src/share/vm/opto/callnode.cpp

Thu, 14 Jun 2018 09:15:08 -0700

author
kevinw
date
Thu, 14 Jun 2018 09:15:08 -0700
changeset 9327
f96fcd9e1e1b
parent 8777
09d0d56ca735
child 9448
73d689add964
child 9957
d2ec2776ad0c
permissions
-rw-r--r--

8081202: Hotspot compile warning: "Invalid suffix on literal; C++11 requires a space between literal and identifier"
Summary: Need to add a space between macro identifier and string literal
Reviewed-by: bpittore, stefank, dholmes, kbarrett

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "ci/bcEscapeAnalyzer.hpp"
    28 #include "compiler/oopMap.hpp"
    29 #include "opto/callGenerator.hpp"
    30 #include "opto/callnode.hpp"
    31 #include "opto/escape.hpp"
    32 #include "opto/locknode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/matcher.hpp"
    35 #include "opto/parse.hpp"
    36 #include "opto/regalloc.hpp"
    37 #include "opto/regmask.hpp"
    38 #include "opto/rootnode.hpp"
    39 #include "opto/runtime.hpp"
    41 // Portions of code courtesy of Clifford Click
    43 // Optimization - Graph Style
    45 //=============================================================================
    46 uint StartNode::size_of() const { return sizeof(*this); }
    47 uint StartNode::cmp( const Node &n ) const
    48 { return _domain == ((StartNode&)n)._domain; }
    49 const Type *StartNode::bottom_type() const { return _domain; }
    50 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
    51 #ifndef PRODUCT
    52 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
    53 #endif
    55 //------------------------------Ideal------------------------------------------
    56 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
    57   return remove_dead_region(phase, can_reshape) ? this : NULL;
    58 }
    60 //------------------------------calling_convention-----------------------------
    61 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
    62   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
    63 }
    65 //------------------------------Registers--------------------------------------
    66 const RegMask &StartNode::in_RegMask(uint) const {
    67   return RegMask::Empty;
    68 }
    70 //------------------------------match------------------------------------------
    71 // Construct projections for incoming parameters, and their RegMask info
    72 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
    73   switch (proj->_con) {
    74   case TypeFunc::Control:
    75   case TypeFunc::I_O:
    76   case TypeFunc::Memory:
    77     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
    78   case TypeFunc::FramePtr:
    79     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
    80   case TypeFunc::ReturnAdr:
    81     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
    82   case TypeFunc::Parms:
    83   default: {
    84       uint parm_num = proj->_con - TypeFunc::Parms;
    85       const Type *t = _domain->field_at(proj->_con);
    86       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
    87         return new (match->C) ConNode(Type::TOP);
    88       uint ideal_reg = t->ideal_reg();
    89       RegMask &rm = match->_calling_convention_mask[parm_num];
    90       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
    91     }
    92   }
    93   return NULL;
    94 }
    96 //------------------------------StartOSRNode----------------------------------
    97 // The method start node for an on stack replacement adapter
    99 //------------------------------osr_domain-----------------------------
   100 const TypeTuple *StartOSRNode::osr_domain() {
   101   const Type **fields = TypeTuple::fields(2);
   102   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
   104   return TypeTuple::make(TypeFunc::Parms+1, fields);
   105 }
   107 //=============================================================================
   108 const char * const ParmNode::names[TypeFunc::Parms+1] = {
   109   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
   110 };
   112 #ifndef PRODUCT
   113 void ParmNode::dump_spec(outputStream *st) const {
   114   if( _con < TypeFunc::Parms ) {
   115     st->print("%s", names[_con]);
   116   } else {
   117     st->print("Parm%d: ",_con-TypeFunc::Parms);
   118     // Verbose and WizardMode dump bottom_type for all nodes
   119     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
   120   }
   121 }
   122 #endif
   124 uint ParmNode::ideal_reg() const {
   125   switch( _con ) {
   126   case TypeFunc::Control  : // fall through
   127   case TypeFunc::I_O      : // fall through
   128   case TypeFunc::Memory   : return 0;
   129   case TypeFunc::FramePtr : // fall through
   130   case TypeFunc::ReturnAdr: return Op_RegP;
   131   default                 : assert( _con > TypeFunc::Parms, "" );
   132     // fall through
   133   case TypeFunc::Parms    : {
   134     // Type of argument being passed
   135     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
   136     return t->ideal_reg();
   137   }
   138   }
   139   ShouldNotReachHere();
   140   return 0;
   141 }
   143 //=============================================================================
   144 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
   145   init_req(TypeFunc::Control,cntrl);
   146   init_req(TypeFunc::I_O,i_o);
   147   init_req(TypeFunc::Memory,memory);
   148   init_req(TypeFunc::FramePtr,frameptr);
   149   init_req(TypeFunc::ReturnAdr,retadr);
   150 }
   152 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
   153   return remove_dead_region(phase, can_reshape) ? this : NULL;
   154 }
   156 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
   157   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
   158     ? Type::TOP
   159     : Type::BOTTOM;
   160 }
   162 // Do we Match on this edge index or not?  No edges on return nodes
   163 uint ReturnNode::match_edge(uint idx) const {
   164   return 0;
   165 }
   168 #ifndef PRODUCT
