src/cpu/x86/vm/methodHandles_x86.cpp

Thu, 12 May 2011 14:04:48 -0700

author
twisti
date
Thu, 12 May 2011 14:04:48 -0700
changeset 2903
fabcf26ee72f
parent 2895
167b70ff3abc
child 2920
a80577f854f9
permissions
-rw-r--r--

6998541: JSR 292 implement missing return-type conversion for OP_RETYPE_RAW
Reviewed-by: jrose, kvn, never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "prims/methodHandles.hpp"
    30 #define __ _masm->
    32 #ifdef PRODUCT
    33 #define BLOCK_COMMENT(str) /* nothing */
    34 #else
    35 #define BLOCK_COMMENT(str) __ block_comment(str)
    36 #endif
    38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    41                                                 address interpreted_entry) {
    42   // Just before the actual machine code entry point, allocate space
    43   // for a MethodHandleEntry::Data record, so that we can manage everything
    44   // from one base pointer.
    45   __ align(wordSize);
    46   address target = __ pc() + sizeof(Data);
    47   while (__ pc() < target) {
    48     __ nop();
    49     __ align(wordSize);
    50   }
    52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    53   me->set_end_address(__ pc());         // set a temporary end_address
    54   me->set_from_interpreted_entry(interpreted_entry);
    55   me->set_type_checking_entry(NULL);
    57   return (address) me;
    58 }
    60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    61                                                 address start_addr) {
    62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    63   assert(me->end_address() == start_addr, "valid ME");
    65   // Fill in the real end_address:
    66   __ align(wordSize);
    67   me->set_end_address(__ pc());
    69   return me;
    70 }
    72 // stack walking support
    74 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    75   RicochetFrame* f = RicochetFrame::from_frame(fr);
    76   if (map->update_map())
    77     frame::update_map_with_saved_link(map, &f->_sender_link);
    78   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
    79 }
    81 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    82   RicochetFrame* f = RicochetFrame::from_frame(fr);
    84   // pick up the argument type descriptor:
    85   Thread* thread = Thread::current();
    86   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    88   // process fixed part
    89   blk->do_oop((oop*)f->saved_target_addr());
    90   blk->do_oop((oop*)f->saved_args_layout_addr());
    92   // process variable arguments:
    93   if (cookie.is_null())  return;  // no arguments to describe
    95   // the cookie is actually the invokeExact method for my target
    96   // his argument signature is what I'm interested in
    97   assert(cookie->is_method(), "");
    98   methodHandle invoker(thread, methodOop(cookie()));
    99   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   100   assert(!invoker->is_static(), "must have MH argument");
   101   int slot_count = invoker->size_of_parameters();
   102   assert(slot_count >= 1, "must include 'this'");
   103   intptr_t* base = f->saved_args_base();
   104   intptr_t* retval = NULL;
   105   if (f->has_return_value_slot())
   106     retval = f->return_value_slot_addr();
   107   int slot_num = slot_count;
   108   intptr_t* loc = &base[slot_num -= 1];
   109   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   110   int arg_num = 0;
   111   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   112     if (ss.at_return_type())  continue;
   113     BasicType ptype = ss.type();
   114     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   115     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   116     loc = &base[slot_num -= type2size[ptype]];
   117     bool is_oop = (ptype == T_OBJECT && loc != retval);
   118     if (is_oop)  blk->do_oop((oop*)loc);
   119     arg_num += 1;
   120   }
   121   assert(slot_num == 0, "must have processed all the arguments");
   122 }
   124 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   125   oop cookie = NULL;
   126   if (read_cache) {
   127     cookie = saved_args_layout();
   128     if (cookie != NULL)  return cookie;
   129   }
   130   oop target = saved_target();
   131   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   132   oop mtform = java_lang_invoke_MethodType::form(mtype);
   133   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   134   if (write_cache)  {
   135     (*saved_args_layout_addr()) = cookie;
   136   }
   137   return cookie;
   138 }
   140 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   141                                                           // output params:
   142                                                           int* frame_size_in_words,
   143                                                           int* bounce_offset,
   144                                                           int* exception_offset) {
   145   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   147   address start = __ pc();
   149 #ifdef ASSERT
   150   __ hlt(); __ hlt(); __ hlt();
   151   // here's a hint of something special:
   152   __ push(MAGIC_NUMBER_1);
   153   __ push(MAGIC_NUMBER_2);
   154 #endif //ASSERT
   155   __ hlt();  // not reached
   157   // A return PC has just been popped from the stack.
   158   // Return values are in registers.
   159   // The ebp points into the RicochetFrame, which contains
   160   // a cleanup continuation we must return to.
   162   (*bounce_offset) = __ pc() - start;
   163   BLOCK_COMMENT("ricochet_blob.bounce");
   165   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   166   trace_method_handle(_masm, "return/ricochet_blob.bounce");
   168   __ jmp(frame_address(continuation_offset_in_bytes()));
   169   __ hlt();
   170   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
   172   (*exception_offset) = __ pc() - start;
   173   BLOCK_COMMENT("ricochet_blob.exception");
   175   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   176   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   177   // Live registers in:
   178   //   rax: exception
   179   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
   180   __ verify_oop(rax);
   182   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
   184   // Take down the frame.
   186   // Cf. InterpreterMacroAssembler::remove_activation.
   187   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
   188                        saved_last_sp_register(),
   189                        /*sender_pc_reg=*/ rdx);
   191   // In between activations - previous activation type unknown yet
   192   // compute continuation point - the continuation point expects the
   193   // following registers set up:
   194   //
   195   // rax: exception
   196   // rdx: return address/pc that threw exception
   197   // rsp: expression stack of caller
   198   // rbp: ebp of caller
   199   __ push(rax);                                  // save exception
   200   __ push(rdx);                                  // save return address
   201   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
   202   NOT_LP64(__ get_thread(thread_reg));
   203   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   204                                    SharedRuntime::exception_handler_for_return_address),
   205                   thread_reg, rdx);
   206   __ mov(rbx, rax);                              // save exception handler
   207   __ pop(rdx);                                   // restore return address
   208   __ pop(rax);                                   // restore exception
   209   __ jmp(rbx);                                   // jump to exception
   210                                                  // handler of caller
   211 }
   213 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   214                                                         Register rcx_recv,
   215                                                         Register rax_argv,
   216                                                         address return_handler,
   217                                                         Register rbx_temp) {
   218   const Register saved_last_sp = saved_last_sp_register();
   219   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
   220   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
   222   // Push the RicochetFrame a word at a time.
   223   // This creates something similar to an interpreter frame.
   224   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
   225   BLOCK_COMMENT("push RicochetFrame {");
   226   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
   227   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
   228 #define RF_FIELD(push_value, name)                                      \
   229   { push_value;                                                         \
   230     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
   231   RF_FIELD(__ push(rbp),                   sender_link);
   232   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
   233   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
   234   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
   235   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
   236   if (UseCompressedOops) {
   237     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
   238     RF_FIELD(__ push(rbx_temp),            saved_target);
   239   } else {
   240     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
   241   }
   242   __ lea(rbx_temp, ExternalAddress(return_handler));
   243   RF_FIELD(__ push(rbx_temp),              continuation);
   244 #undef RF_FIELD
   245   assert(rfo == 0, "fully initialized the RicochetFrame");
   246   // compute new frame pointer:
   247   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
   248   // Push guard word #1 in debug mode.
   249   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
   250   // For debugging, leave behind an indication of which stub built this frame.
   251   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
   252   BLOCK_COMMENT("} RicochetFrame");
   253 }
   255 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   256                                                         Register rcx_recv,
   257                                                         Register new_sp_reg,
   258                                                         Register sender_pc_reg) {
   259   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
   260   const Register saved_last_sp = saved_last_sp_register();
   261   // Take down the frame.
   262   // Cf. InterpreterMacroAssembler::remove_activation.
   263   BLOCK_COMMENT("end_ricochet_frame {");
   264   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
   265   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
   266   if (rcx_recv->is_valid())
   267     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
   268   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
   269   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
   270   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
   271   __ mov(rsp, new_sp_reg);
   272   BLOCK_COMMENT("} end_ricochet_frame");
   273 }
   275 // Emit code to verify that RBP is pointing at a valid ricochet frame.
   276 #ifdef ASSERT
   277 enum {
   278   ARG_LIMIT = 255, SLOP = 4,
   279   // use this parameter for checking for garbage stack movements:
   280   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   281   // the slop defends against false alarms due to fencepost errors
   282 };
   284 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   285   // The stack should look like this:
   286   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
   287   // Check various invariants.
