src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Thu, 15 Apr 2010 18:45:30 -0400

author
tonyp
date
Thu, 15 Apr 2010 18:45:30 -0400
changeset 1825
f9ec1e4bbb44
parent 1794
23b1b27ac76c
child 1829
1316cec51b4d
permissions
-rw-r--r--

6939027: G1: assertion failure during the concurrent phase of cleanup
Summary: The outgoing region map is not maintained properly and it's causing an assert failure. Given that we don't actually use it, I'm removing it. I'm piggy-backing a small change on this which removes a message that it's printed before a Full GC when DisableExplicitGC is set.
Reviewed-by: apetrusenko, ysr

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(scan_only)
    65     define_num_seq(update_rs)
    66     define_num_seq(scan_rs)
    67     define_num_seq(scan_new_refs) // Only for temp use; added to
    68                                   // in parallel case.
    69     define_num_seq(obj_copy)
    70     define_num_seq(termination) // parallel only
    71     define_num_seq(parallel_other) // parallel only
    72   define_num_seq(mark_closure)
    73   define_num_seq(clear_ct)  // parallel only
    74 };
    76 class Summary: public PauseSummary,
    77                public MainBodySummary {
    78 public:
    79   virtual MainBodySummary*    main_body_summary()    { return this; }
    80 };
    82 class AbandonedSummary: public PauseSummary {
    83 };
    85 class G1CollectorPolicy: public CollectorPolicy {
    86 protected:
    87   // The number of pauses during the execution.
    88   long _n_pauses;
    90   // either equal to the number of parallel threads, if ParallelGCThreads
    91   // has been set, or 1 otherwise
    92   int _parallel_gc_threads;
    94   enum SomePrivateConstants {
    95     NumPrevPausesForHeuristics = 10
    96   };
    98   G1MMUTracker* _mmu_tracker;
   100   void initialize_flags();
   102   void initialize_all() {
   103     initialize_flags();
   104     initialize_size_info();
   105     initialize_perm_generation(PermGen::MarkSweepCompact);
   106   }
   108   virtual size_t default_init_heap_size() {
   109     // Pick some reasonable default.
   110     return 8*M;
   111   }
   113   double _cur_collection_start_sec;
   114   size_t _cur_collection_pause_used_at_start_bytes;
   115   size_t _cur_collection_pause_used_regions_at_start;
   116   size_t _prev_collection_pause_used_at_end_bytes;
   117   double _cur_collection_par_time_ms;
   118   double _cur_satb_drain_time_ms;
   119   double _cur_clear_ct_time_ms;
   120   bool   _satb_drain_time_set;
   122 #ifndef PRODUCT
   123   // Card Table Count Cache stats
   124   double _min_clear_cc_time_ms;         // min
   125   double _max_clear_cc_time_ms;         // max
   126   double _cur_clear_cc_time_ms;         // clearing time during current pause
   127   double _cum_clear_cc_time_ms;         // cummulative clearing time
   128   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   129 #endif
   131   double _cur_CH_strong_roots_end_sec;
   132   double _cur_CH_strong_roots_dur_ms;
   133   double _cur_G1_strong_roots_end_sec;
   134   double _cur_G1_strong_roots_dur_ms;
   136   // Statistics for recent GC pauses.  See below for how indexed.
   137   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   138   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   139   TruncatedSeq* _recent_evac_times_ms;
   140   // These exclude marking times.
   141   TruncatedSeq* _recent_pause_times_ms;
   142   TruncatedSeq* _recent_gc_times_ms;
   144   TruncatedSeq* _recent_CS_bytes_used_before;
   145   TruncatedSeq* _recent_CS_bytes_surviving;
   147   TruncatedSeq* _recent_rs_sizes;
   149   TruncatedSeq* _concurrent_mark_init_times_ms;
   150   TruncatedSeq* _concurrent_mark_remark_times_ms;
   151   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   153   Summary*           _summary;
   154   AbandonedSummary*  _abandoned_summary;
   156   NumberSeq* _all_pause_times_ms;
   157   NumberSeq* _all_full_gc_times_ms;
   158   double _stop_world_start;
   159   NumberSeq* _all_stop_world_times_ms;
   160   NumberSeq* _all_yield_times_ms;
   162   size_t     _region_num_young;
   163   size_t     _region_num_tenured;
   164   size_t     _prev_region_num_young;
   165   size_t     _prev_region_num_tenured;
   167   NumberSeq* _all_mod_union_times_ms;
   169   int        _aux_num;
   170   NumberSeq* _all_aux_times_ms;
   171   double*    _cur_aux_start_times_ms;
   172   double*    _cur_aux_times_ms;
   173   bool*      _cur_aux_times_set;
   175   double* _par_last_ext_root_scan_times_ms;
