src/share/vm/runtime/sharedRuntime.cpp

Wed, 10 Oct 2012 14:35:58 -0400

author
jprovino
date
Wed, 10 Oct 2012 14:35:58 -0400
changeset 4165
fb19af007ffc
parent 4107
b31471cdc53e
child 4142
d8ce2825b193
permissions
-rw-r--r--

7189254: Change makefiles for more flexibility to override defaults
Summary: Change makefiles so that targets and parameters can be overridden by alternate makefiles.
Reviewed-by: dholmes, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 // Shared stub locations
    84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
    92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    95 #ifdef COMPILER2
    96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    97 #endif // COMPILER2
   100 //----------------------------generate_stubs-----------------------------------
   101 void SharedRuntime::generate_stubs() {
   102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
   103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
   104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
   105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
   106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
   108 #ifdef COMPILER2
   109   // Vectors are generated only by C2.
   110   if (is_wide_vector(MaxVectorSize)) {
   111     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   112   }
   113 #endif // COMPILER2
   114   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   115   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   117   generate_deopt_blob();
   119 #ifdef COMPILER2
   120   generate_uncommon_trap_blob();
   121 #endif // COMPILER2
   122 }
   124 #include <math.h>
   126 #ifndef USDT2
   127 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   128 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   129                       char*, int, char*, int, char*, int);
   130 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   131                       char*, int, char*, int, char*, int);
   132 #endif /* !USDT2 */
   134 // Implementation of SharedRuntime
   136 #ifndef PRODUCT
   137 // For statistics
   138 int SharedRuntime::_ic_miss_ctr = 0;
   139 int SharedRuntime::_wrong_method_ctr = 0;
   140 int SharedRuntime::_resolve_static_ctr = 0;
   141 int SharedRuntime::_resolve_virtual_ctr = 0;
   142 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   143 int SharedRuntime::_implicit_null_throws = 0;
   144 int SharedRuntime::_implicit_div0_throws = 0;
   145 int SharedRuntime::_throw_null_ctr = 0;
   147 int SharedRuntime::_nof_normal_calls = 0;
   148 int SharedRuntime::_nof_optimized_calls = 0;
   149 int SharedRuntime::_nof_inlined_calls = 0;
   150 int SharedRuntime::_nof_megamorphic_calls = 0;
   151 int SharedRuntime::_nof_static_calls = 0;
   152 int SharedRuntime::_nof_inlined_static_calls = 0;
   153 int SharedRuntime::_nof_interface_calls = 0;
   154 int SharedRuntime::_nof_optimized_interface_calls = 0;
   155 int SharedRuntime::_nof_inlined_interface_calls = 0;
   156 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   157 int SharedRuntime::_nof_removable_exceptions = 0;
   159 int SharedRuntime::_new_instance_ctr=0;
   160 int SharedRuntime::_new_array_ctr=0;
   161 int SharedRuntime::_multi1_ctr=0;
   162 int SharedRuntime::_multi2_ctr=0;
   163 int SharedRuntime::_multi3_ctr=0;
   164 int SharedRuntime::_multi4_ctr=0;
   165 int SharedRuntime::_multi5_ctr=0;
   166 int SharedRuntime::_mon_enter_stub_ctr=0;
   167 int SharedRuntime::_mon_exit_stub_ctr=0;
   168 int SharedRuntime::_mon_enter_ctr=0;
   169 int SharedRuntime::_mon_exit_ctr=0;
   170 int SharedRuntime::_partial_subtype_ctr=0;
   171 int SharedRuntime::_jbyte_array_copy_ctr=0;
   172 int SharedRuntime::_jshort_array_copy_ctr=0;
   173 int SharedRuntime::_jint_array_copy_ctr=0;
   174 int SharedRuntime::_jlong_array_copy_ctr=0;
   175 int SharedRuntime::_oop_array_copy_ctr=0;
   176 int SharedRuntime::_checkcast_array_copy_ctr=0;
   177 int SharedRuntime::_unsafe_array_copy_ctr=0;
   178 int SharedRuntime::_generic_array_copy_ctr=0;
   179 int SharedRuntime::_slow_array_copy_ctr=0;
   180 int SharedRuntime::_find_handler_ctr=0;
   181 int SharedRuntime::_rethrow_ctr=0;
   183 int     SharedRuntime::_ICmiss_index                    = 0;
   184 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   188 void SharedRuntime::trace_ic_miss(address at) {
   189   for (int i = 0; i < _ICmiss_index; i++) {
   190     if (_ICmiss_at[i] == at) {
   191       _ICmiss_count[i]++;
   192       return;
   193     }
   194   }
   195   int index = _ICmiss_index++;
   196   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   197   _ICmiss_at[index] = at;
   198   _ICmiss_count[index] = 1;
   199 }
   201 void SharedRuntime::print_ic_miss_histogram() {
   202   if (ICMissHistogram) {
   203     tty->print_cr ("IC Miss Histogram:");
   204     int tot_misses = 0;
   205     for (int i = 0; i < _ICmiss_index; i++) {
   206       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   207       tot_misses += _ICmiss_count[i];
   208     }
   209     tty->print_cr ("Total IC misses: %7d", tot_misses);
   210   }
   211 }
   212 #endif // PRODUCT
   214 #ifndef SERIALGC
   216 // G1 write-barrier pre: executed before a pointer store.
   217 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   218   if (orig == NULL) {
   219     assert(false, "should be optimized out");
   220     return;
   221   }
   222   assert(orig->is_oop(true /* ignore mark word */), "Error");
   223   // store the original value that was in the field reference
   224   thread->satb_mark_queue().enqueue(orig);
   225 JRT_END
   227 // G1 write-barrier post: executed after a pointer store.
   228 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   229   thread->dirty_card_queue().enqueue(card_addr);
   230 JRT_END
   232 #endif // !SERIALGC
   235 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   236   return x * y;
   237 JRT_END
   240 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   241   if (x == min_jlong && y == CONST64(-1)) {
   242     return x;
   243   } else {
   244     return x / y;
   245   }
   246 JRT_END
   249 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   250   if (x == min_jlong && y == CONST64(-1)) {
   251     return 0;
   252   } else {
   253     return x % y;
   254   }
   255 JRT_END
   258 const juint  float_sign_mask  = 0x7FFFFFFF;
   259 const juint  float_infinity   = 0x7F800000;
   260 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   261 const julong double_infinity  = CONST64(0x7FF0000000000000);
   263 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   264 #ifdef _WIN64
   265   // 64-bit Windows on amd64 returns the wrong values for
   266   // infinity operands.
   267   union { jfloat f; juint i; } xbits, ybits;
   268   xbits.f = x;
   269   ybits.f = y;
   270   // x Mod Infinity == x unless x is infinity
   271   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   272        ((ybits.i & float_sign_mask) == float_infinity) ) {
   273     return x;
   274   }
   275 #endif
   276   return ((jfloat)fmod((double)x,(double)y));
   277 JRT_END
   280 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   281 #ifdef _WIN64
   282   union { jdouble d; julong l; } xbits, ybits;
   283   xbits.d = x;
   284   ybits.d = y;
   285   // x Mod Infinity == x unless x is infinity
   286   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   287        ((ybits.l & double_sign_mask) == double_infinity) ) {
   288     return x;
   289   }
   290 #endif
   291   return ((jdouble)fmod((double)x,(double)y));
   292 JRT_END
   294 #ifdef __SOFTFP__
   295 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   296   return x + y;
   297 JRT_END
   299 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   300   return x - y;
   301 JRT_END
   303 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   304   return x * y;
   305 JRT_END
   307 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   308   return x / y;
   309 JRT_END
   311 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   312   return x + y;
   313 JRT_END
   315 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   316   return x - y;
   317 JRT_END
   319 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   320   return x * y;
   321 JRT_END
   323 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   324   return x / y;
   325 JRT_END
   327 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   328   return (jfloat)x;
   329 JRT_END
   331 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   332   return (jdouble)x;
   333 JRT_END
   335 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   336   return (jdouble)x;
   337 JRT_END
   339 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   340   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   341 JRT_END
   343 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   344   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   345 JRT_END
   347 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   348   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   349 JRT_END
   351 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   352   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   353 JRT_END
   355 // Functions to return the opposite of the aeabi functions for nan.
   356 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   357   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   358 JRT_END
   360 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   361   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   362 JRT_END
   364 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   365   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   366 JRT_END
   368 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   369   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   370 JRT_END
   372 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   373   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   374 JRT_END
   376 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   377   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   378 JRT_END
   380 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   381   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   382 JRT_END
   384 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   385   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   386 JRT_END
   388 // Intrinsics make gcc generate code for these.
   389 float  SharedRuntime::fneg(float f)   {
   390   return -f;
   391 }
   393 double SharedRuntime::dneg(double f)  {
   394   return -f;
   395 }
   397 #endif // __SOFTFP__
   399 #if defined(__SOFTFP__) || defined(E500V2)
   400 // Intrinsics make gcc generate code for these.
   401 double SharedRuntime::dabs(double f)  {
   402   return (f <= (double)0.0) ? (double)0.0 - f : f;
   403 }
   405 #endif
   407 #if defined(__SOFTFP__) || defined(PPC)
   408 double SharedRuntime::dsqrt(double f) {
   409   return sqrt(f);
   410 }
   411 #endif
   413 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   414   if (g_isnan(x))
   415     return 0;
   416   if (x >= (jfloat) max_jint)
   417     return max_jint;
   418   if (x <= (jfloat) min_jint)
   419     return min_jint;
   420   return (jint) x;
   421 JRT_END
   424 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   425   if (g_isnan(x))
   426     return 0;
   427   if (x >= (jfloat) max_jlong)
   428     return max_jlong;
   429   if (x <= (jfloat) min_jlong)
   430     return min_jlong;
   431   return (jlong) x;
   432 JRT_END
   435 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   436   if (g_isnan(x))
   437     return 0;
   438   if (x >= (jdouble) max_jint)
   439     return max_jint;
   440   if (x <= (jdouble) min_jint)
   441     return min_jint;
   442   return (jint) x;
   443 JRT_END
   446 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   447   if (g_isnan(x))
   448     return 0;
   449   if (x >= (jdouble) max_jlong)
   450     return max_jlong;
   451   if (x <= (jdouble) min_jlong)
   452     return min_jlong;
   453   return (jlong) x;
   454 JRT_END
   457 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   458   return (jfloat)x;
   459 JRT_END
   462 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   463   return (jfloat)x;
   464 JRT_END
   467 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   468   return (jdouble)x;
   469 JRT_END
   471 // Exception handling accross interpreter/compiler boundaries
   472 //
   473 // exception_handler_for_return_address(...) returns the continuation address.