   288   verify_offsets();
   290   Register rdi_temp = rdi;
   291   Register rcx_temp = rcx;
   292   { __ push(rdi_temp); __ push(rcx_temp); }
   293 #define UNPUSH_TEMPS \
   294   { __ pop(rcx_temp);  __ pop(rdi_temp); }
   296   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
   297   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
   298   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
   299   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
   300   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
   302   Label L_bad, L_ok;
   303   BLOCK_COMMENT("verify_clean {");
   304   // Magic numbers must check out:
   305   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
   306   __ jcc(Assembler::notEqual, L_bad);
   307   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
   308   __ jcc(Assembler::notEqual, L_bad);
   310   // Arguments pointer must look reasonable:
   311   __ movptr(rcx_temp, saved_args_base_addr);
   312   __ cmpptr(rcx_temp, rbp);
   313   __ jcc(Assembler::below, L_bad);
   314   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
   315   __ cmpptr(rcx_temp, rbp);
   316   __ jcc(Assembler::above, L_bad);
   318   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
   319   __ cmpl(rdi_temp, T_VOID);
   320   __ jcc(Assembler::equal, L_ok);
   321   __ movptr(rcx_temp, saved_args_base_addr);
   322   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
   323   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
   324             (int32_t) RETURN_VALUE_PLACEHOLDER);
   325   __ jcc(Assembler::equal, L_ok);
   326   __ BIND(L_bad);
   327   UNPUSH_TEMPS;
   328   __ stop("damaged ricochet frame");
   329   __ BIND(L_ok);
   330   UNPUSH_TEMPS;
   331   BLOCK_COMMENT("} verify_clean");
   333 #undef UNPUSH_TEMPS
   335 }
   336 #endif //ASSERT
   338 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
   339   if (VerifyMethodHandles)
   340     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
   341                  "AMH argument is a Class");
   342   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
   343 }
   345 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   346   int bits   = BitsPerByte;
   347   int offset = (CONV_VMINFO_SHIFT / bits);
   348   int shift  = (CONV_VMINFO_SHIFT % bits);
   349   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   350   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
   351   assert(shift == 0, "no shift needed");
   352 }
   354 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   355   int bits   = BitsPerByte;
   356   int offset = (CONV_DEST_TYPE_SHIFT / bits);
   357   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
   358   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   359   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
   360   __ shrl(reg, shift);
   361   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
   362   assert((shift + conv_type_bits) == bits, "left justified in byte");
   363 }
   365 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   366                                     Register rdi_stack_move,
   367                                     Register rcx_amh,
   368                                     bool might_be_negative) {
   369   BLOCK_COMMENT("load_stack_move");
   370   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   371   __ movl(rdi_stack_move, rcx_amh_conversion);
   372   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
   373 #ifdef _LP64
   374   if (might_be_negative) {
   375     // clean high bits of stack motion register (was loaded as an int)
   376     __ movslq(rdi_stack_move, rdi_stack_move);
   377   }
   378 #endif //_LP64
   379   if (VerifyMethodHandles) {
   380     Label L_ok, L_bad;
   381     int32_t stack_move_limit = 0x4000;  // extra-large
   382     __ cmpptr(rdi_stack_move, stack_move_limit);
   383     __ jcc(Assembler::greaterEqual, L_bad);
   384     __ cmpptr(rdi_stack_move, -stack_move_limit);
   385     __ jcc(Assembler::greater, L_ok);
   386     __ bind(L_bad);
   387     __ stop("load_stack_move of garbage value");
   388     __ BIND(L_ok);
   389   }
   390 }
   392 #ifndef PRODUCT
   393 void MethodHandles::RicochetFrame::verify_offsets() {
   394   // Check compatibility of this struct with the more generally used offsets of class frame:
   395   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
   396   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
   397   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
   398   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
   399   // These last two have to be exact:
   400   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
   401   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
   402 }
   404 void MethodHandles::RicochetFrame::verify() const {
   405   verify_offsets();
   406   assert(magic_number_1() == MAGIC_NUMBER_1, "");
   407   assert(magic_number_2() == MAGIC_NUMBER_2, "");
   408   if (!Universe::heap()->is_gc_active()) {
   409     if (saved_args_layout() != NULL) {
   410       assert(saved_args_layout()->is_method(), "must be valid oop");
   411     }
   412     if (saved_target() != NULL) {
   413       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   414     }
   415   }
   416   int conv_op = adapter_conversion_op(conversion());
   417   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   418          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   419          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   420          "must be a sane conversion");
   421   if (has_return_value_slot()) {
   422     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   423   }
   424 }
   425 #endif //PRODUCT
   427 #ifdef ASSERT
   428 void MethodHandles::verify_argslot(MacroAssembler* _masm,
   429                                    Register argslot_reg,
   430                                    const char* error_message) {
   431   // Verify that argslot lies within (rsp, rbp].
   432   Label L_ok, L_bad;
   433   BLOCK_COMMENT("verify_argslot {");
   434   __ cmpptr(argslot_reg, rbp);
   435   __ jccb(Assembler::above, L_bad);
   436   __ cmpptr(rsp, argslot_reg);
   437   __ jccb(Assembler::below, L_ok);
   438   __ bind(L_bad);
   439   __ stop(error_message);
   440   __ BIND(L_ok);
   441   BLOCK_COMMENT("} verify_argslot");
   442 }
   444 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   445                                     RegisterOrConstant arg_slots,
   446                                     Register arg_slot_base_reg,
   447                                     bool negate_argslots,
   448                                     const char* error_message) {
   449   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   450   Label L_ok, L_bad;
   451   Register rdi_temp = rdi;
   452   BLOCK_COMMENT("verify_argslots {");
   453   __ push(rdi_temp);
   454   if (negate_argslots) {
   455     if (arg_slots.is_constant()) {
   456       arg_slots = -1 * arg_slots.as_constant();
   457     } else {
   458       __ movptr(rdi_temp, arg_slots);
   459       __ negptr(rdi_temp);
   460       arg_slots = rdi_temp;
   461     }
   462   }
   463   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
   464   __ cmpptr(rdi_temp, rbp);
   465   __ pop(rdi_temp);
   466   __ jcc(Assembler::above, L_bad);
   467   __ cmpptr(rsp, arg_slot_base_reg);
   468   __ jcc(Assembler::below, L_ok);
   469   __ bind(L_bad);
   470   __ stop(error_message);
   471   __ BIND(L_ok);
   472   BLOCK_COMMENT("} verify_argslots");
   473 }
   475 // Make sure that arg_slots has the same sign as the given direction.
   476 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   477 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   478                                       RegisterOrConstant arg_slots, int direction) {
   479   bool allow_zero = arg_slots.is_constant();
   480   if (direction == 0) { direction = +1; allow_zero = true; }
   481   assert(stack_move_unit() == -1, "else add extra checks here");
   482   if (arg_slots.is_register()) {
   483     Label L_ok, L_bad;
   484     BLOCK_COMMENT("verify_stack_move {");
   485     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
   486     // jcc(Assembler::notZero, L_bad);
   487     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   488     if (direction > 0) {
   489       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
   490       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   491       __ jcc(Assembler::less, L_ok);
   492     } else {
   493       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
   494       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   495       __ jcc(Assembler::greater, L_ok);
   496     }
   497     __ bind(L_bad);
   498     if (direction > 0)
   499       __ stop("assert arg_slots > 0");
   500     else
   501       __ stop("assert arg_slots < 0");
   502     __ BIND(L_ok);
   503     BLOCK_COMMENT("} verify_stack_move");
   504   } else {
   505     intptr_t size = arg_slots.as_constant();
   506     if (direction < 0)  size = -size;
   507     assert(size >= 0, "correct direction of constant move");
   508     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   509   }
   510 }
   512 void MethodHandles::verify_klass(MacroAssembler* _masm,
   513                                  Register obj, KlassHandle klass,
   514                                  const char* error_message) {
   515   oop* klass_addr = klass.raw_value();
   516   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   517          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   518          "must be one of the SystemDictionaryHandles");
   519   Register temp = rdi;
   520   Label L_ok, L_bad;
   521   BLOCK_COMMENT("verify_klass {");
   522   __ verify_oop(obj);
   523   __ testptr(obj, obj);
   524   __ jcc(Assembler::zero, L_bad);
   525   __ push(temp);
   526   __ load_klass(temp, obj);
   527   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   528   __ jcc(Assembler::equal, L_ok);
   529   intptr_t super_check_offset = klass->super_check_offset();
   530   __ movptr(temp, Address(temp, super_check_offset));
   531   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   532   __ jcc(Assembler::equal, L_ok);
   533   __ pop(temp);
   534   __ bind(L_bad);
   535   __ stop(error_message);
   536   __ BIND(L_ok);
   537   __ pop(temp);
   538   BLOCK_COMMENT("} verify_klass");
   539 }
   540 #endif //ASSERT
   542 // Code generation
   543 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   544   // rbx: methodOop
   545   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   546   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   547   // rdx, rdi: garbage temp, blown away
   549   Register rbx_method = rbx;
   550   Register rcx_recv   = rcx;
   551   Register rax_mtype  = rax;
   552   Register rdx_temp   = rdx;
   553   Register rdi_temp   = rdi;
   555   // emit WrongMethodType path first, to enable jccb back-branch from main path
   556   Label wrong_method_type;
   557   __ bind(wrong_method_type);
   558   Label invoke_generic_slow_path;
   559   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   560   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
   561   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
   562   __ push(rax_mtype);       // required mtype
   563   __ push(rcx_recv);        // bad mh (1st stacked argument)
   564   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   566   // here's where control starts out:
   567   __ align(CodeEntryAlignment);
   568   address entry_point = __ pc();
   570   // fetch the MethodType from the method handle into rax (the 'check' register)
   571   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   572   // This would simplify several touchy bits of code.
   573   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   574   {
   575     Register tem = rbx_method;
   576     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   577       __ movptr(rax_mtype, Address(tem, *pchase));
   578       tem = rax_mtype;          // in case there is another indirection
   579     }
   580   }
   582   // given the MethodType, find out where the MH argument is buried
   583   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
   584   Register rdx_vmslots = rdx_temp;
   585   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
   586   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
   587   __ movptr(rcx_recv, mh_receiver_slot_addr);
   589   trace_method_handle(_masm, "invokeExact");
   591   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
   593   // Nobody uses the MH receiver slot after this.  Make sure.
   594   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
   596   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
   598   // for invokeGeneric (only), apply argument and result conversions on the fly
   599   __ bind(invoke_generic_slow_path);
   600 #ifdef ASSERT
   601   if (VerifyMethodHandles) {
   602     Label L;
   603     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   604     __ jcc(Assembler::equal, L);
   605     __ stop("bad methodOop::intrinsic_id");
   606     __ bind(L);
   607   }
   608 #endif //ASSERT
   609   Register rbx_temp = rbx_method;  // don't need it now
   611   // make room on the stack for another pointer:
   612   Register rcx_argslot = rcx_recv;
   613   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   614   insert_arg_slots(_masm, 2 * stack_move_unit(),
   615                    rcx_argslot, rbx_temp, rdx_temp);
   617   // load up an adapter from the calling type (Java weaves this)
   618   Register rdx_adapter = rdx_temp;
   619   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
   620   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   621   __ verify_oop(rdx_adapter);
   622   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   623   // As a trusted first argument, pass the type being called, so the adapter knows
   624   // the actual types of the arguments and return values.
   625   // (Generic invokers are shared among form-families of method-type.)
