src/share/vm/gc_interface/collectedHeap.cpp

Wed, 26 Mar 2014 14:15:02 +0100

author
ehelin
date
Wed, 26 Mar 2014 14:15:02 +0100
changeset 6608
fa21c9537e6e
parent 6420
9fdaa79b0c27
child 6609
270d7cb38f40
permissions
-rw-r--r--

8035667: EventMetaspaceSummary doesn't report committed Metaspace memory
Reviewed-by: jmasa, stefank

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "gc_implementation/shared/gcHeapSummary.hpp"
    28 #include "gc_implementation/shared/gcTrace.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_implementation/shared/gcWhen.hpp"
    31 #include "gc_implementation/shared/vmGCOperations.hpp"
    32 #include "gc_interface/allocTracer.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "gc_interface/collectedHeap.inline.hpp"
    35 #include "memory/metaspace.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "oops/instanceMirrorKlass.hpp"
    38 #include "runtime/init.hpp"
    39 #include "runtime/thread.inline.hpp"
    40 #include "services/heapDumper.hpp"
    43 #ifdef ASSERT
    44 int CollectedHeap::_fire_out_of_memory_count = 0;
    45 #endif
    47 size_t CollectedHeap::_filler_array_max_size = 0;
    49 template <>
    50 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
    51   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
    52   st->print_raw(m);
    53 }
    55 void GCHeapLog::log_heap(bool before) {
    56   if (!should_log()) {
    57     return;
    58   }
    60   double timestamp = fetch_timestamp();
    61   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
    62   int index = compute_log_index();
    63   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
    64   _records[index].timestamp = timestamp;
    65   _records[index].data.is_before = before;
    66   stringStream st(_records[index].data.buffer(), _records[index].data.size());
    67   if (before) {
    68     Universe::print_heap_before_gc(&st, true);
    69   } else {
    70     Universe::print_heap_after_gc(&st, true);
    71   }
    72 }
    74 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
    75   size_t capacity_in_words = capacity() / HeapWordSize;
    77   return VirtualSpaceSummary(
    78     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
    79 }
    81 GCHeapSummary CollectedHeap::create_heap_summary() {
    82   VirtualSpaceSummary heap_space = create_heap_space_summary();
    83   return GCHeapSummary(heap_space, used());
    84 }
    86 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
    87   const MetaspaceSizes meta_space(
    88       MetaspaceAux::committed_bytes(),
    89       MetaspaceAux::allocated_used_bytes(),
    90       MetaspaceAux::reserved_bytes());
    91   const MetaspaceSizes data_space(
    92       MetaspaceAux::committed_bytes(Metaspace::NonClassType),
    93       MetaspaceAux::allocated_used_bytes(Metaspace::NonClassType),
    94       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
    95   const MetaspaceSizes class_space(
    96       MetaspaceAux::committed_bytes(Metaspace::ClassType),
    97       MetaspaceAux::allocated_used_bytes(Metaspace::ClassType),
    98       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
   100   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
   101     MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
   102   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
   103     MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
   105   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
   106                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
   107 }
   109 void CollectedHeap::print_heap_before_gc() {
   110   if (PrintHeapAtGC) {
   111     Universe::print_heap_before_gc();
   112   }
   113   if (_gc_heap_log != NULL) {
   114     _gc_heap_log->log_heap_before();
   115   }
   116 }
   118 void CollectedHeap::print_heap_after_gc() {
   119   if (PrintHeapAtGC) {
   120     Universe::print_heap_after_gc();
   121   }
   122   if (_gc_heap_log != NULL) {
   123     _gc_heap_log->log_heap_after();
   124   }
   125 }
   127 void CollectedHeap::register_nmethod(nmethod* nm) {
   128   assert_locked_or_safepoint(CodeCache_lock);
   129 }
   131 void CollectedHeap::unregister_nmethod(nmethod* nm) {
   132   assert_locked_or_safepoint(CodeCache_lock);
   133 }
   135 void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
   136   const GCHeapSummary& heap_summary = create_heap_summary();
   137   gc_tracer->report_gc_heap_summary(when, heap_summary);
   139   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
   140   gc_tracer->report_metaspace_summary(when, metaspace_summary);
   141 }
   143 void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
   144   trace_heap(GCWhen::BeforeGC, gc_tracer);
   145 }
   147 void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
   148   trace_heap(GCWhen::AfterGC, gc_tracer);
   149 }
   151 // Memory state functions.
