src/share/vm/gc_implementation/g1/heapRegion.cpp

Thu, 15 Apr 2010 18:45:30 -0400

author
tonyp
date
Thu, 15 Apr 2010 18:45:30 -0400
changeset 1825
f9ec1e4bbb44
parent 1823
7666957bc44d
child 1829
1316cec51b4d
permissions
-rw-r--r--

6939027: G1: assertion failure during the concurrent phase of cleanup
Summary: The outgoing region map is not maintained properly and it's causing an assert failure. Given that we don't actually use it, I'm removing it. I'm piggy-backing a small change on this which removes a message that it's printed before a Full GC when DisableExplicitGC is set.
Reviewed-by: apetrusenko, ysr

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_heapRegion.cpp.incl"
    28 int HeapRegion::LogOfHRGrainBytes = 0;
    29 int HeapRegion::LogOfHRGrainWords = 0;
    30 int HeapRegion::GrainBytes        = 0;
    31 int HeapRegion::GrainWords        = 0;
    32 int HeapRegion::CardsPerRegion    = 0;
    34 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    35                                  HeapRegion* hr, OopClosure* cl,
    36                                  CardTableModRefBS::PrecisionStyle precision,
    37                                  FilterKind fk) :
    38   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    39   _hr(hr), _fk(fk), _g1(g1)
    40 {}
    42 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    43                                                    OopClosure* oc) :
    44   _r_bottom(r->bottom()), _r_end(r->end()),
    45   _oc(oc), _out_of_region(0)
    46 {}
    48 class VerifyLiveClosure: public OopClosure {
    49 private:
    50   G1CollectedHeap* _g1h;
    51   CardTableModRefBS* _bs;
    52   oop _containing_obj;
    53   bool _failures;
    54   int _n_failures;
    55   bool _use_prev_marking;
    56 public:
    57   // use_prev_marking == true  -> use "prev" marking information,
    58   // use_prev_marking == false -> use "next" marking information
    59   VerifyLiveClosure(G1CollectedHeap* g1h, bool use_prev_marking) :
    60     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    61     _failures(false), _n_failures(0), _use_prev_marking(use_prev_marking)
    62   {
    63     BarrierSet* bs = _g1h->barrier_set();
    64     if (bs->is_a(BarrierSet::CardTableModRef))
    65       _bs = (CardTableModRefBS*)bs;
    66   }
    68   void set_containing_obj(oop obj) {
    69     _containing_obj = obj;
    70   }
    72   bool failures() { return _failures; }
    73   int n_failures() { return _n_failures; }
    75   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
    76   virtual void do_oop(      oop* p) { do_oop_work(p); }
    78   void print_object(outputStream* out, oop obj) {
    79 #ifdef PRODUCT
    80     klassOop k = obj->klass();
    81     const char* class_name = instanceKlass::cast(k)->external_name();
    82     out->print_cr("class name %s", class_name);
    83 #else // PRODUCT
    84     obj->print_on(out);
    85 #endif // PRODUCT
    86   }
    88   template <class T> void do_oop_work(T* p) {
    89     assert(_containing_obj != NULL, "Precondition");
    90     assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
    91            "Precondition");
    92     T heap_oop = oopDesc::load_heap_oop(p);
    93     if (!oopDesc::is_null(heap_oop)) {
    94       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
    95       bool failed = false;
    96       if (!_g1h->is_in_closed_subset(obj) ||
    97           _g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
    98         if (!_failures) {
    99           gclog_or_tty->print_cr("");
   100           gclog_or_tty->print_cr("----------");
   101         }
   102         if (!_g1h->is_in_closed_subset(obj)) {
   103           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   104           gclog_or_tty->print_cr("Field "PTR_FORMAT
   105                                  " of live obj "PTR_FORMAT" in region "
   106                                  "["PTR_FORMAT", "PTR_FORMAT")",
   107                                  p, (void*) _containing_obj,
   108                                  from->bottom(), from->end());
   109           print_object(gclog_or_tty, _containing_obj);
   110           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   111                                  (void*) obj);
   112         } else {
   113           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   114           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   115           gclog_or_tty->print_cr("Field "PTR_FORMAT
   116                                  " of live obj "PTR_FORMAT" in region "
   117                                  "["PTR_FORMAT", "PTR_FORMAT")",
   118                                  p, (void*) _containing_obj,
   119                                  from->bottom(), from->end());
   120           print_object(gclog_or_tty, _containing_obj);
   121           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   122                                  "["PTR_FORMAT", "PTR_FORMAT")",
   123                                  (void*) obj, to->bottom(), to->end());
   124           print_object(gclog_or_tty, obj);
   125         }
   126         gclog_or_tty->print_cr("----------");
   127         _failures = true;
   128         failed = true;
   129         _n_failures++;
   130       }
   132       if (!_g1h->full_collection()) {
   133         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   134         HeapRegion* to   = _g1h->heap_region_containing(obj);
   135         if (from != NULL && to != NULL &&
   136             from != to &&
   137             !to->isHumongous()) {
   138           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   139           jbyte cv_field = *_bs->byte_for_const(p);
   140           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   142           bool is_bad = !(from->is_young()
   143                           || to->rem_set()->contains_reference(p)
   144                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   145                               (_containing_obj->is_objArray() ?