   626   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   627   // FIXME: assert that rdx_adapter is of the right method-type.
   628   __ mov(rcx, rdx_adapter);
   629   trace_method_handle(_masm, "invokeGeneric");
   630   __ jump_to_method_handle_entry(rcx, rdi_temp);
   632   return entry_point;
   633 }
   635 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
   636 static RegisterOrConstant constant(int value) {
   637   return RegisterOrConstant(value);
   638 }
   640 // Helper to insert argument slots into the stack.
   641 // arg_slots must be a multiple of stack_move_unit() and < 0
   642 // rax_argslot is decremented to point to the new (shifted) location of the argslot
   643 // But, rdx_temp ends up holding the original value of rax_argslot.
   644 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   645                                      RegisterOrConstant arg_slots,
   646                                      Register rax_argslot,
   647                                      Register rbx_temp, Register rdx_temp) {
   648   // allow constant zero
   649   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   650     return;
   651   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   652                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   653   if (VerifyMethodHandles)
   654     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   655   if (VerifyMethodHandles)
   656     verify_stack_move(_masm, arg_slots, -1);
   658   // Make space on the stack for the inserted argument(s).
   659   // Then pull down everything shallower than rax_argslot.
   660   // The stacked return address gets pulled down with everything else.
   661   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   662   //   rsp -= size;
   663   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   664   //     rdx[-size] = rdx[0]
   665   //   argslot -= size;
   666   BLOCK_COMMENT("insert_arg_slots {");
   667   __ mov(rdx_temp, rsp);                        // source pointer for copy
   668   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   669   {
   670     Label loop;
   671     __ BIND(loop);
   672     // pull one word down each time through the loop
   673     __ movptr(rbx_temp, Address(rdx_temp, 0));
   674     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   675     __ addptr(rdx_temp, wordSize);
   676     __ cmpptr(rdx_temp, rax_argslot);
   677     __ jcc(Assembler::below, loop);
   678   }
   680   // Now move the argslot down, to point to the opened-up space.
   681   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   682   BLOCK_COMMENT("} insert_arg_slots");
   683 }
   685 // Helper to remove argument slots from the stack.
   686 // arg_slots must be a multiple of stack_move_unit() and > 0
   687 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   688                                      RegisterOrConstant arg_slots,
   689                                      Register rax_argslot,
   690                                      Register rbx_temp, Register rdx_temp) {
   691   // allow constant zero
   692   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   693     return;
   694   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   695                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   696   if (VerifyMethodHandles)
   697     verify_argslots(_masm, arg_slots, rax_argslot, false,
   698                     "deleted argument(s) must fall within current frame");
   699   if (VerifyMethodHandles)
   700     verify_stack_move(_masm, arg_slots, +1);
   702   BLOCK_COMMENT("remove_arg_slots {");
   703   // Pull up everything shallower than rax_argslot.
   704   // Then remove the excess space on the stack.
   705   // The stacked return address gets pulled up with everything else.
   706   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   707   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   708   //     rdx[size] = rdx[0]
   709   //   argslot += size;
   710   //   rsp += size;
   711   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   712   {
   713     Label loop;
   714     __ BIND(loop);
   715     // pull one word up each time through the loop
   716     __ movptr(rbx_temp, Address(rdx_temp, 0));
   717     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   718     __ addptr(rdx_temp, -wordSize);
   719     __ cmpptr(rdx_temp, rsp);
   720     __ jcc(Assembler::aboveEqual, loop);
   721   }
   723   // Now move the argslot up, to point to the just-copied block.
   724   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   725   // And adjust the argslot address to point at the deletion point.
   726   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   727   BLOCK_COMMENT("} remove_arg_slots");
   728 }
   730 // Helper to copy argument slots to the top of the stack.
   731 // The sequence starts with rax_argslot and is counted by slot_count
   732 // slot_count must be a multiple of stack_move_unit() and >= 0
   733 // This function blows the temps but does not change rax_argslot.
   734 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   735                                    Register rax_argslot,
   736                                    RegisterOrConstant slot_count,
   737                                    int skip_words_count,
   738                                    Register rbx_temp, Register rdx_temp) {
   739   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   740                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
   741                              rsp);
   742   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   744   if (VerifyMethodHandles)
   745     verify_stack_move(_masm, slot_count, 0);
   747   // allow constant zero
   748   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   749     return;
   751   BLOCK_COMMENT("push_arg_slots {");
   753   Register rbx_top = rbx_temp;
   755   // There is at most 1 word to carry down with the TOS.
   756   switch (skip_words_count) {
   757   case 1: __ pop(rdx_temp); break;
   758   case 0:                   break;
   759   default: ShouldNotReachHere();
   760   }
   762   if (slot_count.is_constant()) {
   763     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   764       __ pushptr(Address(rax_argslot, i * wordSize));
   765     }
   766   } else {
   767     Label L_plural, L_loop, L_break;
   768     // Emit code to dynamically check for the common cases, zero and one slot.
   769     __ cmpl(slot_count.as_register(), (int32_t) 1);
   770     __ jccb(Assembler::greater, L_plural);
   771     __ jccb(Assembler::less, L_break);
   772     __ pushptr(Address(rax_argslot, 0));
   773     __ jmpb(L_break);
   774     __ BIND(L_plural);
   776     // Loop for 2 or more:
   777     //   rbx = &rax[slot_count]
   778     //   while (rbx > rax)  *(--rsp) = *(--rbx)
   779     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
   780     __ BIND(L_loop);
   781     __ subptr(rbx_top, wordSize);
   782     __ pushptr(Address(rbx_top, 0));
   783     __ cmpptr(rbx_top, rax_argslot);
   784     __ jcc(Assembler::above, L_loop);
   785     __ bind(L_break);
   786   }
   787   switch (skip_words_count) {
   788   case 1: __ push(rdx_temp); break;
   789   case 0:                    break;
   790   default: ShouldNotReachHere();
   791   }
   792   BLOCK_COMMENT("} push_arg_slots");
   793 }
   795 // in-place movement; no change to rsp
   796 // blows rax_temp, rdx_temp
   797 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   798                                       Register rbx_bottom,  // invariant
   799                                       Address  top_addr,     // can use rax_temp
   800                                       RegisterOrConstant positive_distance_in_slots,
   801                                       Register rax_temp, Register rdx_temp) {
   802   BLOCK_COMMENT("move_arg_slots_up {");
   803   assert_different_registers(rbx_bottom,
   804                              rax_temp, rdx_temp,
   805                              positive_distance_in_slots.register_or_noreg());
   806   Label L_loop, L_break;
   807   Register rax_top = rax_temp;
   808   if (!top_addr.is_same_address(Address(rax_top, 0)))
   809     __ lea(rax_top, top_addr);
   810   // Detect empty (or broken) loop:
   811 #ifdef ASSERT
   812   if (VerifyMethodHandles) {
   813     // Verify that &bottom < &top (non-empty interval)
   814     Label L_ok, L_bad;
   815     if (positive_distance_in_slots.is_register()) {
   816       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
   817       __ jcc(Assembler::lessEqual, L_bad);
   818     }
   819     __ cmpptr(rbx_bottom, rax_top);
   820     __ jcc(Assembler::below, L_ok);
   821     __ bind(L_bad);
   822     __ stop("valid bounds (copy up)");
   823     __ BIND(L_ok);
   824   }
   825 #endif
   826   __ cmpptr(rbx_bottom, rax_top);
   827   __ jccb(Assembler::aboveEqual, L_break);
   828   // work rax down to rbx, copying contiguous data upwards
   829   // In pseudo-code:
   830   //   [rbx, rax) = &[bottom, top)
   831   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
   832   __ BIND(L_loop);
   833   __ subptr(rax_top, wordSize);
   834   __ movptr(rdx_temp, Address(rax_top, 0));
   835   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
   836   __ cmpptr(rax_top, rbx_bottom);
   837   __ jcc(Assembler::above, L_loop);
   838   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   839   __ bind(L_break);
   840   BLOCK_COMMENT("} move_arg_slots_up");
   841 }
   843 // in-place movement; no change to rsp
   844 // blows rax_temp, rdx_temp
   845 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   846                                         Address  bottom_addr,  // can use rax_temp
   847                                         Register rbx_top,      // invariant
   848                                         RegisterOrConstant negative_distance_in_slots,
   849                                         Register rax_temp, Register rdx_temp) {
   850   BLOCK_COMMENT("move_arg_slots_down {");
   851   assert_different_registers(rbx_top,
   852                              negative_distance_in_slots.register_or_noreg(),
   853                              rax_temp, rdx_temp);
   854   Label L_loop, L_break;
   855   Register rax_bottom = rax_temp;
   856   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
   857     __ lea(rax_bottom, bottom_addr);
   858   // Detect empty (or broken) loop:
   859 #ifdef ASSERT
   860   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   861   if (VerifyMethodHandles) {
   862     // Verify that &bottom < &top (non-empty interval)
   863     Label L_ok, L_bad;
   864     if (negative_distance_in_slots.is_register()) {
   865       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
   866       __ jcc(Assembler::greaterEqual, L_bad);
   867     }
   868     __ cmpptr(rax_bottom, rbx_top);
   869     __ jcc(Assembler::below, L_ok);
   870     __ bind(L_bad);
   871     __ stop("valid bounds (copy down)");
   872     __ BIND(L_ok);
   873   }
   874 #endif
   875   __ cmpptr(rax_bottom, rbx_top);
   876   __ jccb(Assembler::aboveEqual, L_break);
   877   // work rax up to rbx, copying contiguous data downwards
   878   // In pseudo-code:
   879   //   [rax, rbx) = &[bottom, top)
   880   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
   881   __ BIND(L_loop);
   882   __ movptr(rdx_temp, Address(rax_bottom, 0));
   883   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
   884   __ addptr(rax_bottom, wordSize);
   885   __ cmpptr(rax_bottom, rbx_top);
   886   __ jcc(Assembler::below, L_loop);
   887   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   888   __ bind(L_break);
   889   BLOCK_COMMENT("} move_arg_slots_down");
   890 }
   892 // Copy from a field or array element to a stacked argument slot.