   154 CollectedHeap::CollectedHeap() : _n_par_threads(0)
   155 {
   156   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
   157   const size_t elements_per_word = HeapWordSize / sizeof(jint);
   158   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
   159                                              max_len / elements_per_word);
   161   _barrier_set = NULL;
   162   _is_gc_active = false;
   163   _total_collections = _total_full_collections = 0;
   164   _gc_cause = _gc_lastcause = GCCause::_no_gc;
   165   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
   166   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
   168   if (UsePerfData) {
   169     EXCEPTION_MARK;
   171     // create the gc cause jvmstat counters
   172     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
   173                              80, GCCause::to_string(_gc_cause), CHECK);
   175     _perf_gc_lastcause =
   176                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
   177                              80, GCCause::to_string(_gc_lastcause), CHECK);
   178   }
   179   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
   180   // Create the ring log
   181   if (LogEvents) {
   182     _gc_heap_log = new GCHeapLog();
   183   } else {
   184     _gc_heap_log = NULL;
   185   }
   186 }
   188 // This interface assumes that it's being called by the
   189 // vm thread. It collects the heap assuming that the
   190 // heap lock is already held and that we are executing in
   191 // the context of the vm thread.
   192 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   193   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   194   assert(Heap_lock->is_locked(), "Precondition#2");
   195   GCCauseSetter gcs(this, cause);
   196   switch (cause) {
   197     case GCCause::_heap_inspection:
   198     case GCCause::_heap_dump:
   199     case GCCause::_metadata_GC_threshold : {
   200       HandleMark hm;
   201       do_full_collection(false);        // don't clear all soft refs
   202       break;
   203     }
   204     case GCCause::_last_ditch_collection: {
   205       HandleMark hm;
   206       do_full_collection(true);         // do clear all soft refs
   207       break;
   208     }
   209     default:
   210       ShouldNotReachHere(); // Unexpected use of this function
   211   }
   212 }
   214 void CollectedHeap::pre_initialize() {
   215   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
   216   // otherwise remains unused.
   217 #ifdef COMPILER2
   218   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
   219                              && (DeferInitialCardMark || card_mark_must_follow_store());
   220 #else
   221   assert(_defer_initial_card_mark == false, "Who would set it?");
   222 #endif
   223 }
   225 #ifndef PRODUCT
   226 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
   227   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   228     for (size_t slot = 0; slot < size; slot += 1) {
   229       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
   230              "Found badHeapWordValue in post-allocation check");
   231     }
   232   }
   233 }
   235 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
   236   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   237     for (size_t slot = 0; slot < size; slot += 1) {
   238       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
   239              "Found non badHeapWordValue in pre-allocation check");
   240     }
   241   }
   242 }
   243 #endif // PRODUCT
   245 #ifdef ASSERT
   246 void CollectedHeap::check_for_valid_allocation_state() {
   247   Thread *thread = Thread::current();
   248   // How to choose between a pending exception and a potential
   249   // OutOfMemoryError?  Don't allow pending exceptions.
   250   // This is a VM policy failure, so how do we exhaustively test it?
   251   assert(!thread->has_pending_exception(),
   252          "shouldn't be allocating with pending exception");
   253   if (StrictSafepointChecks) {
   254     assert(thread->allow_allocation(),
   255            "Allocation done by thread for which allocation is blocked "
   256            "by No_Allocation_Verifier!");
   257     // Allocation of an oop can always invoke a safepoint,
   258     // hence, the true argument
   259     thread->check_for_valid_safepoint_state(true);
   260   }
   261 }
   262 #endif
   264 HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {
   266   // Retain tlab and allocate object in shared space if
   267   // the amount free in the tlab is too large to discard.
   268   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
   269     thread->tlab().record_slow_allocation(size);
   270     return NULL;
   271   }
   273   // Discard tlab and allocate a new one.
   274   // To minimize fragmentation, the last TLAB may be smaller than the rest.
   275   size_t new_tlab_size = thread->tlab().compute_size(size);
   277   thread->tlab().clear_before_allocation();
   279   if (new_tlab_size == 0) {
   280     return NULL;
   281   }
   283   // Allocate a new TLAB...