   146                                   cv_field == dirty
   147                                : cv_obj == dirty || cv_field == dirty));
   148           if (is_bad) {
   149             if (!_failures) {
   150               gclog_or_tty->print_cr("");
   151               gclog_or_tty->print_cr("----------");
   152             }
   153             gclog_or_tty->print_cr("Missing rem set entry:");
   154             gclog_or_tty->print_cr("Field "PTR_FORMAT
   155                           " of obj "PTR_FORMAT
   156                           ", in region %d ["PTR_FORMAT
   157                           ", "PTR_FORMAT"),",
   158                           p, (void*) _containing_obj,
   159                           from->hrs_index(),
   160                           from->bottom(),
   161                           from->end());
   162             _containing_obj->print_on(gclog_or_tty);
   163             gclog_or_tty->print_cr("points to obj "PTR_FORMAT
   164                           " in region %d ["PTR_FORMAT
   165                           ", "PTR_FORMAT").",
   166                           (void*) obj, to->hrs_index(),
   167                           to->bottom(), to->end());
   168             obj->print_on(gclog_or_tty);
   169             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   170                           cv_obj, cv_field);
   171             gclog_or_tty->print_cr("----------");
   172             _failures = true;
   173             if (!failed) _n_failures++;
   174           }
   175         }
   176       }
   177     }
   178   }
   179 };
   181 template<class ClosureType>
   182 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
   183                                HeapRegion* hr,
   184                                HeapWord* cur, HeapWord* top) {
   185   oop cur_oop = oop(cur);
   186   int oop_size = cur_oop->size();
   187   HeapWord* next_obj = cur + oop_size;
   188   while (next_obj < top) {
   189     // Keep filtering the remembered set.
   190     if (!g1h->is_obj_dead(cur_oop, hr)) {
   191       // Bottom lies entirely below top, so we can call the
   192       // non-memRegion version of oop_iterate below.
   193       cur_oop->oop_iterate(cl);
   194     }
   195     cur = next_obj;
   196     cur_oop = oop(cur);
   197     oop_size = cur_oop->size();
   198     next_obj = cur + oop_size;
   199   }
   200   return cur;
   201 }
   203 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
   204                                               HeapWord* bottom,
   205                                               HeapWord* top,
   206                                               OopClosure* cl) {
   207   G1CollectedHeap* g1h = _g1;
   209   int oop_size;
   211   OopClosure* cl2 = cl;
   212   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
   213   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
   214   switch (_fk) {
   215   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
   216   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
   217   }
   219   // Start filtering what we add to the remembered set. If the object is
   220   // not considered dead, either because it is marked (in the mark bitmap)
   221   // or it was allocated after marking finished, then we add it. Otherwise
   222   // we can safely ignore the object.
   223   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   224     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   225   } else {
   226     oop_size = oop(bottom)->size();
   227   }
   229   bottom += oop_size;
   231   if (bottom < top) {
   232     // We replicate the loop below for several kinds of possible filters.