   474 // The continuation address is the entry point of the exception handler of the
   475 // previous frame depending on the return address.
   477 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   478   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   480   // Reset method handle flag.
   481   thread->set_is_method_handle_return(false);
   483   // The fastest case first
   484   CodeBlob* blob = CodeCache::find_blob(return_address);
   485   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   486   if (nm != NULL) {
   487     // Set flag if return address is a method handle call site.
   488     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   489     // native nmethods don't have exception handlers
   490     assert(!nm->is_native_method(), "no exception handler");
   491     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   492     if (nm->is_deopt_pc(return_address)) {
   493       return SharedRuntime::deopt_blob()->unpack_with_exception();
   494     } else {
   495       return nm->exception_begin();
   496     }
   497   }
   499   // Entry code
   500   if (StubRoutines::returns_to_call_stub(return_address)) {
   501     return StubRoutines::catch_exception_entry();
   502   }
   503   // Interpreted code
   504   if (Interpreter::contains(return_address)) {
   505     return Interpreter::rethrow_exception_entry();
   506   }
   508   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   509   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   511 #ifndef PRODUCT
   512   { ResourceMark rm;
   513     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   514     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   515     tty->print_cr("b) other problem");
   516   }
   517 #endif // PRODUCT
   519   ShouldNotReachHere();
   520   return NULL;
   521 }
   524 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   525   return raw_exception_handler_for_return_address(thread, return_address);
   526 JRT_END
   529 address SharedRuntime::get_poll_stub(address pc) {
   530   address stub;
   531   // Look up the code blob
   532   CodeBlob *cb = CodeCache::find_blob(pc);
   534   // Should be an nmethod
   535   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   537   // Look up the relocation information
   538   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   539     "safepoint polling: type must be poll" );
   541   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   542     "Only polling locations are used for safepoint");
   544   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   545   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   546   if (at_poll_return) {
   547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   548            "polling page return stub not created yet");
   549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   550   } else if (has_wide_vectors) {
   551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   552            "polling page vectors safepoint stub not created yet");
   553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   554   } else {
   555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   556            "polling page safepoint stub not created yet");
   557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   558   }
   559 #ifndef PRODUCT
   560   if( TraceSafepoint ) {
   561     char buf[256];
   562     jio_snprintf(buf, sizeof(buf),
   563                  "... found polling page %s exception at pc = "
   564                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   565                  at_poll_return ? "return" : "loop",
   566                  (intptr_t)pc, (intptr_t)stub);
   567     tty->print_raw_cr(buf);
   568   }
   569 #endif // PRODUCT
   570   return stub;
   571 }
   574 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   575   assert(caller.is_interpreted_frame(), "");
   576   int args_size = ArgumentSizeComputer(sig).size() + 1;
   577   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   578   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   579   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   580   return result;
   581 }
   584 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   585   if (JvmtiExport::can_post_on_exceptions()) {
   586     vframeStream vfst(thread, true);
   587     methodHandle method = methodHandle(thread, vfst.method());
   588     address bcp = method()->bcp_from(vfst.bci());
   589     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   590   }
   591   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   592 }
   594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   595   Handle h_exception = Exceptions::new_exception(thread, name, message);
   596   throw_and_post_jvmti_exception(thread, h_exception);
   597 }
   599 // The interpreter code to call this tracing function is only
   600 // called/generated when TraceRedefineClasses has the right bits
   601 // set. Since obsolete methods are never compiled, we don't have
   602 // to modify the compilers to generate calls to this function.
   603 //
   604 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   605     JavaThread* thread, Method* method))
   606   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   608   if (method->is_obsolete()) {
   609     // We are calling an obsolete method, but this is not necessarily
   610     // an error. Our method could have been redefined just after we
   611     // fetched the Method* from the constant pool.
   613     // RC_TRACE macro has an embedded ResourceMark
   614     RC_TRACE_WITH_THREAD(0x00001000, thread,
   615                          ("calling obsolete method '%s'",
   616                           method->name_and_sig_as_C_string()));
   617     if (RC_TRACE_ENABLED(0x00002000)) {
   618       // this option is provided to debug calls to obsolete methods
   619       guarantee(false, "faulting at call to an obsolete method.");
   620     }
   621   }
   622   return 0;
   623 JRT_END
   625 // ret_pc points into caller; we are returning caller's exception handler
   626 // for given exception
   627 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   628                                                     bool force_unwind, bool top_frame_only) {
   629   assert(nm != NULL, "must exist");
   630   ResourceMark rm;
   632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   633   // determine handler bci, if any
   634   EXCEPTION_MARK;
   636   int handler_bci = -1;
   637   int scope_depth = 0;
   638   if (!force_unwind) {
   639     int bci = sd->bci();
   640     bool recursive_exception = false;
   641     do {
   642       bool skip_scope_increment = false;
   643       // exception handler lookup
   644       KlassHandle ek (THREAD, exception->klass());
   645       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   646       if (HAS_PENDING_EXCEPTION) {
   647         recursive_exception = true;
   648         // We threw an exception while trying to find the exception handler.
   649         // Transfer the new exception to the exception handle which will
   650         // be set into thread local storage, and do another lookup for an
   651         // exception handler for this exception, this time starting at the
   652         // BCI of the exception handler which caused the exception to be
   653         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   654         // argument to ensure that the correct exception is thrown (4870175).
   655         exception = Handle(THREAD, PENDING_EXCEPTION);
   656         CLEAR_PENDING_EXCEPTION;
   657         if (handler_bci >= 0) {
   658           bci = handler_bci;
   659           handler_bci = -1;
   660           skip_scope_increment = true;
   661         }
   662       }
   663       else {
   664         recursive_exception = false;
   665       }
   666       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   667         sd = sd->sender();
   668         if (sd != NULL) {
   669           bci = sd->bci();
   670         }
   671         ++scope_depth;
   672       }
   673     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   674   }
   676   // found handling method => lookup exception handler
   677   int catch_pco = ret_pc - nm->code_begin();
   679   ExceptionHandlerTable table(nm);
   680   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   681   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   682     // Allow abbreviated catch tables.  The idea is to allow a method
   683     // to materialize its exceptions without committing to the exact
   684     // routing of exceptions.  In particular this is needed for adding
   685     // a synthethic handler to unlock monitors when inlining
   686     // synchonized methods since the unlock path isn't represented in
   687     // the bytecodes.
   688     t = table.entry_for(catch_pco, -1, 0);
   689   }
   691 #ifdef COMPILER1
   692   if (t == NULL && nm->is_compiled_by_c1()) {
   693     assert(nm->unwind_handler_begin() != NULL, "");
   694     return nm->unwind_handler_begin();
   695   }
   696 #endif
   698   if (t == NULL) {
   699     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   700     tty->print_cr("   Exception:");
   701     exception->print();
   702     tty->cr();
   703     tty->print_cr(" Compiled exception table :");
   704     table.print();
   705     nm->print_code();
   706     guarantee(false, "missing exception handler");
   707     return NULL;
   708   }
   710   return nm->code_begin() + t->pco();
   711 }
   713 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   714   // These errors occur only at call sites
   715   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   716 JRT_END
   718 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   719   // These errors occur only at call sites
   720   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   721 JRT_END
   723 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   725 JRT_END
   727 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   729 JRT_END
   731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   732   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   733   // cache sites (when the callee activation is not yet set up) so we are at a call site
   734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   735 JRT_END
   737 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   738   // We avoid using the normal exception construction in this case because
   739   // it performs an upcall to Java, and we're already out of stack space.
   740   Klass* k = SystemDictionary::StackOverflowError_klass();
   741   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   742   Handle exception (thread, exception_oop);
   743   if (StackTraceInThrowable) {
   744     java_lang_Throwable::fill_in_stack_trace(exception);
   745   }
   746   throw_and_post_jvmti_exception(thread, exception);
   747 JRT_END
   749 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   750                                                            address pc,
   751                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   752 {
   753   address target_pc = NULL;
   755   if (Interpreter::contains(pc)) {
   756 #ifdef CC_INTERP
   757     // C++ interpreter doesn't throw implicit exceptions
   758     ShouldNotReachHere();
   759 #else
   760     switch (exception_kind) {
   761       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   762       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   763       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   764       default:                      ShouldNotReachHere();
   765     }
   766 #endif // !CC_INTERP
   767   } else {
   768     switch (exception_kind) {
   769       case STACK_OVERFLOW: {
   770         // Stack overflow only occurs upon frame setup; the callee is
   771         // going to be unwound. Dispatch to a shared runtime stub
   772         // which will cause the StackOverflowError to be fabricated
   773         // and processed.
   774         // For stack overflow in deoptimization blob, cleanup thread.
   775         if (thread->deopt_mark() != NULL) {
   776           Deoptimization::cleanup_deopt_info(thread, NULL);
   777         }
   778         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   779         return StubRoutines::throw_StackOverflowError_entry();
   780       }
   782       case IMPLICIT_NULL: {
   783         if (VtableStubs::contains(pc)) {
   784           // We haven't yet entered the callee frame. Fabricate an
   785           // exception and begin dispatching it in the caller. Since
   786           // the caller was at a call site, it's safe to destroy all
   787           // caller-saved registers, as these entry points do.
   788           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   790           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   791           if (vt_stub == NULL) return NULL;
   793           if (vt_stub->is_abstract_method_error(pc)) {
   794             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   795             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   796             return StubRoutines::throw_AbstractMethodError_entry();
   797           } else {
   798             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   799             return StubRoutines::throw_NullPointerException_at_call_entry();
   800           }
   801         } else {
   802           CodeBlob* cb = CodeCache::find_blob(pc);
   804           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   805           if (cb == NULL) return NULL;
   807           // Exception happened in CodeCache. Must be either:
   808           // 1. Inline-cache check in C2I handler blob,
   809           // 2. Inline-cache check in nmethod, or
   810           // 3. Implict null exception in nmethod
   812           if (!cb->is_nmethod()) {
   813             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   814                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   815             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   816             // There is no handler here, so we will simply unwind.
   817             return StubRoutines::throw_NullPointerException_at_call_entry();
   818           }
   820           // Otherwise, it's an nmethod.  Consult its exception handlers.