   176   double* _par_last_mark_stack_scan_times_ms;
   177   double* _par_last_scan_only_times_ms;
   178   double* _par_last_scan_only_regions_scanned;
   179   double* _par_last_update_rs_start_times_ms;
   180   double* _par_last_update_rs_times_ms;
   181   double* _par_last_update_rs_processed_buffers;
   182   double* _par_last_scan_rs_start_times_ms;
   183   double* _par_last_scan_rs_times_ms;
   184   double* _par_last_scan_new_refs_times_ms;
   185   double* _par_last_obj_copy_times_ms;
   186   double* _par_last_termination_times_ms;
   188   // indicates that we are in young GC mode
   189   bool _in_young_gc_mode;
   191   // indicates whether we are in full young or partially young GC mode
   192   bool _full_young_gcs;
   194   // if true, then it tries to dynamically adjust the length of the
   195   // young list
   196   bool _adaptive_young_list_length;
   197   size_t _young_list_min_length;
   198   size_t _young_list_target_length;
   199   size_t _young_list_so_prefix_length;
   200   size_t _young_list_fixed_length;
   202   size_t _young_cset_length;
   203   bool   _last_young_gc_full;
   205   double _target_pause_time_ms;
   207   unsigned              _full_young_pause_num;
   208   unsigned              _partial_young_pause_num;
   210   bool                  _during_marking;
   211   bool                  _in_marking_window;
   212   bool                  _in_marking_window_im;
   214   SurvRateGroup*        _short_lived_surv_rate_group;
   215   SurvRateGroup*        _survivor_surv_rate_group;
   216   // add here any more surv rate groups
   218   double                _gc_overhead_perc;
   220   bool during_marking() {
   221     return _during_marking;
   222   }
   224   // <NEW PREDICTION>
   226 private:
   227   enum PredictionConstants {
   228     TruncatedSeqLength = 10
   229   };
   231   TruncatedSeq* _alloc_rate_ms_seq;
   232   double        _prev_collection_pause_end_ms;
   234   TruncatedSeq* _pending_card_diff_seq;
   235   TruncatedSeq* _rs_length_diff_seq;
   236   TruncatedSeq* _cost_per_card_ms_seq;
   237   TruncatedSeq* _cost_per_scan_only_region_ms_seq;
   238   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   239   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   240   TruncatedSeq* _cost_per_entry_ms_seq;
   241   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   242   TruncatedSeq* _cost_per_byte_ms_seq;
   243   TruncatedSeq* _constant_other_time_ms_seq;
   244   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   245   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   247   TruncatedSeq* _pending_cards_seq;
   248   TruncatedSeq* _scanned_cards_seq;
   249   TruncatedSeq* _rs_lengths_seq;
   251   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   252   TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
   254   TruncatedSeq* _young_gc_eff_seq;
   256   TruncatedSeq* _max_conc_overhead_seq;
   258   size_t _recorded_young_regions;
   259   size_t _recorded_scan_only_regions;
   260   size_t _recorded_non_young_regions;
   261   size_t _recorded_region_num;
   263   size_t _free_regions_at_end_of_collection;
   264   size_t _scan_only_regions_at_end_of_collection;
   266   size_t _recorded_rs_lengths;
   267   size_t _max_rs_lengths;
   269   size_t _recorded_marked_bytes;
   270   size_t _recorded_young_bytes;
   272   size_t _predicted_pending_cards;
   273   size_t _predicted_cards_scanned;
   274   size_t _predicted_rs_lengths;
   275   size_t _predicted_bytes_to_copy;
   277   double _predicted_survival_ratio;
   278   double _predicted_rs_update_time_ms;
   279   double _predicted_rs_scan_time_ms;
   280   double _predicted_scan_only_scan_time_ms;
   281   double _predicted_object_copy_time_ms;
   282   double _predicted_constant_other_time_ms;
   283   double _predicted_young_other_time_ms;
   284   double _predicted_non_young_other_time_ms;
   285   double _predicted_pause_time_ms;
   287   double _vtime_diff_ms;
   289   double _recorded_young_free_cset_time_ms;
   290   double _recorded_non_young_free_cset_time_ms;
   292   double _sigma;
   293   double _expensive_region_limit_ms;
   295   size_t _rs_lengths_prediction;
   297   size_t _known_garbage_bytes;
   298   double _known_garbage_ratio;
   300   double sigma() {
   301     return _sigma;
   302   }
   304   // A function that prevents us putting too much stock in small sample
   305   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   306   // of samples.  5 or more samples yields one; fewer scales linearly from
   307   // 2.0 at 1 sample to 1.0 at 5.