   233     switch (_fk) {
   234     case NoFilterKind:
   235       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   236       break;
   237     case IntoCSFilterKind: {
   238       FilterIntoCSClosure filt(this, g1h, cl);
   239       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   240       break;
   241     }
   242     case OutOfRegionFilterKind: {
   243       FilterOutOfRegionClosure filt(_hr, cl);
   244       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   245       break;
   246     }
   247     default:
   248       ShouldNotReachHere();
   249     }
   251     // Last object. Need to do dead-obj filtering here too.
   252     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   253       oop(bottom)->oop_iterate(cl2, mr);
   254     }
   255   }
   256 }
   258 // Minimum region size; we won't go lower than that.
   259 // We might want to decrease this in the future, to deal with small
   260 // heaps a bit more efficiently.
   261 #define MIN_REGION_SIZE  (      1024 * 1024 )
   263 // Maximum region size; we don't go higher than that. There's a good
   264 // reason for having an upper bound. We don't want regions to get too
   265 // large, otherwise cleanup's effectiveness would decrease as there
   266 // will be fewer opportunities to find totally empty regions after
   267 // marking.
   268 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   270 // The automatic region size calculation will try to have around this
   271 // many regions in the heap (based on the min heap size).
   272 #define TARGET_REGION_NUMBER          2048
   274 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
   275   // region_size in bytes
   276   uintx region_size = G1HeapRegionSize;
   277   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   278     // We base the automatic calculation on the min heap size. This
   279     // can be problematic if the spread between min and max is quite
   280     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
   281     // the max size, the region size might be way too large for the
   282     // min size. Either way, some users might have to set the region
   283     // size manually for some -Xms / -Xmx combos.
   285     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
   286                        (uintx) MIN_REGION_SIZE);
   287   }
   289   int region_size_log = log2_long((jlong) region_size);
   290   // Recalculate the region size to make sure it's a power of
   291   // 2. This means that region_size is the largest power of 2 that's
   292   // <= what we've calculated so far.
   293   region_size = 1 << region_size_log;
   295   // Now make sure that we don't go over or under our limits.
   296   if (region_size < MIN_REGION_SIZE) {
   297     region_size = MIN_REGION_SIZE;
   298   } else if (region_size > MAX_REGION_SIZE) {
   299     region_size = MAX_REGION_SIZE;
   300   }
   302   // And recalculate the log.
   303   region_size_log = log2_long((jlong) region_size);
   305   // Now, set up the globals.
   306   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   307   LogOfHRGrainBytes = region_size_log;
   309   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   310   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   312   guarantee(GrainBytes == 0, "we should only set it once");
   313   // The cast to int is safe, given that we've bounded region_size by
   314   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   315   GrainBytes = (int) region_size;
   317   guarantee(GrainWords == 0, "we should only set it once");
   318   GrainWords = GrainBytes >> LogHeapWordSize;
   319   guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
   321   guarantee(CardsPerRegion == 0, "we should only set it once");
   322   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   323 }
   325 void HeapRegion::reset_after_compaction() {
   326   G1OffsetTableContigSpace::reset_after_compaction();
   327   // After a compaction the mark bitmap is invalid, so we must
   328   // treat all objects as being inside the unmarked area.
   329   zero_marked_bytes();
   330   init_top_at_mark_start();
   331 }
   333 DirtyCardToOopClosure*
   334 HeapRegion::new_dcto_closure(OopClosure* cl,
   335                              CardTableModRefBS::PrecisionStyle precision,
   336                              HeapRegionDCTOC::FilterKind fk) {
   337   return new HeapRegionDCTOC(G1CollectedHeap::heap(),
   338                              this, cl, precision, fk);
   339 }
   341 void HeapRegion::hr_clear(bool par, bool clear_space) {
   342   _humongous_type = NotHumongous;
   343   _humongous_start_region = NULL;
   344   _in_collection_set = false;
   345   _is_gc_alloc_region = false;
   347   // Age stuff (if parallel, this will be done separately, since it needs
   348   // to be sequential).
   349   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   351   set_young_index_in_cset(-1);
   352   uninstall_surv_rate_group();
   353   set_young_type(NotYoung);
   355   // In case it had been the start of a humongous sequence, reset its end.
   356   set_end(_orig_end);
   358   if (!par) {
   359     // If this is parallel, this will be done later.