   821           nmethod* nm = (nmethod*)cb;
   822           if (nm->inlinecache_check_contains(pc)) {
   823             // exception happened inside inline-cache check code
   824             // => the nmethod is not yet active (i.e., the frame
   825             // is not set up yet) => use return address pushed by
   826             // caller => don't push another return address
   827             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   828             return StubRoutines::throw_NullPointerException_at_call_entry();
   829           }
   831           if (nm->method()->is_method_handle_intrinsic()) {
   832             // exception happened inside MH dispatch code, similar to a vtable stub
   833             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   834             return StubRoutines::throw_NullPointerException_at_call_entry();
   835           }
   837 #ifndef PRODUCT
   838           _implicit_null_throws++;
   839 #endif
   840           target_pc = nm->continuation_for_implicit_exception(pc);
   841           // If there's an unexpected fault, target_pc might be NULL,
   842           // in which case we want to fall through into the normal
   843           // error handling code.
   844         }
   846         break; // fall through
   847       }
   850       case IMPLICIT_DIVIDE_BY_ZERO: {
   851         nmethod* nm = CodeCache::find_nmethod(pc);
   852         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   853 #ifndef PRODUCT
   854         _implicit_div0_throws++;
   855 #endif
   856         target_pc = nm->continuation_for_implicit_exception(pc);
   857         // If there's an unexpected fault, target_pc might be NULL,
   858         // in which case we want to fall through into the normal
   859         // error handling code.
   860         break; // fall through
   861       }
   863       default: ShouldNotReachHere();
   864     }
   866     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   868     // for AbortVMOnException flag
   869     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   870     if (exception_kind == IMPLICIT_NULL) {
   871       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   872     } else {
   873       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   874     }
   875     return target_pc;
   876   }
   878   ShouldNotReachHere();
   879   return NULL;
   880 }
   883 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   884 {
   885   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   886 }
   887 JNI_END
   889 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
   890 {
   891   THROW(vmSymbols::java_lang_UnsupportedOperationException());
   892 }
   893 JNI_END
   895 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   896   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   897 }
   899 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
   900   return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
   901 }
   904 #ifndef PRODUCT
   905 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   906   const frame f = thread->last_frame();
   907   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   908 #ifndef PRODUCT
   909   methodHandle mh(THREAD, f.interpreter_frame_method());
   910   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   911 #endif // !PRODUCT
   912   return preserve_this_value;
   913 JRT_END
   914 #endif // !PRODUCT
   917 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   918   os::yield_all(attempts);
   919 JRT_END
   922 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   923   assert(obj->is_oop(), "must be a valid oop");
   924   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   925   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   926 JRT_END
   929 jlong SharedRuntime::get_java_tid(Thread* thread) {
   930   if (thread != NULL) {
   931     if (thread->is_Java_thread()) {
   932       oop obj = ((JavaThread*)thread)->threadObj();
   933       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   934     }
   935   }
   936   return 0;
   937 }
   939 /**
   940  * This function ought to be a void function, but cannot be because
   941  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   942  * 6254741.  Once that is fixed we can remove the dummy return value.
   943  */
   944 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   945   return dtrace_object_alloc_base(Thread::current(), o);
   946 }
   948 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   949   assert(DTraceAllocProbes, "wrong call");
   950   Klass* klass = o->klass();
   951   int size = o->size();
   952   Symbol* name = klass->name();
   953 #ifndef USDT2
   954   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   955                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   956 #else /* USDT2 */
   957   HOTSPOT_OBJECT_ALLOC(
   958                    get_java_tid(thread),
   959                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   960 #endif /* USDT2 */
   961   return 0;
   962 }
   964 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   965     JavaThread* thread, Method* method))
   966   assert(DTraceMethodProbes, "wrong call");
   967   Symbol* kname = method->klass_name();
   968   Symbol* name = method->name();
   969   Symbol* sig = method->signature();
   970 #ifndef USDT2
   971   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   972       kname->bytes(), kname->utf8_length(),
   973       name->bytes(), name->utf8_length(),
   974       sig->bytes(), sig->utf8_length());
   975 #else /* USDT2 */
   976   HOTSPOT_METHOD_ENTRY(
   977       get_java_tid(thread),
   978       (char *) kname->bytes(), kname->utf8_length(),
   979       (char *) name->bytes(), name->utf8_length(),
   980       (char *) sig->bytes(), sig->utf8_length());
   981 #endif /* USDT2 */
   982   return 0;
   983 JRT_END
   985 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   986     JavaThread* thread, Method* method))
   987   assert(DTraceMethodProbes, "wrong call");
   988   Symbol* kname = method->klass_name();
   989   Symbol* name = method->name();
   990   Symbol* sig = method->signature();
   991 #ifndef USDT2
   992   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   993       kname->bytes(), kname->utf8_length(),
   994       name->bytes(), name->utf8_length(),
   995       sig->bytes(), sig->utf8_length());
   996 #else /* USDT2 */
   997   HOTSPOT_METHOD_RETURN(
   998       get_java_tid(thread),
   999       (char *) kname->bytes(), kname->utf8_length(),
  1000       (char *) name->bytes(), name->utf8_length(),
  1001       (char *) sig->bytes(), sig->utf8_length());
  1002 #endif /* USDT2 */
  1003   return 0;
  1004 JRT_END
  1007 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1008 // for a call current in progress, i.e., arguments has been pushed on stack
  1009 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1010 // vtable updates, etc.  Caller frame must be compiled.
  1011 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1012   ResourceMark rm(THREAD);
  1014   // last java frame on stack (which includes native call frames)
  1015   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1017   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1021 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1022 // for a call current in progress, i.e., arguments has been pushed on stack
  1023 // but callee has not been invoked yet.  Caller frame must be compiled.
  1024 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1025                                               vframeStream& vfst,
  1026                                               Bytecodes::Code& bc,
  1027                                               CallInfo& callinfo, TRAPS) {
  1028   Handle receiver;
  1029   Handle nullHandle;  //create a handy null handle for exception returns
  1031   assert(!vfst.at_end(), "Java frame must exist");
  1033   // Find caller and bci from vframe
  1034   methodHandle caller(THREAD, vfst.method());
  1035   int          bci   = vfst.bci();
  1037   // Find bytecode
  1038   Bytecode_invoke bytecode(caller, bci);
  1039   bc = bytecode.invoke_code();
  1040   int bytecode_index = bytecode.index();
  1042   // Find receiver for non-static call
  1043   if (bc != Bytecodes::_invokestatic &&
  1044       bc != Bytecodes::_invokedynamic) {
  1045     // This register map must be update since we need to find the receiver for
  1046     // compiled frames. The receiver might be in a register.
  1047     RegisterMap reg_map2(thread);
  1048     frame stubFrame   = thread->last_frame();
  1049     // Caller-frame is a compiled frame
  1050     frame callerFrame = stubFrame.sender(&reg_map2);
  1052     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1053     if (callee.is_null()) {
  1054       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1056     // Retrieve from a compiled argument list
  1057     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1059     if (receiver.is_null()) {
  1060       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1064   // Resolve method. This is parameterized by bytecode.
  1065   constantPoolHandle constants(THREAD, caller->constants());
  1066   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1067   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1069 #ifdef ASSERT
  1070   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1071   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
  1072     assert(receiver.not_null(), "should have thrown exception");
  1073     KlassHandle receiver_klass(THREAD, receiver->klass());
  1074     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1075                             // klass is already loaded
  1076     KlassHandle static_receiver_klass(THREAD, rk);
  1077     // Method handle invokes might have been optimized to a direct call
  1078     // so don't check for the receiver class.
  1079     // FIXME this weakens the assert too much
  1080     methodHandle callee = callinfo.selected_method();
  1081     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1082            callee->is_method_handle_intrinsic() ||
  1083            callee->is_compiled_lambda_form(),
  1084            "actual receiver must be subclass of static receiver klass");
  1085     if (receiver_klass->oop_is_instance()) {
  1086       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1087         tty->print_cr("ERROR: Klass not yet initialized!!");
  1088         receiver_klass()->print();
  1090       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1093 #endif
  1095   return receiver;
  1098 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1099   ResourceMark rm(THREAD);
  1100   // We need first to check if any Java activations (compiled, interpreted)
  1101   // exist on the stack since last JavaCall.  If not, we need
  1102   // to get the target method from the JavaCall wrapper.
  1103   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1104   methodHandle callee_method;
  1105   if (vfst.at_end()) {
  1106     // No Java frames were found on stack since we did the JavaCall.
  1107     // Hence the stack can only contain an entry_frame.  We need to
  1108     // find the target method from the stub frame.
  1109     RegisterMap reg_map(thread, false);
  1110     frame fr = thread->last_frame();
  1111     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1112     fr = fr.sender(&reg_map);
  1113     assert(fr.is_entry_frame(), "must be");
  1114     // fr is now pointing to the entry frame.
  1115     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1116     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1117   } else {
  1118     Bytecodes::Code bc;
  1119     CallInfo callinfo;
  1120     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1121     callee_method = callinfo.selected_method();
  1123   assert(callee_method()->is_method(), "must be");
  1124   return callee_method;
  1127 // Resolves a call.
  1128 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1129                                            bool is_virtual,
  1130                                            bool is_optimized, TRAPS) {
  1131   methodHandle callee_method;
  1132   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1133   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1134     int retry_count = 0;
  1135     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1136            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1137       // If has a pending exception then there is no need to re-try to
  1138       // resolve this method.
  1139       // If the method has been redefined, we need to try again.
  1140       // Hack: we have no way to update the vtables of arrays, so don't
  1141       // require that java.lang.Object has been updated.
  1143       // It is very unlikely that method is redefined more than 100 times
  1144       // in the middle of resolve. If it is looping here more than 100 times
  1145       // means then there could be a bug here.
  1146       guarantee((retry_count++ < 100),
  1147                 "Could not resolve to latest version of redefined method");
  1148       // method is redefined in the middle of resolve so re-try.
  1149       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1152   return callee_method;
  1155 // Resolves a call.  The compilers generate code for calls that go here
  1156 // and are patched with the real destination of the call.
  1157 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1158                                            bool is_virtual,
  1159                                            bool is_optimized, TRAPS) {
  1161   ResourceMark rm(thread);
  1162   RegisterMap cbl_map(thread, false);
  1163   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1165   CodeBlob* caller_cb = caller_frame.cb();
  1166   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1167   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1168   // make sure caller is not getting deoptimized
  1169   // and removed before we are done with it.