   284   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
   285   if (obj == NULL) {
   286     return NULL;
   287   }
   289   AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);
   291   if (ZeroTLAB) {
   292     // ..and clear it.
   293     Copy::zero_to_words(obj, new_tlab_size);
   294   } else {
   295     // ...and zap just allocated object.
   296 #ifdef ASSERT
   297     // Skip mangling the space corresponding to the object header to
   298     // ensure that the returned space is not considered parsable by
   299     // any concurrent GC thread.
   300     size_t hdr_size = oopDesc::header_size();
   301     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
   302 #endif // ASSERT
   303   }
   304   thread->tlab().fill(obj, obj + size, new_tlab_size);
   305   return obj;
   306 }
   308 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
   309   MemRegion deferred = thread->deferred_card_mark();
   310   if (!deferred.is_empty()) {
   311     assert(_defer_initial_card_mark, "Otherwise should be empty");
   312     {
   313       // Verify that the storage points to a parsable object in heap
   314       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
   315       assert(is_in(old_obj), "Not in allocated heap");
   316       assert(!can_elide_initializing_store_barrier(old_obj),
   317              "Else should have been filtered in new_store_pre_barrier()");
   318       assert(old_obj->is_oop(true), "Not an oop");
   319       assert(deferred.word_size() == (size_t)(old_obj->size()),
   320              "Mismatch: multiple objects?");
   321     }
   322     BarrierSet* bs = barrier_set();
   323     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   324     bs->write_region(deferred);
   325     // "Clear" the deferred_card_mark field
   326     thread->set_deferred_card_mark(MemRegion());
   327   }
   328   assert(thread->deferred_card_mark().is_empty(), "invariant");
   329 }
   331 size_t CollectedHeap::max_tlab_size() const {
   332   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
   333   // This restriction could be removed by enabling filling with multiple arrays.
   334   // If we compute that the reasonable way as
   335   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
   336   // we'll overflow on the multiply, so we do the divide first.
   337   // We actually lose a little by dividing first,
   338   // but that just makes the TLAB  somewhat smaller than the biggest array,
   339   // which is fine, since we'll be able to fill that.
   340   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
   341               sizeof(jint) *
   342               ((juint) max_jint / (size_t) HeapWordSize);
   343   return align_size_down(max_int_size, MinObjAlignment);
   344 }
   346 // Helper for ReduceInitialCardMarks. For performance,
   347 // compiled code may elide card-marks for initializing stores
   348 // to a newly allocated object along the fast-path. We
   349 // compensate for such elided card-marks as follows:
   350 // (a) Generational, non-concurrent collectors, such as
   351 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
   352 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
   353 //     need the card-mark if and only if the region is
   354 //     in the old gen, and do not care if the card-mark
   355 //     succeeds or precedes the initializing stores themselves,
   356 //     so long as the card-mark is completed before the next
   357 //     scavenge. For all these cases, we can do a card mark
   358 //     at the point at which we do a slow path allocation
   359 //     in the old gen, i.e. in this call.
   360 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
   361 //     in addition that the card-mark for an old gen allocated
   362 //     object strictly follow any associated initializing stores.
   363 //     In these cases, the memRegion remembered below is
   364 //     used to card-mark the entire region either just before the next
   365 //     slow-path allocation by this thread or just before the next scavenge or
   366 //     CMS-associated safepoint, whichever of these events happens first.
   367 //     (The implicit assumption is that the object has been fully
   368 //     initialized by this point, a fact that we assert when doing the
   369 //     card-mark.)
   370 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
   371 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
   372 //     is used to remember the pre-value of any store. Initializing
   373 //     stores will not need this barrier, so we need not worry about
   374 //     compensating for the missing pre-barrier here. Turning now
   375 //     to the post-barrier, we note that G1 needs a RS update barrier
   376 //     which simply enqueues a (sequence of) dirty cards which may
   377 //     optionally be refined by the concurrent update threads. Note
   378 //     that this barrier need only be applied to a non-young write,
   379 //     but, like in CMS, because of the presence of concurrent refinement
   380 //     (much like CMS' precleaning), must strictly follow the oop-store.