   893 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   894 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   895                                    BasicType type, bool is_element,
   896                                    Address slot_dest, Address value_src,
   897                                    Register rbx_temp, Register rdx_temp) {
   898   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   899   if (type == T_OBJECT || type == T_ARRAY) {
   900     __ load_heap_oop(rbx_temp, value_src);
   901     __ movptr(slot_dest, rbx_temp);
   902   } else if (type != T_VOID) {
   903     int  arg_size      = type2aelembytes(type);
   904     bool arg_is_signed = is_signed_subword_type(type);
   905     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
   906     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
   907     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
   908   }
   909   BLOCK_COMMENT("} move_typed_arg");
   910 }
   912 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   913                                       Address return_slot) {
   914   BLOCK_COMMENT("move_return_value {");
   915   // Old versions of the JVM must clean the FPU stack after every return.
   916 #ifndef _LP64
   917 #ifdef COMPILER2
   918   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   919   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
   920     for (int i = 1; i < 8; i++) {
   921         __ ffree(i);
   922     }
   923   } else if (UseSSE < 2) {
   924     __ empty_FPU_stack();
   925   }
   926 #endif //COMPILER2
   927 #endif //!_LP64
   929   // Look at the type and pull the value out of the corresponding register.
   930   if (type == T_VOID) {
   931     // nothing to do
   932   } else if (type == T_OBJECT) {
   933     __ movptr(return_slot, rax);
   934   } else if (type == T_INT || is_subword_type(type)) {
   935     // write the whole word, even if only 32 bits is significant
   936     __ movptr(return_slot, rax);
   937   } else if (type == T_LONG) {
   938     // store the value by parts
   939     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   940     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
   941   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
   942                       (type == T_DOUBLE && UseSSE < 2) ||)
   943              false) {
   944     // Use old x86 FPU registers:
   945     if (type == T_FLOAT)
   946       __ fstp_s(return_slot);
   947     else
   948       __ fstp_d(return_slot);
   949   } else if (type == T_FLOAT) {
   950     __ movflt(return_slot, xmm0);
   951   } else if (type == T_DOUBLE) {
   952     __ movdbl(return_slot, xmm0);
   953   } else {
   954     ShouldNotReachHere();
   955   }
   956   BLOCK_COMMENT("} move_return_value");
   957 }
   960 #ifndef PRODUCT
   961 extern "C" void print_method_handle(oop mh);
   962 void trace_method_handle_stub(const char* adaptername,
   963                               oop mh,
   964                               intptr_t* saved_regs,
   965                               intptr_t* entry_sp,
   966                               intptr_t* saved_sp,
   967                               intptr_t* saved_bp) {
   968   // called as a leaf from native code: do not block the JVM!
   969   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
   970   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
   971   intptr_t* base_sp = last_sp;
   972   typedef MethodHandles::RicochetFrame RicochetFrame;
   973   RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes());
   974   if (!UseRicochetFrames || Universe::heap()->is_in((address) rfp->saved_args_base())) {
   975     // Probably an interpreter frame.
   976     base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
   977   }
   978   intptr_t    mh_reg = (intptr_t)mh;
   979   const char* mh_reg_name = "rcx_mh";
   980   if (!has_mh)  mh_reg_name = "rcx";
   981   tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT,
   982                 adaptername, mh_reg_name, mh_reg,
   983                 (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
   984   if (Verbose) {
   985     tty->print(" reg dump: ");
   986     int saved_regs_count = (entry_sp-1) - saved_regs;
   987     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
   988     int i;
   989     for (i = 0; i <= saved_regs_count; i++) {
   990       if (i > 0 && i % 4 == 0 && i != saved_regs_count) {
   991         tty->cr();
   992         tty->print("   + dump: ");
   993       }
   994       tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]);
   995     }
   996     tty->cr();
   997     if (last_sp != saved_sp && last_sp != NULL)
   998       tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp);
   999     int stack_dump_count = 16;
  1000     if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
  1001       stack_dump_count = (int)(saved_bp + 2 - saved_sp);
  1002     if (stack_dump_count > 64)  stack_dump_count = 48;
  1003     for (i = 0; i < stack_dump_count; i += 4) {
  1004       tty->print_cr(" dump at SP[%d] "PTR_FORMAT": "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT,
  1005                     i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
  1007     if (has_mh)
  1008       print_method_handle(mh);
  1012 // The stub wraps the arguments in a struct on the stack to avoid
  1013 // dealing with the different calling conventions for passing 6
  1014 // arguments.
  1015 struct MethodHandleStubArguments {
  1016   const char* adaptername;
  1017   oopDesc* mh;
  1018   intptr_t* saved_regs;
  1019   intptr_t* entry_sp;
  1020   intptr_t* saved_sp;
  1021   intptr_t* saved_bp;
  1022 };
  1023 void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
  1024   trace_method_handle_stub(args->adaptername,
  1025                            args->mh,
  1026                            args->saved_regs,
  1027                            args->entry_sp,
  1028                            args->saved_sp,
  1029                            args->saved_bp);
  1032 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1033   if (!TraceMethodHandles)  return;
  1034   BLOCK_COMMENT("trace_method_handle {");
  1035   __ push(rax);
  1036   __ lea(rax, Address(rsp, wordSize * NOT_LP64(6) LP64_ONLY(14))); // entry_sp  __ pusha();
  1037   __ pusha();
  1038   __ mov(rbx, rsp);
  1039   __ enter();
  1040   // incoming state:
  1041   // rcx: method handle
  1042   // r13 or rsi: saved sp
  1043   // To avoid calling convention issues, build a record on the stack and pass the pointer to that instead.
  1044   __ push(rbp);               // saved_bp
  1045   __ push(rsi);               // saved_sp
  1046   __ push(rax);               // entry_sp
  1047   __ push(rbx);               // pusha saved_regs
  1048   __ push(rcx);               // mh
  1049   __ push(rcx);               // adaptername
  1050   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
  1051   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
  1052   __ leave();
  1053   __ popa();
  1054   __ pop(rax);
  1055   BLOCK_COMMENT("} trace_method_handle");
  1057 #endif //PRODUCT
  1059 // which conversion op types are implemented here?
  1060 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1061   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1062          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1063          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1064          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1065          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1066           //OP_PRIM_TO_REF is below...
  1067          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1068          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1069          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1070          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1071           //OP_COLLECT_ARGS is below...
  1072          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1073          |(!UseRicochetFrames ? 0 :
  1074            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1075            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1076            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1077            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1078             ))
  1079          );
  1082 //------------------------------------------------------------------------------
  1083 // MethodHandles::generate_method_handle_stub
  1084 //
  1085 // Generate an "entry" field for a method handle.
  1086 // This determines how the method handle will respond to calls.
  1087 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1088   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1090   // Here is the register state during an interpreted call,
  1091   // as set up by generate_method_handle_interpreter_entry():
  1092   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  1093   // - rcx: receiver method handle
  1094   // - rax: method handle type (only used by the check_mtype entry point)
  1095   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  1096   // - rdx: garbage temp, can blow away
  1098   const Register rcx_recv    = rcx;
  1099   const Register rax_argslot = rax;
  1100   const Register rbx_temp    = rbx;
  1101   const Register rdx_temp    = rdx;
  1102   const Register rdi_temp    = rdi;
  1104   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  1105   // and gen_c2i_adapter (from compiled calls):
  1106   const Register saved_last_sp = saved_last_sp_register();
  1108   // Argument registers for _raise_exception.
  1109   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  1110   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  1111   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  1112   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  1113   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
  1115   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1117   // some handy addresses
  1118   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
  1119   Address rbx_method_fce(     rbx,      methodOopDesc::from_compiled_offset() );
  1121   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  1122   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
  1124   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  1125   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
  1127   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  1128   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  1129   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
  1130   Address vmarg;                // __ argument_address(vmargslot)
  1132   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1134   if (have_entry(ek)) {
  1135     __ nop();                   // empty stubs make SG sick
  1136     return;
  1139 #ifdef ASSERT
  1140   __ push((int32_t) 0xEEEEEEEE);
  1141   __ push((int32_t) (intptr_t) entry_name(ek));
  1142   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
  1143   __ push((int32_t) 0x33333333);
  1144 #endif //ASSERT
  1146   address interp_entry = __ pc();
  1148   trace_method_handle(_masm, entry_name(ek));
  1150   BLOCK_COMMENT(entry_name(ek));
  1152   switch ((int) ek) {
  1153   case _raise_exception:
  1155       // Not a real MH entry, but rather shared code for raising an
  1156       // exception.  Since we use the compiled entry, arguments are
  1157       // expected in compiler argument registers.
  1158       assert(raise_exception_method(), "must be set");
  1159       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1161       const Register rdi_pc = rax;
  1162       __ pop(rdi_pc);  // caller PC
  1163       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
  1165       Register rbx_method = rbx_temp;
  1166       Label L_no_method;
  1167       // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method
  1168       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
  1169       __ testptr(rbx_method, rbx_method);
  1170       __ jccb(Assembler::zero, L_no_method);
  1172       const int jobject_oop_offset = 0;
  1173       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
  1174       __ testptr(rbx_method, rbx_method);
  1175       __ jccb(Assembler::zero, L_no_method);
  1176       __ verify_oop(rbx_method);
  1178       NOT_LP64(__ push(rarg2_required));
  1179       __ push(rdi_pc);         // restore caller PC
  1180       __ jmp(rbx_method_fce);  // jump to compiled entry
  1182       // Do something that is at least causes a valid throw from the interpreter.
  1183       __ bind(L_no_method);
  1184       __ push(rarg2_required);
  1185       __ push(rarg1_actual);
  1186       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
  1188     break;
  1190   case _invokestatic_mh:
  1191   case _invokespecial_mh:
  1193       Register rbx_method = rbx_temp;
  1194       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
  1195       __ verify_oop(rbx_method);
  1196       // same as TemplateTable::invokestatic or invokespecial,
  1197       // minus the CP setup and profiling:
  1198       if (ek == _invokespecial_mh) {
  1199         // Must load & check the first argument before entering the target method.