   169 void ReturnNode::dump_req(outputStream *st) const {
   170   // Dump the required inputs, enclosed in '(' and ')'
   171   uint i;                       // Exit value of loop
   172   for (i = 0; i < req(); i++) {    // For all required inputs
   173     if (i == TypeFunc::Parms) st->print("returns");
   174     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   175     else st->print("_ ");
   176   }
   177 }
   178 #endif
   180 //=============================================================================
   181 RethrowNode::RethrowNode(
   182   Node* cntrl,
   183   Node* i_o,
   184   Node* memory,
   185   Node* frameptr,
   186   Node* ret_adr,
   187   Node* exception
   188 ) : Node(TypeFunc::Parms + 1) {
   189   init_req(TypeFunc::Control  , cntrl    );
   190   init_req(TypeFunc::I_O      , i_o      );
   191   init_req(TypeFunc::Memory   , memory   );
   192   init_req(TypeFunc::FramePtr , frameptr );
   193   init_req(TypeFunc::ReturnAdr, ret_adr);
   194   init_req(TypeFunc::Parms    , exception);
   195 }
   197 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
   198   return remove_dead_region(phase, can_reshape) ? this : NULL;
   199 }
   201 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
   202   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
   203     ? Type::TOP
   204     : Type::BOTTOM;
   205 }
   207 uint RethrowNode::match_edge(uint idx) const {
   208   return 0;
   209 }
   211 #ifndef PRODUCT
   212 void RethrowNode::dump_req(outputStream *st) const {
   213   // Dump the required inputs, enclosed in '(' and ')'
   214   uint i;                       // Exit value of loop
   215   for (i = 0; i < req(); i++) {    // For all required inputs
   216     if (i == TypeFunc::Parms) st->print("exception");
   217     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   218     else st->print("_ ");
   219   }
   220 }
   221 #endif
   223 //=============================================================================
   224 // Do we Match on this edge index or not?  Match only target address & method
   225 uint TailCallNode::match_edge(uint idx) const {
   226   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   227 }
   229 //=============================================================================
   230 // Do we Match on this edge index or not?  Match only target address & oop
   231 uint TailJumpNode::match_edge(uint idx) const {
   232   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   233 }
   235 //=============================================================================
   236 JVMState::JVMState(ciMethod* method, JVMState* caller) :
   237   _method(method) {
   238   assert(method != NULL, "must be valid call site");
   239   _reexecute = Reexecute_Undefined;
   240   debug_only(_bci = -99);  // random garbage value
   241   debug_only(_map = (SafePointNode*)-1);
   242   _caller = caller;
   243   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
   244   _locoff = TypeFunc::Parms;
   245   _stkoff = _locoff + _method->max_locals();
   246   _monoff = _stkoff + _method->max_stack();
   247   _scloff = _monoff;
   248   _endoff = _monoff;
   249   _sp = 0;
   250 }
   251 JVMState::JVMState(int stack_size) :
   252   _method(NULL) {
   253   _bci = InvocationEntryBci;
   254   _reexecute = Reexecute_Undefined;
   255   debug_only(_map = (SafePointNode*)-1);
   256   _caller = NULL;
   257   _depth  = 1;
   258   _locoff = TypeFunc::Parms;
   259   _stkoff = _locoff;
   260   _monoff = _stkoff + stack_size;
   261   _scloff = _monoff;
   262   _endoff = _monoff;
   263   _sp = 0;
   264 }
   266 //--------------------------------of_depth-------------------------------------
   267 JVMState* JVMState::of_depth(int d) const {
   268   const JVMState* jvmp = this;
   269   assert(0 < d && (uint)d <= depth(), "oob");
   270   for (int skip = depth() - d; skip > 0; skip--) {
   271     jvmp = jvmp->caller();
   272   }
   273   assert(jvmp->depth() == (uint)d, "found the right one");
   274   return (JVMState*)jvmp;
   275 }
   277 //-----------------------------same_calls_as-----------------------------------
   278 bool JVMState::same_calls_as(const JVMState* that) const {
   279   if (this == that)                    return true;
   280   if (this->depth() != that->depth())  return false;
   281   const JVMState* p = this;
   282   const JVMState* q = that;
   283   for (;;) {
   284     if (p->_method != q->_method)    return false;
   285     if (p->_method == NULL)          return true;   // bci is irrelevant
   286     if (p->_bci    != q->_bci)       return false;
   287     if (p->_reexecute != q->_reexecute)  return false;
   288     p = p->caller();
   289     q = q->caller();
   290     if (p == q)                      return true;
   291     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
   292   }
   293 }
   295 //------------------------------debug_start------------------------------------
   296 uint JVMState::debug_start()  const {
   297   debug_only(JVMState* jvmroot = of_depth(1));
   298   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
   299   return of_depth(1)->locoff();
   300 }
   302 //-------------------------------debug_end-------------------------------------
   303 uint JVMState::debug_end() const {
   304   debug_only(JVMState* jvmroot = of_depth(1));
   305   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
   306   return endoff();
   307 }
   309 //------------------------------debug_depth------------------------------------
   310 uint JVMState::debug_depth() const {
   311   uint total = 0;
   312   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
   313     total += jvmp->debug_size();
   314   }
   315   return total;
   316 }
   318 #ifndef PRODUCT
   320 //------------------------------format_helper----------------------------------
   321 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
   322 // any defined value or not.  If it does, print out the register or constant.