  1170   // CLEANUP - with lazy deopt shouldn't need this lock
  1171   nmethodLocker caller_lock(caller_nm);
  1174   // determine call info & receiver
  1175   // note: a) receiver is NULL for static calls
  1176   //       b) an exception is thrown if receiver is NULL for non-static calls
  1177   CallInfo call_info;
  1178   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1179   Handle receiver = find_callee_info(thread, invoke_code,
  1180                                      call_info, CHECK_(methodHandle()));
  1181   methodHandle callee_method = call_info.selected_method();
  1183   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1184          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1185          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1186          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1188 #ifndef PRODUCT
  1189   // tracing/debugging/statistics
  1190   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1191                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1192                                (&_resolve_static_ctr);
  1193   Atomic::inc(addr);
  1195   if (TraceCallFixup) {
  1196     ResourceMark rm(thread);
  1197     tty->print("resolving %s%s (%s) call to",
  1198       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1199       Bytecodes::name(invoke_code));
  1200     callee_method->print_short_name(tty);
  1201     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1203 #endif
  1205   // JSR 292 key invariant:
  1206   // If the resolved method is a MethodHandle invoke target the call
  1207   // site must be a MethodHandle call site, because the lambda form might tail-call
  1208   // leaving the stack in a state unknown to either caller or callee
  1209   // TODO detune for now but we might need it again
  1210 //  assert(!callee_method->is_compiled_lambda_form() ||
  1211 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1213   // Compute entry points. This might require generation of C2I converter
  1214   // frames, so we cannot be holding any locks here. Furthermore, the
  1215   // computation of the entry points is independent of patching the call.  We
  1216   // always return the entry-point, but we only patch the stub if the call has
  1217   // not been deoptimized.  Return values: For a virtual call this is an
  1218   // (cached_oop, destination address) pair. For a static call/optimized
  1219   // virtual this is just a destination address.
  1221   StaticCallInfo static_call_info;
  1222   CompiledICInfo virtual_call_info;
  1224   // Make sure the callee nmethod does not get deoptimized and removed before
  1225   // we are done patching the code.
  1226   nmethod* callee_nm = callee_method->code();
  1227   nmethodLocker nl_callee(callee_nm);
  1228 #ifdef ASSERT
  1229   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1230 #endif
  1232   if (is_virtual) {
  1233     assert(receiver.not_null(), "sanity check");
  1234     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1235     KlassHandle h_klass(THREAD, receiver->klass());
  1236     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1237                      is_optimized, static_bound, virtual_call_info,
  1238                      CHECK_(methodHandle()));
  1239   } else {
  1240     // static call
  1241     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1244   // grab lock, check for deoptimization and potentially patch caller
  1246     MutexLocker ml_patch(CompiledIC_lock);
  1248     // Now that we are ready to patch if the Method* was redefined then
  1249     // don't update call site and let the caller retry.
  1251     if (!callee_method->is_old()) {
  1252 #ifdef ASSERT
  1253       // We must not try to patch to jump to an already unloaded method.
  1254       if (dest_entry_point != 0) {
  1255         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1256                "should not unload nmethod while locked");
  1258 #endif
  1259       if (is_virtual) {
  1260         nmethod* nm = callee_nm;
  1261         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1262         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1263         if (inline_cache->is_clean()) {
  1264           inline_cache->set_to_monomorphic(virtual_call_info);
  1266       } else {
  1267         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1268         if (ssc->is_clean()) ssc->set(static_call_info);
  1272   } // unlock CompiledIC_lock
  1274   return callee_method;
  1278 // Inline caches exist only in compiled code
  1279 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1280 #ifdef ASSERT
  1281   RegisterMap reg_map(thread, false);
  1282   frame stub_frame = thread->last_frame();
  1283   assert(stub_frame.is_runtime_frame(), "sanity check");
  1284   frame caller_frame = stub_frame.sender(&reg_map);
  1285   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1286 #endif /* ASSERT */
  1288   methodHandle callee_method;
  1289   JRT_BLOCK
  1290     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1291     // Return Method* through TLS
  1292     thread->set_vm_result_2(callee_method());
  1293   JRT_BLOCK_END
  1294   // return compiled code entry point after potential safepoints
  1295   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1296   return callee_method->verified_code_entry();
  1297 JRT_END
  1300 // Handle call site that has been made non-entrant
  1301 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1302   // 6243940 We might end up in here if the callee is deoptimized
  1303   // as we race to call it.  We don't want to take a safepoint if
  1304   // the caller was interpreted because the caller frame will look
  1305   // interpreted to the stack walkers and arguments are now
  1306   // "compiled" so it is much better to make this transition
  1307   // invisible to the stack walking code. The i2c path will
  1308   // place the callee method in the callee_target. It is stashed
  1309   // there because if we try and find the callee by normal means a
  1310   // safepoint is possible and have trouble gc'ing the compiled args.
  1311   RegisterMap reg_map(thread, false);
  1312   frame stub_frame = thread->last_frame();
  1313   assert(stub_frame.is_runtime_frame(), "sanity check");
  1314   frame caller_frame = stub_frame.sender(&reg_map);
  1316   // MethodHandle invokes don't have a CompiledIC and should always
  1317   // simply redispatch to the callee_target.
  1318   address   sender_pc = caller_frame.pc();
  1319   CodeBlob* sender_cb = caller_frame.cb();
  1320   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1322   if (caller_frame.is_interpreted_frame() ||
  1323       caller_frame.is_entry_frame()) {
  1324     Method* callee = thread->callee_target();
  1325     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1326     thread->set_vm_result_2(callee);
  1327     thread->set_callee_target(NULL);
  1328     return callee->get_c2i_entry();
  1331   // Must be compiled to compiled path which is safe to stackwalk
  1332   methodHandle callee_method;
  1333   JRT_BLOCK
  1334     // Force resolving of caller (if we called from compiled frame)
  1335     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1336     thread->set_vm_result_2(callee_method());
  1337   JRT_BLOCK_END
  1338   // return compiled code entry point after potential safepoints
  1339   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1340   return callee_method->verified_code_entry();
  1341 JRT_END
  1344 // resolve a static call and patch code
  1345 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1346   methodHandle callee_method;
  1347   JRT_BLOCK
  1348     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1349     thread->set_vm_result_2(callee_method());
  1350   JRT_BLOCK_END
  1351   // return compiled code entry point after potential safepoints
  1352   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1353   return callee_method->verified_code_entry();
  1354 JRT_END
  1357 // resolve virtual call and update inline cache to monomorphic
  1358 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1359   methodHandle callee_method;
  1360   JRT_BLOCK
  1361     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1362     thread->set_vm_result_2(callee_method());
  1363   JRT_BLOCK_END
  1364   // return compiled code entry point after potential safepoints
  1365   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1366   return callee_method->verified_code_entry();
  1367 JRT_END
  1370 // Resolve a virtual call that can be statically bound (e.g., always
  1371 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1372 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1373   methodHandle callee_method;
  1374   JRT_BLOCK
  1375     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1376     thread->set_vm_result_2(callee_method());
  1377   JRT_BLOCK_END
  1378   // return compiled code entry point after potential safepoints
  1379   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1380   return callee_method->verified_code_entry();
  1381 JRT_END
  1387 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1388   ResourceMark rm(thread);
  1389   CallInfo call_info;
  1390   Bytecodes::Code bc;
  1392   // receiver is NULL for static calls. An exception is thrown for NULL
  1393   // receivers for non-static calls
  1394   Handle receiver = find_callee_info(thread, bc, call_info,
  1395                                      CHECK_(methodHandle()));
  1396   // Compiler1 can produce virtual call sites that can actually be statically bound
  1397   // If we fell thru to below we would think that the site was going megamorphic
  1398   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1399   // we'd try and do a vtable dispatch however methods that can be statically bound
  1400   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1401   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1402   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1403   // never to miss again. I don't believe C2 will produce code like this but if it
  1404   // did this would still be the correct thing to do for it too, hence no ifdef.
  1405   //
  1406   if (call_info.resolved_method()->can_be_statically_bound()) {
  1407     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1408     if (TraceCallFixup) {
  1409       RegisterMap reg_map(thread, false);
  1410       frame caller_frame = thread->last_frame().sender(&reg_map);
  1411       ResourceMark rm(thread);
  1412       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1413       callee_method->print_short_name(tty);
  1414       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1415       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1417     return callee_method;
  1420   methodHandle callee_method = call_info.selected_method();
  1422   bool should_be_mono = false;
  1424 #ifndef PRODUCT
  1425   Atomic::inc(&_ic_miss_ctr);
  1427   // Statistics & Tracing
  1428   if (TraceCallFixup) {
  1429     ResourceMark rm(thread);
  1430     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1431     callee_method->print_short_name(tty);
  1432     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1435   if (ICMissHistogram) {
  1436     MutexLocker m(VMStatistic_lock);
  1437     RegisterMap reg_map(thread, false);
  1438     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1439     // produce statistics under the lock
  1440     trace_ic_miss(f.pc());
  1442 #endif
  1444   // install an event collector so that when a vtable stub is created the
  1445   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1446   // event can't be posted when the stub is created as locks are held
  1447   // - instead the event will be deferred until the event collector goes
  1448   // out of scope.
  1449   JvmtiDynamicCodeEventCollector event_collector;
  1451   // Update inline cache to megamorphic. Skip update if caller has been
  1452   // made non-entrant or we are called from interpreted.
  1453   { MutexLocker ml_patch (CompiledIC_lock);
  1454     RegisterMap reg_map(thread, false);
  1455     frame caller_frame = thread->last_frame().sender(&reg_map);
  1456     CodeBlob* cb = caller_frame.cb();
  1457     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1458       // Not a non-entrant nmethod, so find inline_cache
  1459       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1460       bool should_be_mono = false;
  1461       if (inline_cache->is_optimized()) {
  1462         if (TraceCallFixup) {
  1463           ResourceMark rm(thread);
  1464           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1465           callee_method->print_short_name(tty);
  1466           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1468         should_be_mono = true;
  1469       } else if (inline_cache->is_icholder_call()) {
  1470         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1471         if ( ic_oop != NULL) {
  1473           if (receiver()->klass() == ic_oop->holder_klass()) {
  1474             // This isn't a real miss. We must have seen that compiled code
  1475             // is now available and we want the call site converted to a
  1476             // monomorphic compiled call site.