   360     HeapRegionRemSet* hrrs = rem_set();
   361     if (hrrs != NULL) hrrs->clear();
   362     _claimed = InitialClaimValue;
   363   }
   364   zero_marked_bytes();
   365   set_sort_index(-1);
   367   _offsets.resize(HeapRegion::GrainWords);
   368   init_top_at_mark_start();
   369   if (clear_space) clear(SpaceDecorator::Mangle);
   370 }
   372 // <PREDICTION>
   373 void HeapRegion::calc_gc_efficiency() {
   374   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   375   _gc_efficiency = (double) garbage_bytes() /
   376                             g1h->predict_region_elapsed_time_ms(this, false);
   377 }
   378 // </PREDICTION>
   380 void HeapRegion::set_startsHumongous() {
   381   _humongous_type = StartsHumongous;
   382   _humongous_start_region = this;
   383   assert(end() == _orig_end, "Should be normal before alloc.");
   384 }
   386 bool HeapRegion::claimHeapRegion(jint claimValue) {
   387   jint current = _claimed;
   388   if (current != claimValue) {
   389     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   390     if (res == current) {
   391       return true;
   392     }
   393   }
   394   return false;
   395 }
   397 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   398   HeapWord* low = addr;
   399   HeapWord* high = end();
   400   while (low < high) {
   401     size_t diff = pointer_delta(high, low);
   402     // Must add one below to bias toward the high amount.  Otherwise, if
   403   // "high" were at the desired value, and "low" were one less, we
   404     // would not converge on "high".  This is not symmetric, because
   405     // we set "high" to a block start, which might be the right one,
   406     // which we don't do for "low".
   407     HeapWord* middle = low + (diff+1)/2;
   408     if (middle == high) return high;
   409     HeapWord* mid_bs = block_start_careful(middle);
   410     if (mid_bs < addr) {
   411       low = middle;
   412     } else {
   413       high = mid_bs;
   414     }
   415   }
   416   assert(low == high && low >= addr, "Didn't work.");
   417   return low;
   418 }
   420 void HeapRegion::set_next_on_unclean_list(HeapRegion* r) {
   421   assert(r == NULL || r->is_on_unclean_list(), "Malformed unclean list.");
   422   _next_in_special_set = r;
   423 }
   425 void HeapRegion::set_on_unclean_list(bool b) {
   426   _is_on_unclean_list = b;
   427 }
   429 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   430   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
   431   hr_clear(false/*par*/, clear_space);
   432 }
   433 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   434 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   435 #endif // _MSC_VER
   438 HeapRegion::
   439 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   440                      MemRegion mr, bool is_zeroed)
   441   : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
   442     _next_fk(HeapRegionDCTOC::NoFilterKind),
   443     _hrs_index(-1),
   444     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   445     _in_collection_set(false), _is_gc_alloc_region(false),
   446     _is_on_free_list(false), _is_on_unclean_list(false),
   447     _next_in_special_set(NULL), _orig_end(NULL),
   448     _claimed(InitialClaimValue), _evacuation_failed(false),
   449     _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
   450     _young_type(NotYoung), _next_young_region(NULL),
   451     _next_dirty_cards_region(NULL),
   452     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   453     _rem_set(NULL), _zfs(NotZeroFilled)
   454 {
   455   _orig_end = mr.end();
   456   // Note that initialize() will set the start of the unmarked area of the
   457   // region.
   458   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   459   set_top(bottom());
   460   set_saved_mark();
   462   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
   464   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   465   // In case the region is allocated during a pause, note the top.
   466   // We haven't done any counting on a brand new region.
   467   _top_at_conc_mark_count = bottom();
   468 }
   470 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
   471   const HeapRegion* _target;
   472   bool _target_seen;
   473   HeapRegion* _last;
   474   CompactibleSpace* _res;
   475 public:
   476   NextCompactionHeapRegionClosure(const HeapRegion* target) :
   477     _target(target), _target_seen(false), _res(NULL) {}
   478   bool doHeapRegion(HeapRegion* cur) {
   479     if (_target_seen) {
   480       if (!cur->isHumongous()) {
   481         _res = cur;
   482         return true;
   483       }
   484     } else if (cur == _target) {
   485       _target_seen = true;
   486     }
   487     return false;
   488   }
   489   CompactibleSpace* result() { return _res; }
   490 };
   492 CompactibleSpace* HeapRegion::next_compaction_space() const {
   493   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   494   // cast away const-ness
   495   HeapRegion* r = (HeapRegion*) this;
   496   NextCompactionHeapRegionClosure blk(r);
   497   g1h->heap_region_iterate_from(r, &blk);
   498   return blk.result();
   499 }
   501 void HeapRegion::set_continuesHumongous(HeapRegion* start) {
   502   // The order is important here.