   323 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
   324   if (n == NULL) { st->print(" NULL"); return; }
   325   if (n->is_SafePointScalarObject()) {
   326     // Scalar replacement.
   327     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
   328     scobjs->append_if_missing(spobj);
   329     int sco_n = scobjs->find(spobj);
   330     assert(sco_n >= 0, "");
   331     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
   332     return;
   333   }
   334   if (regalloc->node_regs_max_index() > 0 &&
   335       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
   336     char buf[50];
   337     regalloc->dump_register(n,buf);
   338     st->print(" %s%d]=%s",msg,i,buf);
   339   } else {                      // No register, but might be constant
   340     const Type *t = n->bottom_type();
   341     switch (t->base()) {
   342     case Type::Int:
   343       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
   344       break;
   345     case Type::AnyPtr:
   346       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
   347       st->print(" %s%d]=#NULL",msg,i);
   348       break;
   349     case Type::AryPtr:
   350     case Type::InstPtr:
   351       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
   352       break;
   353     case Type::KlassPtr:
   354       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
   355       break;
   356     case Type::MetadataPtr:
   357       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
   358       break;
   359     case Type::NarrowOop:
   360       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
   361       break;
   362     case Type::RawPtr:
   363       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
   364       break;
   365     case Type::DoubleCon:
   366       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
   367       break;
   368     case Type::FloatCon:
   369       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
   370       break;
   371     case Type::Long:
   372       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
   373       break;
   374     case Type::Half:
   375     case Type::Top:
   376       st->print(" %s%d]=_",msg,i);
   377       break;
   378     default: ShouldNotReachHere();
   379     }
   380   }
   381 }
   383 //------------------------------format-----------------------------------------
   384 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
   385   st->print("        #");
   386   if (_method) {
   387     _method->print_short_name(st);
   388     st->print(" @ bci:%d ",_bci);
   389   } else {
   390     st->print_cr(" runtime stub ");
   391     return;
   392   }
   393   if (n->is_MachSafePoint()) {
   394     GrowableArray<SafePointScalarObjectNode*> scobjs;
   395     MachSafePointNode *mcall = n->as_MachSafePoint();
   396     uint i;
   397     // Print locals
   398     for (i = 0; i < (uint)loc_size(); i++)
   399       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
   400     // Print stack
   401     for (i = 0; i < (uint)stk_size(); i++) {
   402       if ((uint)(_stkoff + i) >= mcall->len())
   403         st->print(" oob ");
   404       else
   405        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
   406     }
   407     for (i = 0; (int)i < nof_monitors(); i++) {
   408       Node *box = mcall->monitor_box(this, i);
   409       Node *obj = mcall->monitor_obj(this, i);
   410       if (regalloc->node_regs_max_index() > 0 &&
   411           OptoReg::is_valid(regalloc->get_reg_first(box))) {
   412         box = BoxLockNode::box_node(box);
   413         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
   414       } else {
   415         OptoReg::Name box_reg = BoxLockNode::reg(box);
   416         st->print(" MON-BOX%d=%s+%d",
   417                    i,
   418                    OptoReg::regname(OptoReg::c_frame_pointer),
   419                    regalloc->reg2offset(box_reg));
   420       }
   421       const char* obj_msg = "MON-OBJ[";
   422       if (EliminateLocks) {
   423         if (BoxLockNode::box_node(box)->is_eliminated())
   424           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
   425       }
   426       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
   427     }
   429     for (i = 0; i < (uint)scobjs.length(); i++) {
   430       // Scalar replaced objects.
   431       st->cr();
   432       st->print("        # ScObj" INT32_FORMAT " ", i);
   433       SafePointScalarObjectNode* spobj = scobjs.at(i);
   434       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
   435       assert(cik->is_instance_klass() ||
   436              cik->is_array_klass(), "Not supported allocation.");
   437       ciInstanceKlass *iklass = NULL;
   438       if (cik->is_instance_klass()) {
   439         cik->print_name_on(st);
   440         iklass = cik->as_instance_klass();
   441       } else if (cik->is_type_array_klass()) {
   442         cik->as_array_klass()->base_element_type()->print_name_on(st);
   443         st->print("[%d]", spobj->n_fields());
   444       } else if (cik->is_obj_array_klass()) {
   445         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
   446         if (cie->is_instance_klass()) {
   447           cie->print_name_on(st);
   448         } else if (cie->is_type_array_klass()) {
   449           cie->as_array_klass()->base_element_type()->print_name_on(st);
   450         } else {
   451           ShouldNotReachHere();
   452         }
   453         st->print("[%d]", spobj->n_fields());
   454         int ndim = cik->as_array_klass()->dimension() - 1;
   455         while (ndim-- > 0) {
   456           st->print("[]");
   457         }
   458       }
   459       st->print("={");
   460       uint nf = spobj->n_fields();
   461       if (nf > 0) {
   462         uint first_ind = spobj->first_index(mcall->jvms());
   463         Node* fld_node = mcall->in(first_ind);
   464         ciField* cifield;
   465         if (iklass != NULL) {
   466           st->print(" [");
   467           cifield = iklass->nonstatic_field_at(0);
   468           cifield->print_name_on(st);
   469           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
   470         } else {
   471           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
   472         }
   473         for (uint j = 1; j < nf; j++) {
   474           fld_node = mcall->in(first_ind+j);
   475           if (iklass != NULL) {
   476             st->print(", [");
   477             cifield = iklass->nonstatic_field_at(j);
   478             cifield->print_name_on(st);
   479             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
   480           } else {
   481             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
   482           }
   483         }
   484       }
   485       st->print(" }");
   486     }
   487   }
   488   st->cr();
   489   if (caller() != NULL) caller()->format(regalloc, n, st);
   490 }
   493 void JVMState::dump_spec(outputStream *st) const {
   494   if (_method != NULL) {
   495     bool printed = false;
   496     if (!Verbose) {
   497       // The JVMS dumps make really, really long lines.
   498       // Take out the most boring parts, which are the package prefixes.
   499       char buf[500];
   500       stringStream namest(buf, sizeof(buf));
   501       _method->print_short_name(&namest);
   502       if (namest.count() < sizeof(buf)) {
   503         const char* name = namest.base();
   504         if (name[0] == ' ')  ++name;
   505         const char* endcn = strchr(name, ':');  // end of class name
   506         if (endcn == NULL)  endcn = strchr(name, '(');
   507         if (endcn == NULL)  endcn = name + strlen(name);
   508         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
   509           --endcn;
   510         st->print(" %s", endcn);
   511         printed = true;
   512       }
   513     }
   514     if (!printed)
   515       _method->print_short_name(st);
   516     st->print(" @ bci:%d",_bci);
   517     if(_reexecute == Reexecute_True)
   518       st->print(" reexecute");
   519   } else {
   520     st->print(" runtime stub");
   521   }
   522   if (caller() != NULL)  caller()->dump_spec(st);
   523 }
   526 void JVMState::dump_on(outputStream* st) const {
   527   bool print_map = _map && !((uintptr_t)_map & 1) &&
   528                   ((caller() == NULL) || (caller()->map() != _map));
   529   if (print_map) {
   530     if (_map->len() > _map->req()) {  // _map->has_exceptions()
   531       Node* ex = _map->in(_map->req());  // _map->next_exception()
   532       // skip the first one; it's already being printed
   533       while (ex != NULL && ex->len() > ex->req()) {
   534         ex = ex->in(ex->req());  // ex->next_exception()
   535         ex->dump(1);
   536       }
   537     }
   538     _map->dump(Verbose ? 2 : 1);
   539   }
   540   if (caller() != NULL) {
   541     caller()->dump_on(st);
   542   }
   543   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
   544              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
   545   if (_method == NULL) {
   546     st->print_cr("(none)");
   547   } else {
   548     _method->print_name(st);
   549     st->cr();
   550     if (bci() >= 0 && bci() < _method->code_size()) {
   551       st->print("    bc: ");
   552       _method->print_codes_on(bci(), bci()+1, st);
   553     }
   554   }
   555 }
   557 // Extra way to dump a jvms from the debugger,
   558 // to avoid a bug with C++ member function calls.
   559 void dump_jvms(JVMState* jvms) {
   560   jvms->dump();
   561 }
   562 #endif
   564 //--------------------------clone_shallow--------------------------------------
   565 JVMState* JVMState::clone_shallow(Compile* C) const {
   566   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
   567   n->set_bci(_bci);
   568   n->_reexecute = _reexecute;
   569   n->set_locoff(_locoff);
   570   n->set_stkoff(_stkoff);
   571   n->set_monoff(_monoff);
   572   n->set_scloff(_scloff);
   573   n->set_endoff(_endoff);
   574   n->set_sp(_sp);
   575   n->set_map(_map);
   576   return n;
   577 }
   579 //---------------------------clone_deep----------------------------------------
   580 JVMState* JVMState::clone_deep(Compile* C) const {
   581   JVMState* n = clone_shallow(C);
   582   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
   583     p->_caller = p->_caller->clone_shallow(C);
   584   }
   585   assert(n->depth() == depth(), "sanity");
   586   assert(n->debug_depth() == debug_depth(), "sanity");
   587   return n;
   588 }
   590 /**
   591  * Reset map for all callers
   592  */
   593 void JVMState::set_map_deep(SafePointNode* map) {
   594   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
   595     p->set_map(map);
   596   }
   597 }
   599 // Adapt offsets in in-array after adding or removing an edge.
   600 // Prerequisite is that the JVMState is used by only one node.
   601 void JVMState::adapt_position(int delta) {
   602   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
   603     jvms->set_locoff(jvms->locoff() + delta);
   604     jvms->set_stkoff(jvms->stkoff() + delta);
   605     jvms->set_monoff(jvms->monoff() + delta);
   606     jvms->set_scloff(jvms->scloff() + delta);
   607     jvms->set_endoff(jvms->endoff() + delta);
   608   }
   609 }
   611 // Mirror the stack size calculation in the deopt code
   612 // How much stack space would we need at this point in the program in
   613 // case of deoptimization?
   614 int JVMState::interpreter_frame_size() const {
   615   const JVMState* jvms = this;
   616   int size = 0;
   617   int callee_parameters = 0;
   618   int callee_locals = 0;
   619   int extra_args = method()->max_stack() - stk_size();
   621   while (jvms != NULL) {
   622     int locks = jvms->nof_monitors();
   623     int temps = jvms->stk_size();
   624     bool is_top_frame = (jvms == this);
   625     ciMethod* method = jvms->method();
   627     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
   628                                                                  temps + callee_parameters,
   629                                                                  extra_args,
   630                                                                  locks,
   631                                                                  callee_parameters,
   632                                                                  callee_locals,
   633                                                                  is_top_frame);
   634     size += frame_size;
   636     callee_parameters = method->size_of_parameters();
   637     callee_locals = method->max_locals();
   638     extra_args = 0;
   639     jvms = jvms->caller();
   640   }
   641   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
   642 }
   644 //=============================================================================
   645 uint CallNode::cmp( const Node &n ) const
   646 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
   647 #ifndef PRODUCT
   648 void CallNode::dump_req(outputStream *st) const {
   649   // Dump the required inputs, enclosed in '(' and ')'
   650   uint i;                       // Exit value of loop
   651   for (i = 0; i < req(); i++) {    // For all required inputs
   652     if (i == TypeFunc::Parms) st->print("(");
   653     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   654     else st->print("_ ");
   655   }
   656   st->print(")");
   657 }
   659 void CallNode::dump_spec(outputStream *st) const {
   660   st->print(" ");
   661   tf()->dump_on(st);
   662   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
   663   if (jvms() != NULL)  jvms()->dump_spec(st);
   664 }
   665 #endif
   667 const Type *CallNode::bottom_type() const { return tf()->range(); }
   668 const Type *CallNode::Value(PhaseTransform *phase) const {
   669   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
   670   return tf()->range();
   671 }
   673 //------------------------------calling_convention-----------------------------
   674 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   675   // Use the standard compiler calling convention
   676   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
   677 }
   680 //------------------------------match------------------------------------------
   681 // Construct projections for control, I/O, memory-fields, ..., and
   682 // return result(s) along with their RegMask info
   683 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
   684   switch (proj->_con) {
   685   case TypeFunc::Control:
   686   case TypeFunc::I_O:
   687   case TypeFunc::Memory:
   688     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
   690   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
   691     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
   692     // 2nd half of doubles and longs
   693     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
   695   case TypeFunc::Parms: {       // Normal returns
   696     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
   697     OptoRegPair regs = is_CallRuntime()
   698       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
   699       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
   700     RegMask rm = RegMask(regs.first());
   701     if( OptoReg::is_valid(regs.second()) )
   702       rm.Insert( regs.second() );
   703     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
   704   }
   706   case TypeFunc::ReturnAdr:
   707   case TypeFunc::FramePtr:
   708   default:
   709     ShouldNotReachHere();
   710   }
   711   return NULL;
   712 }
   714 // Do we Match on this edge index or not?  Match no edges
   715 uint CallNode::match_edge(uint idx) const {
   716   return 0;
   717 }
   719 //
   720 // Determine whether the call could modify the field of the specified
   721 // instance at the specified offset.
   722 //
   723 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
   724   assert((t_oop != NULL), "sanity");
   725   if (t_oop->is_known_instance()) {
   726     // The instance_id is set only for scalar-replaceable allocations which
   727     // are not passed as arguments according to Escape Analysis.
   728     return false;
   729   }
   730   if (t_oop->is_ptr_to_boxed_value()) {
   731     ciKlass* boxing_klass = t_oop->klass();
   732     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
   733       // Skip unrelated boxing methods.
   734       Node* proj = proj_out(TypeFunc::Parms);
   735       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
   736         return false;
   737       }
   738     }
   739     if (is_CallJava() && as_CallJava()->method() != NULL) {
   740       ciMethod* meth = as_CallJava()->method();
   741       if (meth->is_accessor()) {
   742         return false;
   743       }
   744       // May modify (by reflection) if an boxing object is passed
   745       // as argument or returned.
   746       Node* proj = returns_pointer() ? proj_out(TypeFunc::Parms) : NULL;
   747       if (proj != NULL) {
   748         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
   749         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
   750                                  (inst_t->klass() == boxing_klass))) {
   751           return true;
   752         }
   753       }
   754       const TypeTuple* d = tf()->domain();
   755       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   756         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
   757         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
   758                                  (inst_t->klass() == boxing_klass))) {
   759           return true;
   760         }
   761       }
   762       return false;
   763     }
   764   }
   765   return true;
   766 }
   768 // Does this call have a direct reference to n other than debug information?
   769 bool CallNode::has_non_debug_use(Node *n) {
   770   const TypeTuple * d = tf()->domain();
   771   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   772     Node *arg = in(i);
   773     if (arg == n) {
   774       return true;
   775     }
   776   }
   777   return false;
   778 }
   780 // Returns the unique CheckCastPP of a call
   781 // or 'this' if there are several CheckCastPP or unexpected uses
   782 // or returns NULL if there is no one.
   783 Node *CallNode::result_cast() {
   784   Node *cast = NULL;
   786   Node *p = proj_out(TypeFunc::Parms);
   787   if (p == NULL)
   788     return NULL;
   790   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
   791     Node *use = p->fast_out(i);
   792     if (use->is_CheckCastPP()) {
   793       if (cast != NULL) {
   794         return this;  // more than 1 CheckCastPP
   795       }
   796       cast = use;
   797     } else if (!use->is_Initialize() &&
   798                !use->is_AddP()) {
   799       // Expected uses are restricted to a CheckCastPP, an Initialize
   800       // node, and AddP nodes. If we encounter any other use (a Phi
   801       // node can be seen in rare cases) return this to prevent
   802       // incorrect optimizations.
   803       return this;
   804     }
   805   }
   806   return cast;
   807 }
   810 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
   811   projs->fallthrough_proj      = NULL;
   812   projs->fallthrough_catchproj = NULL;
   813   projs->fallthrough_ioproj    = NULL;
   814   projs->catchall_ioproj       = NULL;
   815   projs->catchall_catchproj    = NULL;
   816   projs->fallthrough_memproj   = NULL;
   817   projs->catchall_memproj      = NULL;
   818   projs->resproj               = NULL;
   819   projs->exobj                 = NULL;
   821   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   822     ProjNode *pn = fast_out(i)->as_Proj();
   823     if (pn->outcnt() == 0) continue;
   824     switch (pn->_con) {
   825     case TypeFunc::Control:
   826       {
   827         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   828         projs->fallthrough_proj = pn;
   829         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   830         const Node *cn = pn->fast_out(j);
   831         if (cn->is_Catch()) {
   832           ProjNode *cpn = NULL;
   833           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   834             cpn = cn->fast_out(k)->as_Proj();
   835             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   836             if (cpn->_con == CatchProjNode::fall_through_index)
   837               projs->fallthrough_catchproj = cpn;
   838             else {
   839               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   840               projs->catchall_catchproj = cpn;
   841             }
   842           }
   843         }
   844         break;
   845       }
   846     case TypeFunc::I_O:
   847       if (pn->_is_io_use)
   848         projs->catchall_ioproj = pn;
   849       else
   850         projs->fallthrough_ioproj = pn;
   851       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
   852         Node* e = pn->out(j);
   853         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
   854           assert(projs->exobj == NULL, "only one");
   855           projs->exobj = e;
   856         }
   857       }
   858       break;
   859     case TypeFunc::Memory:
   860       if (pn->_is_io_use)
   861         projs->catchall_memproj = pn;
   862       else
   863         projs->fallthrough_memproj = pn;
   864       break;
   865     case TypeFunc::Parms:
   866       projs->resproj = pn;
   867       break;
   868     default:
   869       assert(false, "unexpected projection from allocation node.");
   870     }
   871   }
   873   // The resproj may not exist because the result couuld be ignored
   874   // and the exception object may not exist if an exception handler
   875   // swallows the exception but all the other must exist and be found.
   876   assert(projs->fallthrough_proj      != NULL, "must be found");
   877   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
   878   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
   879   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
   880   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
   881   if (separate_io_proj) {
   882     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
   883     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
   884   }
   885 }
   887 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   888   CallGenerator* cg = generator();
   889   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
   890     // Check whether this MH handle call becomes a candidate for inlining
   891     ciMethod* callee = cg->method();
   892     vmIntrinsics::ID iid = callee->intrinsic_id();
   893     if (iid == vmIntrinsics::_invokeBasic) {
   894       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
   895         phase->C->prepend_late_inline(cg);
   896         set_generator(NULL);
   897       }
   898     } else {
   899       assert(callee->has_member_arg(), "wrong type of call?");
   900       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
   901         phase->C->prepend_late_inline(cg);
   902         set_generator(NULL);
   903       }
   904     }
   905   }
   906   return SafePointNode::Ideal(phase, can_reshape);
   907 }
   910 //=============================================================================
   911 uint CallJavaNode::size_of() const { return sizeof(*this); }
   912 uint CallJavaNode::cmp( const Node &n ) const {
   913   CallJavaNode &call = (CallJavaNode&)n;
   914   return CallNode::cmp(call) && _method == call._method;
   915 }
   916 #ifndef PRODUCT
   917 void CallJavaNode::dump_spec(outputStream *st) const {
   918   if( _method ) _method->print_short_name(st);
   919   CallNode::dump_spec(st);
   920 }
   921 #endif
   923 //=============================================================================
   924 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
   925 uint CallStaticJavaNode::cmp( const Node &n ) const {
   926   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
   927   return CallJavaNode::cmp(call);
   928 }
   930 //----------------------------uncommon_trap_request----------------------------
   931 // If this is an uncommon trap, return the request code, else zero.
   932 int CallStaticJavaNode::uncommon_trap_request() const {
   933   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
   934     return extract_uncommon_trap_request(this);
   935   }
   936   return 0;
   937 }
   938 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
   939 #ifndef PRODUCT
   940   if (!(call->req() > TypeFunc::Parms &&
   941         call->in(TypeFunc::Parms) != NULL &&
   942         call->in(TypeFunc::Parms)->is_Con())) {
   943     assert(in_dump() != 0, "OK if dumping");
   944     tty->print("[bad uncommon trap]");
   945     return 0;
   946   }
   947 #endif
   948   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
   949 }
   951 #ifndef PRODUCT
   952 void CallStaticJavaNode::dump_spec(outputStream *st) const {
   953   st->print("# Static ");
   954   if (_name != NULL) {
   955     st->print("%s", _name);
   956     int trap_req = uncommon_trap_request();
   957     if (trap_req != 0) {
   958       char buf[100];
   959       st->print("(%s)",
   960                  Deoptimization::format_trap_request(buf, sizeof(buf),
   961                                                      trap_req));
   962     }
   963     st->print(" ");
   964   }
   965   CallJavaNode::dump_spec(st);
   966 }
   967 #endif
   969 //=============================================================================
   970 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
   971 uint CallDynamicJavaNode::cmp( const Node &n ) const {
   972   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
   973   return CallJavaNode::cmp(call);
   974 }
   975 #ifndef PRODUCT
   976 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
   977   st->print("# Dynamic ");
   978   CallJavaNode::dump_spec(st);
   979 }
   980 #endif
   982 //=============================================================================
   983 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
   984 uint CallRuntimeNode::cmp( const Node &n ) const {
   985   CallRuntimeNode &call = (CallRuntimeNode&)n;
   986   return CallNode::cmp(call) && !strcmp(_name,call._name);
   987 }
   988 #ifndef PRODUCT
   989 void CallRuntimeNode::dump_spec(outputStream *st) const {
   990   st->print("# ");
   991   st->print("%s", _name);
   992   CallNode::dump_spec(st);
   993 }
   994 #endif
   996 //------------------------------calling_convention-----------------------------
   997 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   998   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
   999 }
  1001 //=============================================================================
  1002 //------------------------------calling_convention-----------------------------
  1005 //=============================================================================
  1006 #ifndef PRODUCT
  1007 void CallLeafNode::dump_spec(outputStream *st) const {
  1008   st->print("# ");
  1009   st->print("%s", _name);
  1010   CallNode::dump_spec(st);
  1012 #endif
  1014 //=============================================================================
  1016 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
  1017   assert(verify_jvms(jvms), "jvms must match");
  1018   int loc = jvms->locoff() + idx;
  1019   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
  1020     // If current local idx is top then local idx - 1 could
  1021     // be a long/double that needs to be killed since top could
  1022     // represent the 2nd half ofthe long/double.
  1023     uint ideal = in(loc -1)->ideal_reg();
  1024     if (ideal == Op_RegD || ideal == Op_RegL) {
  1025       // set other (low index) half to top
  1026       set_req(loc - 1, in(loc));
  1029   set_req(loc, c);
  1032 uint SafePointNode::size_of() const { return sizeof(*this); }
  1033 uint SafePointNode::cmp( const Node &n ) const {
  1034   return (&n == this);          // Always fail except on self
  1037 //-------------------------set_next_exception----------------------------------
  1038 void SafePointNode::set_next_exception(SafePointNode* n) {
  1039   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
  1040   if (len() == req()) {
  1041     if (n != NULL)  add_prec(n);
  1042   } else {
  1043     set_prec(req(), n);
  1048 //----------------------------next_exception-----------------------------------
  1049 SafePointNode* SafePointNode::next_exception() const {
  1050   if (len() == req()) {
  1051     return NULL;
  1052   } else {
  1053     Node* n = in(req());
  1054     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
  1055     return (SafePointNode*) n;
  1060 //------------------------------Ideal------------------------------------------
  1061 // Skip over any collapsed Regions
  1062 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1063   return remove_dead_region(phase, can_reshape) ? this : NULL;
  1066 //------------------------------Identity---------------------------------------
  1067 // Remove obviously duplicate safepoints
  1068 Node *SafePointNode::Identity( PhaseTransform *phase ) {
  1070   // If you have back to back safepoints, remove one
  1071   if( in(TypeFunc::Control)->is_SafePoint() )
  1072     return in(TypeFunc::Control);
  1074   if( in(0)->is_Proj() ) {
  1075     Node *n0 = in(0)->in(0);
  1076     // Check if he is a call projection (except Leaf Call)
  1077     if( n0->is_Catch() ) {
  1078       n0 = n0->in(0)->in(0);
  1079       assert( n0->is_Call(), "expect a call here" );
  1081     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
  1082       // Useless Safepoint, so remove it
  1083       return in(TypeFunc::Control);
  1087   return this;
  1090 //------------------------------Value------------------------------------------
  1091 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
  1092   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
  1093   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
  1094   return Type::CONTROL;
  1097 #ifndef PRODUCT
  1098 void SafePointNode::dump_spec(outputStream *st) const {
  1099   st->print(" SafePoint ");
  1100   _replaced_nodes.dump(st);
  1102 #endif
  1104 const RegMask &SafePointNode::in_RegMask(uint idx) const {
  1105   if( idx < TypeFunc::Parms ) return RegMask::Empty;
  1106   // Values outside the domain represent debug info
  1107   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1109 const RegMask &SafePointNode::out_RegMask() const {
  1110   return RegMask::Empty;
  1114 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
  1115   assert((int)grow_by > 0, "sanity");
  1116   int monoff = jvms->monoff();
  1117   int scloff = jvms->scloff();
  1118   int endoff = jvms->endoff();
  1119   assert(endoff == (int)req(), "no other states or debug info after me");
  1120   Node* top = Compile::current()->top();
  1121   for (uint i = 0; i < grow_by; i++) {
  1122     ins_req(monoff, top);
  1124   jvms->set_monoff(monoff + grow_by);
  1125   jvms->set_scloff(scloff + grow_by);
  1126   jvms->set_endoff(endoff + grow_by);
  1129 void SafePointNode::push_monitor(const FastLockNode *lock) {
  1130   // Add a LockNode, which points to both the original BoxLockNode (the
  1131   // stack space for the monitor) and the Object being locked.