  1200         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1201         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1202         __ null_check(rcx_recv);
  1203         __ verify_oop(rcx_recv);
  1205       __ jmp(rbx_method_fie);
  1207     break;
  1209   case _invokevirtual_mh:
  1211       // same as TemplateTable::invokevirtual,
  1212       // minus the CP setup and profiling:
  1214       // pick out the vtable index and receiver offset from the MH,
  1215       // and then we can discard it:
  1216       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1217       Register rbx_index = rbx_temp;
  1218       __ movl(rbx_index, rcx_dmh_vmindex);
  1219       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
  1220       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1221       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1223       // get receiver klass
  1224       Register rax_klass = rax_argslot;
  1225       __ load_klass(rax_klass, rcx_recv);
  1226       __ verify_oop(rax_klass);
  1228       // get target methodOop & entry point
  1229       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1230       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1231       Address vtable_entry_addr(rax_klass,
  1232                                 rbx_index, Address::times_ptr,
  1233                                 base + vtableEntry::method_offset_in_bytes());
  1234       Register rbx_method = rbx_temp;
  1235       __ movptr(rbx_method, vtable_entry_addr);
  1237       __ verify_oop(rbx_method);
  1238       __ jmp(rbx_method_fie);
  1240     break;
  1242   case _invokeinterface_mh:
  1244       // same as TemplateTable::invokeinterface,
  1245       // minus the CP setup and profiling:
  1247       // pick out the interface and itable index from the MH.
  1248       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1249       Register rdx_intf  = rdx_temp;
  1250       Register rbx_index = rbx_temp;
  1251       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
  1252       __ movl(rbx_index, rcx_dmh_vmindex);
  1253       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1254       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1256       // get receiver klass
  1257       Register rax_klass = rax_argslot;
  1258       __ load_klass(rax_klass, rcx_recv);
  1259       __ verify_oop(rax_klass);
  1261       Register rbx_method = rbx_index;
  1263       // get interface klass
  1264       Label no_such_interface;
  1265       __ verify_oop(rdx_intf);
  1266       __ lookup_interface_method(rax_klass, rdx_intf,
  1267                                  // note: next two args must be the same:
  1268                                  rbx_index, rbx_method,
  1269                                  rdi_temp,
  1270                                  no_such_interface);
  1272       __ verify_oop(rbx_method);
  1273       __ jmp(rbx_method_fie);
  1274       __ hlt();
  1276       __ bind(no_such_interface);
  1277       // Throw an exception.
  1278       // For historical reasons, it will be IncompatibleClassChangeError.
  1279       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
  1280       assert_different_registers(rarg2_required, rbx_temp);
  1281       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
  1282       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
  1283       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
  1284       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1286     break;
  1288   case _bound_ref_mh:
  1289   case _bound_int_mh:
  1290   case _bound_long_mh:
  1291   case _bound_ref_direct_mh:
  1292   case _bound_int_direct_mh:
  1293   case _bound_long_direct_mh:
  1295       bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1296       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1297       int       arg_slots = type2size[arg_type];
  1299       // make room for the new argument:
  1300       __ movl(rax_argslot, rcx_bmh_vmargslot);
  1301       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1303       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
  1305       // store bound argument into the new stack slot:
  1306       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
  1307       if (arg_type == T_OBJECT) {
  1308         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1309       } else {
  1310         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1311         move_typed_arg(_masm, arg_type, false,
  1312                        Address(rax_argslot, 0),
  1313                        prim_value_addr,
  1314                        rbx_temp, rdx_temp);
  1317       if (direct_to_method) {
  1318         Register rbx_method = rbx_temp;
  1319         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
  1320         __ verify_oop(rbx_method);
  1321         __ jmp(rbx_method_fie);
  1322       } else {
  1323         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1324         __ verify_oop(rcx_recv);
  1325         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1328     break;
  1330   case _adapter_retype_only:
  1331   case _adapter_retype_raw:
  1332     // immediately jump to the next MH layer:
  1333     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1334     __ verify_oop(rcx_recv);
  1335     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1336     // This is OK when all parameter types widen.
  1337     // It is also OK when a return type narrows.
  1338     break;
  1340   case _adapter_check_cast:
  1342       // temps:
  1343       Register rbx_klass = rbx_temp; // interesting AMH data
  1345       // check a reference argument before jumping to the next layer of MH:
  1346       __ movl(rax_argslot, rcx_amh_vmargslot);
  1347       vmarg = __ argument_address(rax_argslot);
  1349       // What class are we casting to?
  1350       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  1351       load_klass_from_Class(_masm, rbx_klass);
  1353       Label done;
  1354       __ movptr(rdx_temp, vmarg);
  1355       __ testptr(rdx_temp, rdx_temp);
  1356       __ jcc(Assembler::zero, done);         // no cast if null
  1357       __ load_klass(rdx_temp, rdx_temp);
  1359       // live at this point:
  1360       // - rbx_klass:  klass required by the target method
  1361       // - rdx_temp:   argument klass to test
  1362       // - rcx_recv:   adapter method handle
  1363       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
  1365       // If we get here, the type check failed!
  1366       // Call the wrong_method_type stub, passing the failing argument type in rax.
  1367       Register rax_mtype = rax_argslot;
  1368       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
  1369       __ movptr(rdx_temp, vmarg);
  1371       assert_different_registers(rarg2_required, rdx_temp);
  1372       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
  1373       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
  1374       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
  1375       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1377       __ bind(done);
  1378       // get the new MH:
  1379       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1380       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1382     break;
  1384   case _adapter_prim_to_prim:
  1385   case _adapter_ref_to_prim:
  1386   case _adapter_prim_to_ref:
  1387     // handled completely by optimized cases
  1388     __ stop("init_AdapterMethodHandle should not issue this");
  1389     break;
  1391   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1392 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1393   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1394   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1396       // perform an in-place conversion to int or an int subword
  1397       __ movl(rax_argslot, rcx_amh_vmargslot);
  1398       vmarg = __ argument_address(rax_argslot);
  1400       switch (ek) {
  1401       case _adapter_opt_i2i:
  1402         __ movl(rdx_temp, vmarg);
  1403         break;
  1404       case _adapter_opt_l2i:
  1406           // just delete the extra slot; on a little-endian machine we keep the first
  1407           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1408           remove_arg_slots(_masm, -stack_move_unit(),
  1409                            rax_argslot, rbx_temp, rdx_temp);
  1410           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
  1411           __ movl(rdx_temp, vmarg);
  1413         break;
  1414       case _adapter_opt_unboxi:
  1416           // Load the value up from the heap.
  1417           __ movptr(rdx_temp, vmarg);
  1418           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1419 #ifdef ASSERT
  1420           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1421             if (is_subword_type(BasicType(bt)))
  1422               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1424 #endif
  1425           __ null_check(rdx_temp, value_offset);
  1426           __ movl(rdx_temp, Address(rdx_temp, value_offset));
  1427           // We load this as a word.  Because we are little-endian,
  1428           // the low bits will be correct, but the high bits may need cleaning.
  1429           // The vminfo will guide us to clean those bits.
  1431         break;
  1432       default:
  1433         ShouldNotReachHere();
  1436       // Do the requested conversion and store the value.
  1437       Register rbx_vminfo = rbx_temp;
  1438       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  1440       // get the new MH:
  1441       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1442       // (now we are done with the old MH)
  1444       // original 32-bit vmdata word must be of this form:
  1445       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1446       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
  1447       __ shll(rdx_temp /*, rcx*/);
  1448       Label zero_extend, done;
  1449       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
  1450       __ jccb(Assembler::zero, zero_extend);
  1452       // this path is taken for int->byte, int->short
  1453       __ sarl(rdx_temp /*, rcx*/);
  1454       __ jmpb(done);
  1456       __ bind(zero_extend);
  1457       // this is taken for int->char
  1458       __ shrl(rdx_temp /*, rcx*/);
  1460       __ bind(done);
  1461       __ movl(vmarg, rdx_temp);  // Store the value.
  1462       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
  1464       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1466     break;
  1468   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1469   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1471       // perform an in-place int-to-long or ref-to-long conversion
  1472       __ movl(rax_argslot, rcx_amh_vmargslot);
  1474       // on a little-endian machine we keep the first slot and add another after
  1475       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1476       insert_arg_slots(_masm, stack_move_unit(),
  1477                        rax_argslot, rbx_temp, rdx_temp);
  1478       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
  1479       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
  1481       switch (ek) {
  1482       case _adapter_opt_i2l:
  1484 #ifdef _LP64
  1485           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
  1486           __ movq(vmarg1, rdx_temp);    // Store into first slot
  1487 #else
  1488           __ movl(rdx_temp, vmarg1);
  1489           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
  1490           __ movl(vmarg2, rdx_temp); // store second word
  1491 #endif
  1493         break;
  1494       case _adapter_opt_unboxl:
  1496           // Load the value up from the heap.
