region_list = r;
  4683   _free_region_list_size++;
  4684   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4687 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4688   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4689   put_free_region_on_list_locked(r);
  4692 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4693   assert(ZF_mon->owned_by_self(), "precondition.");
  4694   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4695   HeapRegion* res = _free_region_list;
  4696   if (res != NULL) {
  4697     _free_region_list = res->next_from_free_list();
  4698     _free_region_list_size--;
  4699     res->set_on_free_list(false);
  4700     res->set_next_on_free_list(NULL);
  4701     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4703   return res;
  4707 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4708   // By self, or on behalf of self.
  4709   assert(Heap_lock->is_locked(), "Precondition");
  4710   HeapRegion* res = NULL;
  4711   bool first = true;
  4712   while (res == NULL) {
  4713     if (zero_filled || !first) {
  4714       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4715       res = pop_free_region_list_locked();
  4716       if (res != NULL) {
  4717         assert(!res->zero_fill_is_allocated(),
  4718                "No allocated regions on free list.");
  4719         res->set_zero_fill_allocated();
  4720       } else if (!first) {
  4721         break;  // We tried both, time to return NULL.
  4725     if (res == NULL) {
  4726       res = alloc_region_from_unclean_list(zero_filled);
  4728     assert(res == NULL ||
  4729            !zero_filled ||
  4730            res->zero_fill_is_allocated(),
  4731            "We must have allocated the region we're returning");
  4732     first = false;
  4734   return res;
  4737 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4738   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4740     HeapRegion* prev = NULL;
  4741     HeapRegion* cur = _unclean_region_list.hd();
  4742     while (cur != NULL) {
  4743       HeapRegion* next = cur->next_from_unclean_list();
  4744       if (cur->zero_fill_is_allocated()) {
  4745         // Remove from the list.
  4746         if (prev == NULL) {
  4747           (void)_unclean_region_list.pop();
  4748         } else {
  4749           _unclean_region_list.delete_after(prev);
  4751         cur->set_on_unclean_list(false);
  4752         cur->set_next_on_unclean_list(NULL);
  4753       } else {
  4754         prev = cur;
  4756       cur = next;
  4758     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4759            "Inv");
  4763     HeapRegion* prev = NULL;
  4764     HeapRegion* cur = _free_region_list;
  4765     while (cur != NULL) {
  4766       HeapRegion* next = cur->next_from_free_list();
  4767       if (cur->zero_fill_is_allocated()) {
  4768         // Remove from the list.
  4769         if (prev == NULL) {
  4770           _free_region_list = cur->next_from_free_list();
  4771         } else {
  4772           prev->set_next_on_free_list(cur->next_from_free_list());
  4774         cur->set_on_free_list(false);
  4775         cur->set_next_on_free_list(NULL);
  4776         _free_region_list_size--;
  4777       } else {
  4778         prev = cur;
  4780       cur = next;
  4782     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4786 bool G1CollectedHeap::verify_region_lists() {
  4787   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4788   return verify_region_lists_locked();
  4791 bool G1CollectedHeap::verify_region_lists_locked() {
  4792   HeapRegion* unclean = _unclean_region_list.hd();
  4793   while (unclean != NULL) {
  4794     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4795     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4796     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4797               "Everything else is possible.");
  4798     unclean = unclean->next_from_unclean_list();
  4800   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4802   HeapRegion* free_r = _free_region_list;
  4803   while (free_r != NULL) {
  4804     assert(free_r->is_on_free_list(), "Well, it is!");
  4805     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4806     switch (free_r->zero_fill_state()) {
  4807     case HeapRegion::NotZeroFilled:
  4808     case HeapRegion::ZeroFilling:
  4809       guarantee(false, "Should not be on free list.");
  4810       break;
  4811     default:
  4812       // Everything else is possible.
  4813       break;
  4815     free_r = free_r->next_from_free_list();
  4817   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4818   // If we didn't do an assertion...
  4819   return true;
  4822 size_t G1CollectedHeap::free_region_list_length() {
  4823   assert(ZF_mon->owned_by_self(), "precondition.");
  4824   size_t len = 0;
  4825   HeapRegion* cur = _free_region_list;
  4826   while (cur != NULL) {
  4827     len++;
  4828     cur = cur->next_from_free_list();
  4830   return len;
  4833 size_t G1CollectedHeap::unclean_region_list_length() {
  4834   assert(ZF_mon->owned_by_self(), "precondition.");
  4835   return _unclean_region_list.length();
  4838 size_t G1CollectedHeap::n_regions() {
  4839   return _hrs->length();
  4842 size_t G1CollectedHeap::max_regions() {
  4843   return
  4844     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  4845     HeapRegion::GrainBytes;
  4848 size_t G1CollectedHeap::free_regions() {
  4849   /* Possibly-expensive assert.