   503   start->add_continuingHumongousRegion(this);
   504   _humongous_type = ContinuesHumongous;
   505   _humongous_start_region = start;
   506 }
   508 void HeapRegion::add_continuingHumongousRegion(HeapRegion* cont) {
   509   // Must join the blocks of the current H region seq with the block of the
   510   // added region.
   511   offsets()->join_blocks(bottom(), cont->bottom());
   512   arrayOop obj = (arrayOop)(bottom());
   513   obj->set_length((int) (obj->length() + cont->capacity()/jintSize));
   514   set_end(cont->end());
   515   set_top(cont->end());
   516 }
   518 void HeapRegion::save_marks() {
   519   set_saved_mark();
   520 }
   522 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
   523   HeapWord* p = mr.start();
   524   HeapWord* e = mr.end();
   525   oop obj;
   526   while (p < e) {
   527     obj = oop(p);
   528     p += obj->oop_iterate(cl);
   529   }
   530   assert(p == e, "bad memregion: doesn't end on obj boundary");
   531 }
   533 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   534 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   535   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   536 }
   537 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   540 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
   541   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   542 }
   544 #ifdef DEBUG
   545 HeapWord* HeapRegion::allocate(size_t size) {
   546   jint state = zero_fill_state();
   547   assert(!G1CollectedHeap::heap()->allocs_are_zero_filled() ||
   548          zero_fill_is_allocated(),
   549          "When ZF is on, only alloc in ZF'd regions");
   550   return G1OffsetTableContigSpace::allocate(size);
   551 }
   552 #endif
   554 void HeapRegion::set_zero_fill_state_work(ZeroFillState zfs) {
   555   assert(top() == bottom() || zfs == Allocated,
   556          "Region must be empty, or we must be setting it to allocated.");
   557   assert(ZF_mon->owned_by_self() ||
   558          Universe::heap()->is_gc_active(),
   559          "Must hold the lock or be a full GC to modify.");
   560   _zfs = zfs;
   561 }
   563 void HeapRegion::set_zero_fill_complete() {
   564   set_zero_fill_state_work(ZeroFilled);
   565   if (ZF_mon->owned_by_self()) {
   566     ZF_mon->notify_all();
   567   }
   568 }
   571 void HeapRegion::ensure_zero_filled() {
   572   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
   573   ensure_zero_filled_locked();
   574 }
   576 void HeapRegion::ensure_zero_filled_locked() {
   577   assert(ZF_mon->owned_by_self(), "Precondition");
   578   bool should_ignore_zf = SafepointSynchronize::is_at_safepoint();
   579   assert(should_ignore_zf || Heap_lock->is_locked(),
   580          "Either we're in a GC or we're allocating a region.");
   581   switch (zero_fill_state()) {
   582   case HeapRegion::NotZeroFilled:
   583     set_zero_fill_in_progress(Thread::current());
   584     {
   585       ZF_mon->unlock();
   586       Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
   587       ZF_mon->lock_without_safepoint_check();
   588     }
   589     // A trap.
   590     guarantee(zero_fill_state() == HeapRegion::ZeroFilling
   591               && zero_filler() == Thread::current(),
   592               "AHA!  Tell Dave D if you see this...");
   593     set_zero_fill_complete();
   594     // gclog_or_tty->print_cr("Did sync ZF.");
   595     ConcurrentZFThread::note_sync_zfs();
   596     break;
   597   case HeapRegion::ZeroFilling:
   598     if (should_ignore_zf) {
   599       // We can "break" the lock and take over the work.
   600       Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
   601       set_zero_fill_complete();
   602       ConcurrentZFThread::note_sync_zfs();
   603       break;
   604     } else {
   605       ConcurrentZFThread::wait_for_ZF_completed(this);
   606     }
   607   case HeapRegion::ZeroFilled:
   608     // Nothing to do.