  1497           __ movptr(rdx_temp, vmarg1);
  1498           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1499           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1500           __ null_check(rdx_temp, value_offset);
  1501 #ifdef _LP64
  1502           __ movq(rbx_temp, Address(rdx_temp, value_offset));
  1503           __ movq(vmarg1, rbx_temp);
  1504 #else
  1505           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
  1506           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
  1507           __ movl(vmarg1, rbx_temp);
  1508           __ movl(vmarg2, rdx_temp);
  1509 #endif
  1511         break;
  1512       default:
  1513         ShouldNotReachHere();
  1516       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1517       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1519     break;
  1521   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1522   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1524       // perform an in-place floating primitive conversion
  1525       __ movl(rax_argslot, rcx_amh_vmargslot);
  1526       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1527       if (ek == _adapter_opt_f2d) {
  1528         insert_arg_slots(_masm, stack_move_unit(),
  1529                          rax_argslot, rbx_temp, rdx_temp);
  1531       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
  1533 #ifdef _LP64
  1534       if (ek == _adapter_opt_f2d) {
  1535         __ movflt(xmm0, vmarg);
  1536         __ cvtss2sd(xmm0, xmm0);
  1537         __ movdbl(vmarg, xmm0);
  1538       } else {
  1539         __ movdbl(xmm0, vmarg);
  1540         __ cvtsd2ss(xmm0, xmm0);
  1541         __ movflt(vmarg, xmm0);
  1543 #else //_LP64
  1544       if (ek == _adapter_opt_f2d) {
  1545         __ fld_s(vmarg);        // load float to ST0
  1546         __ fstp_d(vmarg);       // store double
  1547       } else {
  1548         __ fld_d(vmarg);        // load double to ST0
  1549         __ fstp_s(vmarg);       // store single
  1551 #endif //_LP64
  1553       if (ek == _adapter_opt_d2f) {
  1554         remove_arg_slots(_masm, -stack_move_unit(),
  1555                          rax_argslot, rbx_temp, rdx_temp);
  1558       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1559       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1561     break;
  1563   case _adapter_swap_args:
  1564   case _adapter_rot_args:
  1565     // handled completely by optimized cases
  1566     __ stop("init_AdapterMethodHandle should not issue this");
  1567     break;
  1569   case _adapter_opt_swap_1:
  1570   case _adapter_opt_swap_2:
  1571   case _adapter_opt_rot_1_up:
  1572   case _adapter_opt_rot_1_down:
  1573   case _adapter_opt_rot_2_up:
  1574   case _adapter_opt_rot_2_down:
  1576       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1577       int rotate     = ek_adapter_opt_swap_mode(ek);
  1579       // 'argslot' is the position of the first argument to swap
  1580       __ movl(rax_argslot, rcx_amh_vmargslot);
  1581       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1583       // 'vminfo' is the second
  1584       Register rbx_destslot = rbx_temp;
  1585       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
  1586       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
  1587       if (VerifyMethodHandles)
  1588         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
  1590       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1591       if (!rotate) {
  1592         // simple swap
  1593         for (int i = 0; i < swap_slots; i++) {
  1594           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
  1595           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
  1596           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
  1597           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1599       } else {
  1600         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1601         // changing place with a series of other slots.
  1602         // First, push the "odd slot", which is going to get overwritten
  1603         for (int i = swap_slots - 1; i >= 0; i--) {
  1604           // handle one with rdi_temp instead of a push:
  1605           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
  1606           else         __ pushptr(         Address(rax_argslot, i * wordSize));
  1608         if (rotate > 0) {
  1609           // Here is rotate > 0:
  1610           // (low mem)                                          (high mem)
  1611           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1612           // =>
  1613           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1614           // work argslot down to destslot, copying contiguous data upwards
  1615           // pseudo-code:
  1616           //   rax = src_addr - swap_bytes
  1617           //   rbx = dest_addr
  1618           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
  1619           move_arg_slots_up(_masm,
  1620                             rbx_destslot,
  1621                             Address(rax_argslot, 0),
  1622                             swap_slots,
  1623                             rax_argslot, rdx_temp);
  1624         } else {
  1625           // Here is the other direction, rotate < 0:
  1626           // (low mem)                                          (high mem)
  1627           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1628           // =>
  1629           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1630           // work argslot up to destslot, copying contiguous data downwards
  1631           // pseudo-code:
  1632           //   rax = src_addr + swap_bytes
  1633           //   rbx = dest_addr
  1634           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
  1635           __ addptr(rbx_destslot, wordSize);
  1636           move_arg_slots_down(_masm,
  1637                               Address(rax_argslot, swap_slots * wordSize),
  1638                               rbx_destslot,
  1639                               -swap_slots,
  1640                               rax_argslot, rdx_temp);
  1642           __ subptr(rbx_destslot, wordSize);
  1644         // pop the original first chunk into the destination slot, now free
  1645         for (int i = 0; i < swap_slots; i++) {
  1646           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1647           else         __ popptr(Address(rbx_destslot, i * wordSize));
  1651       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1652       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1654     break;
  1656   case _adapter_dup_args:
  1658       // 'argslot' is the position of the first argument to duplicate
  1659       __ movl(rax_argslot, rcx_amh_vmargslot);
  1660       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1662       // 'stack_move' is negative number of words to duplicate
  1663       Register rdi_stack_move = rdi_temp;
  1664       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
  1666       if (VerifyMethodHandles) {
  1667         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
  1668                         "copied argument(s) must fall within current frame");
  1671       // insert location is always the bottom of the argument list:
  1672       Address insert_location = __ argument_address(constant(0));
  1673       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
  1674       assert(insert_location.base() == rsp, "");
  1676       __ negl(rdi_stack_move);
  1677       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
  1678                      pre_arg_words, rbx_temp, rdx_temp);
  1680       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1681       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1683     break;
  1685   case _adapter_drop_args:
  1687       // 'argslot' is the position of the first argument to nuke
  1688       __ movl(rax_argslot, rcx_amh_vmargslot);
  1689       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1691       // (must do previous push after argslot address is taken)
  1693       // 'stack_move' is number of words to drop
  1694       Register rdi_stack_move = rdi_temp;
  1695       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
  1696       remove_arg_slots(_masm, rdi_stack_move,
  1697                        rax_argslot, rbx_temp, rdx_temp);
  1699       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1700       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1702     break;
  1704   case _adapter_collect_args:
  1705   case _adapter_fold_args:
  1706   case _adapter_spread_args:
  1707     // handled completely by optimized cases
  1708     __ stop("init_AdapterMethodHandle should not issue this");
  1709     break;
  1711   case _adapter_opt_collect_ref:
  1712   case _adapter_opt_collect_int:
  1713   case _adapter_opt_collect_long:
  1714   case _adapter_opt_collect_float:
  1715   case _adapter_opt_collect_double:
  1716   case _adapter_opt_collect_void:
  1717   case _adapter_opt_collect_0_ref:
  1718   case _adapter_opt_collect_1_ref:
  1719   case _adapter_opt_collect_2_ref:
  1720   case _adapter_opt_collect_3_ref:
  1721   case _adapter_opt_collect_4_ref:
  1722   case _adapter_opt_collect_5_ref:
  1723   case _adapter_opt_filter_S0_ref:
  1724   case _adapter_opt_filter_S1_ref:
  1725   case _adapter_opt_filter_S2_ref:
  1726   case _adapter_opt_filter_S3_ref:
  1727   case _adapter_opt_filter_S4_ref:
  1728   case _adapter_opt_filter_S5_ref:
  1729   case _adapter_opt_collect_2_S0_ref:
  1730   case _adapter_opt_collect_2_S1_ref:
  1731   case _adapter_opt_collect_2_S2_ref:
  1732   case _adapter_opt_collect_2_S3_ref:
  1733   case _adapter_opt_collect_2_S4_ref:
  1734   case _adapter_opt_collect_2_S5_ref:
  1735   case _adapter_opt_fold_ref:
  1736   case _adapter_opt_fold_int:
  1737   case _adapter_opt_fold_long:
  1738   case _adapter_opt_fold_float:
  1739   case _adapter_opt_fold_double:
  1740   case _adapter_opt_fold_void:
  1741   case _adapter_opt_fold_1_ref:
  1742   case _adapter_opt_fold_2_ref:
  1743   case _adapter_opt_fold_3_ref:
  1744   case _adapter_opt_fold_4_ref:
  1745   case _adapter_opt_fold_5_ref:
  1747       // Given a fresh incoming stack frame, build a new ricochet frame.
  1748       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
  1749       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1750       // RCX contains an AdapterMethodHandle of the indicated kind.
  1752       // Relevant AMH fields:
  1753       // amh.vmargslot:
  1754       //   points to the trailing edge of the arguments
  1755       //   to filter, collect, or fold.  For a boxing operation,
  1756       //   it points just after the single primitive value.
  1757       // amh.argument:
  1758       //   recursively called MH, on |collect| arguments
  1759       // amh.vmtarget:
  1760       //   final destination MH, on return value, etc.
  1761       // amh.conversion.dest:
  1762       //   tells what is the type of the return value
  1763       //   (not needed here, since dest is also derived from ek)
  1764       // amh.conversion.vminfo:
  1765       //   points to the trailing edge of the return value
  1766       //   when the vmtarget is to be called; this is
  1767       //   equal to vmargslot + (retained ? |collect| : 0)
  1769       // Pass 0 or more argument slots to the recursive target.
  1770       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1772       // The collected arguments are copied from the saved argument list:
  1773       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1775       assert(ek_orig == _adapter_collect_args ||
  1776              ek_orig == _adapter_fold_args, "");
  1777       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1779       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1780       // Sometimes we can compute this statically.
  1781       int dest_slot_constant = -1;
  1782       if (!retain_original_args)
  1783         dest_slot_constant = collect_slot_constant;
  1784       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1785         // We are preserving all the arguments, and the return value is prepended,
  1786         // so the return slot is to the left (above) the |collect| sequence.
  1787         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1789       // Replace all those slots by the result of the recursive call.
  1790       // The result type can be one of ref, int, long, float, double, void.
  1791       // In the case of void, nothing is pushed on the stack after return.
  1792       BasicType dest = ek_adapter_opt_collect_type(ek);
  1793       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1794       int dest_count = type2size[dest];
  1795       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1797       // Choose a return continuation.
  1798       EntryKind ek_ret = _adapter_opt_return_any;
  1799       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1800         switch (dest) {
  1801         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1802         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1803         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1804         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1805         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1806         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1807         default       : ShouldNotReachHere();
  1809         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1810           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1811           if (ek_try <= _adapter_opt_return_LAST &&
  1812               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1813             ek_ret = ek_try;
  1816         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1819       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
  1820       // push(sender_pc);
  1822       // Compute argument base:
  1823       Register rax_argv = rax_argslot;
  1824       __ lea(rax_argv, __ argument_address(constant(0)));
  1826       // Push a few extra argument words, if we need them to store the return value.