   381 //     Thus, using the same protocol for maintaining the intended
   382 //     invariants turns out, serendepitously, to be the same for both
   383 //     G1 and CMS.
   384 //
   385 // For any future collector, this code should be reexamined with
   386 // that specific collector in mind, and the documentation above suitably
   387 // extended and updated.
   388 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
   389   // If a previous card-mark was deferred, flush it now.
   390   flush_deferred_store_barrier(thread);
   391   if (can_elide_initializing_store_barrier(new_obj)) {
   392     // The deferred_card_mark region should be empty
   393     // following the flush above.
   394     assert(thread->deferred_card_mark().is_empty(), "Error");
   395   } else {
   396     MemRegion mr((HeapWord*)new_obj, new_obj->size());
   397     assert(!mr.is_empty(), "Error");
   398     if (_defer_initial_card_mark) {
   399       // Defer the card mark
   400       thread->set_deferred_card_mark(mr);
   401     } else {
   402       // Do the card mark
   403       BarrierSet* bs = barrier_set();
   404       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   405       bs->write_region(mr);
   406     }
   407   }
   408   return new_obj;
   409 }
   411 size_t CollectedHeap::filler_array_hdr_size() {
   412   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
   413 }
   415 size_t CollectedHeap::filler_array_min_size() {
   416   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
   417 }
   419 #ifdef ASSERT
   420 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
   421 {
   422   assert(words >= min_fill_size(), "too small to fill");
   423   assert(words % MinObjAlignment == 0, "unaligned size");
   424   assert(Universe::heap()->is_in_reserved(start), "not in heap");
   425   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
   426 }
   428 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
   429 {
   430   if (ZapFillerObjects && zap) {
   431     Copy::fill_to_words(start + filler_array_hdr_size(),
   432                         words - filler_array_hdr_size(), 0XDEAFBABE);
   433   }
   434 }
   435 #endif // ASSERT
   437 void
   438 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
   439 {
   440   assert(words >= filler_array_min_size(), "too small for an array");
   441   assert(words <= filler_array_max_size(), "too big for a single object");
   443   const size_t payload_size = words - filler_array_hdr_size();
   444   const size_t len = payload_size * HeapWordSize / sizeof(jint);
   445   assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
   447   // Set the length first for concurrent GC.
   448   ((arrayOop)start)->set_length((int)len);
   449   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
   450   DEBUG_ONLY(zap_filler_array(start, words, zap);)
   451 }
   453 void
   454 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
   455 {
   456   assert(words <= filler_array_max_size(), "too big for a single object");
   458   if (words >= filler_array_min_size()) {
   459     fill_with_array(start, words, zap);
   460   } else if (words > 0) {
   461     assert(words == min_fill_size(), "unaligned size");
   462     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
   463   }
   464 }
   466 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
   467 {
   468   DEBUG_ONLY(fill_args_check(start, words);)
   469   HandleMark hm;  // Free handles before leaving.
   470   fill_with_object_impl(start, words, zap);
   471 }
   473 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
   474 {
   475   DEBUG_ONLY(fill_args_check(start, words);)
   476   HandleMark hm;  // Free handles before leaving.
   478 #ifdef _LP64
   479   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
   480   // First fill with arrays, ensuring that any remaining space is big enough to
   481   // fill.  The remainder is filled with a single object.
   482   const size_t min = min_fill_size();
   483   const size_t max = filler_array_max_size();
   484   while (words > max) {
   485     const size_t cur = words - max >= min ? max : max - min;
   486     fill_with_array(start, cur, zap);
   487     start += cur;
   488     words -= cur;
   489   }
   490 #endif
   492   fill_with_object_impl(start, words, zap);
   493 }
   495 void CollectedHeap::post_initialize() {
   496   collector_policy()->post_heap_initialize();
   497 }
   499 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
   500   guarantee(false, "thread-local allocation buffers not supported");
   501   return NULL;
   502 }
   504 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
   505   // The second disjunct in the assertion below makes a concession
   506   // for the start-up verification done while the VM is being
   507   // created. Callers be careful that you know that mutators
   508   // aren't going to interfere -- for instance, this is permissible
   509   // if we are still single-threaded and have either not yet
   510   // started allocating (nothing much to verify) or we have
   511   // started allocating but are now a full-fledged JavaThread
   512   // (and have thus made our TLAB's) available for filling.