  4850   assert(_free_regions == count_free_regions(),
  4851          "_free_regions is off.");
  4852   */
  4853   return _free_regions;
  4856 bool G1CollectedHeap::should_zf() {
  4857   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  4860 class RegionCounter: public HeapRegionClosure {
  4861   size_t _n;
  4862 public:
  4863   RegionCounter() : _n(0) {}
  4864   bool doHeapRegion(HeapRegion* r) {
  4865     if (r->is_empty()) {
  4866       assert(!r->isHumongous(), "H regions should not be empty.");
  4867       _n++;
  4869     return false;
  4871   int res() { return (int) _n; }
  4872 };
  4874 size_t G1CollectedHeap::count_free_regions() {
  4875   RegionCounter rc;
  4876   heap_region_iterate(&rc);
  4877   size_t n = rc.res();
  4878   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  4879     n--;
  4880   return n;
  4883 size_t G1CollectedHeap::count_free_regions_list() {
  4884   size_t n = 0;
  4885   size_t o = 0;
  4886   ZF_mon->lock_without_safepoint_check();
  4887   HeapRegion* cur = _free_region_list;
  4888   while (cur != NULL) {
  4889     cur = cur->next_from_free_list();
  4890     n++;
  4892   size_t m = unclean_region_list_length();
  4893   ZF_mon->unlock();
  4894   return n + m;
  4897 bool G1CollectedHeap::should_set_young_locked() {
  4898   assert(heap_lock_held_for_gc(),
  4899               "the heap lock should already be held by or for this thread");
  4900   return  (g1_policy()->in_young_gc_mode() &&
  4901            g1_policy()->should_add_next_region_to_young_list());
  4904 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  4905   assert(heap_lock_held_for_gc(),
  4906               "the heap lock should already be held by or for this thread");
  4907   _young_list->push_region(hr);
  4908   g1_policy()->set_region_short_lived(hr);
  4911 class NoYoungRegionsClosure: public HeapRegionClosure {
  4912 private:
  4913   bool _success;
  4914 public:
  4915   NoYoungRegionsClosure() : _success(true) { }
  4916   bool doHeapRegion(HeapRegion* r) {
  4917     if (r->is_young()) {
  4918       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  4919                              r->bottom(), r->end());
  4920       _success = false;
  4922     return false;
  4924   bool success() { return _success; }
  4925 };
  4927 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  4928   bool ret = _young_list->check_list_empty(check_sample);
  4930   if (check_heap) {
  4931     NoYoungRegionsClosure closure;
  4932     heap_region_iterate(&closure);
  4933     ret = ret && closure.success();
  4936   return ret;
  4939 void G1CollectedHeap::empty_young_list() {
  4940   assert(heap_lock_held_for_gc(),
  4941               "the heap lock should already be held by or for this thread");
  4942   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  4944   _young_list->empty_list();
  4947 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  4948   bool no_allocs = true;
  4949   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  4950     HeapRegion* r = _gc_alloc_regions[ap];
  4951     no_allocs = r == NULL || r->saved_mark_at_top();
  4953   return no_allocs;
  4956 void G1CollectedHeap::retire_all_alloc_regions() {
  4957   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  4958     HeapRegion* r = _gc_alloc_regions[ap];
  4959     if (r != NULL) {
  4960       // Check for aliases.
  4961       bool has_processed_alias = false;
  4962       for (int i = 0; i < ap; ++i) {
  4963         if (_gc_alloc_regions[i] == r) {
  4964           has_processed_alias = true;
  4965           break;
  4968       if (!has_processed_alias) {
  4969         retire_alloc_region(r, false /* par */);
  4976 // Done at the start of full GC.
  4977 void G1CollectedHeap::tear_down_region_lists() {
  4978   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4979   while (pop_unclean_region_list_locked() != NULL) ;
  4980   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  4981          "Postconditions of loop.");
  4982   while (pop_free_region_list_locked() != NULL) ;
  4983   assert(_free_region_list == NULL, "Postcondition of loop.");
  4984   if (_free_region_list_size != 0) {
  4985     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  4986     print_on(gclog_or_tty, true /* extended */);
  4988   assert(_free_region_list_size == 0, "Postconditions of loop.");
  4992 class RegionResetter: public HeapRegionClosure {
  4993   G1CollectedHeap* _g1;
  4994   int _n;
  4995 public:
  4996   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4997   bool doHeapRegion(HeapRegion* r) {
  4998     if (r->continuesHumongous()) return false;
  4999     if (r->top() > r->bottom()) {
  5000       if (r->top() < r->end()) {
  5001         Copy::fill_to_words(r->top(),
  5002                           pointer_delta(r->end(), r->top()));
  5004       r->set_zero_fill_allocated();
  5005     } else {
  5006       assert(r->is_empty(), "tautology");
  5007       _n++;
  5008       switch (r->zero_fill_state()) {
  5009         case HeapRegion::NotZeroFilled:
  5010         case HeapRegion::ZeroFilling:
  5011           _g1->put_region_on_unclean_list_locked(r);
  5012           break;
  5013         case HeapRegion::Allocated:
  5014           r->set_zero_fill_complete();
  5015           // no break; go on to put on free list.
  5016         case HeapRegion::ZeroFilled:
  5017           _g1->put_free_region_on_list_locked(r);
  5018           break;
  5021     return false;
  5024   int getFreeRegionCount() {return _n;}
  5025 };
  5027 // Done at the end of full GC.
  5028 void G1CollectedHeap::rebuild_region_lists() {
  5029   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5030   // This needs to go at the end of the full GC.
  5031   RegionResetter rs;
  5032   heap_region_iterate(&rs);
  5033   _free_regions = rs.getFreeRegionCount();
  5034   // Tell the ZF thread it may have work to do.
  5035   if (should_zf()) ZF_mon->notify_all();
  5038 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5039   G1CollectedHeap* _g1;
  5040   int _n;
  5041 public:
  5042   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5043   bool doHeapRegion(HeapRegion* r) {
  5044     if (r->continuesHumongous()) return false;
  5045     if (r->top() > r->bottom()) {
  5046       // There are assertions in "set_zero_fill_needed()" below that
  5047       // require top() == bottom(), so this is technically illegal.
  5048       // We'll skirt the law here, by making that true temporarily.
  5049       DEBUG_ONLY(HeapWord* save_top = r->top();
  5050                  r->set_top(r->bottom()));
  5051       r->set_zero_fill_needed();
  5052       DEBUG_ONLY(r->set_top(save_top));
  5054     return false;
  5056 };
  5058 // Done at the start of full GC.
  5059 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5060   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5061   // This needs to go at the end of the full GC.
  5062   UsedRegionsNeedZeroFillSetter rs;
  5063   heap_region_iterate(&rs);
  5066 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5067   _refine_cte_cl->set_concurrent(concurrent);
  5070 #ifndef PRODUCT
  5072 class PrintHeapRegionClosure: public HeapRegionClosure {
  5073 public:
  5074   bool doHeapRegion(HeapRegion *r) {
  5075     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5076     if (r != NULL) {
  5077       if (r->is_on_free_list())
  5078         gclog_or_tty->print("Free ");
  5079       if (r->is_young())
  5080         gclog_or_tty->print("Young ");
  5081       if (r->isHumongous())
  5082         gclog_or_tty->print("Is Humongous ");
  5083       r->print();
  5085     return false;
  5087 };
  5089 class SortHeapRegionClosure : public HeapRegionClosure {
  5090   size_t young_regions,free_regions, unclean_regions;
  5091   size_t hum_regions, count;
  5092   size_t unaccounted, cur_unclean, cur_alloc;
  5093   size_t total_free;
  5094   HeapRegion* cur;
  5095 public:
  5096   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5097     free_regions(0), unclean_regions(0),
  5098     hum_regions(0),
  5099     count(0), unaccounted(0),
  5100     cur_alloc(0), total_free(0)
  5101   {}
  5102   bool doHeapRegion(HeapRegion *r) {
  5103     count++;
  5104     if (r->is_on_free_list()) free_regions++;
  5105     else if (r->is_on_unclean_list()) unclean_regions++;
  5106     else if (r->isHumongous())  hum_regions++;
  5107     else if (r->is_young()) young_regions++;
  5108     else if (r == cur) cur_alloc++;
  5109     else unaccounted++;
  5110     return false;
  5112   void print() {
  5113     total_free = free_regions + unclean_regions;
  5114     gclog_or_tty->print("%d regions\n", count);
  5115     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5116                         total_free, free_regions, unclean_regions);
  5117     gclog_or_tty->print("%d humongous %d young\n",
  5118                         hum_regions, young_regions);
  5119     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5120     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5122 };
  5124 void G1CollectedHeap::print_region_counts() {
  5125   SortHeapRegionClosure sc(_cur_alloc_region);
  5126   PrintHeapRegionClosure cl;
  5127   heap_region_iterate(&cl);
  5128   heap_region_iterate(&sc);
  5129   sc.print();
  5130   print_region_accounting_info();
  5131 };
  5133 bool G1CollectedHeap::regions_accounted_for() {
  5134   // TODO: regions accounting for young/survivor/tenured
  5135   return true;
  5138 bool G1CollectedHeap::print_region_accounting_info() {
  5139   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5140                          free_regions(),
  5141                          count_free_regions(), count_free_regions_list(),
  5142                          _free_region_list_size, _unclean_region_list.sz());
  5143   gclog_or_tty->print_cr("cur_alloc: %d.",
  5144                          (_cur_alloc_region == NULL ? 0 : 1));
  5145   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5147   // TODO: check regions accounting for young/survivor/tenured
  5148   return true;
  5151 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5152   HeapRegion* hr = heap_region_containing(p);
  5153   if (hr == NULL) {
  5154     return is_in_permanent(p);
  5155   } else {
  5156     return hr->is_in(p);
  5159 #endif // !PRODUCT
  5161 void G1CollectedHeap::g1_unimplemented() {
  5162   // Unimplemented();

mercurial