  1477             // We can't assert for callee_method->code() != NULL because it
  1478             // could have been deoptimized in the meantime
  1479             if (TraceCallFixup) {
  1480               ResourceMark rm(thread);
  1481               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1482               callee_method->print_short_name(tty);
  1483               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1485             should_be_mono = true;
  1490       if (should_be_mono) {
  1492         // We have a path that was monomorphic but was going interpreted
  1493         // and now we have (or had) a compiled entry. We correct the IC
  1494         // by using a new icBuffer.
  1495         CompiledICInfo info;
  1496         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1497         inline_cache->compute_monomorphic_entry(callee_method,
  1498                                                 receiver_klass,
  1499                                                 inline_cache->is_optimized(),
  1500                                                 false,
  1501                                                 info, CHECK_(methodHandle()));
  1502         inline_cache->set_to_monomorphic(info);
  1503       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1504         // Change to megamorphic
  1505         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1506       } else {
  1507         // Either clean or megamorphic
  1510   } // Release CompiledIC_lock
  1512   return callee_method;
  1515 //
  1516 // Resets a call-site in compiled code so it will get resolved again.
  1517 // This routines handles both virtual call sites, optimized virtual call
  1518 // sites, and static call sites. Typically used to change a call sites
  1519 // destination from compiled to interpreted.
  1520 //
  1521 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1522   ResourceMark rm(thread);
  1523   RegisterMap reg_map(thread, false);
  1524   frame stub_frame = thread->last_frame();
  1525   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1526   frame caller = stub_frame.sender(&reg_map);
  1528   // Do nothing if the frame isn't a live compiled frame.
  1529   // nmethod could be deoptimized by the time we get here
  1530   // so no update to the caller is needed.
  1532   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1534     address pc = caller.pc();
  1536     // Default call_addr is the location of the "basic" call.
  1537     // Determine the address of the call we a reresolving. With
  1538     // Inline Caches we will always find a recognizable call.
  1539     // With Inline Caches disabled we may or may not find a
  1540     // recognizable call. We will always find a call for static
  1541     // calls and for optimized virtual calls. For vanilla virtual
  1542     // calls it depends on the state of the UseInlineCaches switch.
  1543     //
  1544     // With Inline Caches disabled we can get here for a virtual call
  1545     // for two reasons:
  1546     //   1 - calling an abstract method. The vtable for abstract methods
  1547     //       will run us thru handle_wrong_method and we will eventually
  1548     //       end up in the interpreter to throw the ame.
  1549     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1550     //       call and between the time we fetch the entry address and
  1551     //       we jump to it the target gets deoptimized. Similar to 1
  1552     //       we will wind up in the interprter (thru a c2i with c2).
  1553     //
  1554     address call_addr = NULL;
  1556       // Get call instruction under lock because another thread may be
  1557       // busy patching it.
  1558       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1559       // Location of call instruction
  1560       if (NativeCall::is_call_before(pc)) {
  1561         NativeCall *ncall = nativeCall_before(pc);
  1562         call_addr = ncall->instruction_address();
  1566     // Check for static or virtual call
  1567     bool is_static_call = false;
  1568     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1569     // Make sure nmethod doesn't get deoptimized and removed until
  1570     // this is done with it.
  1571     // CLEANUP - with lazy deopt shouldn't need this lock
  1572     nmethodLocker nmlock(caller_nm);
  1574     if (call_addr != NULL) {
  1575       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1576       int ret = iter.next(); // Get item
  1577       if (ret) {
  1578         assert(iter.addr() == call_addr, "must find call");
  1579         if (iter.type() == relocInfo::static_call_type) {
  1580           is_static_call = true;
  1581         } else {
  1582           assert(iter.type() == relocInfo::virtual_call_type ||
  1583                  iter.type() == relocInfo::opt_virtual_call_type
  1584                 , "unexpected relocInfo. type");
  1586       } else {
  1587         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1590       // Cleaning the inline cache will force a new resolve. This is more robust
  1591       // than directly setting it to the new destination, since resolving of calls
  1592       // is always done through the same code path. (experience shows that it
  1593       // leads to very hard to track down bugs, if an inline cache gets updated
  1594       // to a wrong method). It should not be performance critical, since the
  1595       // resolve is only done once.
  1597       MutexLocker ml(CompiledIC_lock);
  1598       //
  1599       // We do not patch the call site if the nmethod has been made non-entrant
  1600       // as it is a waste of time
  1601       //
  1602       if (caller_nm->is_in_use()) {
  1603         if (is_static_call) {
  1604           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1605           ssc->set_to_clean();
  1606         } else {
  1607           // compiled, dispatched call (which used to call an interpreted method)
  1608           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1609           inline_cache->set_to_clean();
  1616   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1619 #ifndef PRODUCT
  1620   Atomic::inc(&_wrong_method_ctr);
  1622   if (TraceCallFixup) {
  1623     ResourceMark rm(thread);
  1624     tty->print("handle_wrong_method reresolving call to");
  1625     callee_method->print_short_name(tty);
  1626     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1628 #endif
  1630   return callee_method;
  1633 #ifdef ASSERT
  1634 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1635                                                                 const BasicType* sig_bt,
  1636                                                                 const VMRegPair* regs) {
  1637   ResourceMark rm;
  1638   const int total_args_passed = method->size_of_parameters();
  1639   const VMRegPair*    regs_with_member_name = regs;
  1640         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1642   const int member_arg_pos = total_args_passed - 1;
  1643   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1644   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1646   const bool is_outgoing = method->is_method_handle_intrinsic();
  1647   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1649   for (int i = 0; i < member_arg_pos; i++) {
  1650     VMReg a =    regs_with_member_name[i].first();
  1651     VMReg b = regs_without_member_name[i].first();
  1652     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1654   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1656 #endif
  1658 // ---------------------------------------------------------------------------
  1659 // We are calling the interpreter via a c2i. Normally this would mean that
  1660 // we were called by a compiled method. However we could have lost a race
  1661 // where we went int -> i2c -> c2i and so the caller could in fact be
  1662 // interpreted. If the caller is compiled we attempt to patch the caller
  1663 // so he no longer calls into the interpreter.
  1664 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1665   Method* moop(method);
  1667   address entry_point = moop->from_compiled_entry();
  1669   // It's possible that deoptimization can occur at a call site which hasn't
  1670   // been resolved yet, in which case this function will be called from
  1671   // an nmethod that has been patched for deopt and we can ignore the
  1672   // request for a fixup.
  1673   // Also it is possible that we lost a race in that from_compiled_entry
  1674   // is now back to the i2c in that case we don't need to patch and if
  1675   // we did we'd leap into space because the callsite needs to use
  1676   // "to interpreter" stub in order to load up the Method*. Don't
  1677   // ask me how I know this...
  1679   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1680   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1681     return;
  1684   // The check above makes sure this is a nmethod.
  1685   nmethod* nm = cb->as_nmethod_or_null();
  1686   assert(nm, "must be");
  1688   // Get the return PC for the passed caller PC.
  1689   address return_pc = caller_pc + frame::pc_return_offset;
  1691   // There is a benign race here. We could be attempting to patch to a compiled
  1692   // entry point at the same time the callee is being deoptimized. If that is
  1693   // the case then entry_point may in fact point to a c2i and we'd patch the
  1694   // call site with the same old data. clear_code will set code() to NULL
  1695   // at the end of it. If we happen to see that NULL then we can skip trying
  1696   // to patch. If we hit the window where the callee has a c2i in the
  1697   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1698   // and patch the code with the same old data. Asi es la vida.
  1700   if (moop->code() == NULL) return;
  1702   if (nm->is_in_use()) {
  1704     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1705     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1706     if (NativeCall::is_call_before(return_pc)) {
  1707       NativeCall *call = nativeCall_before(return_pc);
  1708       //
  1709       // bug 6281185. We might get here after resolving a call site to a vanilla
  1710       // virtual call. Because the resolvee uses the verified entry it may then
  1711       // see compiled code and attempt to patch the site by calling us. This would
  1712       // then incorrectly convert the call site to optimized and its downhill from
  1713       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1714       // just made a call site that could be megamorphic into a monomorphic site
  1715       // for the rest of its life! Just another racing bug in the life of
  1716       // fixup_callers_callsite ...
  1717       //
  1718       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1719       iter.next();
  1720       assert(iter.has_current(), "must have a reloc at java call site");
  1721       relocInfo::relocType typ = iter.reloc()->type();
  1722       if ( typ != relocInfo::static_call_type &&
  1723            typ != relocInfo::opt_virtual_call_type &&
  1724            typ != relocInfo::static_stub_type) {
  1725         return;
  1727       address destination = call->destination();
  1728       if (destination != entry_point) {
  1729         CodeBlob* callee = CodeCache::find_blob(destination);
  1730         // callee == cb seems weird. It means calling interpreter thru stub.
  1731         if (callee == cb || callee->is_adapter_blob()) {
  1732           // static call or optimized virtual
  1733           if (TraceCallFixup) {
  1734             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1735             moop->print_short_name(tty);
  1736             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1738           call->set_destination_mt_safe(entry_point);
  1739         } else {
  1740           if (TraceCallFixup) {
  1741             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1742             moop->print_short_name(tty);
  1743             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1745           // assert is too strong could also be resolve destinations.
  1746           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1748       } else {
  1749           if (TraceCallFixup) {
  1750             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1751             moop->print_short_name(tty);
  1752             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1757 IRT_END
  1760 // same as JVM_Arraycopy, but called directly from compiled code
  1761 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1762                                                 oopDesc* dest, jint dest_pos,
  1763                                                 jint length,
  1764                                                 JavaThread* thread)) {
  1765 #ifndef PRODUCT
  1766   _slow_array_copy_ctr++;
  1767 #endif
  1768   // Check if we have null pointers
  1769   if (src == NULL || dest == NULL) {
  1770     THROW(vmSymbols::java_lang_NullPointerException());
  1772   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1773   // even though the copy_array API also performs dynamic checks to ensure
  1774   // that src and dest are truly arrays (and are conformable).
  1775   // The copy_array mechanism is awkward and could be removed, but
  1776   // the compilers don't call this function except as a last resort,
  1777   // so it probably doesn't matter.