   513   assert(SafepointSynchronize::is_at_safepoint() ||
   514          !is_init_completed(),
   515          "Should only be called at a safepoint or at start-up"
   516          " otherwise concurrent mutator activity may make heap "
   517          " unparsable again");
   518   const bool use_tlab = UseTLAB;
   519   const bool deferred = _defer_initial_card_mark;
   520   // The main thread starts allocating via a TLAB even before it
   521   // has added itself to the threads list at vm boot-up.
   522   assert(!use_tlab || Threads::first() != NULL,
   523          "Attempt to fill tlabs before main thread has been added"
   524          " to threads list is doomed to failure!");
   525   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   526      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
   527 #ifdef COMPILER2
   528      // The deferred store barriers must all have been flushed to the
   529      // card-table (or other remembered set structure) before GC starts
   530      // processing the card-table (or other remembered set).
   531      if (deferred) flush_deferred_store_barrier(thread);
   532 #else
   533      assert(!deferred, "Should be false");
   534      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
   535 #endif
   536   }
   537 }
   539 void CollectedHeap::accumulate_statistics_all_tlabs() {
   540   if (UseTLAB) {
   541     assert(SafepointSynchronize::is_at_safepoint() ||
   542          !is_init_completed(),
   543          "should only accumulate statistics on tlabs at safepoint");
   545     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
   546   }
   547 }
   549 void CollectedHeap::resize_all_tlabs() {
   550   if (UseTLAB) {
   551     assert(SafepointSynchronize::is_at_safepoint() ||
   552          !is_init_completed(),
   553          "should only resize tlabs at safepoint");
   555     ThreadLocalAllocBuffer::resize_all_tlabs();
   556   }
   557 }
   559 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
   560   if (HeapDumpBeforeFullGC) {
   561     GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer);
   562     // We are doing a "major" collection and a heap dump before
   563     // major collection has been requested.
   564     HeapDumper::dump_heap();
   565   }
   566   if (PrintClassHistogramBeforeFullGC) {
   567     GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer);
   568     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
   569     inspector.doit();
   570   }
   571 }
   573 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
   574   if (HeapDumpAfterFullGC) {
   575     GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer);
   576     HeapDumper::dump_heap();
   577   }
   578   if (PrintClassHistogramAfterFullGC) {
   579     GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer);
   580     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
   581     inspector.doit();
   582   }
   583 }
   585 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
   586   debug_only(check_for_valid_allocation_state());
   587   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
   588   assert(size >= 0, "int won't convert to size_t");
   589   HeapWord* obj;
   590     assert(ScavengeRootsInCode > 0, "must be");
   591     obj = common_mem_allocate_init(real_klass, size, CHECK_NULL);
   592   post_allocation_setup_common(klass, obj);
   593   assert(Universe::is_bootstrapping() ||
   594          !((oop)obj)->is_array(), "must not be an array");
   595   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
   596   oop mirror = (oop)obj;
   598   java_lang_Class::set_oop_size(mirror, size);
   600   // Setup indirections
   601   if (!real_klass.is_null()) {
   602     java_lang_Class::set_klass(mirror, real_klass());
   603     real_klass->set_java_mirror(mirror);
   604   }
   606   InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
   607   assert(size == mk->instance_size(real_klass), "should have been set");
   609   // notify jvmti and dtrace
   610   post_allocation_notify(klass, (oop)obj);
   612   return mirror;
   613 }
   615 /////////////// Unit tests ///////////////
   617 #ifndef PRODUCT
   618 void CollectedHeap::test_is_in() {
   619   CollectedHeap* heap = Universe::heap();
   621   uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
   622   uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
   623   uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();
   625   // Test that NULL is not in the heap.
   626   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
   628   // Test that a pointer to before the heap start is reported as outside the heap.
   629   assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
   630   void* before_heap = (void*)(heap_start - epsilon);
   631   assert(!heap->is_in(before_heap),
   632       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
   634   // Test that a pointer to after the heap end is reported as outside the heap.
   635   assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
   636   void* after_heap = (void*)(heap_end + epsilon);
   637   assert(!heap->is_in(after_heap),
   638       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
   639 }
   640 #endif

mercurial