   609     break;
   610   case HeapRegion::Allocated:
   611     guarantee(false, "Should not call on allocated regions.");
   612   }
   613   assert(zero_fill_state() == HeapRegion::ZeroFilled, "Post");
   614 }
   616 HeapWord*
   617 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   618                                                  ObjectClosure* cl) {
   619   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   620   // We used to use "block_start_careful" here.  But we're actually happy
   621   // to update the BOT while we do this...
   622   HeapWord* cur = block_start(mr.start());
   623   mr = mr.intersection(used_region());
   624   if (mr.is_empty()) return NULL;
   625   // Otherwise, find the obj that extends onto mr.start().
   627   assert(cur <= mr.start()
   628          && (oop(cur)->klass_or_null() == NULL ||
   629              cur + oop(cur)->size() > mr.start()),
   630          "postcondition of block_start");
   631   oop obj;
   632   while (cur < mr.end()) {
   633     obj = oop(cur);
   634     if (obj->klass_or_null() == NULL) {
   635       // Ran into an unparseable point.
   636       return cur;
   637     } else if (!g1h->is_obj_dead(obj)) {
   638       cl->do_object(obj);
   639     }
   640     if (cl->abort()) return cur;
   641     // The check above must occur before the operation below, since an
   642     // abort might invalidate the "size" operation.
   643     cur += obj->size();
   644   }
   645   return NULL;
   646 }
   648 HeapWord*
   649 HeapRegion::
   650 oops_on_card_seq_iterate_careful(MemRegion mr,
   651                                      FilterOutOfRegionClosure* cl) {
   652   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   654   // If we're within a stop-world GC, then we might look at a card in a
   655   // GC alloc region that extends onto a GC LAB, which may not be
   656   // parseable.  Stop such at the "saved_mark" of the region.
   657   if (G1CollectedHeap::heap()->is_gc_active()) {
   658     mr = mr.intersection(used_region_at_save_marks());
   659   } else {
   660     mr = mr.intersection(used_region());
   661   }
   662   if (mr.is_empty()) return NULL;
   663   // Otherwise, find the obj that extends onto mr.start().
   665   // We used to use "block_start_careful" here.  But we're actually happy
   666   // to update the BOT while we do this...
   667   HeapWord* cur = block_start(mr.start());
   668   assert(cur <= mr.start(), "Postcondition");
   670   while (cur <= mr.start()) {
   671     if (oop(cur)->klass_or_null() == NULL) {
   672       // Ran into an unparseable point.
   673       return cur;
   674     }
   675     // Otherwise...
   676     int sz = oop(cur)->size();
   677     if (cur + sz > mr.start()) break;
   678     // Otherwise, go on.
   679     cur = cur + sz;
   680   }
   681   oop obj;
   682   obj = oop(cur);
   683   // If we finish this loop...
   684   assert(cur <= mr.start()
   685          && obj->klass_or_null() != NULL
   686          && cur + obj->size() > mr.start(),
   687          "Loop postcondition");
   688   if (!g1h->is_obj_dead(obj)) {
   689     obj->oop_iterate(cl, mr);
   690   }
   692   HeapWord* next;
   693   while (cur < mr.end()) {
   694     obj = oop(cur);
   695     if (obj->klass_or_null() == NULL) {
   696       // Ran into an unparseable point.
   697       return cur;
   698     };
   699     // Otherwise:
   700     next = (cur + obj->size());
   701     if (!g1h->is_obj_dead(obj)) {
   702       if (next < mr.end()) {
   703         obj->oop_iterate(cl);
   704       } else {
   705         // this obj spans the boundary.  If it's an array, stop at the
   706         // boundary.