  1778   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1779                                         (arrayOopDesc*)dest, dest_pos,
  1780                                         length, thread);
  1782 JRT_END
  1784 char* SharedRuntime::generate_class_cast_message(
  1785     JavaThread* thread, const char* objName) {
  1787   // Get target class name from the checkcast instruction
  1788   vframeStream vfst(thread, true);
  1789   assert(!vfst.at_end(), "Java frame must exist");
  1790   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1791   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1792     cc.index(), thread));
  1793   return generate_class_cast_message(objName, targetKlass->external_name());
  1796 char* SharedRuntime::generate_class_cast_message(
  1797     const char* objName, const char* targetKlassName, const char* desc) {
  1798   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1800   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1801   if (NULL == message) {
  1802     // Shouldn't happen, but don't cause even more problems if it does
  1803     message = const_cast<char*>(objName);
  1804   } else {
  1805     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1807   return message;
  1810 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1811   (void) JavaThread::current()->reguard_stack();
  1812 JRT_END
  1815 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1816 #ifndef PRODUCT
  1817 int SharedRuntime::_monitor_enter_ctr=0;
  1818 #endif
  1819 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1820   oop obj(_obj);
  1821 #ifndef PRODUCT
  1822   _monitor_enter_ctr++;             // monitor enter slow
  1823 #endif
  1824   if (PrintBiasedLockingStatistics) {
  1825     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1827   Handle h_obj(THREAD, obj);
  1828   if (UseBiasedLocking) {
  1829     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1830     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1831   } else {
  1832     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1834   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1835 JRT_END
  1837 #ifndef PRODUCT
  1838 int SharedRuntime::_monitor_exit_ctr=0;
  1839 #endif
  1840 // Handles the uncommon cases of monitor unlocking in compiled code
  1841 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1842    oop obj(_obj);
  1843 #ifndef PRODUCT
  1844   _monitor_exit_ctr++;              // monitor exit slow
  1845 #endif
  1846   Thread* THREAD = JavaThread::current();
  1847   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1848   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1849   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1850 #undef MIGHT_HAVE_PENDING
  1851 #ifdef MIGHT_HAVE_PENDING
  1852   // Save and restore any pending_exception around the exception mark.
  1853   // While the slow_exit must not throw an exception, we could come into
  1854   // this routine with one set.
  1855   oop pending_excep = NULL;
  1856   const char* pending_file;
  1857   int pending_line;
  1858   if (HAS_PENDING_EXCEPTION) {
  1859     pending_excep = PENDING_EXCEPTION;
  1860     pending_file  = THREAD->exception_file();
  1861     pending_line  = THREAD->exception_line();
  1862     CLEAR_PENDING_EXCEPTION;
  1864 #endif /* MIGHT_HAVE_PENDING */
  1867     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1868     EXCEPTION_MARK;
  1869     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1872 #ifdef MIGHT_HAVE_PENDING
  1873   if (pending_excep != NULL) {
  1874     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1876 #endif /* MIGHT_HAVE_PENDING */
  1877 JRT_END
  1879 #ifndef PRODUCT
  1881 void SharedRuntime::print_statistics() {
  1882   ttyLocker ttyl;
  1883   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1885   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1886   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1887   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1889   SharedRuntime::print_ic_miss_histogram();
  1891   if (CountRemovableExceptions) {
  1892     if (_nof_removable_exceptions > 0) {
  1893       Unimplemented(); // this counter is not yet incremented
  1894       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1898   // Dump the JRT_ENTRY counters
  1899   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1900   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1901   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1902   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1903   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1904   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1905   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1907   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1908   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1909   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1910   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1911   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1913   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1914   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1915   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1916   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1917   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1918   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1919   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1920   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1921   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1922   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1923   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1924   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1925   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1926   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1927   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1928   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1930   AdapterHandlerLibrary::print_statistics();
  1932   if (xtty != NULL)  xtty->tail("statistics");
  1935 inline double percent(int x, int y) {
  1936   return 100.0 * x / MAX2(y, 1);
  1939 class MethodArityHistogram {
  1940  public:
  1941   enum { MAX_ARITY = 256 };
  1942  private:
  1943   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1944   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1945   static int _max_arity;                      // max. arity seen
  1946   static int _max_size;                       // max. arg size seen
  1948   static void add_method_to_histogram(nmethod* nm) {
  1949     Method* m = nm->method();
  1950     ArgumentCount args(m->signature());
  1951     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1952     int argsize = m->size_of_parameters();
  1953     arity   = MIN2(arity, MAX_ARITY-1);
  1954     argsize = MIN2(argsize, MAX_ARITY-1);
  1955     int count = nm->method()->compiled_invocation_count();
  1956     _arity_histogram[arity]  += count;
  1957     _size_histogram[argsize] += count;
  1958     _max_arity = MAX2(_max_arity, arity);
  1959     _max_size  = MAX2(_max_size, argsize);
  1962   void print_histogram_helper(int n, int* histo, const char* name) {
  1963     const int N = MIN2(5, n);
  1964     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1965     double sum = 0;
  1966     double weighted_sum = 0;
  1967     int i;
  1968     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1969     double rest = sum;
  1970     double percent = sum / 100;
  1971     for (i = 0; i <= N; i++) {
  1972       rest -= histo[i];
  1973       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1975     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1976     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1979   void print_histogram() {
  1980     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1981     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1982     tty->print_cr("\nSame for parameter size (in words):");
  1983     print_histogram_helper(_max_size, _size_histogram, "size");
  1984     tty->cr();
  1987  public:
  1988   MethodArityHistogram() {
  1989     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1990     _max_arity = _max_size = 0;
  1991     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1992     CodeCache::nmethods_do(add_method_to_histogram);
  1993     print_histogram();
  1995 };
  1997 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1998 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1999 int MethodArityHistogram::_max_arity;
  2000 int MethodArityHistogram::_max_size;
  2002 void SharedRuntime::print_call_statistics(int comp_total) {
  2003   tty->print_cr("Calls from compiled code:");
  2004   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2005   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2006   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2007   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2008   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2009   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2010   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2011   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2012   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2013   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2014   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2015   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2016   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2017   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2018   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2019   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2020   tty->cr();
  2021   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2022   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2023   tty->print_cr("        %% in nested categories are relative to their category");
  2024   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2025   tty->cr();
  2027   MethodArityHistogram h;
  2029 #endif
  2032 // A simple wrapper class around the calling convention information
  2033 // that allows sharing of adapters for the same calling convention.
  2034 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2035  private:
  2036   enum {
  2037     _basic_type_bits = 4,
  2038     _basic_type_mask = right_n_bits(_basic_type_bits),
  2039     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2040     _compact_int_count = 3
  2041   };
  2042   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2043   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2045   union {
  2046     int  _compact[_compact_int_count];
  2047     int* _fingerprint;
  2048   } _value;
  2049   int _length; // A negative length indicates the fingerprint is in the compact form,
  2050                // Otherwise _value._fingerprint is the array.
  2052   // Remap BasicTypes that are handled equivalently by the adapters.
  2053   // These are correct for the current system but someday it might be
  2054   // necessary to make this mapping platform dependent.
  2055   static int adapter_encoding(BasicType in) {
  2056     switch(in) {
  2057       case T_BOOLEAN:
  2058       case T_BYTE:
  2059       case T_SHORT:
  2060       case T_CHAR:
  2061         // There are all promoted to T_INT in the calling convention
  2062         return T_INT;
  2064       case T_OBJECT:
  2065       case T_ARRAY:
  2066         // In other words, we assume that any register good enough for
  2067         // an int or long is good enough for a managed pointer.
  2068 #ifdef _LP64
  2069         return T_LONG;
  2070 #else
  2071         return T_INT;
  2072 #endif
  2074       case T_INT:
  2075       case T_LONG:
  2076       case T_FLOAT:
  2077       case T_DOUBLE:
  2078       case T_VOID:
  2079         return in;
  2081       default:
  2082         ShouldNotReachHere();
  2083         return T_CONFLICT;
  2087  public:
  2088   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2089     // The fingerprint is based on the BasicType signature encoded
  2090     // into an array of ints with eight entries per int.
  2091     int* ptr;
  2092     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2093     if (len <= _compact_int_count) {
  2094       assert(_compact_int_count == 3, "else change next line");
  2095       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2096       // Storing the signature encoded as signed chars hits about 98%
  2097       // of the time.
  2098       _length = -len;
  2099       ptr = _value._compact;
  2100     } else {
  2101       _length = len;
  2102       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2103       ptr = _value._fingerprint;
  2106     // Now pack the BasicTypes with 8 per int
  2107     int sig_index = 0;
  2108     for (int index = 0; index < len; index++) {
  2109       int value = 0;
  2110       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2111         int bt = ((sig_index < total_args_passed)
  2112                   ? adapter_encoding(sig_bt[sig_index++])
  2113                   : 0);
  2114         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2115         value = (value << _basic_type_bits) | bt;
  2117       ptr[index] = value;
  2121   ~AdapterFingerPrint() {
  2122     if (_length > 0) {
  2123       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2127   int value(int index) {
  2128     if (_length < 0) {
  2129       return _value._compact[index];
  2131     return _value._fingerprint[index];
  2133   int length() {
  2134     if (_length < 0) return -_length;
  2135     return _length;
  2138   bool is_compact() {
  2139     return _length <= 0;
  2142   unsigned int compute_hash() {
  2143     int hash = 0;
  2144     for (int i = 0; i < length(); i++) {
  2145       int v = value(i);
  2146       hash = (hash << 8) ^ v ^ (hash >> 5);
  2148     return (unsigned int)hash;
  2151   const char* as_string() {
  2152     stringStream st;
  2153     st.print("0x");
  2154     for (int i = 0; i < length(); i++) {
  2155       st.print("%08x", value(i));
  2157     return st.as_string();
  2160   bool equals(AdapterFingerPrint* other) {
  2161     if (other->_length != _length) {
  2162       return false;
  2164     if (_length < 0) {
  2165       assert(_compact_int_count == 3, "else change next line");
  2166       return _value._compact[0] == other->_value._compact[0] &&
  2167              _value._compact[1] == other->_value._compact[1] &&
  2168              _value._compact[2] == other->_value._compact[2];
  2169     } else {
  2170       for (int i = 0; i < _length; i++) {
  2171         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2172           return false;
  2176     return true;
  2178 };
  2181 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2182 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2183   friend class AdapterHandlerTableIterator;
  2185  private:
  2187 #ifndef PRODUCT
  2188   static int _lookups; // number of calls to lookup
  2189   static int _buckets; // number of buckets checked
  2190   static int _equals;  // number of buckets checked with matching hash
  2191   static int _hits;    // number of successful lookups
  2192   static int _compact; // number of equals calls with compact signature
  2193 #endif
  2195   AdapterHandlerEntry* bucket(int i) {
  2196     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2199  public:
  2200   AdapterHandlerTable()
  2201     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2203   // Create a new entry suitable for insertion in the table
  2204   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2205     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2206     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2207     return entry;
  2210   // Insert an entry into the table
  2211   void add(AdapterHandlerEntry* entry) {
  2212     int index = hash_to_index(entry->hash());
  2213     add_entry(index, entry);
  2216   void free_entry(AdapterHandlerEntry* entry) {
  2217     entry->deallocate();
  2218     BasicHashtable<mtCode>::free_entry(entry);
  2221   // Find a entry with the same fingerprint if it exists
  2222   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2223     NOT_PRODUCT(_lookups++);
  2224     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2225     unsigned int hash = fp.compute_hash();
  2226     int index = hash_to_index(hash);
  2227     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2228       NOT_PRODUCT(_buckets++);
  2229       if (e->hash() == hash) {
  2230         NOT_PRODUCT(_equals++);
  2231         if (fp.equals(e->fingerprint())) {
  2232 #ifndef PRODUCT
  2233           if (fp.is_compact()) _compact++;
  2234           _hits++;
  2235 #endif
  2236           return e;
  2240     return NULL;
  2243 #ifndef PRODUCT
  2244   void print_statistics() {
  2245     ResourceMark rm;
  2246     int longest = 0;
  2247     int empty = 0;
  2248     int total = 0;
  2249     int nonempty = 0;
  2250     for (int index = 0; index < table_size(); index++) {
  2251       int count = 0;
  2252       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2253         count++;
  2255       if (count != 0) nonempty++;
  2256       if (count == 0) empty++;
  2257       if (count > longest) longest = count;
  2258       total += count;
  2260     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2261                   empty, longest, total, total / (double)nonempty);
  2262     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2263                   _lookups, _buckets, _equals, _hits, _compact);
  2265 #endif
  2266 };
  2269 #ifndef PRODUCT
  2271 int AdapterHandlerTable::_lookups;
  2272 int AdapterHandlerTable::_buckets;
  2273 int AdapterHandlerTable::_equals;
  2274 int AdapterHandlerTable::_hits;
  2275 int AdapterHandlerTable::_compact;
  2277 #endif
  2279 class AdapterHandlerTableIterator : public StackObj {
  2280  private:
  2281   AdapterHandlerTable* _table;
  2282   int _index;
  2283   AdapterHandlerEntry* _current;
  2285   void scan() {
  2286     while (_index < _table->table_size()) {
  2287       AdapterHandlerEntry* a = _table->bucket(_index);
  2288       _index++;
  2289       if (a != NULL) {
  2290         _current = a;
  2291         return;
  2296  public:
  2297   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2298     scan();
  2300   bool has_next() {
  2301     return _current != NULL;
  2303   AdapterHandlerEntry* next() {
  2304     if (_current != NULL) {
  2305       AdapterHandlerEntry* result = _current;
  2306       _current = _current->next();
  2307       if (_current == NULL) scan();
  2308       return result;
  2309     } else {
  2310       return NULL;
  2313 };
  2316 // ---------------------------------------------------------------------------
  2317 // Implementation of AdapterHandlerLibrary
  2318 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2319 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2320 const int AdapterHandlerLibrary_size = 16*K;
  2321 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2323 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2324   // Should be called only when AdapterHandlerLibrary_lock is active.
  2325   if (_buffer == NULL) // Initialize lazily
  2326       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2327   return _buffer;
  2330 void AdapterHandlerLibrary::initialize() {
  2331   if (_adapters != NULL) return;
  2332   _adapters = new AdapterHandlerTable();
  2334   // Create a special handler for abstract methods.  Abstract methods
  2335   // are never compiled so an i2c entry is somewhat meaningless, but
  2336   // fill it in with something appropriate just in case.  Pass handle
  2337   // wrong method for the c2i transitions.
  2338   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2339   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2340                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2341                                                               wrong_method, wrong_method);
  2344 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2345                                                       address i2c_entry,
  2346                                                       address c2i_entry,
  2347                                                       address c2i_unverified_entry) {
  2348   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2351 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2352   // Use customized signature handler.  Need to lock around updates to
  2353   // the AdapterHandlerTable (it is not safe for concurrent readers
  2354   // and a single writer: this could be fixed if it becomes a
  2355   // problem).
  2357   // Get the address of the ic_miss handlers before we grab the
  2358   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2359   // was caused by the initialization of the stubs happening
  2360   // while we held the lock and then notifying jvmti while
  2361   // holding it. This just forces the initialization to be a little
  2362   // earlier.
  2363   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2364   assert(ic_miss != NULL, "must have handler");
  2366   ResourceMark rm;
  2368   NOT_PRODUCT(int insts_size);
  2369   AdapterBlob* B = NULL;
  2370   AdapterHandlerEntry* entry = NULL;
  2371   AdapterFingerPrint* fingerprint = NULL;
  2373     MutexLocker mu(AdapterHandlerLibrary_lock);
  2374     // make sure data structure is initialized
  2375     initialize();
  2377     if (method->is_abstract()) {
  2378       return _abstract_method_handler;
  2381     // Fill in the signature array, for the calling-convention call.
  2382     int total_args_passed = method->size_of_parameters(); // All args on stack
  2384     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2385     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2386     int i = 0;
  2387     if (!method->is_static())  // Pass in receiver first
  2388       sig_bt[i++] = T_OBJECT;
  2389     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2390       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2391       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2392         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2394     assert(i == total_args_passed, "");
  2396     // Lookup method signature's fingerprint
  2397     entry = _adapters->lookup(total_args_passed, sig_bt);
  2399 #ifdef ASSERT
  2400     AdapterHandlerEntry* shared_entry = NULL;
  2401     if (VerifyAdapterSharing && entry != NULL) {
  2402       shared_entry = entry;
  2403       entry = NULL;
  2405 #endif
  2407     if (entry != NULL) {
  2408       return entry;
  2411     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2412     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2414     // Make a C heap allocated version of the fingerprint to store in the adapter
  2415     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2417     // Create I2C & C2I handlers
  2419     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2420     if (buf != NULL) {
  2421       CodeBuffer buffer(buf);
  2422       short buffer_locs[20];
  2423       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2424                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2425       MacroAssembler _masm(&buffer);
  2427       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2428                                                      total_args_passed,
  2429                                                      comp_args_on_stack,
  2430                                                      sig_bt,
  2431                                                      regs,
  2432                                                      fingerprint);
  2434 #ifdef ASSERT
  2435       if (VerifyAdapterSharing) {
  2436         if (shared_entry != NULL) {
  2437           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2438                  "code must match");
  2439           // Release the one just created and return the original
  2440           _adapters->free_entry(entry);
  2441           return shared_entry;
  2442         } else  {
  2443           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2446 #endif
  2448       B = AdapterBlob::create(&buffer);
  2449       NOT_PRODUCT(insts_size = buffer.insts_size());
  2451     if (B == NULL) {
  2452       // CodeCache is full, disable compilation
  2453       // Ought to log this but compile log is only per compile thread
  2454       // and we're some non descript Java thread.
  2455       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2456       CompileBroker::handle_full_code_cache();
  2457       return NULL; // Out of CodeCache space
  2459     entry->relocate(B->content_begin());
  2460 #ifndef PRODUCT
  2461     // debugging suppport
  2462     if (PrintAdapterHandlers || PrintStubCode) {
  2463       ttyLocker ttyl;
  2464       entry->print_adapter_on(tty);
  2465       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2466                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2467                     method->signature()->as_C_string(), insts_size);
  2468       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2469       if (Verbose || PrintStubCode) {
  2470         address first_pc = entry->base_address();
  2471         if (first_pc != NULL) {
  2472           Disassembler::decode(first_pc, first_pc + insts_size);
  2473           tty->cr();
  2477 #endif
  2479     _adapters->add(entry);
  2481   // Outside of the lock
  2482   if (B != NULL) {
  2483     char blob_id[256];
  2484     jio_snprintf(blob_id,
  2485                  sizeof(blob_id),
  2486                  "%s(%s)@" PTR_FORMAT,
  2487                  B->name(),
  2488                  fingerprint->as_string(),
  2489                  B->content_begin());
  2490     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2492     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2493       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2496   return entry;
  2499 address AdapterHandlerEntry::base_address() {
  2500   address base = _i2c_entry;
  2501   if (base == NULL)  base = _c2i_entry;
  2502   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2503   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2504   return base;
  2507 void AdapterHandlerEntry::relocate(address new_base) {
  2508   address old_base = base_address();
  2509   assert(old_base != NULL, "");
  2510   ptrdiff_t delta = new_base - old_base;
  2511   if (_i2c_entry != NULL)
  2512     _i2c_entry += delta;
  2513   if (_c2i_entry != NULL)
  2514     _c2i_entry += delta;
  2515   if (_c2i_unverified_entry != NULL)
  2516     _c2i_unverified_entry += delta;
  2517   assert(base_address() == new_base, "");
  2521 void AdapterHandlerEntry::deallocate() {
  2522   delete _fingerprint;
  2523 #ifdef ASSERT
  2524   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2525   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
  2526 #endif
  2530 #ifdef ASSERT
  2531 // Capture the code before relocation so that it can be compared
  2532 // against other versions.  If the code is captured after relocation
  2533 // then relative instructions won't be equivalent.
  2534 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2535   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2536   _code_length = length;
  2537   memcpy(_saved_code, buffer, length);
  2538   _total_args_passed = total_args_passed;
  2539   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
  2540   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2544 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2545   if (length != _code_length) {
  2546     return false;
  2548   for (int i = 0; i < length; i++) {
  2549     if (buffer[i] != _saved_code[i]) {
  2550       return false;
  2553   return true;
  2555 #endif
  2558 // Create a native wrapper for this native method.  The wrapper converts the
  2559 // java compiled calling convention to the native convention, handlizes
  2560 // arguments, and transitions to native.  On return from the native we transition
  2561 // back to java blocking if a safepoint is in progress.