  1828         int extra_slots = 0;
  1829         if (retain_original_args) {
  1830           extra_slots = dest_count;
  1831         } else if (collect_count_constant == -1) {
  1832           extra_slots = dest_count;  // collect_count might be zero; be generous
  1833         } else if (dest_count > collect_count_constant) {
  1834           extra_slots = (dest_count - collect_count_constant);
  1835         } else {
  1836           // else we know we have enough dead space in |collect| to repurpose for return values
  1838         DEBUG_ONLY(extra_slots += 1);
  1839         if (extra_slots > 0) {
  1840           __ pop(rbx_temp);   // return value
  1841           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
  1842           // Push guard word #2 in debug mode.
  1843           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
  1844           __ push(rbx_temp);
  1848       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
  1849                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
  1851       // Now pushed:  ... keep1 | collect | keep2 | RF |
  1852       // some handy frame slots:
  1853       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
  1854       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  1855       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  1857 #ifdef ASSERT
  1858       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1859         BLOCK_COMMENT("verify AMH.conv.dest");
  1860         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
  1861         Label L_dest_ok;
  1862         __ cmpl(rbx_temp, (int) dest);
  1863         __ jcc(Assembler::equal, L_dest_ok);
  1864         if (dest == T_INT) {
  1865           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1866             if (is_subword_type(BasicType(bt))) {
  1867               __ cmpl(rbx_temp, (int) bt);
  1868               __ jcc(Assembler::equal, L_dest_ok);
  1872         __ stop("bad dest in AMH.conv");
  1873         __ BIND(L_dest_ok);
  1875 #endif //ASSERT
  1877       // Find out where the original copy of the recursive argument sequence begins.
  1878       Register rax_coll = rax_argv;
  1880         RegisterOrConstant collect_slot = collect_slot_constant;
  1881         if (collect_slot_constant == -1) {
  1882           __ movl(rdi_temp, rcx_amh_vmargslot);
  1883           collect_slot = rdi_temp;
  1885         if (collect_slot_constant != 0)
  1886           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
  1887         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  1890       // Replace the old AMH with the recursive MH.  (No going back now.)
  1891       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  1892       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  1893       // or collect call, it will take one or more arguments, transform them,
  1894       // and return some result, to store back into argument_base[vminfo].
  1895       __ load_heap_oop(rcx_recv, rcx_amh_argument);
  1896       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  1898       // Push a space for the recursively called MH first:
  1899       __ push((int32_t)NULL_WORD);
  1901       // Calculate |collect|, the number of arguments we are collecting.
  1902       Register rdi_collect_count = rdi_temp;
  1903       RegisterOrConstant collect_count;
  1904       if (collect_count_constant >= 0) {
  1905         collect_count = collect_count_constant;
  1906       } else {
  1907         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
  1908         collect_count = rdi_collect_count;
  1910 #ifdef ASSERT
  1911       if (VerifyMethodHandles && collect_count_constant >= 0) {
  1912         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
  1913         Label L_count_ok;
  1914         __ cmpl(rbx_temp, collect_count_constant);
  1915         __ jcc(Assembler::equal, L_count_ok);
  1916         __ stop("bad vminfo in AMH.conv");
  1917         __ BIND(L_count_ok);
  1919 #endif //ASSERT
  1921       // copy |collect| slots directly to TOS:
  1922       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
  1923       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  1924       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  1926       // If necessary, adjust the saved arguments to make room for the eventual return value.
  1927       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  1928       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  1929       // In the non-retaining case, this might move keep2 either up or down.
  1930       // We don't have to copy the whole | RF... collect | complex,
  1931       // but we must adjust RF.saved_args_base.
  1932       // Also, from now on, we will forget about the origial copy of |collect|.
  1933       // If we are retaining it, we will treat it as part of |keep2|.
  1934       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  1936       BLOCK_COMMENT("adjust trailing arguments {");
  1937       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  1938       int                open_count  = dest_count;
  1939       RegisterOrConstant close_count = collect_count_constant;
  1940       Register rdi_close_count = rdi_collect_count;
  1941       if (retain_original_args) {
  1942         close_count = constant(0);
  1943       } else if (collect_count_constant == -1) {
  1944         close_count = rdi_collect_count;
  1947       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  1948       RegisterOrConstant keep3_count;
  1949       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
  1950       if (dest_slot_constant >= 0) {
  1951         keep3_count = dest_slot_constant;
  1952       } else  {
  1953         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
  1954         keep3_count = rsi_keep3_count;
  1956 #ifdef ASSERT
  1957       if (VerifyMethodHandles && dest_slot_constant >= 0) {
  1958         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
  1959         Label L_vminfo_ok;
  1960         __ cmpl(rbx_temp, dest_slot_constant);
  1961         __ jcc(Assembler::equal, L_vminfo_ok);
  1962         __ stop("bad vminfo in AMH.conv");
  1963         __ BIND(L_vminfo_ok);
  1965 #endif //ASSERT
  1967       // tasks remaining:
  1968       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  1969       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  1970       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  1972       if (stomp_dest | fix_arg_base) {
  1973         // we will probably need an updated rax_argv value
  1974         if (collect_slot_constant >= 0) {
  1975           // rax_coll already holds the leading edge of |keep2|, so tweak it
  1976           assert(rax_coll == rax_argv, "elided a move");
  1977           if (collect_slot_constant != 0)
  1978             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
  1979         } else {
  1980           // Just reload from RF.saved_args_base.
  1981           __ movptr(rax_argv, saved_args_base_addr);
  1985       // Old and new argument locations (based at slot 0).
  1986       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  1987       bool zero_open_count = (open_count == 0);  // remember this bit of info
  1988       if (move_keep3 && fix_arg_base) {
  1989         // It will be easier t have everything in one register:
  1990         if (close_count.is_register()) {
  1991           // Deduct open_count from close_count register to get a clean +/- value.
  1992           __ subptr(close_count.as_register(), open_count);
  1993         } else {
  1994           close_count = close_count.as_constant() - open_count;
  1996         open_count = 0;
  1998       Address old_argv(rax_argv, 0);
  1999       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
  2000                                 - open_count * Interpreter::stackElementSize);
  2002       // First decide if any actual data are to be moved.
  2003       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  2004       // (As it happens, all movements involve an argument list size change.)
  2006       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  2007       Label L_done;
  2008       if (!keep3_count.is_constant()) {
  2009         __ testl(keep3_count.as_register(), keep3_count.as_register());
  2010         __ jcc(Assembler::zero, L_done);
  2012       if (!close_count.is_constant()) {
  2013         __ cmpl(close_count.as_register(), open_count);
  2014         __ jcc(Assembler::equal, L_done);
  2017       if (move_keep3 && fix_arg_base) {
  2018         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  2019         if (!close_count.is_constant()) {
  2020           emit_move_down = emit_guard = !zero_open_count;
  2021           emit_move_up   = true;
  2022         } else if (open_count != close_count.as_constant()) {
  2023           emit_move_down = (open_count > close_count.as_constant());
  2024           emit_move_up   = !emit_move_down;
  2026         Label L_move_up;
  2027         if (emit_guard) {
  2028           __ cmpl(close_count.as_register(), open_count);
  2029           __ jcc(Assembler::greater, L_move_up);
  2032         if (emit_move_down) {
  2033           // Move arguments down if |+dest+| > |-collect-|
  2034           // (This is rare, except when arguments are retained.)
  2035           // This opens space for the return value.
  2036           if (keep3_count.is_constant()) {
  2037             for (int i = 0; i < keep3_count.as_constant(); i++) {
  2038               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2039               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2041           } else {
  2042             Register rbx_argv_top = rbx_temp;
  2043             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
  2044             move_arg_slots_down(_masm,
  2045                                 old_argv,     // beginning of old argv
  2046                                 rbx_argv_top, // end of old argv
  2047                                 close_count,  // distance to move down (must be negative)
  2048                                 rax_argv, rdx_temp);
  2049             // Used argv as an iteration variable; reload from RF.saved_args_base.
  2050             __ movptr(rax_argv, saved_args_base_addr);
  2054         if (emit_guard) {
  2055           __ jmp(L_done);  // assumes emit_move_up is true also
  2056           __ BIND(L_move_up);
  2059         if (emit_move_up) {
  2061           // Move arguments up if |+dest+| < |-collect-|
  2062           // (This is usual, except when |keep3| is empty.)
  2063           // This closes up the space occupied by the now-deleted collect values.
  2064           if (keep3_count.is_constant()) {
  2065             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  2066               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2067               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2069           } else {
  2070             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
  2071             move_arg_slots_up(_masm,
  2072                               rax_argv,     // beginning of old argv
  2073                               argv_top,     // end of old argv
  2074                               close_count,  // distance to move up (must be positive)
  2075                               rbx_temp, rdx_temp);
  2079       __ BIND(L_done);
  2081       if (fix_arg_base) {
  2082         // adjust RF.saved_args_base by adding (close_count - open_count)
  2083         if (!new_argv.is_same_address(Address(rax_argv, 0)))
  2084           __ lea(rax_argv, new_argv);
  2085         __ movptr(saved_args_base_addr, rax_argv);
  2088       if (stomp_dest) {
  2089         // Stomp the return slot, so it doesn't hold garbage.
  2090         // This isn't strictly necessary, but it may help detect bugs.
  2091         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
  2092         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
  2093                   (int32_t) forty_two);
  2094         // uses rsi_keep3_count
  2096       BLOCK_COMMENT("} adjust trailing arguments");
  2098       BLOCK_COMMENT("do_recursive_call");
  2099       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
  2100       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
  2101       // The globally unique bounce address has two purposes:
  2102       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  2103       // 2. When returned to, it cuts back the stack and redirects control flow
  2104       //    to the return handler.
  2105       // The return handler will further cut back the stack when it takes
  2106       // down the RF.  Perhaps there is a way to streamline this further.