   308   double confidence_factor(int samples) {
   309     if (samples > 4) return 1.0;
   310     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   311   }
   313   double get_new_neg_prediction(TruncatedSeq* seq) {
   314     return seq->davg() - sigma() * seq->dsd();
   315   }
   317 #ifndef PRODUCT
   318   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   319 #endif // PRODUCT
   321   void adjust_concurrent_refinement(double update_rs_time,
   322                                     double update_rs_processed_buffers,
   323                                     double goal_ms);
   325 protected:
   326   double _pause_time_target_ms;
   327   double _recorded_young_cset_choice_time_ms;
   328   double _recorded_non_young_cset_choice_time_ms;
   329   bool   _within_target;
   330   size_t _pending_cards;
   331   size_t _max_pending_cards;
   333 public:
   335   void set_region_short_lived(HeapRegion* hr) {
   336     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   337   }
   339   void set_region_survivors(HeapRegion* hr) {
   340     hr->install_surv_rate_group(_survivor_surv_rate_group);
   341   }
   343 #ifndef PRODUCT
   344   bool verify_young_ages();
   345 #endif // PRODUCT
   347   void tag_scan_only(size_t short_lived_scan_only_length);
   349   double get_new_prediction(TruncatedSeq* seq) {
   350     return MAX2(seq->davg() + sigma() * seq->dsd(),
   351                 seq->davg() * confidence_factor(seq->num()));
   352   }
   354   size_t young_cset_length() {
   355     return _young_cset_length;
   356   }
   358   void record_max_rs_lengths(size_t rs_lengths) {
   359     _max_rs_lengths = rs_lengths;
   360   }
   362   size_t predict_pending_card_diff() {
   363     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   364     if (prediction < 0.00001)
   365       return 0;
   366     else
   367       return (size_t) prediction;
   368   }
   370   size_t predict_pending_cards() {
   371     size_t max_pending_card_num = _g1->max_pending_card_num();
   372     size_t diff = predict_pending_card_diff();
   373     size_t prediction;
   374     if (diff > max_pending_card_num)
   375       prediction = max_pending_card_num;
   376     else
   377       prediction = max_pending_card_num - diff;
   379     return prediction;
   380   }
   382   size_t predict_rs_length_diff() {
   383     return (size_t) get_new_prediction(_rs_length_diff_seq);
   384   }
   386   double predict_alloc_rate_ms() {
   387     return get_new_prediction(_alloc_rate_ms_seq);
   388   }
   390   double predict_cost_per_card_ms() {
   391     return get_new_prediction(_cost_per_card_ms_seq);
   392   }
   394   double predict_rs_update_time_ms(size_t pending_cards) {
   395     return (double) pending_cards * predict_cost_per_card_ms();
   396   }
   398   double predict_fully_young_cards_per_entry_ratio() {
   399     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   400   }
   402   double predict_partially_young_cards_per_entry_ratio() {
   403     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   404       return predict_fully_young_cards_per_entry_ratio();
   405     else
   406       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   407   }
   409   size_t predict_young_card_num(size_t rs_length) {
   410     return (size_t) ((double) rs_length *
   411                      predict_fully_young_cards_per_entry_ratio());
   412   }
   414   size_t predict_non_young_card_num(size_t rs_length) {
   415     return (size_t) ((double) rs_length *
   416                      predict_partially_young_cards_per_entry_ratio());
   417   }
   419   double predict_rs_scan_time_ms(size_t card_num) {
   420     if (full_young_gcs())
   421       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   422     else
   423       return predict_partially_young_rs_scan_time_ms(card_num);
   424   }
   426   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   427     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   428       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   429     else
   430       return (double) card_num *
   431         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   432   }
   434   double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
   435     if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
   436       return 1.5 * (double) scan_only_region_num *
   437         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   438     else
   439       return (double) scan_only_region_num *
   440         get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
   441   }
   443   double predict_scan_only_time_ms(size_t scan_only_region_num) {
   444     if (_in_marking_window_im)
   445       return predict_scan_only_time_ms_during_cm(scan_only_region_num);
   446     else
   447       return (double) scan_only_region_num *
   448         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   449   }
   451   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   452     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   453       return 1.1 * (double) bytes_to_copy *
   454         get_new_prediction(_cost_per_byte_ms_seq);
   455     else
   456       return (double) bytes_to_copy *
   457         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   458   }
   460   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   461     if (_in_marking_window && !_in_marking_window_im)
   462       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   463     else
   464       return (double) bytes_to_copy *
   465         get_new_prediction(_cost_per_byte_ms_seq);
   466   }
   468   double predict_constant_other_time_ms() {
   469     return get_new_prediction(_constant_other_time_ms_seq);
   470   }
   472   double predict_young_other_time_ms(size_t young_num) {
   473     return
   474       (double) young_num *
   475       get_new_prediction(_young_other_cost_per_region_ms_seq);
   476   }
   478   double predict_non_young_other_time_ms(size_t non_young_num) {
   479     return
   480       (double) non_young_num *
   481       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   482   }
   484   void check_if_region_is_too_expensive(double predicted_time_ms);
   486   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   487   double predict_base_elapsed_time_ms(size_t pending_cards);
   488   double predict_base_elapsed_time_ms(size_t pending_cards,
   489                                       size_t scanned_cards);
   490   size_t predict_bytes_to_copy(HeapRegion* hr);
   491   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   493   // for use by: calculate_optimal_so_length(length)
   494   void predict_gc_eff(size_t young_region_num,
   495                       size_t so_length,
   496                       double base_time_ms,
   497                       double *gc_eff,
   498                       double *pause_time_ms);
   500   // for use by: calculate_young_list_target_config(rs_length)
   501   bool predict_gc_eff(size_t young_region_num,
   502                       size_t so_length,
   503                       double base_time_with_so_ms,
   504                       size_t init_free_regions,
   505                       double target_pause_time_ms,
   506                       double* gc_eff);
   508   void start_recording_regions();
   509   void record_cset_region(HeapRegion* hr, bool young);
   510   void record_scan_only_regions(size_t scan_only_length);
   511   void end_recording_regions();
   513   void record_vtime_diff_ms(double vtime_diff_ms) {
   514     _vtime_diff_ms = vtime_diff_ms;
   515   }
   517   void record_young_free_cset_time_ms(double time_ms) {
   518     _recorded_young_free_cset_time_ms = time_ms;
   519   }
   521   void record_non_young_free_cset_time_ms(double time_ms) {
   522     _recorded_non_young_free_cset_time_ms = time_ms;
   523   }
   525   double predict_young_gc_eff() {
   526     return get_new_neg_prediction(_young_gc_eff_seq);
   527   }
   529   double predict_survivor_regions_evac_time();
   531   // </NEW PREDICTION>
   533 public:
   534   void cset_regions_freed() {
   535     bool propagate = _last_young_gc_full && !_in_marking_window;
   536     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   537     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   538     // also call it on any more surv rate groups
   539   }
   541   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   542     _known_garbage_bytes = known_garbage_bytes;
   543     size_t heap_bytes = _g1->capacity();
   544     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   545   }
   547   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   548     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   550     _known_garbage_bytes -= known_garbage_bytes;
   551     size_t heap_bytes = _g1->capacity();
   552     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   553   }
   555   G1MMUTracker* mmu_tracker() {
   556     return _mmu_tracker;
   557   }
   559   double predict_init_time_ms() {
   560     return get_new_prediction(_concurrent_mark_init_times_ms);
   561   }
   563   double predict_remark_time_ms() {
   564     return get_new_prediction(_concurrent_mark_remark_times_ms);
   565   }
   567   double predict_cleanup_time_ms() {
   568     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   569   }
   571   // Returns an estimate of the survival rate of the region at yg-age
   572   // "yg_age".
   573   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   574     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   575     if (seq->num() == 0)
   576       gclog_or_tty->print("BARF! age is %d", age);
   577     guarantee( seq->num() > 0, "invariant" );
   578     double pred = get_new_prediction(seq);
   579     if (pred > 1.0)
   580       pred = 1.0;
   581     return pred;
   582   }
   584   double predict_yg_surv_rate(int age) {
   585     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   586   }
   588   double accum_yg_surv_rate_pred(int age) {
   589     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   590   }
   592 protected:
   593   void print_stats (int level, const char* str, double value);
   594   void print_stats (int level, const char* str, int value);
   595   void print_par_stats (int level, const char* str, double* data) {
   596     print_par_stats(level, str, data, true);
   597   }
   598   void print_par_stats (int level, const char* str, double* data, bool summary);
   599   void print_par_buffers (int level, const char* str, double* data, bool summary);
   601   void check_other_times(int level,
   602                          NumberSeq* other_times_ms,
   603                          NumberSeq* calc_other_times_ms) const;
   605   void print_summary (PauseSummary* stats) const;
   606   void print_abandoned_summary(PauseSummary* summary) const;
   608   void print_summary (int level, const char* str, NumberSeq* seq) const;
   609   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   611   double avg_value (double* data);
   612   double max_value (double* data);
   613   double sum_of_values (double* data);
   614   double max_sum (double* data1, double* data2);
   616   int _last_satb_drain_processed_buffers;
   617   int _last_update_rs_processed_buffers;
   618   double _last_pause_time_ms;
   620   size_t _bytes_in_to_space_before_gc;
   621   size_t _bytes_in_to_space_after_gc;
   622   size_t bytes_in_to_space_during_gc() {
   623     return
   624       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   625   }
   626   size_t _bytes_in_collection_set_before_gc;
   627   // Used to count used bytes in CS.
   628   friend class CountCSClosure;
   630   // Statistics kept per GC stoppage, pause or full.
   631   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   633   // We track markings.
   634   int _num_markings;
   635   double _mark_thread_startup_sec;       // Time at startup of marking thread
   637   // Add a new GC of the given duration and end time to the record.
   638   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   640   // The head of the list (via "next_in_collection_set()") representing the
   641   // current collection set.
   642   HeapRegion* _collection_set;
   643   size_t _collection_set_size;
   644   size_t _collection_set_bytes_used_before;
   646   // Info about marking.
   647   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   649   // The number of collection pauses at the end of the last mark.
   650   size_t _n_pauses_at_mark_end;
   652   // Stash a pointer to the g1 heap.
   653   G1CollectedHeap* _g1;
   655   // The average time in ms per collection pause, averaged over recent pauses.
   656   double recent_avg_time_for_pauses_ms();
   658   // The average time in ms for processing CollectedHeap strong roots, per
   659   // collection pause, averaged over recent pauses.
   660   double recent_avg_time_for_CH_strong_ms();
   662   // The average time in ms for processing the G1 remembered set, per
   663   // pause, averaged over recent pauses.
   664   double recent_avg_time_for_G1_strong_ms();
   666   // The average time in ms for "evacuating followers", per pause, averaged
   667   // over recent pauses.
   668   double recent_avg_time_for_evac_ms();
   670   // The number of "recent" GCs recorded in the number sequences
   671   int number_of_recent_gcs();
   673   // The average survival ratio, computed by the total number of bytes
   674   // suriviving / total number of bytes before collection over the last
   675   // several recent pauses.
   676   double recent_avg_survival_fraction();
   677   // The survival fraction of the most recent pause; if there have been no
   678   // pauses, returns 1.0.
   679   double last_survival_fraction();
   681   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   682   // one that may be higher than "recent_avg_survival_fraction".
   683   // This is conservative in several ways:
   684   //   If there have been few pauses, it will assume a potential high
   685   //     variance, and err on the side of caution.
   686   //   It puts a lower bound (currently 0.1) on the value it will return.
   687   //   To try to detect phase changes, if the most recent pause ("latest") has a
   688   //     higher-than average ("avg") survival rate, it returns that rate.
   689   // "work" version is a utility function; young is restricted to young regions.
   690   double conservative_avg_survival_fraction_work(double avg,
   691                                                  double latest);
   693   // The arguments are the two sequences that keep track of the number of bytes
   694   //   surviving and the total number of bytes before collection, resp.,
   695   //   over the last evereal recent pauses
   696   // Returns the survival rate for the category in the most recent pause.
   697   // If there have been no pauses, returns 1.0.
   698   double last_survival_fraction_work(TruncatedSeq* surviving,
   699                                      TruncatedSeq* before);
   701   // The arguments are the two sequences that keep track of the number of bytes
   702   //   surviving and the total number of bytes before collection, resp.,
   703   //   over the last several recent pauses
   704   // Returns the average survival ration over the last several recent pauses
   705   // If there have been no pauses, return 1.0
   706   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   707                                            TruncatedSeq* before);
   709   double conservative_avg_survival_fraction() {
   710     double avg = recent_avg_survival_fraction();
   711     double latest = last_survival_fraction();
   712     return conservative_avg_survival_fraction_work(avg, latest);
   713   }
   715   // The ratio of gc time to elapsed time, computed over recent pauses.
   716   double _recent_avg_pause_time_ratio;
   718   double recent_avg_pause_time_ratio() {
   719     return _recent_avg_pause_time_ratio;
   720   }
   722   // Number of pauses between concurrent marking.
   723   size_t _pauses_btwn_concurrent_mark;
   725   size_t _n_marks_since_last_pause;
   727   // At the end of a pause we check the heap occupancy and we decide
   728   // whether we will start a marking cycle during the next pause. If
   729   // we decide that we want to do that, we will set this parameter to
   730   // true. So, this parameter will stay true between the end of a
   731   // pause and the beginning of a subsequent pause (not necessarily
   732   // the next one, see the comments on the next field) when we decide
   733   // that we will indeed start a marking cycle and do the initial-mark
   734   // work.
   735   volatile bool _initiate_conc_mark_if_possible;
   737   // If initiate_conc_mark_if_possible() is set at the beginning of a
   738   // pause, it is a suggestion that the pause should start a marking
   739   // cycle by doing the initial-mark work. However, it is possible
   740   // that the concurrent marking thread is still finishing up the
   741   // previous marking cycle (e.g., clearing the next marking
   742   // bitmap). If that is the case we cannot start a new cycle and
   743   // we'll have to wait for the concurrent marking thread to finish
   744   // what it is doing. In this case we will postpone the marking cycle
   745   // initiation decision for the next pause. When we eventually decide
   746   // to start a cycle, we will set _during_initial_mark_pause which
   747   // will stay true until the end of the initial-mark pause and it's
   748   // the condition that indicates that a pause is doing the
   749   // initial-mark work.
   750   volatile bool _during_initial_mark_pause;
   752   bool _should_revert_to_full_young_gcs;
   753   bool _last_full_young_gc;
   755   // This set of variables tracks the collector efficiency, in order to
   756   // determine whether we should initiate a new marking.
   757   double _cur_mark_stop_world_time_ms;
   758   double _mark_init_start_sec;
   759   double _mark_remark_start_sec;
   760   double _mark_cleanup_start_sec;
   761   double _mark_closure_time_ms;
   763   void   calculate_young_list_min_length();
   764   void   calculate_young_list_target_config();
   765   void   calculate_young_list_target_config(size_t rs_lengths);
   766   size_t calculate_optimal_so_length(size_t young_list_length);
   768 public:
   770   G1CollectorPolicy();
   772   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   774   virtual CollectorPolicy::Name kind() {
   775     return CollectorPolicy::G1CollectorPolicyKind;
   776   }
   778   void check_prediction_validity();
   780   size_t bytes_in_collection_set() {
   781     return _bytes_in_collection_set_before_gc;
   782   }
   784   size_t bytes_in_to_space() {
   785     return bytes_in_to_space_during_gc();
   786   }
   788   unsigned calc_gc_alloc_time_stamp() {
   789     return _all_pause_times_ms->num() + 1;
   790   }
   792 protected:
   794   // Count the number of bytes used in the CS.
   795   void count_CS_bytes_used();
   797   // Together these do the base cleanup-recording work.  Subclasses might
   798   // want to put something between them.
   799   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   800                                                 size_t max_live_bytes);
   801   void record_concurrent_mark_cleanup_end_work2();
   803 public:
   805   virtual void init();
   807   // Create jstat counters for the policy.
   808   virtual void initialize_gc_policy_counters();
   810   virtual HeapWord* mem_allocate_work(size_t size,
   811                                       bool is_tlab,
   812                                       bool* gc_overhead_limit_was_exceeded);
   814   // This method controls how a collector handles one or more
   815   // of its generations being fully allocated.
   816   virtual HeapWord* satisfy_failed_allocation(size_t size,
   817                                               bool is_tlab);
   819   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   821   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   823   // The number of collection pauses so far.
   824   long n_pauses() const { return _n_pauses; }
   826   // Update the heuristic info to record a collection pause of the given
   827   // start time, where the given number of bytes were used at the start.
   828   // This may involve changing the desired size of a collection set.
   830   virtual void record_stop_world_start();
   832   virtual void record_collection_pause_start(double start_time_sec,
   833                                              size_t start_used);
   835   // Must currently be called while the world is stopped.
   836   virtual void record_concurrent_mark_init_start();
   837   virtual void record_concurrent_mark_init_end();
   838   void record_concurrent_mark_init_end_pre(double
   839                                            mark_init_elapsed_time_ms);
   841   void record_mark_closure_time(double mark_closure_time_ms);
   843   virtual void record_concurrent_mark_remark_start();
   844   virtual void record_concurrent_mark_remark_end();
   846   virtual void record_concurrent_mark_cleanup_start();
   847   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   848                                                   size_t max_live_bytes);
   849   virtual void record_concurrent_mark_cleanup_completed();
   851   virtual void record_concurrent_pause();
   852   virtual void record_concurrent_pause_end();
   854   virtual void record_collection_pause_end_CH_strong_roots();
   855   virtual void record_collection_pause_end_G1_strong_roots();
   857   virtual void record_collection_pause_end(bool abandoned);
   859   // Record the fact that a full collection occurred.
   860   virtual void record_full_collection_start();
   861   virtual void record_full_collection_end();
   863   void record_ext_root_scan_time(int worker_i, double ms) {
   864     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   865   }
   867   void record_mark_stack_scan_time(int worker_i, double ms) {
   868     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   869   }
   871   void record_scan_only_time(int worker_i, double ms, int n) {
   872     _par_last_scan_only_times_ms[worker_i] = ms;
   873     _par_last_scan_only_regions_scanned[worker_i] = (double) n;
   874   }
   876   void record_satb_drain_time(double ms) {
   877     _cur_satb_drain_time_ms = ms;
   878     _satb_drain_time_set    = true;
   879   }
   881   void record_satb_drain_processed_buffers (int processed_buffers) {
   882     _last_satb_drain_processed_buffers = processed_buffers;
   883   }
   885   void record_mod_union_time(double ms) {
   886     _all_mod_union_times_ms->add(ms);
   887   }
   889   void record_update_rs_start_time(int thread, double ms) {
   890     _par_last_update_rs_start_times_ms[thread] = ms;
   891   }
   893   void record_update_rs_time(int thread, double ms) {
   894     _par_last_update_rs_times_ms[thread] = ms;
   895   }
   897   void record_update_rs_processed_buffers (int thread,
   898                                            double processed_buffers) {
   899     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   900   }
   902   void record_scan_rs_start_time(int thread, double ms) {
   903     _par_last_scan_rs_start_times_ms[thread] = ms;
   904   }
   906   void record_scan_rs_time(int thread, double ms) {
   907     _par_last_scan_rs_times_ms[thread] = ms;
   908   }
   910   void record_scan_new_refs_time(int thread, double ms) {
   911     _par_last_scan_new_refs_times_ms[thread] = ms;
   912   }
   914   double get_scan_new_refs_time(int thread) {
   915     return _par_last_scan_new_refs_times_ms[thread];
   916   }
   918   void reset_obj_copy_time(int thread) {
   919     _par_last_obj_copy_times_ms[thread] = 0.0;
   920   }
   922   void reset_obj_copy_time() {
   923     reset_obj_copy_time(0);
   924   }
   926   void record_obj_copy_time(int thread, double ms) {
   927     _par_last_obj_copy_times_ms[thread] += ms;
   928   }
   930   void record_obj_copy_time(double ms) {
   931     record_obj_copy_time(0, ms);
   932   }
   934   void record_termination_time(int thread, double ms) {
   935     _par_last_termination_times_ms[thread] = ms;
   936   }
   938   void record_termination_time(double ms) {
   939     record_termination_time(0, ms);
   940   }
   942   void record_pause_time_ms(double ms) {
   943     _last_pause_time_ms = ms;
   944   }
   946   void record_clear_ct_time(double ms) {
   947     _cur_clear_ct_time_ms = ms;
   948   }
   950   void record_par_time(double ms) {
   951     _cur_collection_par_time_ms = ms;
   952   }
   954   void record_aux_start_time(int i) {
   955     guarantee(i < _aux_num, "should be within range");
   956     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   957   }
   959   void record_aux_end_time(int i) {
   960     guarantee(i < _aux_num, "should be within range");
   961     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   962     _cur_aux_times_set[i] = true;
   963     _cur_aux_times_ms[i] += ms;
   964   }
   966 #ifndef PRODUCT
   967   void record_cc_clear_time(double ms) {
   968     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   969       _min_clear_cc_time_ms = ms;
   970     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   971       _max_clear_cc_time_ms = ms;
   972     _cur_clear_cc_time_ms = ms;
   973     _cum_clear_cc_time_ms += ms;
   974     _num_cc_clears++;
   975   }
   976 #endif
   978   // Record the fact that "bytes" bytes allocated in a region.
   979   void record_before_bytes(size_t bytes);
   980   void record_after_bytes(size_t bytes);
   982   // Returns "true" if this is a good time to do a collection pause.
   983   // The "word_size" argument, if non-zero, indicates the size of an
   984   // allocation request that is prompting this query.
   985   virtual bool should_do_collection_pause(size_t word_size) = 0;
   987   // Choose a new collection set.  Marks the chosen regions as being
   988   // "in_collection_set", and links them together.  The head and number of
   989   // the collection set are available via access methods.
   990   virtual void choose_collection_set() = 0;
   992   void clear_collection_set() { _collection_set = NULL; }
   994   // The head of the list (via "next_in_collection_set()") representing the
   995   // current collection set.
   996   HeapRegion* collection_set() { return _collection_set; }
   998   // The number of elements in the current collection set.
   999   size_t collection_set_size() { return _collection_set_size; }
  1001   // Add "hr" to the CS.
  1002   void add_to_collection_set(HeapRegion* hr);
  1004   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1005   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1006   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1008   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1009   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1010   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1012   // This is called at the very beginning of an evacuation pause (it
  1013   // has to be the first thing that the pause does). If
  1014   // initiate_conc_mark_if_possible() is true, and the concurrent
  1015   // marking thread has completed its work during the previous cycle,
  1016   // it will set during_initial_mark_pause() to so that the pause does
  1017   // the initial-mark work and start a marking cycle.
  1018   void decide_on_conc_mark_initiation();
  1020   // If an expansion would be appropriate, because recent GC overhead had
  1021   // exceeded the desired limit, return an amount to expand by.
  1022   virtual size_t expansion_amount();
  1024   // note start of mark thread
  1025   void note_start_of_mark_thread();
  1027   // The marked bytes of the "r" has changed; reclassify it's desirability
  1028   // for marking.  Also asserts that "r" is eligible for a CS.
  1029   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1031 #ifndef PRODUCT
  1032   // Check any appropriate marked bytes info, asserting false if
  1033   // something's wrong, else returning "true".
  1034   virtual bool assertMarkedBytesDataOK() = 0;
  1035 #endif
  1037   // Print tracing information.
  1038   void print_tracing_info() const;
  1040   // Print stats on young survival ratio
  1041   void print_yg_surv_rate_info() const;
  1043   void finished_recalculating_age_indexes(bool is_survivors) {
  1044     if (is_survivors) {
  1045       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1046     } else {
  1047       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1049     // do that for any other surv rate groups
  1052   bool should_add_next_region_to_young_list();
  1054   bool in_young_gc_mode() {
  1055     return _in_young_gc_mode;
  1057   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1058     _in_young_gc_mode = in_young_gc_mode;
  1061   bool full_young_gcs() {
  1062     return _full_young_gcs;
  1064   void set_full_young_gcs(bool full_young_gcs) {
  1065     _full_young_gcs = full_young_gcs;
  1068   bool adaptive_young_list_length() {
  1069     return _adaptive_young_list_length;
  1071   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1072     _adaptive_young_list_length = adaptive_young_list_length;
  1075   inline double get_gc_eff_factor() {
  1076     double ratio = _known_garbage_ratio;
  1078     double square = ratio * ratio;
  1079     // square = square * square;
  1080     double ret = square * 9.0 + 1.0;
  1081 #if 0
  1082     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1083 #endif // 0
  1084     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1085     return ret;
  1088   //
  1089   // Survivor regions policy.
  1090   //
  1091 protected:
  1093   // Current tenuring threshold, set to 0 if the collector reaches the
  1094   // maximum amount of suvivors regions.
  1095   int _tenuring_threshold;
  1097   // The limit on the number of regions allocated for survivors.
  1098   size_t _max_survivor_regions;
  1100   // The amount of survor regions after a collection.
  1101   size_t _recorded_survivor_regions;
  1102   // List of survivor regions.
  1103   HeapRegion* _recorded_survivor_head;
  1104   HeapRegion* _recorded_survivor_tail;
  1106   ageTable _survivors_age_table;
  1108 public:
  1110   inline GCAllocPurpose
  1111     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1112       if (age < _tenuring_threshold && src_region->is_young()) {
  1113         return GCAllocForSurvived;
  1114       } else {
  1115         return GCAllocForTenured;
  1119   inline bool track_object_age(GCAllocPurpose purpose) {
  1120     return purpose == GCAllocForSurvived;
  1123   inline GCAllocPurpose alternative_purpose(int purpose) {
  1124     return GCAllocForTenured;
  1127   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1129   size_t max_regions(int purpose);
  1131   // The limit on regions for a particular purpose is reached.
  1132   void note_alloc_region_limit_reached(int purpose) {
  1133     if (purpose == GCAllocForSurvived) {
  1134       _tenuring_threshold = 0;
  1138   void note_start_adding_survivor_regions() {
  1139     _survivor_surv_rate_group->start_adding_regions();
  1142   void note_stop_adding_survivor_regions() {
  1143     _survivor_surv_rate_group->stop_adding_regions();
  1146   void record_survivor_regions(size_t      regions,
  1147                                HeapRegion* head,
  1148                                HeapRegion* tail) {
  1149     _recorded_survivor_regions = regions;
  1150     _recorded_survivor_head    = head;
  1151     _recorded_survivor_tail    = tail;
  1154   size_t recorded_survivor_regions() {
  1155     return _recorded_survivor_regions;
  1158   void record_thread_age_table(ageTable* age_table)
  1160     _survivors_age_table.merge_par(age_table);
  1163   // Calculates survivor space parameters.
  1164   void calculate_survivors_policy();
  1166 };
  1168 // This encapsulates a particular strategy for a g1 Collector.
  1169 //
  1170 //      Start a concurrent mark when our heap size is n bytes
  1171 //            greater then our heap size was at the last concurrent
  1172 //            mark.  Where n is a function of the CMSTriggerRatio
  1173 //            and the MinHeapFreeRatio.
  1174 //
  1175 //      Start a g1 collection pause when we have allocated the
  1176 //            average number of bytes currently being freed in
  1177 //            a collection, but only if it is at least one region
  1178 //            full
  1179 //
  1180 //      Resize Heap based on desired
  1181 //      allocation space, where desired allocation space is
  1182 //      a function of survival rate and desired future to size.
  1183 //
  1184 //      Choose collection set by first picking all older regions
  1185 //      which have a survival rate which beats our projected young
  1186 //      survival rate.  Then fill out the number of needed regions
  1187 //      with young regions.
  1189 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1190   CollectionSetChooser* _collectionSetChooser;
  1191   // If the estimated is less then desirable, resize if possible.
  1192   void expand_if_possible(size_t numRegions);
  1194   virtual void choose_collection_set();
  1195   virtual void record_collection_pause_start(double start_time_sec,
  1196                                              size_t start_used);
  1197   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1198                                                   size_t max_live_bytes);
  1199   virtual void record_full_collection_end();
  1201 public:
  1202   G1CollectorPolicy_BestRegionsFirst() {
  1203     _collectionSetChooser = new CollectionSetChooser();
  1205   void record_collection_pause_end(bool abandoned);
  1206   bool should_do_collection_pause(size_t word_size);
  1207   // This is not needed any more, after the CSet choosing code was
  1208   // changed to use the pause prediction work. But let's leave the
  1209   // hook in just in case.
  1210   void note_change_in_marked_bytes(HeapRegion* r) { }
  1211 #ifndef PRODUCT
  1212   bool assertMarkedBytesDataOK();
  1213 #endif
  1214 };
  1216 // This should move to some place more general...
  1218 // If we have "n" measurements, and we've kept track of their "sum" and the
  1219 // "sum_of_squares" of the measurements, this returns the variance of the
  1220 // sequence.
  1221 inline double variance(int n, double sum_of_squares, double sum) {
  1222   double n_d = (double)n;
  1223   double avg = sum/n_d;
  1224   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1227 // Local Variables: ***
  1228 // c-indentation-style: gnu ***
  1229 // End: ***

mercurial