  2562 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2563   ResourceMark rm;
  2564   nmethod* nm = NULL;
  2566   assert(method->is_native(), "must be native");
  2567   assert(method->is_method_handle_intrinsic() ||
  2568          method->has_native_function(), "must have something valid to call!");
  2571     // perform the work while holding the lock, but perform any printing outside the lock
  2572     MutexLocker mu(AdapterHandlerLibrary_lock);
  2573     // See if somebody beat us to it
  2574     nm = method->code();
  2575     if (nm) {
  2576       return nm;
  2579     ResourceMark rm;
  2581     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2582     if (buf != NULL) {
  2583       CodeBuffer buffer(buf);
  2584       double locs_buf[20];
  2585       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2586       MacroAssembler _masm(&buffer);
  2588       // Fill in the signature array, for the calling-convention call.
  2589       const int total_args_passed = method->size_of_parameters();
  2591       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2592       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2593       int i=0;
  2594       if( !method->is_static() )  // Pass in receiver first
  2595         sig_bt[i++] = T_OBJECT;
  2596       SignatureStream ss(method->signature());
  2597       for( ; !ss.at_return_type(); ss.next()) {
  2598         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2599         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2600           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2602       assert(i == total_args_passed, "");
  2603       BasicType ret_type = ss.type();
  2605       // Now get the compiled-Java layout as input (or output) arguments.
  2606       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2607       // are just trampolines so the argument registers must be outgoing ones.
  2608       const bool is_outgoing = method->is_method_handle_intrinsic();
  2609       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2611       // Generate the compiled-to-native wrapper code
  2612       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2613                                                   method,
  2614                                                   compile_id,
  2615                                                   sig_bt,
  2616                                                   regs,
  2617                                                   ret_type);
  2621   // Must unlock before calling set_code
  2623   // Install the generated code.
  2624   if (nm != NULL) {
  2625     if (PrintCompilation) {
  2626       ttyLocker ttyl;
  2627       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2629     method->set_code(method, nm);
  2630     nm->post_compiled_method_load_event();
  2631   } else {
  2632     // CodeCache is full, disable compilation
  2633     CompileBroker::handle_full_code_cache();
  2635   return nm;
  2638 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2639   assert(thread == JavaThread::current(), "must be");
  2640   // The code is about to enter a JNI lazy critical native method and
  2641   // _needs_gc is true, so if this thread is already in a critical
  2642   // section then just return, otherwise this thread should block
  2643   // until needs_gc has been cleared.
  2644   if (thread->in_critical()) {
  2645     return;
  2647   // Lock and unlock a critical section to give the system a chance to block
  2648   GC_locker::lock_critical(thread);
  2649   GC_locker::unlock_critical(thread);
  2650 JRT_END
  2652 #ifdef HAVE_DTRACE_H
  2653 // Create a dtrace nmethod for this method.  The wrapper converts the
  2654 // java compiled calling convention to the native convention, makes a dummy call
  2655 // (actually nops for the size of the call instruction, which become a trap if
  2656 // probe is enabled). The returns to the caller. Since this all looks like a
  2657 // leaf no thread transition is needed.
  2659 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2660   ResourceMark rm;
  2661   nmethod* nm = NULL;
  2663   if (PrintCompilation) {
  2664     ttyLocker ttyl;
  2665     tty->print("---   n%s  ");
  2666     method->print_short_name(tty);
  2667     if (method->is_static()) {
  2668       tty->print(" (static)");
  2670     tty->cr();
  2674     // perform the work while holding the lock, but perform any printing
  2675     // outside the lock
  2676     MutexLocker mu(AdapterHandlerLibrary_lock);
  2677     // See if somebody beat us to it
  2678     nm = method->code();
  2679     if (nm) {
  2680       return nm;
  2683     ResourceMark rm;
  2685     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2686     if (buf != NULL) {
  2687       CodeBuffer buffer(buf);
  2688       // Need a few relocation entries
  2689       double locs_buf[20];
  2690       buffer.insts()->initialize_shared_locs(
  2691         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2692       MacroAssembler _masm(&buffer);
  2694       // Generate the compiled-to-native wrapper code
  2695       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2698   return nm;
  2701 // the dtrace method needs to convert java lang string to utf8 string.
  2702 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2703   typeArrayOop jlsValue  = java_lang_String::value(src);
  2704   int          jlsOffset = java_lang_String::offset(src);
  2705   int          jlsLen    = java_lang_String::length(src);
  2706   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2707                                            jlsValue->char_at_addr(jlsOffset);
  2708   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2709   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2711 #endif // ndef HAVE_DTRACE_H
  2713 // -------------------------------------------------------------------------
  2714 // Java-Java calling convention
  2715 // (what you use when Java calls Java)
  2717 //------------------------------name_for_receiver----------------------------------
  2718 // For a given signature, return the VMReg for parameter 0.
  2719 VMReg SharedRuntime::name_for_receiver() {
  2720   VMRegPair regs;
  2721   BasicType sig_bt = T_OBJECT;
  2722   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2723   // Return argument 0 register.  In the LP64 build pointers
  2724   // take 2 registers, but the VM wants only the 'main' name.
  2725   return regs.first();
  2728 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2729   // This method is returning a data structure allocating as a
  2730   // ResourceObject, so do not put any ResourceMarks in here.
  2731   char *s = sig->as_C_string();
  2732   int len = (int)strlen(s);
  2733   *s++; len--;                  // Skip opening paren
  2734   char *t = s+len;
  2735   while( *(--t) != ')' ) ;      // Find close paren
  2737   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2738   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2739   int cnt = 0;
  2740   if (has_receiver) {
  2741     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2744   while( s < t ) {
  2745     switch( *s++ ) {            // Switch on signature character
  2746     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2747     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2748     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2749     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2750     case 'I': sig_bt[cnt++] = T_INT;     break;
  2751     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2752     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2753     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2754     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2755     case 'L':                   // Oop
  2756       while( *s++ != ';'  ) ;   // Skip signature
  2757       sig_bt[cnt++] = T_OBJECT;
  2758       break;
  2759     case '[': {                 // Array
  2760       do {                      // Skip optional size
  2761         while( *s >= '0' && *s <= '9' ) s++;
  2762       } while( *s++ == '[' );   // Nested arrays?
  2763       // Skip element type
  2764       if( s[-1] == 'L' )
  2765         while( *s++ != ';'  ) ; // Skip signature
  2766       sig_bt[cnt++] = T_ARRAY;
  2767       break;
  2769     default : ShouldNotReachHere();
  2772   assert( cnt < 256, "grow table size" );
  2774   int comp_args_on_stack;
  2775   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2777   // the calling convention doesn't count out_preserve_stack_slots so
  2778   // we must add that in to get "true" stack offsets.
  2780   if (comp_args_on_stack) {
  2781     for (int i = 0; i < cnt; i++) {
  2782       VMReg reg1 = regs[i].first();
  2783       if( reg1->is_stack()) {
  2784         // Yuck
  2785         reg1 = reg1->bias(out_preserve_stack_slots());
  2787       VMReg reg2 = regs[i].second();
  2788       if( reg2->is_stack()) {
  2789         // Yuck
  2790         reg2 = reg2->bias(out_preserve_stack_slots());
  2792       regs[i].set_pair(reg2, reg1);
  2796   // results
  2797   *arg_size = cnt;
  2798   return regs;
  2801 // OSR Migration Code
  2802 //
  2803 // This code is used convert interpreter frames into compiled frames.  It is
  2804 // called from very start of a compiled OSR nmethod.  A temp array is
  2805 // allocated to hold the interesting bits of the interpreter frame.  All
  2806 // active locks are inflated to allow them to move.  The displaced headers and
  2807 // active interpeter locals are copied into the temp buffer.  Then we return
  2808 // back to the compiled code.  The compiled code then pops the current
  2809 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2810 // copies the interpreter locals and displaced headers where it wants.
  2811 // Finally it calls back to free the temp buffer.
  2812 //
  2813 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2815 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2817 #ifdef IA64
  2818   ShouldNotReachHere(); // NYI
  2819 #endif /* IA64 */
  2821   //
  2822   // This code is dependent on the memory layout of the interpreter local
  2823   // array and the monitors. On all of our platforms the layout is identical
  2824   // so this code is shared. If some platform lays the their arrays out
  2825   // differently then this code could move to platform specific code or
  2826   // the code here could be modified to copy items one at a time using
  2827   // frame accessor methods and be platform independent.
  2829   frame fr = thread->last_frame();
  2830   assert( fr.is_interpreted_frame(), "" );
  2831   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2833   // Figure out how many monitors are active.
  2834   int active_monitor_count = 0;
  2835   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2836        kptr < fr.interpreter_frame_monitor_begin();
  2837        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2838     if( kptr->obj() != NULL ) active_monitor_count++;
  2841   // QQQ we could place number of active monitors in the array so that compiled code
  2842   // could double check it.
  2844   Method* moop = fr.interpreter_frame_method();
  2845   int max_locals = moop->max_locals();
  2846   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2847   int buf_size_words = max_locals + active_monitor_count*2;
  2848   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2850   // Copy the locals.  Order is preserved so that loading of longs works.
  2851   // Since there's no GC I can copy the oops blindly.
  2852   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2853   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2854                        (HeapWord*)&buf[0],
  2855                        max_locals);
  2857   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2858   int i = max_locals;
  2859   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2860        kptr2 < fr.interpreter_frame_monitor_begin();
  2861        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2862     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2863       BasicLock *lock = kptr2->lock();
  2864       // Inflate so the displaced header becomes position-independent
  2865       if (lock->displaced_header()->is_unlocked())
  2866         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2867       // Now the displaced header is free to move
  2868       buf[i++] = (intptr_t)lock->displaced_header();
  2869       buf[i++] = (intptr_t)kptr2->obj();
  2872   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2874   return buf;
  2875 JRT_END
  2877 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2878   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2879 JRT_END
  2881 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2882   AdapterHandlerTableIterator iter(_adapters);
  2883   while (iter.has_next()) {
  2884     AdapterHandlerEntry* a = iter.next();
  2885     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2887   return false;
  2890 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2891   AdapterHandlerTableIterator iter(_adapters);
  2892   while (iter.has_next()) {
  2893     AdapterHandlerEntry* a = iter.next();
  2894     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  2895       st->print("Adapter for signature: ");
  2896       a->print_adapter_on(tty);
  2897       return;
  2900   assert(false, "Should have found handler");
  2903 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  2904   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2905                (intptr_t) this, fingerprint()->as_string(),
  2906                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  2910 #ifndef PRODUCT
  2912 void AdapterHandlerLibrary::print_statistics() {
  2913   _adapters->print_statistics();
  2916 #endif /* PRODUCT */

mercurial