  2108       // State during recursive call:
  2109       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  2110       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2112       break;
  2115   case _adapter_opt_return_ref:
  2116   case _adapter_opt_return_int:
  2117   case _adapter_opt_return_long:
  2118   case _adapter_opt_return_float:
  2119   case _adapter_opt_return_double:
  2120   case _adapter_opt_return_void:
  2121   case _adapter_opt_return_S0_ref:
  2122   case _adapter_opt_return_S1_ref:
  2123   case _adapter_opt_return_S2_ref:
  2124   case _adapter_opt_return_S3_ref:
  2125   case _adapter_opt_return_S4_ref:
  2126   case _adapter_opt_return_S5_ref:
  2128       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2129       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2131       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2133       if (dest_slot_constant == -1) {
  2134         // The current stub is a general handler for this dest_type.
  2135         // It can be called from _adapter_opt_return_any below.
  2136         // Stash the address in a little table.
  2137         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2138         address return_handler = __ pc();
  2139         _adapter_return_handlers[dest_type_constant] = return_handler;
  2140         if (dest_type_constant == T_INT) {
  2141           // do the subword types too
  2142           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2143             if (is_subword_type(BasicType(bt)) &&
  2144                 _adapter_return_handlers[bt] == NULL) {
  2145               _adapter_return_handlers[bt] = return_handler;
  2151       Register rbx_arg_base = rbx_temp;
  2152       assert_different_registers(rax, rdx,  // possibly live return value registers
  2153                                  rdi_temp, rbx_arg_base);
  2155       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2156       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  2158       __ movptr(rbx_arg_base, saved_args_base_addr);
  2159       RegisterOrConstant dest_slot = dest_slot_constant;
  2160       if (dest_slot_constant == -1) {
  2161         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
  2162         dest_slot = rdi_temp;
  2164       // Store the result back into the argslot.
  2165       // This code uses the interpreter calling sequence, in which the return value
  2166       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2167       // There are certain irregularities with floating point values, which can be seen
  2168       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2169       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
  2171       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
  2172       __ push(rdx_temp);  // repush the return PC
  2174       // Load the final target and go.
  2175       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  2176       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2177       __ hlt(); // --------------------
  2178       break;
  2181   case _adapter_opt_return_any:
  2183       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2184       Register rdi_conv = rdi_temp;
  2185       assert_different_registers(rax, rdx,  // possibly live return value registers
  2186                                  rdi_conv, rbx_temp);
  2188       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2189       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
  2190       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
  2191       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
  2193 #ifdef ASSERT
  2194       { Label L_badconv;
  2195         __ testptr(rbx_temp, rbx_temp);
  2196         __ jccb(Assembler::zero, L_badconv);
  2197         __ jmp(rbx_temp);
  2198         __ bind(L_badconv);
  2199         __ stop("bad method handle return");
  2201 #else //ASSERT
  2202       __ jmp(rbx_temp);
  2203 #endif //ASSERT
  2204       break;
  2207   case _adapter_opt_spread_0:
  2208   case _adapter_opt_spread_1_ref:
  2209   case _adapter_opt_spread_2_ref:
  2210   case _adapter_opt_spread_3_ref:
  2211   case _adapter_opt_spread_4_ref:
  2212   case _adapter_opt_spread_5_ref:
  2213   case _adapter_opt_spread_ref:
  2214   case _adapter_opt_spread_byte:
  2215   case _adapter_opt_spread_char:
  2216   case _adapter_opt_spread_short:
  2217   case _adapter_opt_spread_int:
  2218   case _adapter_opt_spread_long:
  2219   case _adapter_opt_spread_float:
  2220   case _adapter_opt_spread_double:
  2222       // spread an array out into a group of arguments
  2223       int length_constant = ek_adapter_opt_spread_count(ek);
  2224       bool length_can_be_zero = (length_constant == 0);
  2225       if (length_constant < 0) {
  2226         // some adapters with variable length must handle the zero case
  2227         if (!OptimizeMethodHandles ||
  2228             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2229           length_can_be_zero = true;
  2232       // find the address of the array argument
  2233       __ movl(rax_argslot, rcx_amh_vmargslot);
  2234       __ lea(rax_argslot, __ argument_address(rax_argslot));
  2236       // grab another temp
  2237       Register rsi_temp = rsi;
  2238       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
  2239       // (preceding push must be done after argslot address is taken!)
  2240 #define UNPUSH_RSI \
  2241       { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
  2243       // arx_argslot points both to the array and to the first output arg
  2244       vmarg = Address(rax_argslot, 0);
  2246       // Get the array value.
  2247       Register  rsi_array       = rsi_temp;
  2248       Register  rdx_array_klass = rdx_temp;
  2249       BasicType elem_type = ek_adapter_opt_spread_type(ek);
  2250       int       elem_slots = type2size[elem_type];  // 1 or 2
  2251       int       array_slots = 1;  // array is always a T_OBJECT
  2252       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  2253       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  2254       __ movptr(rsi_array, vmarg);
  2256       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2257       if (length_can_be_zero) {
  2258         // handle the null pointer case, if zero is allowed
  2259         Label L_skip;
  2260         if (length_constant < 0) {
  2261           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
  2262           __ testl(rbx_temp, rbx_temp);
  2263           __ jcc(Assembler::notZero, L_skip);
  2265         __ testptr(rsi_array, rsi_array);
  2266         __ jcc(Assembler::zero, L_array_is_empty);
  2267         __ bind(L_skip);
  2269       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
  2270       __ load_klass(rdx_array_klass, rsi_array);
  2272       // Check the array type.
  2273       Register rbx_klass = rbx_temp;
  2274       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  2275       load_klass_from_Class(_masm, rbx_klass);
  2277       Label ok_array_klass, bad_array_klass, bad_array_length;
  2278       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi_temp, ok_array_klass);
  2279       // If we get here, the type check failed!
  2280       __ jmp(bad_array_klass);
  2281       __ BIND(ok_array_klass);
  2283       // Check length.
  2284       if (length_constant >= 0) {
  2285         __ cmpl(Address(rsi_array, length_offset), length_constant);
  2286       } else {
  2287         Register rbx_vminfo = rbx_temp;
  2288         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  2289         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
  2291       __ jcc(Assembler::notEqual, bad_array_length);
  2293       Register rdx_argslot_limit = rdx_temp;
  2295       // Array length checks out.  Now insert any required stack slots.
  2296       if (length_constant == -1) {
  2297         // Form a pointer to the end of the affected region.
  2298         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
  2299         // 'stack_move' is negative number of words to insert
  2300         // This number already accounts for elem_slots.
  2301         Register rdi_stack_move = rdi_temp;
  2302         load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
  2303         __ cmpptr(rdi_stack_move, 0);
  2304         assert(stack_move_unit() < 0, "else change this comparison");
  2305         __ jcc(Assembler::less, L_insert_arg_space);
  2306         __ jcc(Assembler::equal, L_copy_args);
  2307         // single argument case, with no array movement
  2308         __ BIND(L_array_is_empty);
  2309         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2310                          rax_argslot, rbx_temp, rdx_temp);
  2311         __ jmp(L_args_done);  // no spreading to do
  2312         __ BIND(L_insert_arg_space);
  2313         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2314         Register rsi_temp = rsi_array;  // spill this
  2315         insert_arg_slots(_masm, rdi_stack_move,
  2316                          rax_argslot, rbx_temp, rsi_temp);
  2317         // reload the array since rsi was killed
  2318         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2319         __ movptr(rsi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
  2320       } else if (length_constant >= 1) {
  2321         int new_slots = (length_constant * elem_slots) - array_slots;
  2322         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2323                          rax_argslot, rbx_temp, rdx_temp);
  2324       } else if (length_constant == 0) {
  2325         __ BIND(L_array_is_empty);
  2326         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2327                          rax_argslot, rbx_temp, rdx_temp);
  2328       } else {
  2329         ShouldNotReachHere();
  2332       // Copy from the array to the new slots.
  2333       // Note: Stack change code preserves integrity of rax_argslot pointer.
  2334       // So even after slot insertions, rax_argslot still points to first argument.
  2335       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2336       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2337       // elementwise in reverse order from the source array.
  2338       __ BIND(L_copy_args);
  2339       if (length_constant == -1) {
  2340         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  2341         // Array element [0] goes at rdx_argslot_limit[-wordSize].
  2342         Register rsi_source = rsi_array;
  2343         __ lea(rsi_source, Address(rsi_array, elem0_offset));
  2344         Register rdx_fill_ptr = rdx_argslot_limit;
  2345         Label loop;
  2346         __ BIND(loop);
  2347         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
  2348         move_typed_arg(_masm, elem_type, true,
  2349                        Address(rdx_fill_ptr, 0), Address(rsi_source, 0),
  2350                        rbx_temp, rdi_temp);
  2351         __ addptr(rsi_source, type2aelembytes(elem_type));
  2352         __ cmpptr(rdx_fill_ptr, rax_argslot);
  2353         __ jcc(Assembler::above, loop);
  2354       } else if (length_constant == 0) {
  2355         // nothing to copy
  2356       } else {
  2357         int elem_offset = elem0_offset;
  2358         int slot_offset = length_constant * Interpreter::stackElementSize;
  2359         for (int index = 0; index < length_constant; index++) {
  2360           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2361           move_typed_arg(_masm, elem_type, true,
  2362                          Address(rax_argslot, slot_offset), Address(rsi_array, elem_offset),
  2363                          rbx_temp, rdi_temp);
  2364           elem_offset += type2aelembytes(elem_type);
  2367       __ BIND(L_args_done);
  2369       // Arguments are spread.  Move to next method handle.
  2370       UNPUSH_RSI;
  2371       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  2372       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2374       __ bind(bad_array_klass);
  2375       UNPUSH_RSI;
  2376       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2377       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
  2378       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
  2379       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
  2380       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2382       __ bind(bad_array_length);
  2383       UNPUSH_RSI;
  2384       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2385       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
  2386       __ movptr( rarg1_actual,   vmarg);                          // bad array
  2387       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
  2388       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2389 #undef UNPUSH_RSI
  2391       break;
  2394   default:
  2395     // do not require all platforms to recognize all adapter types
  2396     __ nop();
  2397     return;
  2399   __ hlt();
  2401   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2402   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2404   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial