src/os/linux/vm/os_linux.cpp

Tue, 20 Dec 2016 16:06:10 -0500

author
dholmes
date
Tue, 20 Dec 2016 16:06:10 -0500
changeset 8948
fa112b882e3c
parent 8943
c5ff0a4b9532
child 8954
9deaba76a094
permissions
-rw-r--r--

8170307: Stack size option -Xss is ignored
Reviewed-by: dcubed, sspitsyn, gtriantafill

     1 /*
     2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 #ifndef _GNU_SOURCE
   108   #define _GNU_SOURCE
   109   #include <sched.h>
   110   #undef _GNU_SOURCE
   111 #else
   112   #include <sched.h>
   113 #endif
   115 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   116 // getrusage() is prepared to handle the associated failure.
   117 #ifndef RUSAGE_THREAD
   118 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   119 #endif
   121 #define MAX_PATH    (2 * K)
   123 #define MAX_SECS 100000000
   125 // for timer info max values which include all bits
   126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   128 #define LARGEPAGES_BIT (1 << 6)
   129 ////////////////////////////////////////////////////////////////////////////////
   130 // global variables
   131 julong os::Linux::_physical_memory = 0;
   133 address   os::Linux::_initial_thread_stack_bottom = NULL;
   134 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   136 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   137 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   138 Mutex* os::Linux::_createThread_lock = NULL;
   139 pthread_t os::Linux::_main_thread;
   140 int os::Linux::_page_size = -1;
   141 const int os::Linux::_vm_default_page_size = (8 * K);
   142 bool os::Linux::_is_floating_stack = false;
   143 bool os::Linux::_is_NPTL = false;
   144 bool os::Linux::_supports_fast_thread_cpu_time = false;
   145 const char * os::Linux::_glibc_version = NULL;
   146 const char * os::Linux::_libpthread_version = NULL;
   147 pthread_condattr_t os::Linux::_condattr[1];
   149 static jlong initial_time_count=0;
   151 static int clock_tics_per_sec = 100;
   153 // For diagnostics to print a message once. see run_periodic_checks
   154 static sigset_t check_signal_done;
   155 static bool check_signals = true;
   157 static pid_t _initial_pid = 0;
   159 /* Signal number used to suspend/resume a thread */
   161 /* do not use any signal number less than SIGSEGV, see 4355769 */
   162 static int SR_signum = SIGUSR2;
   163 sigset_t SR_sigset;
   165 /* Used to protect dlsym() calls */
   166 static pthread_mutex_t dl_mutex;
   168 // Declarations
   169 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   171 // utility functions
   173 static int SR_initialize();
   175 julong os::available_memory() {
   176   return Linux::available_memory();
   177 }
   179 julong os::Linux::available_memory() {
   180   // values in struct sysinfo are "unsigned long"
   181   struct sysinfo si;
   182   sysinfo(&si);
   184   return (julong)si.freeram * si.mem_unit;
   185 }
   187 julong os::physical_memory() {
   188   return Linux::physical_memory();
   189 }
   191 ////////////////////////////////////////////////////////////////////////////////
   192 // environment support
   194 bool os::getenv(const char* name, char* buf, int len) {
   195   const char* val = ::getenv(name);
   196   if (val != NULL && strlen(val) < (size_t)len) {
   197     strcpy(buf, val);
   198     return true;
   199   }
   200   if (len > 0) buf[0] = 0;  // return a null string
   201   return false;
   202 }
   205 // Return true if user is running as root.
   207 bool os::have_special_privileges() {
   208   static bool init = false;
   209   static bool privileges = false;
   210   if (!init) {
   211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   212     init = true;
   213   }
   214   return privileges;
   215 }
   218 #ifndef SYS_gettid
   219 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   220   #ifdef __ia64__
   221     #define SYS_gettid 1105
   222   #else
   223     #ifdef __i386__
   224       #define SYS_gettid 224
   225     #else
   226       #ifdef __amd64__
   227         #define SYS_gettid 186
   228       #else
   229         #ifdef __sparc__
   230           #define SYS_gettid 143
   231         #else
   232           #error define gettid for the arch
   233         #endif
   234       #endif
   235     #endif
   236   #endif
   237 #endif
   239 // Cpu architecture string
   240 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   242 // pid_t gettid()
   243 //
   244 // Returns the kernel thread id of the currently running thread. Kernel
   245 // thread id is used to access /proc.
   246 //
   247 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   248 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   249 //
   250 pid_t os::Linux::gettid() {
   251   int rslt = syscall(SYS_gettid);
   252   if (rslt == -1) {
   253      // old kernel, no NPTL support
   254      return getpid();
   255   } else {
   256      return (pid_t)rslt;
   257   }
   258 }
   260 // Most versions of linux have a bug where the number of processors are
   261 // determined by looking at the /proc file system.  In a chroot environment,
   262 // the system call returns 1.  This causes the VM to act as if it is
   263 // a single processor and elide locking (see is_MP() call).
   264 static bool unsafe_chroot_detected = false;
   265 static const char *unstable_chroot_error = "/proc file system not found.\n"
   266                      "Java may be unstable running multithreaded in a chroot "
   267                      "environment on Linux when /proc filesystem is not mounted.";
   269 void os::Linux::initialize_system_info() {
   270   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   271   if (processor_count() == 1) {
   272     pid_t pid = os::Linux::gettid();
   273     char fname[32];
   274     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   275     FILE *fp = fopen(fname, "r");
   276     if (fp == NULL) {
   277       unsafe_chroot_detected = true;
   278     } else {
   279       fclose(fp);
   280     }
   281   }
   282   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   283   assert(processor_count() > 0, "linux error");
   284 }
   286 void os::init_system_properties_values() {
   287   // The next steps are taken in the product version:
   288   //
   289   // Obtain the JAVA_HOME value from the location of libjvm.so.
   290   // This library should be located at:
   291   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   292   //
   293   // If "/jre/lib/" appears at the right place in the path, then we
   294   // assume libjvm.so is installed in a JDK and we use this path.
   295   //
   296   // Otherwise exit with message: "Could not create the Java virtual machine."
   297   //
   298   // The following extra steps are taken in the debugging version:
   299   //
   300   // If "/jre/lib/" does NOT appear at the right place in the path
   301   // instead of exit check for $JAVA_HOME environment variable.
   302   //
   303   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   304   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   305   // it looks like libjvm.so is installed there
   306   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   307   //
   308   // Otherwise exit.
   309   //
   310   // Important note: if the location of libjvm.so changes this
   311   // code needs to be changed accordingly.
   313 // See ld(1):
   314 //      The linker uses the following search paths to locate required
   315 //      shared libraries:
   316 //        1: ...
   317 //        ...
   318 //        7: The default directories, normally /lib and /usr/lib.
   319 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   320 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   321 #else
   322 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   323 #endif
   325 // Base path of extensions installed on the system.
   326 #define SYS_EXT_DIR     "/usr/java/packages"
   327 #define EXTENSIONS_DIR  "/lib/ext"
   328 #define ENDORSED_DIR    "/lib/endorsed"
   330   // Buffer that fits several sprintfs.
   331   // Note that the space for the colon and the trailing null are provided
   332   // by the nulls included by the sizeof operator.
   333   const size_t bufsize =
   334     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   335          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   336          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   339   // sysclasspath, java_home, dll_dir
   340   {
   341     char *pslash;
   342     os::jvm_path(buf, bufsize);
   344     // Found the full path to libjvm.so.
   345     // Now cut the path to <java_home>/jre if we can.
   346     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   347     pslash = strrchr(buf, '/');
   348     if (pslash != NULL) {
   349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   350     }
   351     Arguments::set_dll_dir(buf);
   353     if (pslash != NULL) {
   354       pslash = strrchr(buf, '/');
   355       if (pslash != NULL) {
   356         *pslash = '\0';          // Get rid of /<arch>.
   357         pslash = strrchr(buf, '/');
   358         if (pslash != NULL) {
   359           *pslash = '\0';        // Get rid of /lib.
   360         }
   361       }
   362     }
   363     Arguments::set_java_home(buf);
   364     set_boot_path('/', ':');
   365   }
   367   // Where to look for native libraries.
   368   //
   369   // Note: Due to a legacy implementation, most of the library path
   370   // is set in the launcher. This was to accomodate linking restrictions
   371   // on legacy Linux implementations (which are no longer supported).
   372   // Eventually, all the library path setting will be done here.
   373   //
   374   // However, to prevent the proliferation of improperly built native
   375   // libraries, the new path component /usr/java/packages is added here.
   376   // Eventually, all the library path setting will be done here.
   377   {
   378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   379     // should always exist (until the legacy problem cited above is
   380     // addressed).
   381     const char *v = ::getenv("LD_LIBRARY_PATH");
   382     const char *v_colon = ":";
   383     if (v == NULL) { v = ""; v_colon = ""; }
   384     // That's +1 for the colon and +1 for the trailing '\0'.
   385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   386                                                      strlen(v) + 1 +
   387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   388                                                      mtInternal);
   389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   390     Arguments::set_library_path(ld_library_path);
   391     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   392   }
   394   // Extensions directories.
   395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   396   Arguments::set_ext_dirs(buf);
   398   // Endorsed standards default directory.
   399   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   400   Arguments::set_endorsed_dirs(buf);
   402   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   404 #undef DEFAULT_LIBPATH
   405 #undef SYS_EXT_DIR
   406 #undef EXTENSIONS_DIR
   407 #undef ENDORSED_DIR
   408 }
   410 ////////////////////////////////////////////////////////////////////////////////
   411 // breakpoint support
   413 void os::breakpoint() {
   414   BREAKPOINT;
   415 }
   417 extern "C" void breakpoint() {
   418   // use debugger to set breakpoint here
   419 }
   421 ////////////////////////////////////////////////////////////////////////////////
   422 // signal support
   424 debug_only(static bool signal_sets_initialized = false);
   425 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   427 bool os::Linux::is_sig_ignored(int sig) {
   428       struct sigaction oact;
   429       sigaction(sig, (struct sigaction*)NULL, &oact);
   430       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   431                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   432       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   433            return true;
   434       else
   435            return false;
   436 }
   438 void os::Linux::signal_sets_init() {
   439   // Should also have an assertion stating we are still single-threaded.
   440   assert(!signal_sets_initialized, "Already initialized");
   441   // Fill in signals that are necessarily unblocked for all threads in
   442   // the VM. Currently, we unblock the following signals:
   443   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   444   //                         by -Xrs (=ReduceSignalUsage));
   445   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   446   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   447   // the dispositions or masks wrt these signals.
   448   // Programs embedding the VM that want to use the above signals for their
   449   // own purposes must, at this time, use the "-Xrs" option to prevent
   450   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   451   // (See bug 4345157, and other related bugs).
   452   // In reality, though, unblocking these signals is really a nop, since
   453   // these signals are not blocked by default.
   454   sigemptyset(&unblocked_sigs);
   455   sigemptyset(&allowdebug_blocked_sigs);
   456   sigaddset(&unblocked_sigs, SIGILL);
   457   sigaddset(&unblocked_sigs, SIGSEGV);
   458   sigaddset(&unblocked_sigs, SIGBUS);
   459   sigaddset(&unblocked_sigs, SIGFPE);
   460 #if defined(PPC64)
   461   sigaddset(&unblocked_sigs, SIGTRAP);
   462 #endif
   463   sigaddset(&unblocked_sigs, SR_signum);
   465   if (!ReduceSignalUsage) {
   466    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   469    }
   470    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   473    }
   474    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   475       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   476       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   477    }
   478   }
   479   // Fill in signals that are blocked by all but the VM thread.
   480   sigemptyset(&vm_sigs);
   481   if (!ReduceSignalUsage)
   482     sigaddset(&vm_sigs, BREAK_SIGNAL);
   483   debug_only(signal_sets_initialized = true);
   485 }
   487 // These are signals that are unblocked while a thread is running Java.
   488 // (For some reason, they get blocked by default.)
   489 sigset_t* os::Linux::unblocked_signals() {
   490   assert(signal_sets_initialized, "Not initialized");
   491   return &unblocked_sigs;
   492 }
   494 // These are the signals that are blocked while a (non-VM) thread is
   495 // running Java. Only the VM thread handles these signals.
   496 sigset_t* os::Linux::vm_signals() {
   497   assert(signal_sets_initialized, "Not initialized");
   498   return &vm_sigs;
   499 }
   501 // These are signals that are blocked during cond_wait to allow debugger in
   502 sigset_t* os::Linux::allowdebug_blocked_signals() {
   503   assert(signal_sets_initialized, "Not initialized");
   504   return &allowdebug_blocked_sigs;
   505 }
   507 void os::Linux::hotspot_sigmask(Thread* thread) {
   509   //Save caller's signal mask before setting VM signal mask
   510   sigset_t caller_sigmask;
   511   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   513   OSThread* osthread = thread->osthread();
   514   osthread->set_caller_sigmask(caller_sigmask);
   516   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   518   if (!ReduceSignalUsage) {
   519     if (thread->is_VM_thread()) {
   520       // Only the VM thread handles BREAK_SIGNAL ...
   521       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   522     } else {
   523       // ... all other threads block BREAK_SIGNAL
   524       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   525     }
   526   }
   527 }
   529 //////////////////////////////////////////////////////////////////////////////
   530 // detecting pthread library
   532 void os::Linux::libpthread_init() {
   533   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   534   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   535   // generic name for earlier versions.
   536   // Define macros here so we can build HotSpot on old systems.
   537 # ifndef _CS_GNU_LIBC_VERSION
   538 # define _CS_GNU_LIBC_VERSION 2
   539 # endif
   540 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   541 # define _CS_GNU_LIBPTHREAD_VERSION 3
   542 # endif
   544   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   545   if (n > 0) {
   546      char *str = (char *)malloc(n, mtInternal);
   547      confstr(_CS_GNU_LIBC_VERSION, str, n);
   548      os::Linux::set_glibc_version(str);
   549   } else {
   550      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   551      static char _gnu_libc_version[32];
   552      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   553               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   554      os::Linux::set_glibc_version(_gnu_libc_version);
   555   }
   557   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   558   if (n > 0) {
   559      char *str = (char *)malloc(n, mtInternal);
   560      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   561      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   562      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   563      // is the case. LinuxThreads has a hard limit on max number of threads.
   564      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   565      // On the other hand, NPTL does not have such a limit, sysconf()
   566      // will return -1 and errno is not changed. Check if it is really NPTL.
   567      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   568          strstr(str, "NPTL") &&
   569          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   570        free(str);
   571        os::Linux::set_libpthread_version("linuxthreads");
   572      } else {
   573        os::Linux::set_libpthread_version(str);
   574      }
   575   } else {
   576     // glibc before 2.3.2 only has LinuxThreads.
   577     os::Linux::set_libpthread_version("linuxthreads");
   578   }
   580   if (strstr(libpthread_version(), "NPTL")) {
   581      os::Linux::set_is_NPTL();
   582   } else {
   583      os::Linux::set_is_LinuxThreads();
   584   }
   586   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   587   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   588   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   589      os::Linux::set_is_floating_stack();
   590   }
   591 }
   593 /////////////////////////////////////////////////////////////////////////////
   594 // thread stack
   596 // Force Linux kernel to expand current thread stack. If "bottom" is close
   597 // to the stack guard, caller should block all signals.
   598 //
   599 // MAP_GROWSDOWN:
   600 //   A special mmap() flag that is used to implement thread stacks. It tells
   601 //   kernel that the memory region should extend downwards when needed. This
   602 //   allows early versions of LinuxThreads to only mmap the first few pages
   603 //   when creating a new thread. Linux kernel will automatically expand thread
   604 //   stack as needed (on page faults).
   605 //
   606 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   607 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   608 //   region, it's hard to tell if the fault is due to a legitimate stack
   609 //   access or because of reading/writing non-exist memory (e.g. buffer
   610 //   overrun). As a rule, if the fault happens below current stack pointer,
   611 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   612 //   application (see Linux kernel fault.c).
   613 //
   614 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   615 //   stack overflow detection.
   616 //
   617 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   618 //   not use this flag. However, the stack of initial thread is not created
   619 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   620 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   621 //   and then attach the thread to JVM.
   622 //
   623 // To get around the problem and allow stack banging on Linux, we need to
   624 // manually expand thread stack after receiving the SIGSEGV.
   625 //
   626 // There are two ways to expand thread stack to address "bottom", we used
   627 // both of them in JVM before 1.5:
   628 //   1. adjust stack pointer first so that it is below "bottom", and then
   629 //      touch "bottom"
   630 //   2. mmap() the page in question
   631 //
   632 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   633 // if current sp is already near the lower end of page 101, and we need to
   634 // call mmap() to map page 100, it is possible that part of the mmap() frame
   635 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   636 // That will destroy the mmap() frame and cause VM to crash.
   637 //
   638 // The following code works by adjusting sp first, then accessing the "bottom"
   639 // page to force a page fault. Linux kernel will then automatically expand the
   640 // stack mapping.
   641 //
   642 // _expand_stack_to() assumes its frame size is less than page size, which
   643 // should always be true if the function is not inlined.
   645 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   646 #define NOINLINE
   647 #else
   648 #define NOINLINE __attribute__ ((noinline))
   649 #endif
   651 static void _expand_stack_to(address bottom) NOINLINE;
   653 static void _expand_stack_to(address bottom) {
   654   address sp;
   655   size_t size;
   656   volatile char *p;
   658   // Adjust bottom to point to the largest address within the same page, it
   659   // gives us a one-page buffer if alloca() allocates slightly more memory.
   660   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   661   bottom += os::Linux::page_size() - 1;
   663   // sp might be slightly above current stack pointer; if that's the case, we
   664   // will alloca() a little more space than necessary, which is OK. Don't use
   665   // os::current_stack_pointer(), as its result can be slightly below current
   666   // stack pointer, causing us to not alloca enough to reach "bottom".
   667   sp = (address)&sp;
   669   if (sp > bottom) {
   670     size = sp - bottom;
   671     p = (volatile char *)alloca(size);
   672     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   673     p[0] = '\0';
   674   }
   675 }
   677 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   678   assert(t!=NULL, "just checking");
   679   assert(t->osthread()->expanding_stack(), "expand should be set");
   680   assert(t->stack_base() != NULL, "stack_base was not initialized");
   682   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   683     sigset_t mask_all, old_sigset;
   684     sigfillset(&mask_all);
   685     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   686     _expand_stack_to(addr);
   687     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   688     return true;
   689   }
   690   return false;
   691 }
   693 //////////////////////////////////////////////////////////////////////////////
   694 // create new thread
   696 static address highest_vm_reserved_address();
   698 // check if it's safe to start a new thread
   699 static bool _thread_safety_check(Thread* thread) {
   700   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   701     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   702     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   703     //   allocated (MAP_FIXED) from high address space. Every thread stack
   704     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   705     //   it to other values if they rebuild LinuxThreads).
   706     //
   707     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   708     // the memory region has already been mmap'ed. That means if we have too
   709     // many threads and/or very large heap, eventually thread stack will
   710     // collide with heap.
   711     //
   712     // Here we try to prevent heap/stack collision by comparing current
   713     // stack bottom with the highest address that has been mmap'ed by JVM
   714     // plus a safety margin for memory maps created by native code.
   715     //
   716     // This feature can be disabled by setting ThreadSafetyMargin to 0
   717     //
   718     if (ThreadSafetyMargin > 0) {
   719       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   721       // not safe if our stack extends below the safety margin
   722       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   723     } else {
   724       return true;
   725     }
   726   } else {
   727     // Floating stack LinuxThreads or NPTL:
   728     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   729     //   there's not enough space left, pthread_create() will fail. If we come
   730     //   here, that means enough space has been reserved for stack.
   731     return true;
   732   }
   733 }
   735 // Thread start routine for all newly created threads
   736 static void *java_start(Thread *thread) {
   737   // Try to randomize the cache line index of hot stack frames.
   738   // This helps when threads of the same stack traces evict each other's
   739   // cache lines. The threads can be either from the same JVM instance, or
   740   // from different JVM instances. The benefit is especially true for
   741   // processors with hyperthreading technology.
   742   static int counter = 0;
   743   int pid = os::current_process_id();
   744   alloca(((pid ^ counter++) & 7) * 128);
   746   ThreadLocalStorage::set_thread(thread);
   748   OSThread* osthread = thread->osthread();
   749   Monitor* sync = osthread->startThread_lock();
   751   // non floating stack LinuxThreads needs extra check, see above
   752   if (!_thread_safety_check(thread)) {
   753     // notify parent thread
   754     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   755     osthread->set_state(ZOMBIE);
   756     sync->notify_all();
   757     return NULL;
   758   }
   760   // thread_id is kernel thread id (similar to Solaris LWP id)
   761   osthread->set_thread_id(os::Linux::gettid());
   763   if (UseNUMA) {
   764     int lgrp_id = os::numa_get_group_id();
   765     if (lgrp_id != -1) {
   766       thread->set_lgrp_id(lgrp_id);
   767     }
   768   }
   769   // initialize signal mask for this thread
   770   os::Linux::hotspot_sigmask(thread);
   772   // initialize floating point control register
   773   os::Linux::init_thread_fpu_state();
   775   // handshaking with parent thread
   776   {
   777     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   779     // notify parent thread
   780     osthread->set_state(INITIALIZED);
   781     sync->notify_all();
   783     // wait until os::start_thread()
   784     while (osthread->get_state() == INITIALIZED) {
   785       sync->wait(Mutex::_no_safepoint_check_flag);
   786     }
   787   }
   789   // call one more level start routine
   790   thread->run();
   792   return 0;
   793 }
   795 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   796   assert(thread->osthread() == NULL, "caller responsible");
   798   // Allocate the OSThread object
   799   OSThread* osthread = new OSThread(NULL, NULL);
   800   if (osthread == NULL) {
   801     return false;
   802   }
   804   // set the correct thread state
   805   osthread->set_thread_type(thr_type);
   807   // Initial state is ALLOCATED but not INITIALIZED
   808   osthread->set_state(ALLOCATED);
   810   thread->set_osthread(osthread);
   812   // init thread attributes
   813   pthread_attr_t attr;
   814   pthread_attr_init(&attr);
   815   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   817   // stack size
   818   if (os::Linux::supports_variable_stack_size()) {
   819     // calculate stack size if it's not specified by caller
   820     if (stack_size == 0) {
   821       stack_size = os::Linux::default_stack_size(thr_type);
   823       switch (thr_type) {
   824       case os::java_thread:
   825         // Java threads use ThreadStackSize which default value can be
   826         // changed with the flag -Xss
   827         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   828         stack_size = JavaThread::stack_size_at_create();
   829         break;
   830       case os::compiler_thread:
   831         if (CompilerThreadStackSize > 0) {
   832           stack_size = (size_t)(CompilerThreadStackSize * K);
   833           break;
   834         } // else fall through:
   835           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   836       case os::vm_thread:
   837       case os::pgc_thread:
   838       case os::cgc_thread:
   839       case os::watcher_thread:
   840         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   841         break;
   842       }
   843     }
   845     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   846     pthread_attr_setstacksize(&attr, stack_size);
   847   } else {
   848     // let pthread_create() pick the default value.
   849   }
   851   // glibc guard page
   852   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   854   ThreadState state;
   856   {
   857     // Serialize thread creation if we are running with fixed stack LinuxThreads
   858     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   859     if (lock) {
   860       os::Linux::createThread_lock()->lock_without_safepoint_check();
   861     }
   863     pthread_t tid;
   864     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   866     pthread_attr_destroy(&attr);
   868     if (ret != 0) {
   869       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   870         perror("pthread_create()");
   871       }
   872       // Need to clean up stuff we've allocated so far
   873       thread->set_osthread(NULL);
   874       delete osthread;
   875       if (lock) os::Linux::createThread_lock()->unlock();
   876       return false;
   877     }
   879     // Store pthread info into the OSThread
   880     osthread->set_pthread_id(tid);
   882     // Wait until child thread is either initialized or aborted
   883     {
   884       Monitor* sync_with_child = osthread->startThread_lock();
   885       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   886       while ((state = osthread->get_state()) == ALLOCATED) {
   887         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   888       }
   889     }
   891     if (lock) {
   892       os::Linux::createThread_lock()->unlock();
   893     }
   894   }
   896   // Aborted due to thread limit being reached
   897   if (state == ZOMBIE) {
   898       thread->set_osthread(NULL);
   899       delete osthread;
   900       return false;
   901   }
   903   // The thread is returned suspended (in state INITIALIZED),
   904   // and is started higher up in the call chain
   905   assert(state == INITIALIZED, "race condition");
   906   return true;
   907 }
   909 /////////////////////////////////////////////////////////////////////////////
   910 // attach existing thread
   912 // bootstrap the main thread
   913 bool os::create_main_thread(JavaThread* thread) {
   914   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   915   return create_attached_thread(thread);
   916 }
   918 bool os::create_attached_thread(JavaThread* thread) {
   919 #ifdef ASSERT
   920     thread->verify_not_published();
   921 #endif
   923   // Allocate the OSThread object
   924   OSThread* osthread = new OSThread(NULL, NULL);
   926   if (osthread == NULL) {
   927     return false;
   928   }
   930   // Store pthread info into the OSThread
   931   osthread->set_thread_id(os::Linux::gettid());
   932   osthread->set_pthread_id(::pthread_self());
   934   // initialize floating point control register
   935   os::Linux::init_thread_fpu_state();
   937   // Initial thread state is RUNNABLE
   938   osthread->set_state(RUNNABLE);
   940   thread->set_osthread(osthread);
   942   if (UseNUMA) {
   943     int lgrp_id = os::numa_get_group_id();
   944     if (lgrp_id != -1) {
   945       thread->set_lgrp_id(lgrp_id);
   946     }
   947   }
   949   if (os::Linux::is_initial_thread()) {
   950     // If current thread is initial thread, its stack is mapped on demand,
   951     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   952     // the entire stack region to avoid SEGV in stack banging.
   953     // It is also useful to get around the heap-stack-gap problem on SuSE
   954     // kernel (see 4821821 for details). We first expand stack to the top
   955     // of yellow zone, then enable stack yellow zone (order is significant,
   956     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   957     // is no gap between the last two virtual memory regions.
   959     JavaThread *jt = (JavaThread *)thread;
   960     address addr = jt->stack_yellow_zone_base();
   961     assert(addr != NULL, "initialization problem?");
   962     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   964     osthread->set_expanding_stack();
   965     os::Linux::manually_expand_stack(jt, addr);
   966     osthread->clear_expanding_stack();
   967   }
   969   // initialize signal mask for this thread
   970   // and save the caller's signal mask
   971   os::Linux::hotspot_sigmask(thread);
   973   return true;
   974 }
   976 void os::pd_start_thread(Thread* thread) {
   977   OSThread * osthread = thread->osthread();
   978   assert(osthread->get_state() != INITIALIZED, "just checking");
   979   Monitor* sync_with_child = osthread->startThread_lock();
   980   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   981   sync_with_child->notify();
   982 }
   984 // Free Linux resources related to the OSThread
   985 void os::free_thread(OSThread* osthread) {
   986   assert(osthread != NULL, "osthread not set");
   988   if (Thread::current()->osthread() == osthread) {
   989     // Restore caller's signal mask
   990     sigset_t sigmask = osthread->caller_sigmask();
   991     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   992    }
   994   delete osthread;
   995 }
   997 //////////////////////////////////////////////////////////////////////////////
   998 // thread local storage
  1000 // Restore the thread pointer if the destructor is called. This is in case
  1001 // someone from JNI code sets up a destructor with pthread_key_create to run
  1002 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1003 // will hang or crash. When detachCurrentThread is called the key will be set
  1004 // to null and we will not be called again. If detachCurrentThread is never
  1005 // called we could loop forever depending on the pthread implementation.
  1006 static void restore_thread_pointer(void* p) {
  1007   Thread* thread = (Thread*) p;
  1008   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1011 int os::allocate_thread_local_storage() {
  1012   pthread_key_t key;
  1013   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1014   assert(rslt == 0, "cannot allocate thread local storage");
  1015   return (int)key;
  1018 // Note: This is currently not used by VM, as we don't destroy TLS key
  1019 // on VM exit.
  1020 void os::free_thread_local_storage(int index) {
  1021   int rslt = pthread_key_delete((pthread_key_t)index);
  1022   assert(rslt == 0, "invalid index");
  1025 void os::thread_local_storage_at_put(int index, void* value) {
  1026   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1027   assert(rslt == 0, "pthread_setspecific failed");
  1030 extern "C" Thread* get_thread() {
  1031   return ThreadLocalStorage::thread();
  1034 //////////////////////////////////////////////////////////////////////////////
  1035 // initial thread
  1037 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1038 bool os::Linux::is_initial_thread(void) {
  1039   char dummy;
  1040   // If called before init complete, thread stack bottom will be null.
  1041   // Can be called if fatal error occurs before initialization.
  1042   if (initial_thread_stack_bottom() == NULL) return false;
  1043   assert(initial_thread_stack_bottom() != NULL &&
  1044          initial_thread_stack_size()   != 0,
  1045          "os::init did not locate initial thread's stack region");
  1046   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1047       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1048        return true;
  1049   else return false;
  1052 // Find the virtual memory area that contains addr
  1053 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1054   FILE *fp = fopen("/proc/self/maps", "r");
  1055   if (fp) {
  1056     address low, high;
  1057     while (!feof(fp)) {
  1058       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1059         if (low <= addr && addr < high) {
  1060            if (vma_low)  *vma_low  = low;
  1061            if (vma_high) *vma_high = high;
  1062            fclose (fp);
  1063            return true;
  1066       for (;;) {
  1067         int ch = fgetc(fp);
  1068         if (ch == EOF || ch == (int)'\n') break;
  1071     fclose(fp);
  1073   return false;
  1076 // Locate initial thread stack. This special handling of initial thread stack
  1077 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1078 // bogus value for the primordial process thread. While the launcher has created
  1079 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1080 // JNI invocation API from a primordial thread.
  1081 void os::Linux::capture_initial_stack(size_t max_size) {
  1083   // max_size is either 0 (which means accept OS default for thread stacks) or
  1084   // a user-specified value known to be at least the minimum needed. If we
  1085   // are actually on the primordial thread we can make it appear that we have a
  1086   // smaller max_size stack by inserting the guard pages at that location. But we
  1087   // cannot do anything to emulate a larger stack than what has been provided by
  1088   // the OS or threading library. In fact if we try to use a stack greater than
  1089   // what is set by rlimit then we will crash the hosting process.
  1091   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1092   // If this is "unlimited" then it will be a huge value.
  1093   struct rlimit rlim;
  1094   getrlimit(RLIMIT_STACK, &rlim);
  1095   size_t stack_size = rlim.rlim_cur;
  1097   // 6308388: a bug in ld.so will relocate its own .data section to the
  1098   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1099   //   so we won't install guard page on ld.so's data section.
  1100   stack_size -= 2 * page_size();
  1102   // Try to figure out where the stack base (top) is. This is harder.
  1103   //
  1104   // When an application is started, glibc saves the initial stack pointer in
  1105   // a global variable "__libc_stack_end", which is then used by system
  1106   // libraries. __libc_stack_end should be pretty close to stack top. The
  1107   // variable is available since the very early days. However, because it is
  1108   // a private interface, it could disappear in the future.
  1109   //
  1110   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1111   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1112   // stack top. Note that /proc may not exist if VM is running as a chroot
  1113   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1114   // /proc/<pid>/stat could change in the future (though unlikely).
  1115   //
  1116   // We try __libc_stack_end first. If that doesn't work, look for
  1117   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1118   // as a hint, which should work well in most cases.
  1120   uintptr_t stack_start;
  1122   // try __libc_stack_end first
  1123   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1124   if (p && *p) {
  1125     stack_start = *p;
  1126   } else {
  1127     // see if we can get the start_stack field from /proc/self/stat
  1128     FILE *fp;
  1129     int pid;
  1130     char state;
  1131     int ppid;
  1132     int pgrp;
  1133     int session;
  1134     int nr;
  1135     int tpgrp;
  1136     unsigned long flags;
  1137     unsigned long minflt;
  1138     unsigned long cminflt;
  1139     unsigned long majflt;
  1140     unsigned long cmajflt;
  1141     unsigned long utime;
  1142     unsigned long stime;
  1143     long cutime;
  1144     long cstime;
  1145     long prio;
  1146     long nice;
  1147     long junk;
  1148     long it_real;
  1149     uintptr_t start;
  1150     uintptr_t vsize;
  1151     intptr_t rss;
  1152     uintptr_t rsslim;
  1153     uintptr_t scodes;
  1154     uintptr_t ecode;
  1155     int i;
  1157     // Figure what the primordial thread stack base is. Code is inspired
  1158     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1159     // followed by command name surrounded by parentheses, state, etc.
  1160     char stat[2048];
  1161     int statlen;
  1163     fp = fopen("/proc/self/stat", "r");
  1164     if (fp) {
  1165       statlen = fread(stat, 1, 2047, fp);
  1166       stat[statlen] = '\0';
  1167       fclose(fp);
  1169       // Skip pid and the command string. Note that we could be dealing with
  1170       // weird command names, e.g. user could decide to rename java launcher
  1171       // to "java 1.4.2 :)", then the stat file would look like
  1172       //                1234 (java 1.4.2 :)) R ... ...
  1173       // We don't really need to know the command string, just find the last
  1174       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1175       char * s = strrchr(stat, ')');
  1177       i = 0;
  1178       if (s) {
  1179         // Skip blank chars
  1180         do s++; while (isspace(*s));
  1182 #define _UFM UINTX_FORMAT
  1183 #define _DFM INTX_FORMAT
  1185         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1186         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1187         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1188              &state,          /* 3  %c  */
  1189              &ppid,           /* 4  %d  */
  1190              &pgrp,           /* 5  %d  */
  1191              &session,        /* 6  %d  */
  1192              &nr,             /* 7  %d  */
  1193              &tpgrp,          /* 8  %d  */
  1194              &flags,          /* 9  %lu  */
  1195              &minflt,         /* 10 %lu  */
  1196              &cminflt,        /* 11 %lu  */
  1197              &majflt,         /* 12 %lu  */
  1198              &cmajflt,        /* 13 %lu  */
  1199              &utime,          /* 14 %lu  */
  1200              &stime,          /* 15 %lu  */
  1201              &cutime,         /* 16 %ld  */
  1202              &cstime,         /* 17 %ld  */
  1203              &prio,           /* 18 %ld  */
  1204              &nice,           /* 19 %ld  */
  1205              &junk,           /* 20 %ld  */
  1206              &it_real,        /* 21 %ld  */
  1207              &start,          /* 22 UINTX_FORMAT */
  1208              &vsize,          /* 23 UINTX_FORMAT */
  1209              &rss,            /* 24 INTX_FORMAT  */
  1210              &rsslim,         /* 25 UINTX_FORMAT */
  1211              &scodes,         /* 26 UINTX_FORMAT */
  1212              &ecode,          /* 27 UINTX_FORMAT */
  1213              &stack_start);   /* 28 UINTX_FORMAT */
  1216 #undef _UFM
  1217 #undef _DFM
  1219       if (i != 28 - 2) {
  1220          assert(false, "Bad conversion from /proc/self/stat");
  1221          // product mode - assume we are the initial thread, good luck in the
  1222          // embedded case.
  1223          warning("Can't detect initial thread stack location - bad conversion");
  1224          stack_start = (uintptr_t) &rlim;
  1226     } else {
  1227       // For some reason we can't open /proc/self/stat (for example, running on
  1228       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1229       // most cases, so don't abort:
  1230       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1231       stack_start = (uintptr_t) &rlim;
  1235   // Now we have a pointer (stack_start) very close to the stack top, the
  1236   // next thing to do is to figure out the exact location of stack top. We
  1237   // can find out the virtual memory area that contains stack_start by
  1238   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1239   // and its upper limit is the real stack top. (again, this would fail if
  1240   // running inside chroot, because /proc may not exist.)
  1242   uintptr_t stack_top;
  1243   address low, high;
  1244   if (find_vma((address)stack_start, &low, &high)) {
  1245     // success, "high" is the true stack top. (ignore "low", because initial
  1246     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1247     stack_top = (uintptr_t)high;
  1248   } else {
  1249     // failed, likely because /proc/self/maps does not exist
  1250     warning("Can't detect initial thread stack location - find_vma failed");
  1251     // best effort: stack_start is normally within a few pages below the real
  1252     // stack top, use it as stack top, and reduce stack size so we won't put
  1253     // guard page outside stack.
  1254     stack_top = stack_start;
  1255     stack_size -= 16 * page_size();
  1258   // stack_top could be partially down the page so align it
  1259   stack_top = align_size_up(stack_top, page_size());
  1261   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1262   if (max_size > 0) {
  1263     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1264   } else {
  1265     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1266     // clamp it at 8MB as we do on Solaris
  1267     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1270   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1271   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1272   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1275 ////////////////////////////////////////////////////////////////////////////////
  1276 // time support
  1278 // Time since start-up in seconds to a fine granularity.
  1279 // Used by VMSelfDestructTimer and the MemProfiler.
  1280 double os::elapsedTime() {
  1282   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1285 jlong os::elapsed_counter() {
  1286   return javaTimeNanos() - initial_time_count;
  1289 jlong os::elapsed_frequency() {
  1290   return NANOSECS_PER_SEC; // nanosecond resolution
  1293 bool os::supports_vtime() { return true; }
  1294 bool os::enable_vtime()   { return false; }
  1295 bool os::vtime_enabled()  { return false; }
  1297 double os::elapsedVTime() {
  1298   struct rusage usage;
  1299   int retval = getrusage(RUSAGE_THREAD, &usage);
  1300   if (retval == 0) {
  1301     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1302   } else {
  1303     // better than nothing, but not much
  1304     return elapsedTime();
  1308 jlong os::javaTimeMillis() {
  1309   timeval time;
  1310   int status = gettimeofday(&time, NULL);
  1311   assert(status != -1, "linux error");
  1312   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1315 #ifndef CLOCK_MONOTONIC
  1316 #define CLOCK_MONOTONIC (1)
  1317 #endif
  1319 void os::Linux::clock_init() {
  1320   // we do dlopen's in this particular order due to bug in linux
  1321   // dynamical loader (see 6348968) leading to crash on exit
  1322   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1323   if (handle == NULL) {
  1324     handle = dlopen("librt.so", RTLD_LAZY);
  1327   if (handle) {
  1328     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1329            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1330     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1331            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1332     if (clock_getres_func && clock_gettime_func) {
  1333       // See if monotonic clock is supported by the kernel. Note that some
  1334       // early implementations simply return kernel jiffies (updated every
  1335       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1336       // for nano time (though the monotonic property is still nice to have).
  1337       // It's fixed in newer kernels, however clock_getres() still returns
  1338       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1339       // resolution for now. Hopefully as people move to new kernels, this
  1340       // won't be a problem.
  1341       struct timespec res;
  1342       struct timespec tp;
  1343       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1344           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1345         // yes, monotonic clock is supported
  1346         _clock_gettime = clock_gettime_func;
  1347         return;
  1348       } else {
  1349         // close librt if there is no monotonic clock
  1350         dlclose(handle);
  1354   warning("No monotonic clock was available - timed services may " \
  1355           "be adversely affected if the time-of-day clock changes");
  1358 #ifndef SYS_clock_getres
  1360 #if defined(IA32) || defined(AMD64)
  1361 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1362 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1363 #else
  1364 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1365 #define sys_clock_getres(x,y)  -1
  1366 #endif
  1368 #else
  1369 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1370 #endif
  1372 void os::Linux::fast_thread_clock_init() {
  1373   if (!UseLinuxPosixThreadCPUClocks) {
  1374     return;
  1376   clockid_t clockid;
  1377   struct timespec tp;
  1378   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1379       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1381   // Switch to using fast clocks for thread cpu time if
  1382   // the sys_clock_getres() returns 0 error code.
  1383   // Note, that some kernels may support the current thread
  1384   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1385   // returned by the pthread_getcpuclockid().
  1386   // If the fast Posix clocks are supported then the sys_clock_getres()
  1387   // must return at least tp.tv_sec == 0 which means a resolution
  1388   // better than 1 sec. This is extra check for reliability.
  1390   if(pthread_getcpuclockid_func &&
  1391      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1392      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1394     _supports_fast_thread_cpu_time = true;
  1395     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1399 jlong os::javaTimeNanos() {
  1400   if (Linux::supports_monotonic_clock()) {
  1401     struct timespec tp;
  1402     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1403     assert(status == 0, "gettime error");
  1404     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1405     return result;
  1406   } else {
  1407     timeval time;
  1408     int status = gettimeofday(&time, NULL);
  1409     assert(status != -1, "linux error");
  1410     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1411     return 1000 * usecs;
  1415 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1416   if (Linux::supports_monotonic_clock()) {
  1417     info_ptr->max_value = ALL_64_BITS;
  1419     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1420     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1421     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1422   } else {
  1423     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1424     info_ptr->max_value = ALL_64_BITS;
  1426     // gettimeofday is a real time clock so it skips
  1427     info_ptr->may_skip_backward = true;
  1428     info_ptr->may_skip_forward = true;
  1431   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1434 // Return the real, user, and system times in seconds from an
  1435 // arbitrary fixed point in the past.
  1436 bool os::getTimesSecs(double* process_real_time,
  1437                       double* process_user_time,
  1438                       double* process_system_time) {
  1439   struct tms ticks;
  1440   clock_t real_ticks = times(&ticks);
  1442   if (real_ticks == (clock_t) (-1)) {
  1443     return false;
  1444   } else {
  1445     double ticks_per_second = (double) clock_tics_per_sec;
  1446     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1447     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1448     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1450     return true;
  1455 char * os::local_time_string(char *buf, size_t buflen) {
  1456   struct tm t;
  1457   time_t long_time;
  1458   time(&long_time);
  1459   localtime_r(&long_time, &t);
  1460   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1461                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1462                t.tm_hour, t.tm_min, t.tm_sec);
  1463   return buf;
  1466 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1467   return localtime_r(clock, res);
  1470 ////////////////////////////////////////////////////////////////////////////////
  1471 // runtime exit support
  1473 // Note: os::shutdown() might be called very early during initialization, or
  1474 // called from signal handler. Before adding something to os::shutdown(), make
  1475 // sure it is async-safe and can handle partially initialized VM.
  1476 void os::shutdown() {
  1478   // allow PerfMemory to attempt cleanup of any persistent resources
  1479   perfMemory_exit();
  1481   // needs to remove object in file system
  1482   AttachListener::abort();
  1484   // flush buffered output, finish log files
  1485   ostream_abort();
  1487   // Check for abort hook
  1488   abort_hook_t abort_hook = Arguments::abort_hook();
  1489   if (abort_hook != NULL) {
  1490     abort_hook();
  1495 // Note: os::abort() might be called very early during initialization, or
  1496 // called from signal handler. Before adding something to os::abort(), make
  1497 // sure it is async-safe and can handle partially initialized VM.
  1498 void os::abort(bool dump_core) {
  1499   os::shutdown();
  1500   if (dump_core) {
  1501 #ifndef PRODUCT
  1502     fdStream out(defaultStream::output_fd());
  1503     out.print_raw("Current thread is ");
  1504     char buf[16];
  1505     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1506     out.print_raw_cr(buf);
  1507     out.print_raw_cr("Dumping core ...");
  1508 #endif
  1509     ::abort(); // dump core
  1512   ::exit(1);
  1515 // Die immediately, no exit hook, no abort hook, no cleanup.
  1516 void os::die() {
  1517   // _exit() on LinuxThreads only kills current thread
  1518   ::abort();
  1522 // This method is a copy of JDK's sysGetLastErrorString
  1523 // from src/solaris/hpi/src/system_md.c
  1525 size_t os::lasterror(char *buf, size_t len) {
  1527   if (errno == 0)  return 0;
  1529   const char *s = ::strerror(errno);
  1530   size_t n = ::strlen(s);
  1531   if (n >= len) {
  1532     n = len - 1;
  1534   ::strncpy(buf, s, n);
  1535   buf[n] = '\0';
  1536   return n;
  1539 intx os::current_thread_id() { return (intx)pthread_self(); }
  1540 int os::current_process_id() {
  1542   // Under the old linux thread library, linux gives each thread
  1543   // its own process id. Because of this each thread will return
  1544   // a different pid if this method were to return the result
  1545   // of getpid(2). Linux provides no api that returns the pid
  1546   // of the launcher thread for the vm. This implementation
  1547   // returns a unique pid, the pid of the launcher thread
  1548   // that starts the vm 'process'.
  1550   // Under the NPTL, getpid() returns the same pid as the
  1551   // launcher thread rather than a unique pid per thread.
  1552   // Use gettid() if you want the old pre NPTL behaviour.
  1554   // if you are looking for the result of a call to getpid() that
  1555   // returns a unique pid for the calling thread, then look at the
  1556   // OSThread::thread_id() method in osThread_linux.hpp file
  1558   return (int)(_initial_pid ? _initial_pid : getpid());
  1561 // DLL functions
  1563 const char* os::dll_file_extension() { return ".so"; }
  1565 // This must be hard coded because it's the system's temporary
  1566 // directory not the java application's temp directory, ala java.io.tmpdir.
  1567 const char* os::get_temp_directory() { return "/tmp"; }
  1569 static bool file_exists(const char* filename) {
  1570   struct stat statbuf;
  1571   if (filename == NULL || strlen(filename) == 0) {
  1572     return false;
  1574   return os::stat(filename, &statbuf) == 0;
  1577 bool os::dll_build_name(char* buffer, size_t buflen,
  1578                         const char* pname, const char* fname) {
  1579   bool retval = false;
  1580   // Copied from libhpi
  1581   const size_t pnamelen = pname ? strlen(pname) : 0;
  1583   // Return error on buffer overflow.
  1584   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1585     return retval;
  1588   if (pnamelen == 0) {
  1589     snprintf(buffer, buflen, "lib%s.so", fname);
  1590     retval = true;
  1591   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1592     int n;
  1593     char** pelements = split_path(pname, &n);
  1594     if (pelements == NULL) {
  1595       return false;
  1597     for (int i = 0 ; i < n ; i++) {
  1598       // Really shouldn't be NULL, but check can't hurt
  1599       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1600         continue; // skip the empty path values
  1602       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1603       if (file_exists(buffer)) {
  1604         retval = true;
  1605         break;
  1608     // release the storage
  1609     for (int i = 0 ; i < n ; i++) {
  1610       if (pelements[i] != NULL) {
  1611         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1614     if (pelements != NULL) {
  1615       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1617   } else {
  1618     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1619     retval = true;
  1621   return retval;
  1624 // check if addr is inside libjvm.so
  1625 bool os::address_is_in_vm(address addr) {
  1626   static address libjvm_base_addr;
  1627   Dl_info dlinfo;
  1629   if (libjvm_base_addr == NULL) {
  1630     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1631       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1633     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1636   if (dladdr((void *)addr, &dlinfo) != 0) {
  1637     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1640   return false;
  1643 bool os::dll_address_to_function_name(address addr, char *buf,
  1644                                       int buflen, int *offset) {
  1645   // buf is not optional, but offset is optional
  1646   assert(buf != NULL, "sanity check");
  1648   Dl_info dlinfo;
  1650   if (dladdr((void*)addr, &dlinfo) != 0) {
  1651     // see if we have a matching symbol
  1652     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1653       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1654         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1656       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1657       return true;
  1659     // no matching symbol so try for just file info
  1660     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1661       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1662                           buf, buflen, offset, dlinfo.dli_fname)) {
  1663         return true;
  1668   buf[0] = '\0';
  1669   if (offset != NULL) *offset = -1;
  1670   return false;
  1673 struct _address_to_library_name {
  1674   address addr;          // input : memory address
  1675   size_t  buflen;        //         size of fname
  1676   char*   fname;         // output: library name
  1677   address base;          //         library base addr
  1678 };
  1680 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1681                                             size_t size, void *data) {
  1682   int i;
  1683   bool found = false;
  1684   address libbase = NULL;
  1685   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1687   // iterate through all loadable segments
  1688   for (i = 0; i < info->dlpi_phnum; i++) {
  1689     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1690     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1691       // base address of a library is the lowest address of its loaded
  1692       // segments.
  1693       if (libbase == NULL || libbase > segbase) {
  1694         libbase = segbase;
  1696       // see if 'addr' is within current segment
  1697       if (segbase <= d->addr &&
  1698           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1699         found = true;
  1704   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1705   // so dll_address_to_library_name() can fall through to use dladdr() which
  1706   // can figure out executable name from argv[0].
  1707   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1708     d->base = libbase;
  1709     if (d->fname) {
  1710       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1712     return 1;
  1714   return 0;
  1717 bool os::dll_address_to_library_name(address addr, char* buf,
  1718                                      int buflen, int* offset) {
  1719   // buf is not optional, but offset is optional
  1720   assert(buf != NULL, "sanity check");
  1722   Dl_info dlinfo;
  1723   struct _address_to_library_name data;
  1725   // There is a bug in old glibc dladdr() implementation that it could resolve
  1726   // to wrong library name if the .so file has a base address != NULL. Here
  1727   // we iterate through the program headers of all loaded libraries to find
  1728   // out which library 'addr' really belongs to. This workaround can be
  1729   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1730   data.addr = addr;
  1731   data.fname = buf;
  1732   data.buflen = buflen;
  1733   data.base = NULL;
  1734   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1736   if (rslt) {
  1737      // buf already contains library name
  1738      if (offset) *offset = addr - data.base;
  1739      return true;
  1741   if (dladdr((void*)addr, &dlinfo) != 0) {
  1742     if (dlinfo.dli_fname != NULL) {
  1743       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1745     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1746       *offset = addr - (address)dlinfo.dli_fbase;
  1748     return true;
  1751   buf[0] = '\0';
  1752   if (offset) *offset = -1;
  1753   return false;
  1756   // Loads .dll/.so and
  1757   // in case of error it checks if .dll/.so was built for the
  1758   // same architecture as Hotspot is running on
  1761 // Remember the stack's state. The Linux dynamic linker will change
  1762 // the stack to 'executable' at most once, so we must safepoint only once.
  1763 bool os::Linux::_stack_is_executable = false;
  1765 // VM operation that loads a library.  This is necessary if stack protection
  1766 // of the Java stacks can be lost during loading the library.  If we
  1767 // do not stop the Java threads, they can stack overflow before the stacks
  1768 // are protected again.
  1769 class VM_LinuxDllLoad: public VM_Operation {
  1770  private:
  1771   const char *_filename;
  1772   char *_ebuf;
  1773   int _ebuflen;
  1774   void *_lib;
  1775  public:
  1776   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1777     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1778   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1779   void doit() {
  1780     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1781     os::Linux::_stack_is_executable = true;
  1783   void* loaded_library() { return _lib; }
  1784 };
  1786 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1788   void * result = NULL;
  1789   bool load_attempted = false;
  1791   // Check whether the library to load might change execution rights
  1792   // of the stack. If they are changed, the protection of the stack
  1793   // guard pages will be lost. We need a safepoint to fix this.
  1794   //
  1795   // See Linux man page execstack(8) for more info.
  1796   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1797     ElfFile ef(filename);
  1798     if (!ef.specifies_noexecstack()) {
  1799       if (!is_init_completed()) {
  1800         os::Linux::_stack_is_executable = true;
  1801         // This is OK - No Java threads have been created yet, and hence no
  1802         // stack guard pages to fix.
  1803         //
  1804         // This should happen only when you are building JDK7 using a very
  1805         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1806         //
  1807         // Dynamic loader will make all stacks executable after
  1808         // this function returns, and will not do that again.
  1809         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1810       } else {
  1811         warning("You have loaded library %s which might have disabled stack guard. "
  1812                 "The VM will try to fix the stack guard now.\n"
  1813                 "It's highly recommended that you fix the library with "
  1814                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1815                 filename);
  1817         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1818         JavaThread *jt = JavaThread::current();
  1819         if (jt->thread_state() != _thread_in_native) {
  1820           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1821           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1822           warning("Unable to fix stack guard. Giving up.");
  1823         } else {
  1824           if (!LoadExecStackDllInVMThread) {
  1825             // This is for the case where the DLL has an static
  1826             // constructor function that executes JNI code. We cannot
  1827             // load such DLLs in the VMThread.
  1828             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1831           ThreadInVMfromNative tiv(jt);
  1832           debug_only(VMNativeEntryWrapper vew;)
  1834           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1835           VMThread::execute(&op);
  1836           if (LoadExecStackDllInVMThread) {
  1837             result = op.loaded_library();
  1839           load_attempted = true;
  1845   if (!load_attempted) {
  1846     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1849   if (result != NULL) {
  1850     // Successful loading
  1851     return result;
  1854   Elf32_Ehdr elf_head;
  1855   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1856   char* diag_msg_buf=ebuf+strlen(ebuf);
  1858   if (diag_msg_max_length==0) {
  1859     // No more space in ebuf for additional diagnostics message
  1860     return NULL;
  1864   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1866   if (file_descriptor < 0) {
  1867     // Can't open library, report dlerror() message
  1868     return NULL;
  1871   bool failed_to_read_elf_head=
  1872     (sizeof(elf_head)!=
  1873         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1875   ::close(file_descriptor);
  1876   if (failed_to_read_elf_head) {
  1877     // file i/o error - report dlerror() msg
  1878     return NULL;
  1881   typedef struct {
  1882     Elf32_Half  code;         // Actual value as defined in elf.h
  1883     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1884     char        elf_class;    // 32 or 64 bit
  1885     char        endianess;    // MSB or LSB
  1886     char*       name;         // String representation
  1887   } arch_t;
  1889   #ifndef EM_486
  1890   #define EM_486          6               /* Intel 80486 */
  1891   #endif
  1893   static const arch_t arch_array[]={
  1894     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1895     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1896     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1897     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1898     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1899     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1900     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1901     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1902 #if defined(VM_LITTLE_ENDIAN)
  1903     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1904 #else
  1905     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1906 #endif
  1907     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1908     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1909     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1910     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1911     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1912     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1913     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1914   };
  1916   #if  (defined IA32)
  1917     static  Elf32_Half running_arch_code=EM_386;
  1918   #elif   (defined AMD64)
  1919     static  Elf32_Half running_arch_code=EM_X86_64;
  1920   #elif  (defined IA64)
  1921     static  Elf32_Half running_arch_code=EM_IA_64;
  1922   #elif  (defined __sparc) && (defined _LP64)
  1923     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1924   #elif  (defined __sparc) && (!defined _LP64)
  1925     static  Elf32_Half running_arch_code=EM_SPARC;
  1926   #elif  (defined __powerpc64__)
  1927     static  Elf32_Half running_arch_code=EM_PPC64;
  1928   #elif  (defined __powerpc__)
  1929     static  Elf32_Half running_arch_code=EM_PPC;
  1930   #elif  (defined ARM)
  1931     static  Elf32_Half running_arch_code=EM_ARM;
  1932   #elif  (defined S390)
  1933     static  Elf32_Half running_arch_code=EM_S390;
  1934   #elif  (defined ALPHA)
  1935     static  Elf32_Half running_arch_code=EM_ALPHA;
  1936   #elif  (defined MIPSEL)
  1937     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1938   #elif  (defined PARISC)
  1939     static  Elf32_Half running_arch_code=EM_PARISC;
  1940   #elif  (defined MIPS)
  1941     static  Elf32_Half running_arch_code=EM_MIPS;
  1942   #elif  (defined M68K)
  1943     static  Elf32_Half running_arch_code=EM_68K;
  1944   #else
  1945     #error Method os::dll_load requires that one of following is defined:\
  1946          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1947   #endif
  1949   // Identify compatability class for VM's architecture and library's architecture
  1950   // Obtain string descriptions for architectures
  1952   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1953   int running_arch_index=-1;
  1955   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1956     if (running_arch_code == arch_array[i].code) {
  1957       running_arch_index    = i;
  1959     if (lib_arch.code == arch_array[i].code) {
  1960       lib_arch.compat_class = arch_array[i].compat_class;
  1961       lib_arch.name         = arch_array[i].name;
  1965   assert(running_arch_index != -1,
  1966     "Didn't find running architecture code (running_arch_code) in arch_array");
  1967   if (running_arch_index == -1) {
  1968     // Even though running architecture detection failed
  1969     // we may still continue with reporting dlerror() message
  1970     return NULL;
  1973   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1974     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1975     return NULL;
  1978 #ifndef S390
  1979   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1980     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1981     return NULL;
  1983 #endif // !S390
  1985   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1986     if ( lib_arch.name!=NULL ) {
  1987       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1988         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1989         lib_arch.name, arch_array[running_arch_index].name);
  1990     } else {
  1991       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1992       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1993         lib_arch.code,
  1994         arch_array[running_arch_index].name);
  1998   return NULL;
  2001 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2002   void * result = ::dlopen(filename, RTLD_LAZY);
  2003   if (result == NULL) {
  2004     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2005     ebuf[ebuflen-1] = '\0';
  2007   return result;
  2010 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2011   void * result = NULL;
  2012   if (LoadExecStackDllInVMThread) {
  2013     result = dlopen_helper(filename, ebuf, ebuflen);
  2016   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2017   // library that requires an executable stack, or which does not have this
  2018   // stack attribute set, dlopen changes the stack attribute to executable. The
  2019   // read protection of the guard pages gets lost.
  2020   //
  2021   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2022   // may have been queued at the same time.
  2024   if (!_stack_is_executable) {
  2025     JavaThread *jt = Threads::first();
  2027     while (jt) {
  2028       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2029           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2030         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2031                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2032           warning("Attempt to reguard stack yellow zone failed.");
  2035       jt = jt->next();
  2039   return result;
  2042 /*
  2043  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2044  * chances are you might want to run the generated bits against glibc-2.0
  2045  * libdl.so, so always use locking for any version of glibc.
  2046  */
  2047 void* os::dll_lookup(void* handle, const char* name) {
  2048   pthread_mutex_lock(&dl_mutex);
  2049   void* res = dlsym(handle, name);
  2050   pthread_mutex_unlock(&dl_mutex);
  2051   return res;
  2054 void* os::get_default_process_handle() {
  2055   return (void*)::dlopen(NULL, RTLD_LAZY);
  2058 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2059   int fd = ::open(filename, O_RDONLY);
  2060   if (fd == -1) {
  2061      return false;
  2064   char buf[32];
  2065   int bytes;
  2066   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2067     st->print_raw(buf, bytes);
  2070   ::close(fd);
  2072   return true;
  2075 void os::print_dll_info(outputStream *st) {
  2076    st->print_cr("Dynamic libraries:");
  2078    char fname[32];
  2079    pid_t pid = os::Linux::gettid();
  2081    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2083    if (!_print_ascii_file(fname, st)) {
  2084      st->print("Can not get library information for pid = %d\n", pid);
  2088 void os::print_os_info_brief(outputStream* st) {
  2089   os::Linux::print_distro_info(st);
  2091   os::Posix::print_uname_info(st);
  2093   os::Linux::print_libversion_info(st);
  2097 void os::print_os_info(outputStream* st) {
  2098   st->print("OS:");
  2100   os::Linux::print_distro_info(st);
  2102   os::Posix::print_uname_info(st);
  2104   // Print warning if unsafe chroot environment detected
  2105   if (unsafe_chroot_detected) {
  2106     st->print("WARNING!! ");
  2107     st->print_cr("%s", unstable_chroot_error);
  2110   os::Linux::print_libversion_info(st);
  2112   os::Posix::print_rlimit_info(st);
  2114   os::Posix::print_load_average(st);
  2116   os::Linux::print_full_memory_info(st);
  2119 // Try to identify popular distros.
  2120 // Most Linux distributions have a /etc/XXX-release file, which contains
  2121 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2122 // file that also contains the OS version string. Some have more than one
  2123 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2124 // /etc/redhat-release.), so the order is important.
  2125 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2126 // their own specific XXX-release file as well as a redhat-release file.
  2127 // Because of this the XXX-release file needs to be searched for before the
  2128 // redhat-release file.
  2129 // Since Red Hat has a lsb-release file that is not very descriptive the
  2130 // search for redhat-release needs to be before lsb-release.
  2131 // Since the lsb-release file is the new standard it needs to be searched
  2132 // before the older style release files.
  2133 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2134 // next to last resort.  The os-release file is a new standard that contains
  2135 // distribution information and the system-release file seems to be an old
  2136 // standard that has been replaced by the lsb-release and os-release files.
  2137 // Searching for the debian_version file is the last resort.  It contains
  2138 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2139 // "Debian " is printed before the contents of the debian_version file.
  2140 void os::Linux::print_distro_info(outputStream* st) {
  2141    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2142        !_print_ascii_file("/etc/mandriva-release", st) &&
  2143        !_print_ascii_file("/etc/mandrake-release", st) &&
  2144        !_print_ascii_file("/etc/sun-release", st) &&
  2145        !_print_ascii_file("/etc/redhat-release", st) &&
  2146        !_print_ascii_file("/etc/lsb-release", st) &&
  2147        !_print_ascii_file("/etc/SuSE-release", st) &&
  2148        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2149        !_print_ascii_file("/etc/gentoo-release", st) &&
  2150        !_print_ascii_file("/etc/ltib-release", st) &&
  2151        !_print_ascii_file("/etc/angstrom-version", st) &&
  2152        !_print_ascii_file("/etc/system-release", st) &&
  2153        !_print_ascii_file("/etc/os-release", st)) {
  2155        if (file_exists("/etc/debian_version")) {
  2156          st->print("Debian ");
  2157          _print_ascii_file("/etc/debian_version", st);
  2158        } else {
  2159          st->print("Linux");
  2162    st->cr();
  2165 void os::Linux::print_libversion_info(outputStream* st) {
  2166   // libc, pthread
  2167   st->print("libc:");
  2168   st->print("%s ", os::Linux::glibc_version());
  2169   st->print("%s ", os::Linux::libpthread_version());
  2170   if (os::Linux::is_LinuxThreads()) {
  2171      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2173   st->cr();
  2176 void os::Linux::print_full_memory_info(outputStream* st) {
  2177    st->print("\n/proc/meminfo:\n");
  2178    _print_ascii_file("/proc/meminfo", st);
  2179    st->cr();
  2182 void os::print_memory_info(outputStream* st) {
  2184   st->print("Memory:");
  2185   st->print(" %dk page", os::vm_page_size()>>10);
  2187   // values in struct sysinfo are "unsigned long"
  2188   struct sysinfo si;
  2189   sysinfo(&si);
  2191   st->print(", physical " UINT64_FORMAT "k",
  2192             os::physical_memory() >> 10);
  2193   st->print("(" UINT64_FORMAT "k free)",
  2194             os::available_memory() >> 10);
  2195   st->print(", swap " UINT64_FORMAT "k",
  2196             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2197   st->print("(" UINT64_FORMAT "k free)",
  2198             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2199   st->cr();
  2202 void os::pd_print_cpu_info(outputStream* st) {
  2203   st->print("\n/proc/cpuinfo:\n");
  2204   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2205     st->print("  <Not Available>");
  2207   st->cr();
  2210 void os::print_siginfo(outputStream* st, void* siginfo) {
  2211   const siginfo_t* si = (const siginfo_t*)siginfo;
  2213   os::Posix::print_siginfo_brief(st, si);
  2214 #if INCLUDE_CDS
  2215   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2216       UseSharedSpaces) {
  2217     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2218     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2219       st->print("\n\nError accessing class data sharing archive."   \
  2220                 " Mapped file inaccessible during execution, "      \
  2221                 " possible disk/network problem.");
  2224 #endif
  2225   st->cr();
  2229 static void print_signal_handler(outputStream* st, int sig,
  2230                                  char* buf, size_t buflen);
  2232 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2233   st->print_cr("Signal Handlers:");
  2234   print_signal_handler(st, SIGSEGV, buf, buflen);
  2235   print_signal_handler(st, SIGBUS , buf, buflen);
  2236   print_signal_handler(st, SIGFPE , buf, buflen);
  2237   print_signal_handler(st, SIGPIPE, buf, buflen);
  2238   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2239   print_signal_handler(st, SIGILL , buf, buflen);
  2240   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2241   print_signal_handler(st, SR_signum, buf, buflen);
  2242   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2243   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2244   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2245   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2246 #if defined(PPC64)
  2247   print_signal_handler(st, SIGTRAP, buf, buflen);
  2248 #endif
  2251 static char saved_jvm_path[MAXPATHLEN] = {0};
  2253 // Find the full path to the current module, libjvm.so
  2254 void os::jvm_path(char *buf, jint buflen) {
  2255   // Error checking.
  2256   if (buflen < MAXPATHLEN) {
  2257     assert(false, "must use a large-enough buffer");
  2258     buf[0] = '\0';
  2259     return;
  2261   // Lazy resolve the path to current module.
  2262   if (saved_jvm_path[0] != 0) {
  2263     strcpy(buf, saved_jvm_path);
  2264     return;
  2267   char dli_fname[MAXPATHLEN];
  2268   bool ret = dll_address_to_library_name(
  2269                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2270                 dli_fname, sizeof(dli_fname), NULL);
  2271   assert(ret, "cannot locate libjvm");
  2272   char *rp = NULL;
  2273   if (ret && dli_fname[0] != '\0') {
  2274     rp = realpath(dli_fname, buf);
  2276   if (rp == NULL)
  2277     return;
  2279   if (Arguments::created_by_gamma_launcher()) {
  2280     // Support for the gamma launcher.  Typical value for buf is
  2281     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2282     // the right place in the string, then assume we are installed in a JDK and
  2283     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2284     // up the path so it looks like libjvm.so is installed there (append a
  2285     // fake suffix hotspot/libjvm.so).
  2286     const char *p = buf + strlen(buf) - 1;
  2287     for (int count = 0; p > buf && count < 5; ++count) {
  2288       for (--p; p > buf && *p != '/'; --p)
  2289         /* empty */ ;
  2292     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2293       // Look for JAVA_HOME in the environment.
  2294       char* java_home_var = ::getenv("JAVA_HOME");
  2295       if (java_home_var != NULL && java_home_var[0] != 0) {
  2296         char* jrelib_p;
  2297         int len;
  2299         // Check the current module name "libjvm.so".
  2300         p = strrchr(buf, '/');
  2301         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2303         rp = realpath(java_home_var, buf);
  2304         if (rp == NULL)
  2305           return;
  2307         // determine if this is a legacy image or modules image
  2308         // modules image doesn't have "jre" subdirectory
  2309         len = strlen(buf);
  2310         assert(len < buflen, "Ran out of buffer room");
  2311         jrelib_p = buf + len;
  2312         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2313         if (0 != access(buf, F_OK)) {
  2314           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2317         if (0 == access(buf, F_OK)) {
  2318           // Use current module name "libjvm.so"
  2319           len = strlen(buf);
  2320           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2321         } else {
  2322           // Go back to path of .so
  2323           rp = realpath(dli_fname, buf);
  2324           if (rp == NULL)
  2325             return;
  2331   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2334 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2335   // no prefix required, not even "_"
  2338 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2339   // no suffix required
  2342 ////////////////////////////////////////////////////////////////////////////////
  2343 // sun.misc.Signal support
  2345 static volatile jint sigint_count = 0;
  2347 static void
  2348 UserHandler(int sig, void *siginfo, void *context) {
  2349   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2350   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2351   // don't want to flood the manager thread with sem_post requests.
  2352   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2353       return;
  2355   // Ctrl-C is pressed during error reporting, likely because the error
  2356   // handler fails to abort. Let VM die immediately.
  2357   if (sig == SIGINT && is_error_reported()) {
  2358      os::die();
  2361   os::signal_notify(sig);
  2364 void* os::user_handler() {
  2365   return CAST_FROM_FN_PTR(void*, UserHandler);
  2368 class Semaphore : public StackObj {
  2369   public:
  2370     Semaphore();
  2371     ~Semaphore();
  2372     void signal();
  2373     void wait();
  2374     bool trywait();
  2375     bool timedwait(unsigned int sec, int nsec);
  2376   private:
  2377     sem_t _semaphore;
  2378 };
  2380 Semaphore::Semaphore() {
  2381   sem_init(&_semaphore, 0, 0);
  2384 Semaphore::~Semaphore() {
  2385   sem_destroy(&_semaphore);
  2388 void Semaphore::signal() {
  2389   sem_post(&_semaphore);
  2392 void Semaphore::wait() {
  2393   sem_wait(&_semaphore);
  2396 bool Semaphore::trywait() {
  2397   return sem_trywait(&_semaphore) == 0;
  2400 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2402   struct timespec ts;
  2403   // Semaphore's are always associated with CLOCK_REALTIME
  2404   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2405   // see unpackTime for discussion on overflow checking
  2406   if (sec >= MAX_SECS) {
  2407     ts.tv_sec += MAX_SECS;
  2408     ts.tv_nsec = 0;
  2409   } else {
  2410     ts.tv_sec += sec;
  2411     ts.tv_nsec += nsec;
  2412     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2413       ts.tv_nsec -= NANOSECS_PER_SEC;
  2414       ++ts.tv_sec; // note: this must be <= max_secs
  2418   while (1) {
  2419     int result = sem_timedwait(&_semaphore, &ts);
  2420     if (result == 0) {
  2421       return true;
  2422     } else if (errno == EINTR) {
  2423       continue;
  2424     } else if (errno == ETIMEDOUT) {
  2425       return false;
  2426     } else {
  2427       return false;
  2432 extern "C" {
  2433   typedef void (*sa_handler_t)(int);
  2434   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2437 void* os::signal(int signal_number, void* handler) {
  2438   struct sigaction sigAct, oldSigAct;
  2440   sigfillset(&(sigAct.sa_mask));
  2441   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2442   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2444   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2445     // -1 means registration failed
  2446     return (void *)-1;
  2449   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2452 void os::signal_raise(int signal_number) {
  2453   ::raise(signal_number);
  2456 /*
  2457  * The following code is moved from os.cpp for making this
  2458  * code platform specific, which it is by its very nature.
  2459  */
  2461 // Will be modified when max signal is changed to be dynamic
  2462 int os::sigexitnum_pd() {
  2463   return NSIG;
  2466 // a counter for each possible signal value
  2467 static volatile jint pending_signals[NSIG+1] = { 0 };
  2469 // Linux(POSIX) specific hand shaking semaphore.
  2470 static sem_t sig_sem;
  2471 static Semaphore sr_semaphore;
  2473 void os::signal_init_pd() {
  2474   // Initialize signal structures
  2475   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2477   // Initialize signal semaphore
  2478   ::sem_init(&sig_sem, 0, 0);
  2481 void os::signal_notify(int sig) {
  2482   Atomic::inc(&pending_signals[sig]);
  2483   ::sem_post(&sig_sem);
  2486 static int check_pending_signals(bool wait) {
  2487   Atomic::store(0, &sigint_count);
  2488   for (;;) {
  2489     for (int i = 0; i < NSIG + 1; i++) {
  2490       jint n = pending_signals[i];
  2491       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2492         return i;
  2495     if (!wait) {
  2496       return -1;
  2498     JavaThread *thread = JavaThread::current();
  2499     ThreadBlockInVM tbivm(thread);
  2501     bool threadIsSuspended;
  2502     do {
  2503       thread->set_suspend_equivalent();
  2504       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2505       ::sem_wait(&sig_sem);
  2507       // were we externally suspended while we were waiting?
  2508       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2509       if (threadIsSuspended) {
  2510         //
  2511         // The semaphore has been incremented, but while we were waiting
  2512         // another thread suspended us. We don't want to continue running
  2513         // while suspended because that would surprise the thread that
  2514         // suspended us.
  2515         //
  2516         ::sem_post(&sig_sem);
  2518         thread->java_suspend_self();
  2520     } while (threadIsSuspended);
  2524 int os::signal_lookup() {
  2525   return check_pending_signals(false);
  2528 int os::signal_wait() {
  2529   return check_pending_signals(true);
  2532 ////////////////////////////////////////////////////////////////////////////////
  2533 // Virtual Memory
  2535 int os::vm_page_size() {
  2536   // Seems redundant as all get out
  2537   assert(os::Linux::page_size() != -1, "must call os::init");
  2538   return os::Linux::page_size();
  2541 // Solaris allocates memory by pages.
  2542 int os::vm_allocation_granularity() {
  2543   assert(os::Linux::page_size() != -1, "must call os::init");
  2544   return os::Linux::page_size();
  2547 // Rationale behind this function:
  2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2550 //  samples for JITted code. Here we create private executable mapping over the code cache
  2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2552 //  info for the reporting script by storing timestamp and location of symbol
  2553 void linux_wrap_code(char* base, size_t size) {
  2554   static volatile jint cnt = 0;
  2556   if (!UseOprofile) {
  2557     return;
  2560   char buf[PATH_MAX+1];
  2561   int num = Atomic::add(1, &cnt);
  2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2564            os::get_temp_directory(), os::current_process_id(), num);
  2565   unlink(buf);
  2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2569   if (fd != -1) {
  2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2571     if (rv != (off_t)-1) {
  2572       if (::write(fd, "", 1) == 1) {
  2573         mmap(base, size,
  2574              PROT_READ|PROT_WRITE|PROT_EXEC,
  2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2578     ::close(fd);
  2579     unlink(buf);
  2583 static bool recoverable_mmap_error(int err) {
  2584   // See if the error is one we can let the caller handle. This
  2585   // list of errno values comes from JBS-6843484. I can't find a
  2586   // Linux man page that documents this specific set of errno
  2587   // values so while this list currently matches Solaris, it may
  2588   // change as we gain experience with this failure mode.
  2589   switch (err) {
  2590   case EBADF:
  2591   case EINVAL:
  2592   case ENOTSUP:
  2593     // let the caller deal with these errors
  2594     return true;
  2596   default:
  2597     // Any remaining errors on this OS can cause our reserved mapping
  2598     // to be lost. That can cause confusion where different data
  2599     // structures think they have the same memory mapped. The worst
  2600     // scenario is if both the VM and a library think they have the
  2601     // same memory mapped.
  2602     return false;
  2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2607                                     int err) {
  2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2609           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2610           strerror(err), err);
  2613 static void warn_fail_commit_memory(char* addr, size_t size,
  2614                                     size_t alignment_hint, bool exec,
  2615                                     int err) {
  2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2618           alignment_hint, exec, strerror(err), err);
  2621 // NOTE: Linux kernel does not really reserve the pages for us.
  2622 //       All it does is to check if there are enough free pages
  2623 //       left at the time of mmap(). This could be a potential
  2624 //       problem.
  2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2628                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2629   if (res != (uintptr_t) MAP_FAILED) {
  2630     if (UseNUMAInterleaving) {
  2631       numa_make_global(addr, size);
  2633     return 0;
  2636   int err = errno;  // save errno from mmap() call above
  2638   if (!recoverable_mmap_error(err)) {
  2639     warn_fail_commit_memory(addr, size, exec, err);
  2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2643   return err;
  2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2651                                   const char* mesg) {
  2652   assert(mesg != NULL, "mesg must be specified");
  2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2654   if (err != 0) {
  2655     // the caller wants all commit errors to exit with the specified mesg:
  2656     warn_fail_commit_memory(addr, size, exec, err);
  2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2662 #ifndef MAP_HUGETLB
  2663 #define MAP_HUGETLB 0x40000
  2664 #endif
  2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2667 #ifndef MADV_HUGEPAGE
  2668 #define MADV_HUGEPAGE 14
  2669 #endif
  2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2672                                   size_t alignment_hint, bool exec) {
  2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2674   if (err == 0) {
  2675     realign_memory(addr, size, alignment_hint);
  2677   return err;
  2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2681                           bool exec) {
  2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2686                                   size_t alignment_hint, bool exec,
  2687                                   const char* mesg) {
  2688   assert(mesg != NULL, "mesg must be specified");
  2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2690   if (err != 0) {
  2691     // the caller wants all commit errors to exit with the specified mesg:
  2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2700     // be supported or the memory may already be backed by huge pages.
  2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2709   // small pages on top of the SHM segment. This method always works for small pages, so we
  2710   // allow that in any case.
  2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2716 void os::numa_make_global(char *addr, size_t bytes) {
  2717   Linux::numa_interleave_memory(addr, bytes);
  2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2721 // bind policy to MPOL_PREFERRED for the current thread.
  2722 #define USE_MPOL_PREFERRED 0
  2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2725   // To make NUMA and large pages more robust when both enabled, we need to ease
  2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2727   // default policy and it will force memory to be allocated on the specified
  2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2729   // the specified node, but will not force it. Using this policy will prevent
  2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2731   // free large pages.
  2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2736 bool os::numa_topology_changed()   { return false; }
  2738 size_t os::numa_get_groups_num() {
  2739   int max_node = Linux::numa_max_node();
  2740   return max_node > 0 ? max_node + 1 : 1;
  2743 int os::numa_get_group_id() {
  2744   int cpu_id = Linux::sched_getcpu();
  2745   if (cpu_id != -1) {
  2746     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2747     if (lgrp_id != -1) {
  2748       return lgrp_id;
  2751   return 0;
  2754 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2755   for (size_t i = 0; i < size; i++) {
  2756     ids[i] = i;
  2758   return size;
  2761 bool os::get_page_info(char *start, page_info* info) {
  2762   return false;
  2765 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2766   return end;
  2770 int os::Linux::sched_getcpu_syscall(void) {
  2771   unsigned int cpu = 0;
  2772   int retval = -1;
  2774 #if defined(IA32)
  2775 # ifndef SYS_getcpu
  2776 # define SYS_getcpu 318
  2777 # endif
  2778   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2779 #elif defined(AMD64)
  2780 // Unfortunately we have to bring all these macros here from vsyscall.h
  2781 // to be able to compile on old linuxes.
  2782 # define __NR_vgetcpu 2
  2783 # define VSYSCALL_START (-10UL << 20)
  2784 # define VSYSCALL_SIZE 1024
  2785 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2786   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2787   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2788   retval = vgetcpu(&cpu, NULL, NULL);
  2789 #endif
  2791   return (retval == -1) ? retval : cpu;
  2794 // Something to do with the numa-aware allocator needs these symbols
  2795 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2796 extern "C" JNIEXPORT void numa_error(char *where) { }
  2797 extern "C" JNIEXPORT int fork1() { return fork(); }
  2800 // If we are running with libnuma version > 2, then we should
  2801 // be trying to use symbols with versions 1.1
  2802 // If we are running with earlier version, which did not have symbol versions,
  2803 // we should use the base version.
  2804 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2805   void *f = dlvsym(handle, name, "libnuma_1.1");
  2806   if (f == NULL) {
  2807     f = dlsym(handle, name);
  2809   return f;
  2812 bool os::Linux::libnuma_init() {
  2813   // sched_getcpu() should be in libc.
  2814   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2815                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2817   // If it's not, try a direct syscall.
  2818   if (sched_getcpu() == -1)
  2819     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2821   if (sched_getcpu() != -1) { // Does it work?
  2822     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2823     if (handle != NULL) {
  2824       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2825                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2826       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2827                                        libnuma_dlsym(handle, "numa_max_node")));
  2828       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2829                                         libnuma_dlsym(handle, "numa_available")));
  2830       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2831                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2832       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2833                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2834       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2835                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2838       if (numa_available() != -1) {
  2839         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2840         // Create a cpu -> node mapping
  2841         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2842         rebuild_cpu_to_node_map();
  2843         return true;
  2847   return false;
  2850 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2851 // The table is later used in get_node_by_cpu().
  2852 void os::Linux::rebuild_cpu_to_node_map() {
  2853   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2854                               // in libnuma (possible values are starting from 16,
  2855                               // and continuing up with every other power of 2, but less
  2856                               // than the maximum number of CPUs supported by kernel), and
  2857                               // is a subject to change (in libnuma version 2 the requirements
  2858                               // are more reasonable) we'll just hardcode the number they use
  2859                               // in the library.
  2860   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2862   size_t cpu_num = processor_count();
  2863   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2864   size_t cpu_map_valid_size =
  2865     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2867   cpu_to_node()->clear();
  2868   cpu_to_node()->at_grow(cpu_num - 1);
  2869   size_t node_num = numa_get_groups_num();
  2871   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2872   for (size_t i = 0; i < node_num; i++) {
  2873     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2874       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2875         if (cpu_map[j] != 0) {
  2876           for (size_t k = 0; k < BitsPerCLong; k++) {
  2877             if (cpu_map[j] & (1UL << k)) {
  2878               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2885   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2888 int os::Linux::get_node_by_cpu(int cpu_id) {
  2889   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2890     return cpu_to_node()->at(cpu_id);
  2892   return -1;
  2895 GrowableArray<int>* os::Linux::_cpu_to_node;
  2896 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2897 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2898 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2899 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2900 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2901 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2902 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2903 unsigned long* os::Linux::_numa_all_nodes;
  2905 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2906   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2907                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2908   return res  != (uintptr_t) MAP_FAILED;
  2911 static
  2912 address get_stack_commited_bottom(address bottom, size_t size) {
  2913   address nbot = bottom;
  2914   address ntop = bottom + size;
  2916   size_t page_sz = os::vm_page_size();
  2917   unsigned pages = size / page_sz;
  2919   unsigned char vec[1];
  2920   unsigned imin = 1, imax = pages + 1, imid;
  2921   int mincore_return_value = 0;
  2923   assert(imin <= imax, "Unexpected page size");
  2925   while (imin < imax) {
  2926     imid = (imax + imin) / 2;
  2927     nbot = ntop - (imid * page_sz);
  2929     // Use a trick with mincore to check whether the page is mapped or not.
  2930     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2931     // is swapped output but if page we are asking for is unmapped
  2932     // it returns -1,ENOMEM
  2933     mincore_return_value = mincore(nbot, page_sz, vec);
  2935     if (mincore_return_value == -1) {
  2936       // Page is not mapped go up
  2937       // to find first mapped page
  2938       if (errno != EAGAIN) {
  2939         assert(errno == ENOMEM, "Unexpected mincore errno");
  2940         imax = imid;
  2942     } else {
  2943       // Page is mapped go down
  2944       // to find first not mapped page
  2945       imin = imid + 1;
  2949   nbot = nbot + page_sz;
  2951   // Adjust stack bottom one page up if last checked page is not mapped
  2952   if (mincore_return_value == -1) {
  2953     nbot = nbot + page_sz;
  2956   return nbot;
  2960 // Linux uses a growable mapping for the stack, and if the mapping for
  2961 // the stack guard pages is not removed when we detach a thread the
  2962 // stack cannot grow beyond the pages where the stack guard was
  2963 // mapped.  If at some point later in the process the stack expands to
  2964 // that point, the Linux kernel cannot expand the stack any further
  2965 // because the guard pages are in the way, and a segfault occurs.
  2966 //
  2967 // However, it's essential not to split the stack region by unmapping
  2968 // a region (leaving a hole) that's already part of the stack mapping,
  2969 // so if the stack mapping has already grown beyond the guard pages at
  2970 // the time we create them, we have to truncate the stack mapping.
  2971 // So, we need to know the extent of the stack mapping when
  2972 // create_stack_guard_pages() is called.
  2974 // We only need this for stacks that are growable: at the time of
  2975 // writing thread stacks don't use growable mappings (i.e. those
  2976 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2977 // only applies to the main thread.
  2979 // If the (growable) stack mapping already extends beyond the point
  2980 // where we're going to put our guard pages, truncate the mapping at
  2981 // that point by munmap()ping it.  This ensures that when we later
  2982 // munmap() the guard pages we don't leave a hole in the stack
  2983 // mapping. This only affects the main/initial thread
  2985 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2987   if (os::Linux::is_initial_thread()) {
  2988     // As we manually grow stack up to bottom inside create_attached_thread(),
  2989     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  2990     // we don't need to do anything special.
  2991     // Check it first, before calling heavy function.
  2992     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  2993     unsigned char vec[1];
  2995     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  2996       // Fallback to slow path on all errors, including EAGAIN
  2997       stack_extent = (uintptr_t) get_stack_commited_bottom(
  2998                                     os::Linux::initial_thread_stack_bottom(),
  2999                                     (size_t)addr - stack_extent);
  3002     if (stack_extent < (uintptr_t)addr) {
  3003       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3007   return os::commit_memory(addr, size, !ExecMem);
  3010 // If this is a growable mapping, remove the guard pages entirely by
  3011 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3012 // affects the main/initial thread, but guard against future OS changes
  3013 // It's safe to always unmap guard pages for initial thread because we
  3014 // always place it right after end of the mapped region
  3016 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3017   uintptr_t stack_extent, stack_base;
  3019   if (os::Linux::is_initial_thread()) {
  3020     return ::munmap(addr, size) == 0;
  3023   return os::uncommit_memory(addr, size);
  3026 static address _highest_vm_reserved_address = NULL;
  3028 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3029 // at 'requested_addr'. If there are existing memory mappings at the same
  3030 // location, however, they will be overwritten. If 'fixed' is false,
  3031 // 'requested_addr' is only treated as a hint, the return value may or
  3032 // may not start from the requested address. Unlike Linux mmap(), this
  3033 // function returns NULL to indicate failure.
  3034 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3035   char * addr;
  3036   int flags;
  3038   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3039   if (fixed) {
  3040     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3041     flags |= MAP_FIXED;
  3044   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3045   // touch an uncommitted page. Otherwise, the read/write might
  3046   // succeed if we have enough swap space to back the physical page.
  3047   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3048                        flags, -1, 0);
  3050   if (addr != MAP_FAILED) {
  3051     // anon_mmap() should only get called during VM initialization,
  3052     // don't need lock (actually we can skip locking even it can be called
  3053     // from multiple threads, because _highest_vm_reserved_address is just a
  3054     // hint about the upper limit of non-stack memory regions.)
  3055     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3056       _highest_vm_reserved_address = (address)addr + bytes;
  3060   return addr == MAP_FAILED ? NULL : addr;
  3063 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3064 //   (req_addr != NULL) or with a given alignment.
  3065 //  - bytes shall be a multiple of alignment.
  3066 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3067 //  - alignment sets the alignment at which memory shall be allocated.
  3068 //     It must be a multiple of allocation granularity.
  3069 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3070 //  req_addr or NULL.
  3071 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3073   size_t extra_size = bytes;
  3074   if (req_addr == NULL && alignment > 0) {
  3075     extra_size += alignment;
  3078   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3079     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3080     -1, 0);
  3081   if (start == MAP_FAILED) {
  3082     start = NULL;
  3083   } else {
  3084     if (req_addr != NULL) {
  3085       if (start != req_addr) {
  3086         ::munmap(start, extra_size);
  3087         start = NULL;
  3089     } else {
  3090       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3091       char* const end_aligned = start_aligned + bytes;
  3092       char* const end = start + extra_size;
  3093       if (start_aligned > start) {
  3094         ::munmap(start, start_aligned - start);
  3096       if (end_aligned < end) {
  3097         ::munmap(end_aligned, end - end_aligned);
  3099       start = start_aligned;
  3102   return start;
  3105 // Don't update _highest_vm_reserved_address, because there might be memory
  3106 // regions above addr + size. If so, releasing a memory region only creates
  3107 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3108 //
  3109 static int anon_munmap(char * addr, size_t size) {
  3110   return ::munmap(addr, size) == 0;
  3113 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3114                          size_t alignment_hint) {
  3115   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3118 bool os::pd_release_memory(char* addr, size_t size) {
  3119   return anon_munmap(addr, size);
  3122 static address highest_vm_reserved_address() {
  3123   return _highest_vm_reserved_address;
  3126 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3127   // Linux wants the mprotect address argument to be page aligned.
  3128   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3130   // According to SUSv3, mprotect() should only be used with mappings
  3131   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3132   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3133   // protection of malloc'ed or statically allocated memory). Check the
  3134   // caller if you hit this assert.
  3135   assert(addr == bottom, "sanity check");
  3137   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3138   return ::mprotect(bottom, size, prot) == 0;
  3141 // Set protections specified
  3142 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3143                         bool is_committed) {
  3144   unsigned int p = 0;
  3145   switch (prot) {
  3146   case MEM_PROT_NONE: p = PROT_NONE; break;
  3147   case MEM_PROT_READ: p = PROT_READ; break;
  3148   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3149   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3150   default:
  3151     ShouldNotReachHere();
  3153   // is_committed is unused.
  3154   return linux_mprotect(addr, bytes, p);
  3157 bool os::guard_memory(char* addr, size_t size) {
  3158   return linux_mprotect(addr, size, PROT_NONE);
  3161 bool os::unguard_memory(char* addr, size_t size) {
  3162   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3165 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3166   bool result = false;
  3167   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3168                  MAP_ANONYMOUS|MAP_PRIVATE,
  3169                  -1, 0);
  3170   if (p != MAP_FAILED) {
  3171     void *aligned_p = align_ptr_up(p, page_size);
  3173     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3175     munmap(p, page_size * 2);
  3178   if (warn && !result) {
  3179     warning("TransparentHugePages is not supported by the operating system.");
  3182   return result;
  3185 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3186   bool result = false;
  3187   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3188                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3189                  -1, 0);
  3191   if (p != MAP_FAILED) {
  3192     // We don't know if this really is a huge page or not.
  3193     FILE *fp = fopen("/proc/self/maps", "r");
  3194     if (fp) {
  3195       while (!feof(fp)) {
  3196         char chars[257];
  3197         long x = 0;
  3198         if (fgets(chars, sizeof(chars), fp)) {
  3199           if (sscanf(chars, "%lx-%*x", &x) == 1
  3200               && x == (long)p) {
  3201             if (strstr (chars, "hugepage")) {
  3202               result = true;
  3203               break;
  3208       fclose(fp);
  3210     munmap(p, page_size);
  3213   if (warn && !result) {
  3214     warning("HugeTLBFS is not supported by the operating system.");
  3217   return result;
  3220 /*
  3221 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3223 * From the coredump_filter documentation:
  3225 * - (bit 0) anonymous private memory
  3226 * - (bit 1) anonymous shared memory
  3227 * - (bit 2) file-backed private memory
  3228 * - (bit 3) file-backed shared memory
  3229 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3230 *           effective only if the bit 2 is cleared)
  3231 * - (bit 5) hugetlb private memory
  3232 * - (bit 6) hugetlb shared memory
  3233 */
  3234 static void set_coredump_filter(void) {
  3235   FILE *f;
  3236   long cdm;
  3238   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3239     return;
  3242   if (fscanf(f, "%lx", &cdm) != 1) {
  3243     fclose(f);
  3244     return;
  3247   rewind(f);
  3249   if ((cdm & LARGEPAGES_BIT) == 0) {
  3250     cdm |= LARGEPAGES_BIT;
  3251     fprintf(f, "%#lx", cdm);
  3254   fclose(f);
  3257 // Large page support
  3259 static size_t _large_page_size = 0;
  3261 size_t os::Linux::find_large_page_size() {
  3262   size_t large_page_size = 0;
  3264   // large_page_size on Linux is used to round up heap size. x86 uses either
  3265   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3266   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3267   // page as large as 256M.
  3268   //
  3269   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3270   // for a line with the following format:
  3271   //    Hugepagesize:     2048 kB
  3272   //
  3273   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3274   // format has been changed), we'll use the largest page size supported by
  3275   // the processor.
  3277 #ifndef ZERO
  3278   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3279                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3280 #endif // ZERO
  3282   FILE *fp = fopen("/proc/meminfo", "r");
  3283   if (fp) {
  3284     while (!feof(fp)) {
  3285       int x = 0;
  3286       char buf[16];
  3287       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3288         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3289           large_page_size = x * K;
  3290           break;
  3292       } else {
  3293         // skip to next line
  3294         for (;;) {
  3295           int ch = fgetc(fp);
  3296           if (ch == EOF || ch == (int)'\n') break;
  3300     fclose(fp);
  3303   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3304     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3305         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3306         proper_unit_for_byte_size(large_page_size));
  3309   return large_page_size;
  3312 size_t os::Linux::setup_large_page_size() {
  3313   _large_page_size = Linux::find_large_page_size();
  3314   const size_t default_page_size = (size_t)Linux::page_size();
  3315   if (_large_page_size > default_page_size) {
  3316     _page_sizes[0] = _large_page_size;
  3317     _page_sizes[1] = default_page_size;
  3318     _page_sizes[2] = 0;
  3321   return _large_page_size;
  3324 bool os::Linux::setup_large_page_type(size_t page_size) {
  3325   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3326       FLAG_IS_DEFAULT(UseSHM) &&
  3327       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3329     // The type of large pages has not been specified by the user.
  3331     // Try UseHugeTLBFS and then UseSHM.
  3332     UseHugeTLBFS = UseSHM = true;
  3334     // Don't try UseTransparentHugePages since there are known
  3335     // performance issues with it turned on. This might change in the future.
  3336     UseTransparentHugePages = false;
  3339   if (UseTransparentHugePages) {
  3340     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3341     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3342       UseHugeTLBFS = false;
  3343       UseSHM = false;
  3344       return true;
  3346     UseTransparentHugePages = false;
  3349   if (UseHugeTLBFS) {
  3350     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3351     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3352       UseSHM = false;
  3353       return true;
  3355     UseHugeTLBFS = false;
  3358   return UseSHM;
  3361 void os::large_page_init() {
  3362   if (!UseLargePages &&
  3363       !UseTransparentHugePages &&
  3364       !UseHugeTLBFS &&
  3365       !UseSHM) {
  3366     // Not using large pages.
  3367     return;
  3370   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3371     // The user explicitly turned off large pages.
  3372     // Ignore the rest of the large pages flags.
  3373     UseTransparentHugePages = false;
  3374     UseHugeTLBFS = false;
  3375     UseSHM = false;
  3376     return;
  3379   size_t large_page_size = Linux::setup_large_page_size();
  3380   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3382   set_coredump_filter();
  3385 #ifndef SHM_HUGETLB
  3386 #define SHM_HUGETLB 04000
  3387 #endif
  3389 #define shm_warning_format(format, ...)              \
  3390   do {                                               \
  3391     if (UseLargePages &&                             \
  3392         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3393          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3394          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3395       warning(format, __VA_ARGS__);                  \
  3396     }                                                \
  3397   } while (0)
  3399 #define shm_warning(str) shm_warning_format("%s", str)
  3401 #define shm_warning_with_errno(str)                \
  3402   do {                                             \
  3403     int err = errno;                               \
  3404     shm_warning_format(str " (error = %d)", err);  \
  3405   } while (0)
  3407 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3408   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3410   if (!is_size_aligned(alignment, SHMLBA)) {
  3411     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3412     return NULL;
  3415   // To ensure that we get 'alignment' aligned memory from shmat,
  3416   // we pre-reserve aligned virtual memory and then attach to that.
  3418   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3419   if (pre_reserved_addr == NULL) {
  3420     // Couldn't pre-reserve aligned memory.
  3421     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3422     return NULL;
  3425   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3426   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3428   if ((intptr_t)addr == -1) {
  3429     int err = errno;
  3430     shm_warning_with_errno("Failed to attach shared memory.");
  3432     assert(err != EACCES, "Unexpected error");
  3433     assert(err != EIDRM,  "Unexpected error");
  3434     assert(err != EINVAL, "Unexpected error");
  3436     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3437     // we can't unmap it, since that would potentially unmap memory that was
  3438     // mapped from other threads.
  3439     return NULL;
  3442   return addr;
  3445 static char* shmat_at_address(int shmid, char* req_addr) {
  3446   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3447     assert(false, "Requested address needs to be SHMLBA aligned");
  3448     return NULL;
  3451   char* addr = (char*)shmat(shmid, req_addr, 0);
  3453   if ((intptr_t)addr == -1) {
  3454     shm_warning_with_errno("Failed to attach shared memory.");
  3455     return NULL;
  3458   return addr;
  3461 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3462   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3463   if (req_addr != NULL) {
  3464     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3465     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3466     return shmat_at_address(shmid, req_addr);
  3469   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3470   // return large page size aligned memory addresses when req_addr == NULL.
  3471   // However, if the alignment is larger than the large page size, we have
  3472   // to manually ensure that the memory returned is 'alignment' aligned.
  3473   if (alignment > os::large_page_size()) {
  3474     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3475     return shmat_with_alignment(shmid, bytes, alignment);
  3476   } else {
  3477     return shmat_at_address(shmid, NULL);
  3481 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3482   // "exec" is passed in but not used.  Creating the shared image for
  3483   // the code cache doesn't have an SHM_X executable permission to check.
  3484   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3485   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3486   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3488   if (!is_size_aligned(bytes, os::large_page_size())) {
  3489     return NULL; // Fallback to small pages.
  3492   // Create a large shared memory region to attach to based on size.
  3493   // Currently, size is the total size of the heap.
  3494   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3495   if (shmid == -1) {
  3496     // Possible reasons for shmget failure:
  3497     // 1. shmmax is too small for Java heap.
  3498     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3499     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3500     // 2. not enough large page memory.
  3501     //    > check available large pages: cat /proc/meminfo
  3502     //    > increase amount of large pages:
  3503     //          echo new_value > /proc/sys/vm/nr_hugepages
  3504     //      Note 1: different Linux may use different name for this property,
  3505     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3506     //      Note 2: it's possible there's enough physical memory available but
  3507     //            they are so fragmented after a long run that they can't
  3508     //            coalesce into large pages. Try to reserve large pages when
  3509     //            the system is still "fresh".
  3510     shm_warning_with_errno("Failed to reserve shared memory.");
  3511     return NULL;
  3514   // Attach to the region.
  3515   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3517   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3518   // will be deleted when it's detached by shmdt() or when the process
  3519   // terminates. If shmat() is not successful this will remove the shared
  3520   // segment immediately.
  3521   shmctl(shmid, IPC_RMID, NULL);
  3523   return addr;
  3526 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3527   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3529   bool warn_on_failure = UseLargePages &&
  3530       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3531        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3532        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3534   if (warn_on_failure) {
  3535     char msg[128];
  3536     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3537         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3538     warning("%s", msg);
  3542 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3543   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3544   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3545   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3547   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3548   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3549                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3550                              -1, 0);
  3552   if (addr == MAP_FAILED) {
  3553     warn_on_large_pages_failure(req_addr, bytes, errno);
  3554     return NULL;
  3557   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3559   return addr;
  3562 // Reserve memory using mmap(MAP_HUGETLB).
  3563 //  - bytes shall be a multiple of alignment.
  3564 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3565 //  - alignment sets the alignment at which memory shall be allocated.
  3566 //     It must be a multiple of allocation granularity.
  3567 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3568 //  req_addr or NULL.
  3569 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3570   size_t large_page_size = os::large_page_size();
  3571   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3573   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3574   assert(is_size_aligned(bytes, alignment), "Must be");
  3576   // First reserve - but not commit - the address range in small pages.
  3577   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3579   if (start == NULL) {
  3580     return NULL;
  3583   assert(is_ptr_aligned(start, alignment), "Must be");
  3585   char* end = start + bytes;
  3587   // Find the regions of the allocated chunk that can be promoted to large pages.
  3588   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3589   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3591   size_t lp_bytes = lp_end - lp_start;
  3593   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3595   if (lp_bytes == 0) {
  3596     // The mapped region doesn't even span the start and the end of a large page.
  3597     // Fall back to allocate a non-special area.
  3598     ::munmap(start, end - start);
  3599     return NULL;
  3602   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3604   void* result;
  3606   // Commit small-paged leading area.
  3607   if (start != lp_start) {
  3608     result = ::mmap(start, lp_start - start, prot,
  3609                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3610                     -1, 0);
  3611     if (result == MAP_FAILED) {
  3612       ::munmap(lp_start, end - lp_start);
  3613       return NULL;
  3617   // Commit large-paged area.
  3618   result = ::mmap(lp_start, lp_bytes, prot,
  3619                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3620                   -1, 0);
  3621   if (result == MAP_FAILED) {
  3622     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3623     // If the mmap above fails, the large pages region will be unmapped and we
  3624     // have regions before and after with small pages. Release these regions.
  3625     //
  3626     // |  mapped  |  unmapped  |  mapped  |
  3627     // ^          ^            ^          ^
  3628     // start      lp_start     lp_end     end
  3629     //
  3630     ::munmap(start, lp_start - start);
  3631     ::munmap(lp_end, end - lp_end);
  3632     return NULL;
  3635   // Commit small-paged trailing area.
  3636   if (lp_end != end) {
  3637       result = ::mmap(lp_end, end - lp_end, prot,
  3638                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3639                       -1, 0);
  3640     if (result == MAP_FAILED) {
  3641       ::munmap(start, lp_end - start);
  3642       return NULL;
  3646   return start;
  3649 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3650   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3651   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3652   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3653   assert(is_power_of_2(os::large_page_size()), "Must be");
  3654   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3656   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3657     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3658   } else {
  3659     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3663 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3664   assert(UseLargePages, "only for large pages");
  3666   char* addr;
  3667   if (UseSHM) {
  3668     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3669   } else {
  3670     assert(UseHugeTLBFS, "must be");
  3671     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3674   if (addr != NULL) {
  3675     if (UseNUMAInterleaving) {
  3676       numa_make_global(addr, bytes);
  3679     // The memory is committed
  3680     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3683   return addr;
  3686 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3687   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3688   return shmdt(base) == 0;
  3691 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3692   return pd_release_memory(base, bytes);
  3695 bool os::release_memory_special(char* base, size_t bytes) {
  3696   bool res;
  3697   if (MemTracker::tracking_level() > NMT_minimal) {
  3698     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3699     res = os::Linux::release_memory_special_impl(base, bytes);
  3700     if (res) {
  3701       tkr.record((address)base, bytes);
  3704   } else {
  3705     res = os::Linux::release_memory_special_impl(base, bytes);
  3707   return res;
  3710 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3711   assert(UseLargePages, "only for large pages");
  3712   bool res;
  3714   if (UseSHM) {
  3715     res = os::Linux::release_memory_special_shm(base, bytes);
  3716   } else {
  3717     assert(UseHugeTLBFS, "must be");
  3718     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3720   return res;
  3723 size_t os::large_page_size() {
  3724   return _large_page_size;
  3727 // With SysV SHM the entire memory region must be allocated as shared
  3728 // memory.
  3729 // HugeTLBFS allows application to commit large page memory on demand.
  3730 // However, when committing memory with HugeTLBFS fails, the region
  3731 // that was supposed to be committed will lose the old reservation
  3732 // and allow other threads to steal that memory region. Because of this
  3733 // behavior we can't commit HugeTLBFS memory.
  3734 bool os::can_commit_large_page_memory() {
  3735   return UseTransparentHugePages;
  3738 bool os::can_execute_large_page_memory() {
  3739   return UseTransparentHugePages || UseHugeTLBFS;
  3742 // Reserve memory at an arbitrary address, only if that area is
  3743 // available (and not reserved for something else).
  3745 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3746   const int max_tries = 10;
  3747   char* base[max_tries];
  3748   size_t size[max_tries];
  3749   const size_t gap = 0x000000;
  3751   // Assert only that the size is a multiple of the page size, since
  3752   // that's all that mmap requires, and since that's all we really know
  3753   // about at this low abstraction level.  If we need higher alignment,
  3754   // we can either pass an alignment to this method or verify alignment
  3755   // in one of the methods further up the call chain.  See bug 5044738.
  3756   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3758   // Repeatedly allocate blocks until the block is allocated at the
  3759   // right spot. Give up after max_tries. Note that reserve_memory() will
  3760   // automatically update _highest_vm_reserved_address if the call is
  3761   // successful. The variable tracks the highest memory address every reserved
  3762   // by JVM. It is used to detect heap-stack collision if running with
  3763   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3764   // space than needed, it could confuse the collision detecting code. To
  3765   // solve the problem, save current _highest_vm_reserved_address and
  3766   // calculate the correct value before return.
  3767   address old_highest = _highest_vm_reserved_address;
  3769   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3770   // if kernel honors the hint then we can return immediately.
  3771   char * addr = anon_mmap(requested_addr, bytes, false);
  3772   if (addr == requested_addr) {
  3773      return requested_addr;
  3776   if (addr != NULL) {
  3777      // mmap() is successful but it fails to reserve at the requested address
  3778      anon_munmap(addr, bytes);
  3781   int i;
  3782   for (i = 0; i < max_tries; ++i) {
  3783     base[i] = reserve_memory(bytes);
  3785     if (base[i] != NULL) {
  3786       // Is this the block we wanted?
  3787       if (base[i] == requested_addr) {
  3788         size[i] = bytes;
  3789         break;
  3792       // Does this overlap the block we wanted? Give back the overlapped
  3793       // parts and try again.
  3795       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3796       if (top_overlap >= 0 && top_overlap < bytes) {
  3797         unmap_memory(base[i], top_overlap);
  3798         base[i] += top_overlap;
  3799         size[i] = bytes - top_overlap;
  3800       } else {
  3801         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3802         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3803           unmap_memory(requested_addr, bottom_overlap);
  3804           size[i] = bytes - bottom_overlap;
  3805         } else {
  3806           size[i] = bytes;
  3812   // Give back the unused reserved pieces.
  3814   for (int j = 0; j < i; ++j) {
  3815     if (base[j] != NULL) {
  3816       unmap_memory(base[j], size[j]);
  3820   if (i < max_tries) {
  3821     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3822     return requested_addr;
  3823   } else {
  3824     _highest_vm_reserved_address = old_highest;
  3825     return NULL;
  3829 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3830   return ::read(fd, buf, nBytes);
  3833 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3834 // Solaris uses poll(), linux uses park().
  3835 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3836 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3837 // SIGSEGV, see 4355769.
  3839 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3840   assert(thread == Thread::current(),  "thread consistency check");
  3842   ParkEvent * const slp = thread->_SleepEvent ;
  3843   slp->reset() ;
  3844   OrderAccess::fence() ;
  3846   if (interruptible) {
  3847     jlong prevtime = javaTimeNanos();
  3849     for (;;) {
  3850       if (os::is_interrupted(thread, true)) {
  3851         return OS_INTRPT;
  3854       jlong newtime = javaTimeNanos();
  3856       if (newtime - prevtime < 0) {
  3857         // time moving backwards, should only happen if no monotonic clock
  3858         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3859         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3860       } else {
  3861         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3864       if(millis <= 0) {
  3865         return OS_OK;
  3868       prevtime = newtime;
  3871         assert(thread->is_Java_thread(), "sanity check");
  3872         JavaThread *jt = (JavaThread *) thread;
  3873         ThreadBlockInVM tbivm(jt);
  3874         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3876         jt->set_suspend_equivalent();
  3877         // cleared by handle_special_suspend_equivalent_condition() or
  3878         // java_suspend_self() via check_and_wait_while_suspended()
  3880         slp->park(millis);
  3882         // were we externally suspended while we were waiting?
  3883         jt->check_and_wait_while_suspended();
  3886   } else {
  3887     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3888     jlong prevtime = javaTimeNanos();
  3890     for (;;) {
  3891       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3892       // the 1st iteration ...
  3893       jlong newtime = javaTimeNanos();
  3895       if (newtime - prevtime < 0) {
  3896         // time moving backwards, should only happen if no monotonic clock
  3897         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3898         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3899       } else {
  3900         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3903       if(millis <= 0) break ;
  3905       prevtime = newtime;
  3906       slp->park(millis);
  3908     return OS_OK ;
  3912 //
  3913 // Short sleep, direct OS call.
  3914 //
  3915 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3916 // sched_yield(2) will actually give up the CPU:
  3917 //
  3918 //   * Alone on this pariticular CPU, keeps running.
  3919 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  3920 //     (pre 2.6.39).
  3921 //
  3922 // So calling this with 0 is an alternative.
  3923 //
  3924 void os::naked_short_sleep(jlong ms) {
  3925   struct timespec req;
  3927   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3928   req.tv_sec = 0;
  3929   if (ms > 0) {
  3930     req.tv_nsec = (ms % 1000) * 1000000;
  3932   else {
  3933     req.tv_nsec = 1;
  3936   nanosleep(&req, NULL);
  3938   return;
  3941 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3942 void os::infinite_sleep() {
  3943   while (true) {    // sleep forever ...
  3944     ::sleep(100);   // ... 100 seconds at a time
  3948 // Used to convert frequent JVM_Yield() to nops
  3949 bool os::dont_yield() {
  3950   return DontYieldALot;
  3953 void os::yield() {
  3954   sched_yield();
  3957 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3959 void os::yield_all(int attempts) {
  3960   // Yields to all threads, including threads with lower priorities
  3961   // Threads on Linux are all with same priority. The Solaris style
  3962   // os::yield_all() with nanosleep(1ms) is not necessary.
  3963   sched_yield();
  3966 // Called from the tight loops to possibly influence time-sharing heuristics
  3967 void os::loop_breaker(int attempts) {
  3968   os::yield_all(attempts);
  3971 ////////////////////////////////////////////////////////////////////////////////
  3972 // thread priority support
  3974 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3975 // only supports dynamic priority, static priority must be zero. For real-time
  3976 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3977 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3978 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3979 // of 5 runs - Sep 2005).
  3980 //
  3981 // The following code actually changes the niceness of kernel-thread/LWP. It
  3982 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3983 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3984 // threads. It has always been the case, but could change in the future. For
  3985 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3986 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3988 int os::java_to_os_priority[CriticalPriority + 1] = {
  3989   19,              // 0 Entry should never be used
  3991    4,              // 1 MinPriority
  3992    3,              // 2
  3993    2,              // 3
  3995    1,              // 4
  3996    0,              // 5 NormPriority
  3997   -1,              // 6
  3999   -2,              // 7
  4000   -3,              // 8
  4001   -4,              // 9 NearMaxPriority
  4003   -5,              // 10 MaxPriority
  4005   -5               // 11 CriticalPriority
  4006 };
  4008 static int prio_init() {
  4009   if (ThreadPriorityPolicy == 1) {
  4010     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4011     // if effective uid is not root. Perhaps, a more elegant way of doing
  4012     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4013     if (geteuid() != 0) {
  4014       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4015         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4017       ThreadPriorityPolicy = 0;
  4020   if (UseCriticalJavaThreadPriority) {
  4021     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4023   return 0;
  4026 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4027   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4029   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4030   return (ret == 0) ? OS_OK : OS_ERR;
  4033 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4034   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4035     *priority_ptr = java_to_os_priority[NormPriority];
  4036     return OS_OK;
  4039   errno = 0;
  4040   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4041   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4044 // Hint to the underlying OS that a task switch would not be good.
  4045 // Void return because it's a hint and can fail.
  4046 void os::hint_no_preempt() {}
  4048 ////////////////////////////////////////////////////////////////////////////////
  4049 // suspend/resume support
  4051 //  the low-level signal-based suspend/resume support is a remnant from the
  4052 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4053 //  within hotspot. Now there is a single use-case for this:
  4054 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4055 //      that runs in the watcher thread.
  4056 //  The remaining code is greatly simplified from the more general suspension
  4057 //  code that used to be used.
  4058 //
  4059 //  The protocol is quite simple:
  4060 //  - suspend:
  4061 //      - sends a signal to the target thread
  4062 //      - polls the suspend state of the osthread using a yield loop
  4063 //      - target thread signal handler (SR_handler) sets suspend state
  4064 //        and blocks in sigsuspend until continued
  4065 //  - resume:
  4066 //      - sets target osthread state to continue
  4067 //      - sends signal to end the sigsuspend loop in the SR_handler
  4068 //
  4069 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4070 //
  4072 static void resume_clear_context(OSThread *osthread) {
  4073   osthread->set_ucontext(NULL);
  4074   osthread->set_siginfo(NULL);
  4077 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4078   osthread->set_ucontext(context);
  4079   osthread->set_siginfo(siginfo);
  4082 //
  4083 // Handler function invoked when a thread's execution is suspended or
  4084 // resumed. We have to be careful that only async-safe functions are
  4085 // called here (Note: most pthread functions are not async safe and
  4086 // should be avoided.)
  4087 //
  4088 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4089 // interface point of view, but sigwait() prevents the signal hander
  4090 // from being run. libpthread would get very confused by not having
  4091 // its signal handlers run and prevents sigwait()'s use with the
  4092 // mutex granting granting signal.
  4093 //
  4094 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4095 //
  4096 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4097   // Save and restore errno to avoid confusing native code with EINTR
  4098   // after sigsuspend.
  4099   int old_errno = errno;
  4101   Thread* thread = Thread::current();
  4102   OSThread* osthread = thread->osthread();
  4103   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4105   os::SuspendResume::State current = osthread->sr.state();
  4106   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4107     suspend_save_context(osthread, siginfo, context);
  4109     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4110     os::SuspendResume::State state = osthread->sr.suspended();
  4111     if (state == os::SuspendResume::SR_SUSPENDED) {
  4112       sigset_t suspend_set;  // signals for sigsuspend()
  4114       // get current set of blocked signals and unblock resume signal
  4115       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4116       sigdelset(&suspend_set, SR_signum);
  4118       sr_semaphore.signal();
  4119       // wait here until we are resumed
  4120       while (1) {
  4121         sigsuspend(&suspend_set);
  4123         os::SuspendResume::State result = osthread->sr.running();
  4124         if (result == os::SuspendResume::SR_RUNNING) {
  4125           sr_semaphore.signal();
  4126           break;
  4130     } else if (state == os::SuspendResume::SR_RUNNING) {
  4131       // request was cancelled, continue
  4132     } else {
  4133       ShouldNotReachHere();
  4136     resume_clear_context(osthread);
  4137   } else if (current == os::SuspendResume::SR_RUNNING) {
  4138     // request was cancelled, continue
  4139   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4140     // ignore
  4141   } else {
  4142     // ignore
  4145   errno = old_errno;
  4149 static int SR_initialize() {
  4150   struct sigaction act;
  4151   char *s;
  4152   /* Get signal number to use for suspend/resume */
  4153   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4154     int sig = ::strtol(s, 0, 10);
  4155     if (sig > 0 || sig < _NSIG) {
  4156         SR_signum = sig;
  4160   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4161         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4163   sigemptyset(&SR_sigset);
  4164   sigaddset(&SR_sigset, SR_signum);
  4166   /* Set up signal handler for suspend/resume */
  4167   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4168   act.sa_handler = (void (*)(int)) SR_handler;
  4170   // SR_signum is blocked by default.
  4171   // 4528190 - We also need to block pthread restart signal (32 on all
  4172   // supported Linux platforms). Note that LinuxThreads need to block
  4173   // this signal for all threads to work properly. So we don't have
  4174   // to use hard-coded signal number when setting up the mask.
  4175   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4177   if (sigaction(SR_signum, &act, 0) == -1) {
  4178     return -1;
  4181   // Save signal flag
  4182   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4183   return 0;
  4186 static int sr_notify(OSThread* osthread) {
  4187   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4188   assert_status(status == 0, status, "pthread_kill");
  4189   return status;
  4192 // "Randomly" selected value for how long we want to spin
  4193 // before bailing out on suspending a thread, also how often
  4194 // we send a signal to a thread we want to resume
  4195 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4196 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4198 // returns true on success and false on error - really an error is fatal
  4199 // but this seems the normal response to library errors
  4200 static bool do_suspend(OSThread* osthread) {
  4201   assert(osthread->sr.is_running(), "thread should be running");
  4202   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4204   // mark as suspended and send signal
  4205   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4206     // failed to switch, state wasn't running?
  4207     ShouldNotReachHere();
  4208     return false;
  4211   if (sr_notify(osthread) != 0) {
  4212     ShouldNotReachHere();
  4215   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4216   while (true) {
  4217     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4218       break;
  4219     } else {
  4220       // timeout
  4221       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4222       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4223         return false;
  4224       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4225         // make sure that we consume the signal on the semaphore as well
  4226         sr_semaphore.wait();
  4227         break;
  4228       } else {
  4229         ShouldNotReachHere();
  4230         return false;
  4235   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4236   return true;
  4239 static void do_resume(OSThread* osthread) {
  4240   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4241   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4243   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4244     // failed to switch to WAKEUP_REQUEST
  4245     ShouldNotReachHere();
  4246     return;
  4249   while (true) {
  4250     if (sr_notify(osthread) == 0) {
  4251       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4252         if (osthread->sr.is_running()) {
  4253           return;
  4256     } else {
  4257       ShouldNotReachHere();
  4261   guarantee(osthread->sr.is_running(), "Must be running!");
  4264 ////////////////////////////////////////////////////////////////////////////////
  4265 // interrupt support
  4267 void os::interrupt(Thread* thread) {
  4268   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4269     "possibility of dangling Thread pointer");
  4271   OSThread* osthread = thread->osthread();
  4273   if (!osthread->interrupted()) {
  4274     osthread->set_interrupted(true);
  4275     // More than one thread can get here with the same value of osthread,
  4276     // resulting in multiple notifications.  We do, however, want the store
  4277     // to interrupted() to be visible to other threads before we execute unpark().
  4278     OrderAccess::fence();
  4279     ParkEvent * const slp = thread->_SleepEvent ;
  4280     if (slp != NULL) slp->unpark() ;
  4283   // For JSR166. Unpark even if interrupt status already was set
  4284   if (thread->is_Java_thread())
  4285     ((JavaThread*)thread)->parker()->unpark();
  4287   ParkEvent * ev = thread->_ParkEvent ;
  4288   if (ev != NULL) ev->unpark() ;
  4292 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4293   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4294     "possibility of dangling Thread pointer");
  4296   OSThread* osthread = thread->osthread();
  4298   bool interrupted = osthread->interrupted();
  4300   if (interrupted && clear_interrupted) {
  4301     osthread->set_interrupted(false);
  4302     // consider thread->_SleepEvent->reset() ... optional optimization
  4305   return interrupted;
  4308 ///////////////////////////////////////////////////////////////////////////////////
  4309 // signal handling (except suspend/resume)
  4311 // This routine may be used by user applications as a "hook" to catch signals.
  4312 // The user-defined signal handler must pass unrecognized signals to this
  4313 // routine, and if it returns true (non-zero), then the signal handler must
  4314 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4315 // routine will never retun false (zero), but instead will execute a VM panic
  4316 // routine kill the process.
  4317 //
  4318 // If this routine returns false, it is OK to call it again.  This allows
  4319 // the user-defined signal handler to perform checks either before or after
  4320 // the VM performs its own checks.  Naturally, the user code would be making
  4321 // a serious error if it tried to handle an exception (such as a null check
  4322 // or breakpoint) that the VM was generating for its own correct operation.
  4323 //
  4324 // This routine may recognize any of the following kinds of signals:
  4325 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4326 // It should be consulted by handlers for any of those signals.
  4327 //
  4328 // The caller of this routine must pass in the three arguments supplied
  4329 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4330 // field of the structure passed to sigaction().  This routine assumes that
  4331 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4332 //
  4333 // Note that the VM will print warnings if it detects conflicting signal
  4334 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4335 //
  4336 extern "C" JNIEXPORT int
  4337 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4338                         void* ucontext, int abort_if_unrecognized);
  4340 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4341   assert(info != NULL && uc != NULL, "it must be old kernel");
  4342   int orig_errno = errno;  // Preserve errno value over signal handler.
  4343   JVM_handle_linux_signal(sig, info, uc, true);
  4344   errno = orig_errno;
  4348 // This boolean allows users to forward their own non-matching signals
  4349 // to JVM_handle_linux_signal, harmlessly.
  4350 bool os::Linux::signal_handlers_are_installed = false;
  4352 // For signal-chaining
  4353 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4354 unsigned int os::Linux::sigs = 0;
  4355 bool os::Linux::libjsig_is_loaded = false;
  4356 typedef struct sigaction *(*get_signal_t)(int);
  4357 get_signal_t os::Linux::get_signal_action = NULL;
  4359 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4360   struct sigaction *actp = NULL;
  4362   if (libjsig_is_loaded) {
  4363     // Retrieve the old signal handler from libjsig
  4364     actp = (*get_signal_action)(sig);
  4366   if (actp == NULL) {
  4367     // Retrieve the preinstalled signal handler from jvm
  4368     actp = get_preinstalled_handler(sig);
  4371   return actp;
  4374 static bool call_chained_handler(struct sigaction *actp, int sig,
  4375                                  siginfo_t *siginfo, void *context) {
  4376   // Call the old signal handler
  4377   if (actp->sa_handler == SIG_DFL) {
  4378     // It's more reasonable to let jvm treat it as an unexpected exception
  4379     // instead of taking the default action.
  4380     return false;
  4381   } else if (actp->sa_handler != SIG_IGN) {
  4382     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4383       // automaticlly block the signal
  4384       sigaddset(&(actp->sa_mask), sig);
  4387     sa_handler_t hand = NULL;
  4388     sa_sigaction_t sa = NULL;
  4389     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4390     // retrieve the chained handler
  4391     if (siginfo_flag_set) {
  4392       sa = actp->sa_sigaction;
  4393     } else {
  4394       hand = actp->sa_handler;
  4397     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4398       actp->sa_handler = SIG_DFL;
  4401     // try to honor the signal mask
  4402     sigset_t oset;
  4403     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4405     // call into the chained handler
  4406     if (siginfo_flag_set) {
  4407       (*sa)(sig, siginfo, context);
  4408     } else {
  4409       (*hand)(sig);
  4412     // restore the signal mask
  4413     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4415   // Tell jvm's signal handler the signal is taken care of.
  4416   return true;
  4419 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4420   bool chained = false;
  4421   // signal-chaining
  4422   if (UseSignalChaining) {
  4423     struct sigaction *actp = get_chained_signal_action(sig);
  4424     if (actp != NULL) {
  4425       chained = call_chained_handler(actp, sig, siginfo, context);
  4428   return chained;
  4431 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4432   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4433     return &sigact[sig];
  4435   return NULL;
  4438 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4439   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4440   sigact[sig] = oldAct;
  4441   sigs |= (unsigned int)1 << sig;
  4444 // for diagnostic
  4445 int os::Linux::sigflags[MAXSIGNUM];
  4447 int os::Linux::get_our_sigflags(int sig) {
  4448   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4449   return sigflags[sig];
  4452 void os::Linux::set_our_sigflags(int sig, int flags) {
  4453   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4454   sigflags[sig] = flags;
  4457 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4458   // Check for overwrite.
  4459   struct sigaction oldAct;
  4460   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4462   void* oldhand = oldAct.sa_sigaction
  4463                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4464                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4465   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4466       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4467       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4468     if (AllowUserSignalHandlers || !set_installed) {
  4469       // Do not overwrite; user takes responsibility to forward to us.
  4470       return;
  4471     } else if (UseSignalChaining) {
  4472       // save the old handler in jvm
  4473       save_preinstalled_handler(sig, oldAct);
  4474       // libjsig also interposes the sigaction() call below and saves the
  4475       // old sigaction on it own.
  4476     } else {
  4477       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4478                     "%#lx for signal %d.", (long)oldhand, sig));
  4482   struct sigaction sigAct;
  4483   sigfillset(&(sigAct.sa_mask));
  4484   sigAct.sa_handler = SIG_DFL;
  4485   if (!set_installed) {
  4486     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4487   } else {
  4488     sigAct.sa_sigaction = signalHandler;
  4489     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4491   // Save flags, which are set by ours
  4492   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4493   sigflags[sig] = sigAct.sa_flags;
  4495   int ret = sigaction(sig, &sigAct, &oldAct);
  4496   assert(ret == 0, "check");
  4498   void* oldhand2  = oldAct.sa_sigaction
  4499                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4500                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4501   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4504 // install signal handlers for signals that HotSpot needs to
  4505 // handle in order to support Java-level exception handling.
  4507 void os::Linux::install_signal_handlers() {
  4508   if (!signal_handlers_are_installed) {
  4509     signal_handlers_are_installed = true;
  4511     // signal-chaining
  4512     typedef void (*signal_setting_t)();
  4513     signal_setting_t begin_signal_setting = NULL;
  4514     signal_setting_t end_signal_setting = NULL;
  4515     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4516                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4517     if (begin_signal_setting != NULL) {
  4518       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4519                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4520       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4521                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4522       libjsig_is_loaded = true;
  4523       assert(UseSignalChaining, "should enable signal-chaining");
  4525     if (libjsig_is_loaded) {
  4526       // Tell libjsig jvm is setting signal handlers
  4527       (*begin_signal_setting)();
  4530     set_signal_handler(SIGSEGV, true);
  4531     set_signal_handler(SIGPIPE, true);
  4532     set_signal_handler(SIGBUS, true);
  4533     set_signal_handler(SIGILL, true);
  4534     set_signal_handler(SIGFPE, true);
  4535 #if defined(PPC64)
  4536     set_signal_handler(SIGTRAP, true);
  4537 #endif
  4538     set_signal_handler(SIGXFSZ, true);
  4540     if (libjsig_is_loaded) {
  4541       // Tell libjsig jvm finishes setting signal handlers
  4542       (*end_signal_setting)();
  4545     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4546     // and if UserSignalHandler is installed all bets are off.
  4547     // Log that signal checking is off only if -verbose:jni is specified.
  4548     if (CheckJNICalls) {
  4549       if (libjsig_is_loaded) {
  4550         if (PrintJNIResolving) {
  4551           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4553         check_signals = false;
  4555       if (AllowUserSignalHandlers) {
  4556         if (PrintJNIResolving) {
  4557           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4559         check_signals = false;
  4565 // This is the fastest way to get thread cpu time on Linux.
  4566 // Returns cpu time (user+sys) for any thread, not only for current.
  4567 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4568 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4569 // For reference, please, see IEEE Std 1003.1-2004:
  4570 //   http://www.unix.org/single_unix_specification
  4572 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4573   struct timespec tp;
  4574   int rc = os::Linux::clock_gettime(clockid, &tp);
  4575   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4577   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4580 /////
  4581 // glibc on Linux platform uses non-documented flag
  4582 // to indicate, that some special sort of signal
  4583 // trampoline is used.
  4584 // We will never set this flag, and we should
  4585 // ignore this flag in our diagnostic
  4586 #ifdef SIGNIFICANT_SIGNAL_MASK
  4587 #undef SIGNIFICANT_SIGNAL_MASK
  4588 #endif
  4589 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4591 static const char* get_signal_handler_name(address handler,
  4592                                            char* buf, int buflen) {
  4593   int offset = 0;
  4594   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4595   if (found) {
  4596     // skip directory names
  4597     const char *p1, *p2;
  4598     p1 = buf;
  4599     size_t len = strlen(os::file_separator());
  4600     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4601     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4602   } else {
  4603     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4605   return buf;
  4608 static void print_signal_handler(outputStream* st, int sig,
  4609                                  char* buf, size_t buflen) {
  4610   struct sigaction sa;
  4612   sigaction(sig, NULL, &sa);
  4614   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4615   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4617   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4619   address handler = (sa.sa_flags & SA_SIGINFO)
  4620     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4621     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4623   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4624     st->print("SIG_DFL");
  4625   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4626     st->print("SIG_IGN");
  4627   } else {
  4628     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4631   st->print(", sa_mask[0]=");
  4632   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4634   address rh = VMError::get_resetted_sighandler(sig);
  4635   // May be, handler was resetted by VMError?
  4636   if(rh != NULL) {
  4637     handler = rh;
  4638     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4641   st->print(", sa_flags=");
  4642   os::Posix::print_sa_flags(st, sa.sa_flags);
  4644   // Check: is it our handler?
  4645   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4646      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4647     // It is our signal handler
  4648     // check for flags, reset system-used one!
  4649     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4650       st->print(
  4651                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4652                 os::Linux::get_our_sigflags(sig));
  4655   st->cr();
  4659 #define DO_SIGNAL_CHECK(sig) \
  4660   if (!sigismember(&check_signal_done, sig)) \
  4661     os::Linux::check_signal_handler(sig)
  4663 // This method is a periodic task to check for misbehaving JNI applications
  4664 // under CheckJNI, we can add any periodic checks here
  4666 void os::run_periodic_checks() {
  4668   if (check_signals == false) return;
  4670   // SEGV and BUS if overridden could potentially prevent
  4671   // generation of hs*.log in the event of a crash, debugging
  4672   // such a case can be very challenging, so we absolutely
  4673   // check the following for a good measure:
  4674   DO_SIGNAL_CHECK(SIGSEGV);
  4675   DO_SIGNAL_CHECK(SIGILL);
  4676   DO_SIGNAL_CHECK(SIGFPE);
  4677   DO_SIGNAL_CHECK(SIGBUS);
  4678   DO_SIGNAL_CHECK(SIGPIPE);
  4679   DO_SIGNAL_CHECK(SIGXFSZ);
  4680 #if defined(PPC64)
  4681   DO_SIGNAL_CHECK(SIGTRAP);
  4682 #endif
  4684   // ReduceSignalUsage allows the user to override these handlers
  4685   // see comments at the very top and jvm_solaris.h
  4686   if (!ReduceSignalUsage) {
  4687     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4688     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4689     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4690     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4693   DO_SIGNAL_CHECK(SR_signum);
  4694   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4697 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4699 static os_sigaction_t os_sigaction = NULL;
  4701 void os::Linux::check_signal_handler(int sig) {
  4702   char buf[O_BUFLEN];
  4703   address jvmHandler = NULL;
  4706   struct sigaction act;
  4707   if (os_sigaction == NULL) {
  4708     // only trust the default sigaction, in case it has been interposed
  4709     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4710     if (os_sigaction == NULL) return;
  4713   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4716   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4718   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4719     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4720     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4723   switch(sig) {
  4724   case SIGSEGV:
  4725   case SIGBUS:
  4726   case SIGFPE:
  4727   case SIGPIPE:
  4728   case SIGILL:
  4729   case SIGXFSZ:
  4730     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4731     break;
  4733   case SHUTDOWN1_SIGNAL:
  4734   case SHUTDOWN2_SIGNAL:
  4735   case SHUTDOWN3_SIGNAL:
  4736   case BREAK_SIGNAL:
  4737     jvmHandler = (address)user_handler();
  4738     break;
  4740   case INTERRUPT_SIGNAL:
  4741     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4742     break;
  4744   default:
  4745     if (sig == SR_signum) {
  4746       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4747     } else {
  4748       return;
  4750     break;
  4753   if (thisHandler != jvmHandler) {
  4754     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4755     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4756     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4757     // No need to check this sig any longer
  4758     sigaddset(&check_signal_done, sig);
  4759     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4760     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4761       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4762                     exception_name(sig, buf, O_BUFLEN));
  4764   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4765     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4766     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4767     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4768     // No need to check this sig any longer
  4769     sigaddset(&check_signal_done, sig);
  4772   // Dump all the signal
  4773   if (sigismember(&check_signal_done, sig)) {
  4774     print_signal_handlers(tty, buf, O_BUFLEN);
  4778 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4780 extern bool signal_name(int signo, char* buf, size_t len);
  4782 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4783   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4784     // signal
  4785     if (!signal_name(exception_code, buf, size)) {
  4786       jio_snprintf(buf, size, "SIG%d", exception_code);
  4788     return buf;
  4789   } else {
  4790     return NULL;
  4794 // this is called _before_ the most of global arguments have been parsed
  4795 void os::init(void) {
  4796   char dummy;   /* used to get a guess on initial stack address */
  4797 //  first_hrtime = gethrtime();
  4799   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4800   // is different than the pid of the java launcher thread.
  4801   // So, on Linux, the launcher thread pid is passed to the VM
  4802   // via the sun.java.launcher.pid property.
  4803   // Use this property instead of getpid() if it was correctly passed.
  4804   // See bug 6351349.
  4805   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4807   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4809   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4811   init_random(1234567);
  4813   ThreadCritical::initialize();
  4815   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4816   if (Linux::page_size() == -1) {
  4817     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4818                   strerror(errno)));
  4820   init_page_sizes((size_t) Linux::page_size());
  4822   Linux::initialize_system_info();
  4824   // main_thread points to the aboriginal thread
  4825   Linux::_main_thread = pthread_self();
  4827   Linux::clock_init();
  4828   initial_time_count = javaTimeNanos();
  4830   // pthread_condattr initialization for monotonic clock
  4831   int status;
  4832   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4833   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4834     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4836   // Only set the clock if CLOCK_MONOTONIC is available
  4837   if (Linux::supports_monotonic_clock()) {
  4838     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4839       if (status == EINVAL) {
  4840         warning("Unable to use monotonic clock with relative timed-waits" \
  4841                 " - changes to the time-of-day clock may have adverse affects");
  4842       } else {
  4843         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4847   // else it defaults to CLOCK_REALTIME
  4849   pthread_mutex_init(&dl_mutex, NULL);
  4851   // If the pagesize of the VM is greater than 8K determine the appropriate
  4852   // number of initial guard pages.  The user can change this with the
  4853   // command line arguments, if needed.
  4854   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4855     StackYellowPages = 1;
  4856     StackRedPages = 1;
  4857     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4861 // To install functions for atexit system call
  4862 extern "C" {
  4863   static void perfMemory_exit_helper() {
  4864     perfMemory_exit();
  4868 // this is called _after_ the global arguments have been parsed
  4869 jint os::init_2(void)
  4871   Linux::fast_thread_clock_init();
  4873   // Allocate a single page and mark it as readable for safepoint polling
  4874   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4875   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4877   os::set_polling_page( polling_page );
  4879 #ifndef PRODUCT
  4880   if(Verbose && PrintMiscellaneous)
  4881     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4882 #endif
  4884   if (!UseMembar) {
  4885     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4886     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4887     os::set_memory_serialize_page( mem_serialize_page );
  4889 #ifndef PRODUCT
  4890     if(Verbose && PrintMiscellaneous)
  4891       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4892 #endif
  4895   // initialize suspend/resume support - must do this before signal_sets_init()
  4896   if (SR_initialize() != 0) {
  4897     perror("SR_initialize failed");
  4898     return JNI_ERR;
  4901   Linux::signal_sets_init();
  4902   Linux::install_signal_handlers();
  4904   // Check minimum allowable stack size for thread creation and to initialize
  4905   // the java system classes, including StackOverflowError - depends on page
  4906   // size.  Add a page for compiler2 recursion in main thread.
  4907   // Add in 2*BytesPerWord times page size to account for VM stack during
  4908   // class initialization depending on 32 or 64 bit VM.
  4909   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4910             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4911                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4913   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4914   if (threadStackSizeInBytes != 0 &&
  4915       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4916         tty->print_cr("\nThe stack size specified is too small, "
  4917                       "Specify at least %dk",
  4918                       os::Linux::min_stack_allowed/ K);
  4919         return JNI_ERR;
  4922   // Make the stack size a multiple of the page size so that
  4923   // the yellow/red zones can be guarded.
  4924   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4925         vm_page_size()));
  4927   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4929 #if defined(IA32)
  4930   workaround_expand_exec_shield_cs_limit();
  4931 #endif
  4933   Linux::libpthread_init();
  4934   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4935      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4936           Linux::glibc_version(), Linux::libpthread_version(),
  4937           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4940   if (UseNUMA) {
  4941     if (!Linux::libnuma_init()) {
  4942       UseNUMA = false;
  4943     } else {
  4944       if ((Linux::numa_max_node() < 1)) {
  4945         // There's only one node(they start from 0), disable NUMA.
  4946         UseNUMA = false;
  4949     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4950     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4951     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4952     // disable adaptive resizing.
  4953     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4954       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4955         UseNUMA = false;
  4956       } else {
  4957         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4958             FLAG_IS_DEFAULT(UseSHM) &&
  4959             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4960           UseLargePages = false;
  4961         } else {
  4962           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4963           UseAdaptiveSizePolicy = false;
  4964           UseAdaptiveNUMAChunkSizing = false;
  4968     if (!UseNUMA && ForceNUMA) {
  4969       UseNUMA = true;
  4973   if (MaxFDLimit) {
  4974     // set the number of file descriptors to max. print out error
  4975     // if getrlimit/setrlimit fails but continue regardless.
  4976     struct rlimit nbr_files;
  4977     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4978     if (status != 0) {
  4979       if (PrintMiscellaneous && (Verbose || WizardMode))
  4980         perror("os::init_2 getrlimit failed");
  4981     } else {
  4982       nbr_files.rlim_cur = nbr_files.rlim_max;
  4983       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4984       if (status != 0) {
  4985         if (PrintMiscellaneous && (Verbose || WizardMode))
  4986           perror("os::init_2 setrlimit failed");
  4991   // Initialize lock used to serialize thread creation (see os::create_thread)
  4992   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4994   // at-exit methods are called in the reverse order of their registration.
  4995   // atexit functions are called on return from main or as a result of a
  4996   // call to exit(3C). There can be only 32 of these functions registered
  4997   // and atexit() does not set errno.
  4999   if (PerfAllowAtExitRegistration) {
  5000     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5001     // atexit functions can be delayed until process exit time, which
  5002     // can be problematic for embedded VM situations. Embedded VMs should
  5003     // call DestroyJavaVM() to assure that VM resources are released.
  5005     // note: perfMemory_exit_helper atexit function may be removed in
  5006     // the future if the appropriate cleanup code can be added to the
  5007     // VM_Exit VMOperation's doit method.
  5008     if (atexit(perfMemory_exit_helper) != 0) {
  5009       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5013   // initialize thread priority policy
  5014   prio_init();
  5016   return JNI_OK;
  5019 // Mark the polling page as unreadable
  5020 void os::make_polling_page_unreadable(void) {
  5021   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5022     fatal("Could not disable polling page");
  5023 };
  5025 // Mark the polling page as readable
  5026 void os::make_polling_page_readable(void) {
  5027   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5028     fatal("Could not enable polling page");
  5030 };
  5032 static int os_cpu_count(const cpu_set_t* cpus) {
  5033   int count = 0;
  5034   // only look up to the number of configured processors
  5035   for (int i = 0; i < os::processor_count(); i++) {
  5036     if (CPU_ISSET(i, cpus)) {
  5037       count++;
  5040   return count;
  5043 // Get the current number of available processors for this process.
  5044 // This value can change at any time during a process's lifetime.
  5045 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5046 // If anything goes wrong we fallback to returning the number of online
  5047 // processors - which can be greater than the number available to the process.
  5048 int os::active_processor_count() {
  5049   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5050   int cpus_size = sizeof(cpu_set_t);
  5051   int cpu_count = 0;
  5053   // pid 0 means the current thread - which we have to assume represents the process
  5054   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5055     cpu_count = os_cpu_count(&cpus);
  5056     if (PrintActiveCpus) {
  5057       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5060   else {
  5061     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5062     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5063             "which may exceed available processors", strerror(errno), cpu_count);
  5066   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
  5067   return cpu_count;
  5070 void os::set_native_thread_name(const char *name) {
  5071   // Not yet implemented.
  5072   return;
  5075 bool os::distribute_processes(uint length, uint* distribution) {
  5076   // Not yet implemented.
  5077   return false;
  5080 bool os::bind_to_processor(uint processor_id) {
  5081   // Not yet implemented.
  5082   return false;
  5085 ///
  5087 void os::SuspendedThreadTask::internal_do_task() {
  5088   if (do_suspend(_thread->osthread())) {
  5089     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5090     do_task(context);
  5091     do_resume(_thread->osthread());
  5095 class PcFetcher : public os::SuspendedThreadTask {
  5096 public:
  5097   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5098   ExtendedPC result();
  5099 protected:
  5100   void do_task(const os::SuspendedThreadTaskContext& context);
  5101 private:
  5102   ExtendedPC _epc;
  5103 };
  5105 ExtendedPC PcFetcher::result() {
  5106   guarantee(is_done(), "task is not done yet.");
  5107   return _epc;
  5110 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5111   Thread* thread = context.thread();
  5112   OSThread* osthread = thread->osthread();
  5113   if (osthread->ucontext() != NULL) {
  5114     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5115   } else {
  5116     // NULL context is unexpected, double-check this is the VMThread
  5117     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5121 // Suspends the target using the signal mechanism and then grabs the PC before
  5122 // resuming the target. Used by the flat-profiler only
  5123 ExtendedPC os::get_thread_pc(Thread* thread) {
  5124   // Make sure that it is called by the watcher for the VMThread
  5125   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5126   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5128   PcFetcher fetcher(thread);
  5129   fetcher.run();
  5130   return fetcher.result();
  5133 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5135    if (is_NPTL()) {
  5136       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5137    } else {
  5138       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5139       // word back to default 64bit precision if condvar is signaled. Java
  5140       // wants 53bit precision.  Save and restore current value.
  5141       int fpu = get_fpu_control_word();
  5142       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5143       set_fpu_control_word(fpu);
  5144       return status;
  5148 ////////////////////////////////////////////////////////////////////////////////
  5149 // debug support
  5151 bool os::find(address addr, outputStream* st) {
  5152   Dl_info dlinfo;
  5153   memset(&dlinfo, 0, sizeof(dlinfo));
  5154   if (dladdr(addr, &dlinfo) != 0) {
  5155     st->print(PTR_FORMAT ": ", addr);
  5156     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5157       st->print("%s+%#x", dlinfo.dli_sname,
  5158                  addr - (intptr_t)dlinfo.dli_saddr);
  5159     } else if (dlinfo.dli_fbase != NULL) {
  5160       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5161     } else {
  5162       st->print("<absolute address>");
  5164     if (dlinfo.dli_fname != NULL) {
  5165       st->print(" in %s", dlinfo.dli_fname);
  5167     if (dlinfo.dli_fbase != NULL) {
  5168       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5170     st->cr();
  5172     if (Verbose) {
  5173       // decode some bytes around the PC
  5174       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5175       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5176       address       lowest = (address) dlinfo.dli_sname;
  5177       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5178       if (begin < lowest)  begin = lowest;
  5179       Dl_info dlinfo2;
  5180       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5181           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5182         end = (address) dlinfo2.dli_saddr;
  5183       Disassembler::decode(begin, end, st);
  5185     return true;
  5187   return false;
  5190 ////////////////////////////////////////////////////////////////////////////////
  5191 // misc
  5193 // This does not do anything on Linux. This is basically a hook for being
  5194 // able to use structured exception handling (thread-local exception filters)
  5195 // on, e.g., Win32.
  5196 void
  5197 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5198                          JavaCallArguments* args, Thread* thread) {
  5199   f(value, method, args, thread);
  5202 void os::print_statistics() {
  5205 int os::message_box(const char* title, const char* message) {
  5206   int i;
  5207   fdStream err(defaultStream::error_fd());
  5208   for (i = 0; i < 78; i++) err.print_raw("=");
  5209   err.cr();
  5210   err.print_raw_cr(title);
  5211   for (i = 0; i < 78; i++) err.print_raw("-");
  5212   err.cr();
  5213   err.print_raw_cr(message);
  5214   for (i = 0; i < 78; i++) err.print_raw("=");
  5215   err.cr();
  5217   char buf[16];
  5218   // Prevent process from exiting upon "read error" without consuming all CPU
  5219   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5221   return buf[0] == 'y' || buf[0] == 'Y';
  5224 int os::stat(const char *path, struct stat *sbuf) {
  5225   char pathbuf[MAX_PATH];
  5226   if (strlen(path) > MAX_PATH - 1) {
  5227     errno = ENAMETOOLONG;
  5228     return -1;
  5230   os::native_path(strcpy(pathbuf, path));
  5231   return ::stat(pathbuf, sbuf);
  5234 bool os::check_heap(bool force) {
  5235   return true;
  5238 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5239   return ::vsnprintf(buf, count, format, args);
  5242 // Is a (classpath) directory empty?
  5243 bool os::dir_is_empty(const char* path) {
  5244   DIR *dir = NULL;
  5245   struct dirent *ptr;
  5247   dir = opendir(path);
  5248   if (dir == NULL) return true;
  5250   /* Scan the directory */
  5251   bool result = true;
  5252   char buf[sizeof(struct dirent) + MAX_PATH];
  5253   while (result && (ptr = ::readdir(dir)) != NULL) {
  5254     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5255       result = false;
  5258   closedir(dir);
  5259   return result;
  5262 // This code originates from JDK's sysOpen and open64_w
  5263 // from src/solaris/hpi/src/system_md.c
  5265 #ifndef O_DELETE
  5266 #define O_DELETE 0x10000
  5267 #endif
  5269 // Open a file. Unlink the file immediately after open returns
  5270 // if the specified oflag has the O_DELETE flag set.
  5271 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5273 int os::open(const char *path, int oflag, int mode) {
  5275   if (strlen(path) > MAX_PATH - 1) {
  5276     errno = ENAMETOOLONG;
  5277     return -1;
  5279   int fd;
  5280   int o_delete = (oflag & O_DELETE);
  5281   oflag = oflag & ~O_DELETE;
  5283   fd = ::open64(path, oflag, mode);
  5284   if (fd == -1) return -1;
  5286   //If the open succeeded, the file might still be a directory
  5288     struct stat64 buf64;
  5289     int ret = ::fstat64(fd, &buf64);
  5290     int st_mode = buf64.st_mode;
  5292     if (ret != -1) {
  5293       if ((st_mode & S_IFMT) == S_IFDIR) {
  5294         errno = EISDIR;
  5295         ::close(fd);
  5296         return -1;
  5298     } else {
  5299       ::close(fd);
  5300       return -1;
  5304     /*
  5305      * All file descriptors that are opened in the JVM and not
  5306      * specifically destined for a subprocess should have the
  5307      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5308      * party native code might fork and exec without closing all
  5309      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5310      * UNIXProcess.c), and this in turn might:
  5312      * - cause end-of-file to fail to be detected on some file
  5313      *   descriptors, resulting in mysterious hangs, or
  5315      * - might cause an fopen in the subprocess to fail on a system
  5316      *   suffering from bug 1085341.
  5318      * (Yes, the default setting of the close-on-exec flag is a Unix
  5319      * design flaw)
  5321      * See:
  5322      * 1085341: 32-bit stdio routines should support file descriptors >255
  5323      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5324      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5325      */
  5326 #ifdef FD_CLOEXEC
  5328         int flags = ::fcntl(fd, F_GETFD);
  5329         if (flags != -1)
  5330             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5332 #endif
  5334   if (o_delete != 0) {
  5335     ::unlink(path);
  5337   return fd;
  5341 // create binary file, rewriting existing file if required
  5342 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5343   int oflags = O_WRONLY | O_CREAT;
  5344   if (!rewrite_existing) {
  5345     oflags |= O_EXCL;
  5347   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5350 // return current position of file pointer
  5351 jlong os::current_file_offset(int fd) {
  5352   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5355 // move file pointer to the specified offset
  5356 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5357   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5360 // This code originates from JDK's sysAvailable
  5361 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5363 int os::available(int fd, jlong *bytes) {
  5364   jlong cur, end;
  5365   int mode;
  5366   struct stat64 buf64;
  5368   if (::fstat64(fd, &buf64) >= 0) {
  5369     mode = buf64.st_mode;
  5370     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5371       /*
  5372       * XXX: is the following call interruptible? If so, this might
  5373       * need to go through the INTERRUPT_IO() wrapper as for other
  5374       * blocking, interruptible calls in this file.
  5375       */
  5376       int n;
  5377       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5378         *bytes = n;
  5379         return 1;
  5383   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5384     return 0;
  5385   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5386     return 0;
  5387   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5388     return 0;
  5390   *bytes = end - cur;
  5391   return 1;
  5394 int os::socket_available(int fd, jint *pbytes) {
  5395   // Linux doc says EINTR not returned, unlike Solaris
  5396   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5398   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5399   // is expected to return 0 on failure and 1 on success to the jdk.
  5400   return (ret < 0) ? 0 : 1;
  5403 // Map a block of memory.
  5404 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5405                      char *addr, size_t bytes, bool read_only,
  5406                      bool allow_exec) {
  5407   int prot;
  5408   int flags = MAP_PRIVATE;
  5410   if (read_only) {
  5411     prot = PROT_READ;
  5412   } else {
  5413     prot = PROT_READ | PROT_WRITE;
  5416   if (allow_exec) {
  5417     prot |= PROT_EXEC;
  5420   if (addr != NULL) {
  5421     flags |= MAP_FIXED;
  5424   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5425                                      fd, file_offset);
  5426   if (mapped_address == MAP_FAILED) {
  5427     return NULL;
  5429   return mapped_address;
  5433 // Remap a block of memory.
  5434 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5435                        char *addr, size_t bytes, bool read_only,
  5436                        bool allow_exec) {
  5437   // same as map_memory() on this OS
  5438   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5439                         allow_exec);
  5443 // Unmap a block of memory.
  5444 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5445   return munmap(addr, bytes) == 0;
  5448 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5450 static clockid_t thread_cpu_clockid(Thread* thread) {
  5451   pthread_t tid = thread->osthread()->pthread_id();
  5452   clockid_t clockid;
  5454   // Get thread clockid
  5455   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5456   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5457   return clockid;
  5460 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5461 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5462 // of a thread.
  5463 //
  5464 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5465 // the fast estimate available on the platform.
  5467 jlong os::current_thread_cpu_time() {
  5468   if (os::Linux::supports_fast_thread_cpu_time()) {
  5469     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5470   } else {
  5471     // return user + sys since the cost is the same
  5472     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5476 jlong os::thread_cpu_time(Thread* thread) {
  5477   // consistent with what current_thread_cpu_time() returns
  5478   if (os::Linux::supports_fast_thread_cpu_time()) {
  5479     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5480   } else {
  5481     return slow_thread_cpu_time(thread, true /* user + sys */);
  5485 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5486   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5487     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5488   } else {
  5489     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5493 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5494   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5495     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5496   } else {
  5497     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5501 //
  5502 //  -1 on error.
  5503 //
  5505 PRAGMA_DIAG_PUSH
  5506 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5507 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5508   static bool proc_task_unchecked = true;
  5509   static const char *proc_stat_path = "/proc/%d/stat";
  5510   pid_t  tid = thread->osthread()->thread_id();
  5511   char *s;
  5512   char stat[2048];
  5513   int statlen;
  5514   char proc_name[64];
  5515   int count;
  5516   long sys_time, user_time;
  5517   char cdummy;
  5518   int idummy;
  5519   long ldummy;
  5520   FILE *fp;
  5522   // The /proc/<tid>/stat aggregates per-process usage on
  5523   // new Linux kernels 2.6+ where NPTL is supported.
  5524   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5525   // See bug 6328462.
  5526   // There possibly can be cases where there is no directory
  5527   // /proc/self/task, so we check its availability.
  5528   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5529     // This is executed only once
  5530     proc_task_unchecked = false;
  5531     fp = fopen("/proc/self/task", "r");
  5532     if (fp != NULL) {
  5533       proc_stat_path = "/proc/self/task/%d/stat";
  5534       fclose(fp);
  5538   sprintf(proc_name, proc_stat_path, tid);
  5539   fp = fopen(proc_name, "r");
  5540   if ( fp == NULL ) return -1;
  5541   statlen = fread(stat, 1, 2047, fp);
  5542   stat[statlen] = '\0';
  5543   fclose(fp);
  5545   // Skip pid and the command string. Note that we could be dealing with
  5546   // weird command names, e.g. user could decide to rename java launcher
  5547   // to "java 1.4.2 :)", then the stat file would look like
  5548   //                1234 (java 1.4.2 :)) R ... ...
  5549   // We don't really need to know the command string, just find the last
  5550   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5551   s = strrchr(stat, ')');
  5552   if (s == NULL ) return -1;
  5554   // Skip blank chars
  5555   do s++; while (isspace(*s));
  5557   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5558                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5559                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5560                  &user_time, &sys_time);
  5561   if ( count != 13 ) return -1;
  5562   if (user_sys_cpu_time) {
  5563     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5564   } else {
  5565     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5568 PRAGMA_DIAG_POP
  5570 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5571   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5572   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5573   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5574   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5577 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5578   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5579   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5580   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5581   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5584 bool os::is_thread_cpu_time_supported() {
  5585   return true;
  5588 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5589 // Linux doesn't yet have a (official) notion of processor sets,
  5590 // so just return the system wide load average.
  5591 int os::loadavg(double loadavg[], int nelem) {
  5592   return ::getloadavg(loadavg, nelem);
  5595 void os::pause() {
  5596   char filename[MAX_PATH];
  5597   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5598     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5599   } else {
  5600     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5603   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5604   if (fd != -1) {
  5605     struct stat buf;
  5606     ::close(fd);
  5607     while (::stat(filename, &buf) == 0) {
  5608       (void)::poll(NULL, 0, 100);
  5610   } else {
  5611     jio_fprintf(stderr,
  5612       "Could not open pause file '%s', continuing immediately.\n", filename);
  5617 // Refer to the comments in os_solaris.cpp park-unpark.
  5618 //
  5619 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5620 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5621 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5622 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5623 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5624 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5625 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5626 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5627 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5628 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5629 // of libpthread avoids the problem, but isn't practical.
  5630 //
  5631 // Possible remedies:
  5632 //
  5633 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5634 //      This is palliative and probabilistic, however.  If the thread is preempted
  5635 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5636 //      than the minimum period may have passed, and the abstime may be stale (in the
  5637 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5638 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5639 //
  5640 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5641 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5642 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5643 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5644 //      thread.
  5645 //
  5646 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5647 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5648 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5649 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5650 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5651 //      timers in a graceful fashion.
  5652 //
  5653 // 4.   When the abstime value is in the past it appears that control returns
  5654 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5655 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5656 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5657 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5658 //      It may be possible to avoid reinitialization by checking the return
  5659 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5660 //      condvar we must establish the invariant that cond_signal() is only called
  5661 //      within critical sections protected by the adjunct mutex.  This prevents
  5662 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5663 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5664 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5665 //
  5666 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5667 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5668 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5669 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5670 //
  5671 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5672 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5673 // and only enabling the work-around for vulnerable environments.
  5675 // utility to compute the abstime argument to timedwait:
  5676 // millis is the relative timeout time
  5677 // abstime will be the absolute timeout time
  5678 // TODO: replace compute_abstime() with unpackTime()
  5680 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5681   if (millis < 0)  millis = 0;
  5683   jlong seconds = millis / 1000;
  5684   millis %= 1000;
  5685   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5686     seconds = 50000000;
  5689   if (os::Linux::supports_monotonic_clock()) {
  5690     struct timespec now;
  5691     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5692     assert_status(status == 0, status, "clock_gettime");
  5693     abstime->tv_sec = now.tv_sec  + seconds;
  5694     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5695     if (nanos >= NANOSECS_PER_SEC) {
  5696       abstime->tv_sec += 1;
  5697       nanos -= NANOSECS_PER_SEC;
  5699     abstime->tv_nsec = nanos;
  5700   } else {
  5701     struct timeval now;
  5702     int status = gettimeofday(&now, NULL);
  5703     assert(status == 0, "gettimeofday");
  5704     abstime->tv_sec = now.tv_sec  + seconds;
  5705     long usec = now.tv_usec + millis * 1000;
  5706     if (usec >= 1000000) {
  5707       abstime->tv_sec += 1;
  5708       usec -= 1000000;
  5710     abstime->tv_nsec = usec * 1000;
  5712   return abstime;
  5716 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5717 // Conceptually TryPark() should be equivalent to park(0).
  5719 int os::PlatformEvent::TryPark() {
  5720   for (;;) {
  5721     const int v = _Event ;
  5722     guarantee ((v == 0) || (v == 1), "invariant") ;
  5723     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5727 void os::PlatformEvent::park() {       // AKA "down()"
  5728   // Invariant: Only the thread associated with the Event/PlatformEvent
  5729   // may call park().
  5730   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5731   int v ;
  5732   for (;;) {
  5733       v = _Event ;
  5734       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5736   guarantee (v >= 0, "invariant") ;
  5737   if (v == 0) {
  5738      // Do this the hard way by blocking ...
  5739      int status = pthread_mutex_lock(_mutex);
  5740      assert_status(status == 0, status, "mutex_lock");
  5741      guarantee (_nParked == 0, "invariant") ;
  5742      ++ _nParked ;
  5743      while (_Event < 0) {
  5744         status = pthread_cond_wait(_cond, _mutex);
  5745         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5746         // Treat this the same as if the wait was interrupted
  5747         if (status == ETIME) { status = EINTR; }
  5748         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5750      -- _nParked ;
  5752     _Event = 0 ;
  5753      status = pthread_mutex_unlock(_mutex);
  5754      assert_status(status == 0, status, "mutex_unlock");
  5755     // Paranoia to ensure our locked and lock-free paths interact
  5756     // correctly with each other.
  5757     OrderAccess::fence();
  5759   guarantee (_Event >= 0, "invariant") ;
  5762 int os::PlatformEvent::park(jlong millis) {
  5763   guarantee (_nParked == 0, "invariant") ;
  5765   int v ;
  5766   for (;;) {
  5767       v = _Event ;
  5768       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5770   guarantee (v >= 0, "invariant") ;
  5771   if (v != 0) return OS_OK ;
  5773   // We do this the hard way, by blocking the thread.
  5774   // Consider enforcing a minimum timeout value.
  5775   struct timespec abst;
  5776   compute_abstime(&abst, millis);
  5778   int ret = OS_TIMEOUT;
  5779   int status = pthread_mutex_lock(_mutex);
  5780   assert_status(status == 0, status, "mutex_lock");
  5781   guarantee (_nParked == 0, "invariant") ;
  5782   ++_nParked ;
  5784   // Object.wait(timo) will return because of
  5785   // (a) notification
  5786   // (b) timeout
  5787   // (c) thread.interrupt
  5788   //
  5789   // Thread.interrupt and object.notify{All} both call Event::set.
  5790   // That is, we treat thread.interrupt as a special case of notification.
  5791   // The underlying Solaris implementation, cond_timedwait, admits
  5792   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5793   // JVM from making those visible to Java code.  As such, we must
  5794   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5795   //
  5796   // TODO: properly differentiate simultaneous notify+interrupt.
  5797   // In that case, we should propagate the notify to another waiter.
  5799   while (_Event < 0) {
  5800     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5801     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5802       pthread_cond_destroy (_cond);
  5803       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5805     assert_status(status == 0 || status == EINTR ||
  5806                   status == ETIME || status == ETIMEDOUT,
  5807                   status, "cond_timedwait");
  5808     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5809     if (status == ETIME || status == ETIMEDOUT) break ;
  5810     // We consume and ignore EINTR and spurious wakeups.
  5812   --_nParked ;
  5813   if (_Event >= 0) {
  5814      ret = OS_OK;
  5816   _Event = 0 ;
  5817   status = pthread_mutex_unlock(_mutex);
  5818   assert_status(status == 0, status, "mutex_unlock");
  5819   assert (_nParked == 0, "invariant") ;
  5820   // Paranoia to ensure our locked and lock-free paths interact
  5821   // correctly with each other.
  5822   OrderAccess::fence();
  5823   return ret;
  5826 void os::PlatformEvent::unpark() {
  5827   // Transitions for _Event:
  5828   //    0 :=> 1
  5829   //    1 :=> 1
  5830   //   -1 :=> either 0 or 1; must signal target thread
  5831   //          That is, we can safely transition _Event from -1 to either
  5832   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5833   //          unpark() calls.
  5834   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5835   //
  5836   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5837   // that it will take two back-to-back park() calls for the owning
  5838   // thread to block. This has the benefit of forcing a spurious return
  5839   // from the first park() call after an unpark() call which will help
  5840   // shake out uses of park() and unpark() without condition variables.
  5842   if (Atomic::xchg(1, &_Event) >= 0) return;
  5844   // Wait for the thread associated with the event to vacate
  5845   int status = pthread_mutex_lock(_mutex);
  5846   assert_status(status == 0, status, "mutex_lock");
  5847   int AnyWaiters = _nParked;
  5848   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5849   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5850     AnyWaiters = 0;
  5851     pthread_cond_signal(_cond);
  5853   status = pthread_mutex_unlock(_mutex);
  5854   assert_status(status == 0, status, "mutex_unlock");
  5855   if (AnyWaiters != 0) {
  5856     status = pthread_cond_signal(_cond);
  5857     assert_status(status == 0, status, "cond_signal");
  5860   // Note that we signal() _after dropping the lock for "immortal" Events.
  5861   // This is safe and avoids a common class of  futile wakeups.  In rare
  5862   // circumstances this can cause a thread to return prematurely from
  5863   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5864   // simply re-test the condition and re-park itself.
  5868 // JSR166
  5869 // -------------------------------------------------------
  5871 /*
  5872  * The solaris and linux implementations of park/unpark are fairly
  5873  * conservative for now, but can be improved. They currently use a
  5874  * mutex/condvar pair, plus a a count.
  5875  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5876  * sets count to 1 and signals condvar.  Only one thread ever waits
  5877  * on the condvar. Contention seen when trying to park implies that someone
  5878  * is unparking you, so don't wait. And spurious returns are fine, so there
  5879  * is no need to track notifications.
  5880  */
  5882 /*
  5883  * This code is common to linux and solaris and will be moved to a
  5884  * common place in dolphin.
  5886  * The passed in time value is either a relative time in nanoseconds
  5887  * or an absolute time in milliseconds. Either way it has to be unpacked
  5888  * into suitable seconds and nanoseconds components and stored in the
  5889  * given timespec structure.
  5890  * Given time is a 64-bit value and the time_t used in the timespec is only
  5891  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5892  * overflow if times way in the future are given. Further on Solaris versions
  5893  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5894  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5895  * As it will be 28 years before "now + 100000000" will overflow we can
  5896  * ignore overflow and just impose a hard-limit on seconds using the value
  5897  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5898  * years from "now".
  5899  */
  5901 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5902   assert (time > 0, "convertTime");
  5903   time_t max_secs = 0;
  5905   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5906     struct timeval now;
  5907     int status = gettimeofday(&now, NULL);
  5908     assert(status == 0, "gettimeofday");
  5910     max_secs = now.tv_sec + MAX_SECS;
  5912     if (isAbsolute) {
  5913       jlong secs = time / 1000;
  5914       if (secs > max_secs) {
  5915         absTime->tv_sec = max_secs;
  5916       } else {
  5917         absTime->tv_sec = secs;
  5919       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5920     } else {
  5921       jlong secs = time / NANOSECS_PER_SEC;
  5922       if (secs >= MAX_SECS) {
  5923         absTime->tv_sec = max_secs;
  5924         absTime->tv_nsec = 0;
  5925       } else {
  5926         absTime->tv_sec = now.tv_sec + secs;
  5927         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5928         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5929           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5930           ++absTime->tv_sec; // note: this must be <= max_secs
  5934   } else {
  5935     // must be relative using monotonic clock
  5936     struct timespec now;
  5937     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5938     assert_status(status == 0, status, "clock_gettime");
  5939     max_secs = now.tv_sec + MAX_SECS;
  5940     jlong secs = time / NANOSECS_PER_SEC;
  5941     if (secs >= MAX_SECS) {
  5942       absTime->tv_sec = max_secs;
  5943       absTime->tv_nsec = 0;
  5944     } else {
  5945       absTime->tv_sec = now.tv_sec + secs;
  5946       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5947       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5948         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5949         ++absTime->tv_sec; // note: this must be <= max_secs
  5953   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5954   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5955   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5956   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5959 void Parker::park(bool isAbsolute, jlong time) {
  5960   // Ideally we'd do something useful while spinning, such
  5961   // as calling unpackTime().
  5963   // Optional fast-path check:
  5964   // Return immediately if a permit is available.
  5965   // We depend on Atomic::xchg() having full barrier semantics
  5966   // since we are doing a lock-free update to _counter.
  5967   if (Atomic::xchg(0, &_counter) > 0) return;
  5969   Thread* thread = Thread::current();
  5970   assert(thread->is_Java_thread(), "Must be JavaThread");
  5971   JavaThread *jt = (JavaThread *)thread;
  5973   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5974   // Check interrupt before trying to wait
  5975   if (Thread::is_interrupted(thread, false)) {
  5976     return;
  5979   // Next, demultiplex/decode time arguments
  5980   timespec absTime;
  5981   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5982     return;
  5984   if (time > 0) {
  5985     unpackTime(&absTime, isAbsolute, time);
  5989   // Enter safepoint region
  5990   // Beware of deadlocks such as 6317397.
  5991   // The per-thread Parker:: mutex is a classic leaf-lock.
  5992   // In particular a thread must never block on the Threads_lock while
  5993   // holding the Parker:: mutex.  If safepoints are pending both the
  5994   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5995   ThreadBlockInVM tbivm(jt);
  5997   // Don't wait if cannot get lock since interference arises from
  5998   // unblocking.  Also. check interrupt before trying wait
  5999   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6000     return;
  6003   int status ;
  6004   if (_counter > 0)  { // no wait needed
  6005     _counter = 0;
  6006     status = pthread_mutex_unlock(_mutex);
  6007     assert (status == 0, "invariant") ;
  6008     // Paranoia to ensure our locked and lock-free paths interact
  6009     // correctly with each other and Java-level accesses.
  6010     OrderAccess::fence();
  6011     return;
  6014 #ifdef ASSERT
  6015   // Don't catch signals while blocked; let the running threads have the signals.
  6016   // (This allows a debugger to break into the running thread.)
  6017   sigset_t oldsigs;
  6018   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6019   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6020 #endif
  6022   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6023   jt->set_suspend_equivalent();
  6024   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6026   assert(_cur_index == -1, "invariant");
  6027   if (time == 0) {
  6028     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6029     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6030   } else {
  6031     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6032     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6033     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6034       pthread_cond_destroy (&_cond[_cur_index]) ;
  6035       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6038   _cur_index = -1;
  6039   assert_status(status == 0 || status == EINTR ||
  6040                 status == ETIME || status == ETIMEDOUT,
  6041                 status, "cond_timedwait");
  6043 #ifdef ASSERT
  6044   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6045 #endif
  6047   _counter = 0 ;
  6048   status = pthread_mutex_unlock(_mutex) ;
  6049   assert_status(status == 0, status, "invariant") ;
  6050   // Paranoia to ensure our locked and lock-free paths interact
  6051   // correctly with each other and Java-level accesses.
  6052   OrderAccess::fence();
  6054   // If externally suspended while waiting, re-suspend
  6055   if (jt->handle_special_suspend_equivalent_condition()) {
  6056     jt->java_suspend_self();
  6060 void Parker::unpark() {
  6061   int s, status ;
  6062   status = pthread_mutex_lock(_mutex);
  6063   assert (status == 0, "invariant") ;
  6064   s = _counter;
  6065   _counter = 1;
  6066   if (s < 1) {
  6067     // thread might be parked
  6068     if (_cur_index != -1) {
  6069       // thread is definitely parked
  6070       if (WorkAroundNPTLTimedWaitHang) {
  6071         status = pthread_cond_signal (&_cond[_cur_index]);
  6072         assert (status == 0, "invariant");
  6073         status = pthread_mutex_unlock(_mutex);
  6074         assert (status == 0, "invariant");
  6075       } else {
  6076         // must capture correct index before unlocking
  6077         int index = _cur_index;
  6078         status = pthread_mutex_unlock(_mutex);
  6079         assert (status == 0, "invariant");
  6080         status = pthread_cond_signal (&_cond[index]);
  6081         assert (status == 0, "invariant");
  6083     } else {
  6084       pthread_mutex_unlock(_mutex);
  6085       assert (status == 0, "invariant") ;
  6087   } else {
  6088     pthread_mutex_unlock(_mutex);
  6089     assert (status == 0, "invariant") ;
  6094 extern char** environ;
  6096 // Run the specified command in a separate process. Return its exit value,
  6097 // or -1 on failure (e.g. can't fork a new process).
  6098 // Unlike system(), this function can be called from signal handler. It
  6099 // doesn't block SIGINT et al.
  6100 int os::fork_and_exec(char* cmd) {
  6101   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6103   pid_t pid = fork();
  6105   if (pid < 0) {
  6106     // fork failed
  6107     return -1;
  6109   } else if (pid == 0) {
  6110     // child process
  6112     execve("/bin/sh", (char* const*)argv, environ);
  6114     // execve failed
  6115     _exit(-1);
  6117   } else  {
  6118     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6119     // care about the actual exit code, for now.
  6121     int status;
  6123     // Wait for the child process to exit.  This returns immediately if
  6124     // the child has already exited. */
  6125     while (waitpid(pid, &status, 0) < 0) {
  6126         switch (errno) {
  6127         case ECHILD: return 0;
  6128         case EINTR: break;
  6129         default: return -1;
  6133     if (WIFEXITED(status)) {
  6134        // The child exited normally; get its exit code.
  6135        return WEXITSTATUS(status);
  6136     } else if (WIFSIGNALED(status)) {
  6137        // The child exited because of a signal
  6138        // The best value to return is 0x80 + signal number,
  6139        // because that is what all Unix shells do, and because
  6140        // it allows callers to distinguish between process exit and
  6141        // process death by signal.
  6142        return 0x80 + WTERMSIG(status);
  6143     } else {
  6144        // Unknown exit code; pass it through
  6145        return status;
  6150 // is_headless_jre()
  6151 //
  6152 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6153 // in order to report if we are running in a headless jre
  6154 //
  6155 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6156 // as libawt.so, and renamed libawt_xawt.so
  6157 //
  6158 bool os::is_headless_jre() {
  6159     struct stat statbuf;
  6160     char buf[MAXPATHLEN];
  6161     char libmawtpath[MAXPATHLEN];
  6162     const char *xawtstr  = "/xawt/libmawt.so";
  6163     const char *new_xawtstr = "/libawt_xawt.so";
  6164     char *p;
  6166     // Get path to libjvm.so
  6167     os::jvm_path(buf, sizeof(buf));
  6169     // Get rid of libjvm.so
  6170     p = strrchr(buf, '/');
  6171     if (p == NULL) return false;
  6172     else *p = '\0';
  6174     // Get rid of client or server
  6175     p = strrchr(buf, '/');
  6176     if (p == NULL) return false;
  6177     else *p = '\0';
  6179     // check xawt/libmawt.so
  6180     strcpy(libmawtpath, buf);
  6181     strcat(libmawtpath, xawtstr);
  6182     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6184     // check libawt_xawt.so
  6185     strcpy(libmawtpath, buf);
  6186     strcat(libmawtpath, new_xawtstr);
  6187     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6189     return true;
  6192 // Get the default path to the core file
  6193 // Returns the length of the string
  6194 int os::get_core_path(char* buffer, size_t bufferSize) {
  6195   const char* p = get_current_directory(buffer, bufferSize);
  6197   if (p == NULL) {
  6198     assert(p != NULL, "failed to get current directory");
  6199     return 0;
  6202   return strlen(buffer);
  6205 /////////////// Unit tests ///////////////
  6207 #ifndef PRODUCT
  6209 #define test_log(...) \
  6210   do {\
  6211     if (VerboseInternalVMTests) { \
  6212       tty->print_cr(__VA_ARGS__); \
  6213       tty->flush(); \
  6214     }\
  6215   } while (false)
  6217 class TestReserveMemorySpecial : AllStatic {
  6218  public:
  6219   static void small_page_write(void* addr, size_t size) {
  6220     size_t page_size = os::vm_page_size();
  6222     char* end = (char*)addr + size;
  6223     for (char* p = (char*)addr; p < end; p += page_size) {
  6224       *p = 1;
  6228   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6229     if (!UseHugeTLBFS) {
  6230       return;
  6233     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6235     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6237     if (addr != NULL) {
  6238       small_page_write(addr, size);
  6240       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6244   static void test_reserve_memory_special_huge_tlbfs_only() {
  6245     if (!UseHugeTLBFS) {
  6246       return;
  6249     size_t lp = os::large_page_size();
  6251     for (size_t size = lp; size <= lp * 10; size += lp) {
  6252       test_reserve_memory_special_huge_tlbfs_only(size);
  6256   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6257     size_t lp = os::large_page_size();
  6258     size_t ag = os::vm_allocation_granularity();
  6260     // sizes to test
  6261     const size_t sizes[] = {
  6262       lp, lp + ag, lp + lp / 2, lp * 2,
  6263       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6264       lp * 10, lp * 10 + lp / 2
  6265     };
  6266     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6268     // For each size/alignment combination, we test three scenarios:
  6269     // 1) with req_addr == NULL
  6270     // 2) with a non-null req_addr at which we expect to successfully allocate
  6271     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6272     //    expect the allocation to either fail or to ignore req_addr
  6274     // Pre-allocate two areas; they shall be as large as the largest allocation
  6275     //  and aligned to the largest alignment we will be testing.
  6276     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6277     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6278       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6279       -1, 0);
  6280     assert(mapping1 != MAP_FAILED, "should work");
  6282     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6283       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6284       -1, 0);
  6285     assert(mapping2 != MAP_FAILED, "should work");
  6287     // Unmap the first mapping, but leave the second mapping intact: the first
  6288     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6289     // mapping, still intact, as "bad" req_addr (case 3).
  6290     ::munmap(mapping1, mapping_size);
  6292     // Case 1
  6293     test_log("%s, req_addr NULL:", __FUNCTION__);
  6294     test_log("size            align           result");
  6296     for (int i = 0; i < num_sizes; i++) {
  6297       const size_t size = sizes[i];
  6298       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6299         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6300         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6301             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6302         if (p != NULL) {
  6303           assert(is_ptr_aligned(p, alignment), "must be");
  6304           small_page_write(p, size);
  6305           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6310     // Case 2
  6311     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6312     test_log("size            align           req_addr         result");
  6314     for (int i = 0; i < num_sizes; i++) {
  6315       const size_t size = sizes[i];
  6316       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6317         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6318         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6319         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6320             size, alignment, req_addr, p,
  6321             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6322         if (p != NULL) {
  6323           assert(p == req_addr, "must be");
  6324           small_page_write(p, size);
  6325           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6330     // Case 3
  6331     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6332     test_log("size            align           req_addr         result");
  6334     for (int i = 0; i < num_sizes; i++) {
  6335       const size_t size = sizes[i];
  6336       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6337         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6338         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6339         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6340             size, alignment, req_addr, p,
  6341             ((p != NULL ? "" : "(failed)")));
  6342         // as the area around req_addr contains already existing mappings, the API should always
  6343         // return NULL (as per contract, it cannot return another address)
  6344         assert(p == NULL, "must be");
  6348     ::munmap(mapping2, mapping_size);
  6352   static void test_reserve_memory_special_huge_tlbfs() {
  6353     if (!UseHugeTLBFS) {
  6354       return;
  6357     test_reserve_memory_special_huge_tlbfs_only();
  6358     test_reserve_memory_special_huge_tlbfs_mixed();
  6361   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6362     if (!UseSHM) {
  6363       return;
  6366     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6368     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6370     if (addr != NULL) {
  6371       assert(is_ptr_aligned(addr, alignment), "Check");
  6372       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6374       small_page_write(addr, size);
  6376       os::Linux::release_memory_special_shm(addr, size);
  6380   static void test_reserve_memory_special_shm() {
  6381     size_t lp = os::large_page_size();
  6382     size_t ag = os::vm_allocation_granularity();
  6384     for (size_t size = ag; size < lp * 3; size += ag) {
  6385       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6386         test_reserve_memory_special_shm(size, alignment);
  6391   static void test() {
  6392     test_reserve_memory_special_huge_tlbfs();
  6393     test_reserve_memory_special_shm();
  6395 };
  6397 void TestReserveMemorySpecial_test() {
  6398   TestReserveMemorySpecial::test();
  6401 #endif

mercurial