   707         if (obj->is_objArray()) {
   708           obj->oop_iterate(cl, mr);
   709         } else {
   710           obj->oop_iterate(cl);
   711         }
   712       }
   713     }
   714     cur = next;
   715   }
   716   return NULL;
   717 }
   719 void HeapRegion::print() const { print_on(gclog_or_tty); }
   720 void HeapRegion::print_on(outputStream* st) const {
   721   if (isHumongous()) {
   722     if (startsHumongous())
   723       st->print(" HS");
   724     else
   725       st->print(" HC");
   726   } else {
   727     st->print("   ");
   728   }
   729   if (in_collection_set())
   730     st->print(" CS");
   731   else if (is_gc_alloc_region())
   732     st->print(" A ");
   733   else
   734     st->print("   ");
   735   if (is_young())
   736     st->print(is_scan_only() ? " SO" : (is_survivor() ? " SU" : " Y "));
   737   else
   738     st->print("   ");
   739   if (is_empty())
   740     st->print(" F");
   741   else
   742     st->print("  ");
   743   st->print(" %5d", _gc_time_stamp);
   744   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   745             prev_top_at_mark_start(), next_top_at_mark_start());
   746   G1OffsetTableContigSpace::print_on(st);
   747 }
   749 void HeapRegion::verify(bool allow_dirty) const {
   750   bool dummy = false;
   751   verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
   752 }
   754 #define OBJ_SAMPLE_INTERVAL 0
   755 #define BLOCK_SAMPLE_INTERVAL 100
   757 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   758 // We would need a mechanism to make that code skip dead objects.
   760 void HeapRegion::verify(bool allow_dirty,
   761                         bool use_prev_marking,
   762                         bool* failures) const {
   763   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   764   *failures = false;
   765   HeapWord* p = bottom();
   766   HeapWord* prev_p = NULL;
   767   int objs = 0;
   768   int blocks = 0;
   769   VerifyLiveClosure vl_cl(g1, use_prev_marking);
   770   while (p < top()) {
   771     size_t size = oop(p)->size();
   772     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   773       HeapWord* res = block_start_const(p + (size/2));
   774       if (p != res) {
   775         gclog_or_tty->print_cr("offset computation 1 for "PTR_FORMAT" and "
   776                                SIZE_FORMAT" returned "PTR_FORMAT,
   777                                p, size, res);
   778         *failures = true;
   779         return;
   780       }
   781       blocks = 0;
   782     } else {
   783       blocks++;
   784     }
   785     if (objs == OBJ_SAMPLE_INTERVAL) {
   786       oop obj = oop(p);
   787       if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
   788         if (obj->is_oop()) {
   789           klassOop klass = obj->klass();
   790           if (!klass->is_perm()) {
   791             gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   792                                    "not in perm", klass, obj);
   793             *failures = true;
   794             return;
   795           } else if (!klass->is_klass()) {
   796             gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   797                                    "not a klass", klass, obj);
   798             *failures = true;
   799             return;
   800           } else {
   801             vl_cl.set_containing_obj(obj);
   802             obj->oop_iterate(&vl_cl);
   803             if (vl_cl.failures()) {
   804               *failures = true;
   805             }
   806             if (G1MaxVerifyFailures >= 0 &&
   807                 vl_cl.n_failures() >= G1MaxVerifyFailures) {
   808               return;
   809             }
   810           }
   811         } else {
   812           gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
   813           *failures = true;
   814           return;
   815         }
   816       }
   817       objs = 0;
   818     } else {
   819       objs++;
   820     }
   821     prev_p = p;
   822     p += size;
   823   }
   824   HeapWord* rend = end();
   825   HeapWord* rtop = top();
   826   if (rtop < rend) {
   827     HeapWord* res = block_start_const(rtop + (rend - rtop) / 2);
   828     if (res != rtop) {
   829         gclog_or_tty->print_cr("offset computation 2 for "PTR_FORMAT" and "
   830                                PTR_FORMAT" returned "PTR_FORMAT,
   831                                rtop, rend, res);
   832         *failures = true;
   833         return;
   834     }
   835   }
   837   if (p != top()) {
   838     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   839                            "does not match top "PTR_FORMAT, p, top());
   840     *failures = true;
   841     return;
   842   }
   843 }
   845 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   846 // away eventually.
   848 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   849   // false ==> we'll do the clearing if there's clearing to be done.
   850   ContiguousSpace::initialize(mr, false, mangle_space);
   851   _offsets.zero_bottom_entry();
   852   _offsets.initialize_threshold();
   853   if (clear_space) clear(mangle_space);
   854 }
   856 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   857   ContiguousSpace::clear(mangle_space);
   858   _offsets.zero_bottom_entry();
   859   _offsets.initialize_threshold();
   860 }
   862 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   863   Space::set_bottom(new_bottom);
   864   _offsets.set_bottom(new_bottom);
   865 }
   867 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   868   Space::set_end(new_end);
   869   _offsets.resize(new_end - bottom());
   870 }
   872 void G1OffsetTableContigSpace::print() const {
   873   print_short();
   874   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   875                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   876                 bottom(), top(), _offsets.threshold(), end());
   877 }
   879 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
   880   return _offsets.initialize_threshold();
   881 }
   883 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
   884                                                     HeapWord* end) {
   885   _offsets.alloc_block(start, end);
   886   return _offsets.threshold();
   887 }
   889 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
   890   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   891   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
   892   if (_gc_time_stamp < g1h->get_gc_time_stamp())
   893     return top();
   894   else
   895     return ContiguousSpace::saved_mark_word();
   896 }
   898 void G1OffsetTableContigSpace::set_saved_mark() {
   899   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   900   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
   902   if (_gc_time_stamp < curr_gc_time_stamp) {
   903     // The order of these is important, as another thread might be
   904     // about to start scanning this region. If it does so after
   905     // set_saved_mark and before _gc_time_stamp = ..., then the latter
   906     // will be false, and it will pick up top() as the high water mark
   907     // of region. If it does so after _gc_time_stamp = ..., then it
   908     // will pick up the right saved_mark_word() as the high water mark
   909     // of the region. Either way, the behaviour will be correct.
   910     ContiguousSpace::set_saved_mark();
   911     OrderAccess::storestore();
   912     _gc_time_stamp = curr_gc_time_stamp;
   913     // The following fence is to force a flush of the writes above, but
   914     // is strictly not needed because when an allocating worker thread
   915     // calls set_saved_mark() it does so under the ParGCRareEvent_lock;
   916     // when the lock is released, the write will be flushed.
   917     // OrderAccess::fence();
   918   }
   919 }
   921 G1OffsetTableContigSpace::
   922 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   923                          MemRegion mr, bool is_zeroed) :
   924   _offsets(sharedOffsetArray, mr),
   925   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
   926   _gc_time_stamp(0)
   927 {
   928   _offsets.set_space(this);
   929   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   930 }
   932 size_t RegionList::length() {
   933   size_t len = 0;
   934   HeapRegion* cur = hd();
   935   DEBUG_ONLY(HeapRegion* last = NULL);
   936   while (cur != NULL) {
   937     len++;
   938     DEBUG_ONLY(last = cur);
   939     cur = get_next(cur);
   940   }
   941   assert(last == tl(), "Invariant");
   942   return len;
   943 }
   945 void RegionList::insert_before_head(HeapRegion* r) {
   946   assert(well_formed(), "Inv");
   947   set_next(r, hd());
   948   _hd = r;
   949   _sz++;
   950   if (tl() == NULL) _tl = r;
   951   assert(well_formed(), "Inv");
   952 }
   954 void RegionList::prepend_list(RegionList* new_list) {
   955   assert(well_formed(), "Precondition");
   956   assert(new_list->well_formed(), "Precondition");
   957   HeapRegion* new_tl = new_list->tl();
   958   if (new_tl != NULL) {
   959     set_next(new_tl, hd());
   960     _hd = new_list->hd();
   961     _sz += new_list->sz();
   962     if (tl() == NULL) _tl = new_list->tl();
   963   } else {
   964     assert(new_list->hd() == NULL && new_list->sz() == 0, "Inv");
   965   }
   966   assert(well_formed(), "Inv");
   967 }
   969 void RegionList::delete_after(HeapRegion* r) {
   970   assert(well_formed(), "Precondition");
   971   HeapRegion* next = get_next(r);
   972   assert(r != NULL, "Precondition");
   973   HeapRegion* next_tl = get_next(next);
   974   set_next(r, next_tl);
   975   dec_sz();
   976   if (next == tl()) {
   977     assert(next_tl == NULL, "Inv");
   978     _tl = r;
   979   }
   980   assert(well_formed(), "Inv");
   981 }
   983 HeapRegion* RegionList::pop() {
   984   assert(well_formed(), "Inv");
   985   HeapRegion* res = hd();
   986   if (res != NULL) {
   987     _hd = get_next(res);
   988     _sz--;
   989     set_next(res, NULL);
   990     if (sz() == 0) _tl = NULL;
   991   }
   992   assert(well_formed(), "Inv");
   993   return res;
   994 }

mercurial