  1132   const int MonitorEdges = 2;
  1133   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
  1134   assert(req() == jvms()->endoff(), "correct sizing");
  1135   int nextmon = jvms()->scloff();
  1136   if (GenerateSynchronizationCode) {
  1137     ins_req(nextmon,   lock->box_node());
  1138     ins_req(nextmon+1, lock->obj_node());
  1139   } else {
  1140     Node* top = Compile::current()->top();
  1141     ins_req(nextmon, top);
  1142     ins_req(nextmon, top);
  1144   jvms()->set_scloff(nextmon + MonitorEdges);
  1145   jvms()->set_endoff(req());
  1148 void SafePointNode::pop_monitor() {
  1149   // Delete last monitor from debug info
  1150   debug_only(int num_before_pop = jvms()->nof_monitors());
  1151   const int MonitorEdges = 2;
  1152   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
  1153   int scloff = jvms()->scloff();
  1154   int endoff = jvms()->endoff();
  1155   int new_scloff = scloff - MonitorEdges;
  1156   int new_endoff = endoff - MonitorEdges;
  1157   jvms()->set_scloff(new_scloff);
  1158   jvms()->set_endoff(new_endoff);
  1159   while (scloff > new_scloff)  del_req_ordered(--scloff);
  1160   assert(jvms()->nof_monitors() == num_before_pop-1, "");
  1163 Node *SafePointNode::peek_monitor_box() const {
  1164   int mon = jvms()->nof_monitors() - 1;
  1165   assert(mon >= 0, "most have a monitor");
  1166   return monitor_box(jvms(), mon);
  1169 Node *SafePointNode::peek_monitor_obj() const {
  1170   int mon = jvms()->nof_monitors() - 1;
  1171   assert(mon >= 0, "most have a monitor");
  1172   return monitor_obj(jvms(), mon);
  1175 // Do we Match on this edge index or not?  Match no edges
  1176 uint SafePointNode::match_edge(uint idx) const {
  1177   if( !needs_polling_address_input() )
  1178     return 0;
  1180   return (TypeFunc::Parms == idx);
  1183 //==============  SafePointScalarObjectNode  ==============
  1185 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
  1186 #ifdef ASSERT
  1187                                                      AllocateNode* alloc,
  1188 #endif
  1189                                                      uint first_index,
  1190                                                      uint n_fields) :
  1191   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
  1192 #ifdef ASSERT
  1193   _alloc(alloc),
  1194 #endif
  1195   _first_index(first_index),
  1196   _n_fields(n_fields)
  1198   init_class_id(Class_SafePointScalarObject);
  1201 // Do not allow value-numbering for SafePointScalarObject node.
  1202 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
  1203 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
  1204   return (&n == this); // Always fail except on self
  1207 uint SafePointScalarObjectNode::ideal_reg() const {
  1208   return 0; // No matching to machine instruction
  1211 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
  1212   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1215 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
  1216   return RegMask::Empty;
  1219 uint SafePointScalarObjectNode::match_edge(uint idx) const {
  1220   return 0;
  1223 SafePointScalarObjectNode*
  1224 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
  1225   void* cached = (*sosn_map)[(void*)this];
  1226   if (cached != NULL) {
  1227     return (SafePointScalarObjectNode*)cached;
  1229   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
  1230   sosn_map->Insert((void*)this, (void*)res);
  1231   return res;
  1235 #ifndef PRODUCT
  1236 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
  1237   st->print(" # fields@[%d..%d]", first_index(),
  1238              first_index() + n_fields() - 1);
  1241 #endif
  1243 //=============================================================================
  1244 uint AllocateNode::size_of() const { return sizeof(*this); }
  1246 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
  1247                            Node *ctrl, Node *mem, Node *abio,
  1248                            Node *size, Node *klass_node, Node *initial_test)
  1249   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
  1251   init_class_id(Class_Allocate);
  1252   init_flags(Flag_is_macro);
  1253   _is_scalar_replaceable = false;
  1254   _is_non_escaping = false;
  1255   Node *topnode = C->top();
  1257   init_req( TypeFunc::Control  , ctrl );
  1258   init_req( TypeFunc::I_O      , abio );
  1259   init_req( TypeFunc::Memory   , mem );
  1260   init_req( TypeFunc::ReturnAdr, topnode );
  1261   init_req( TypeFunc::FramePtr , topnode );
  1262   init_req( AllocSize          , size);
  1263   init_req( KlassNode          , klass_node);
  1264   init_req( InitialTest        , initial_test);
  1265   init_req( ALength            , topnode);
  1266   C->add_macro_node(this);
  1269 //=============================================================================
  1270 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1271   if (remove_dead_region(phase, can_reshape))  return this;
  1272   // Don't bother trying to transform a dead node
  1273   if (in(0) && in(0)->is_top())  return NULL;
  1275   const Type* type = phase->type(Ideal_length());
  1276   if (type->isa_int() && type->is_int()->_hi < 0) {
  1277     if (can_reshape) {
  1278       PhaseIterGVN *igvn = phase->is_IterGVN();
  1279       // Unreachable fall through path (negative array length),
  1280       // the allocation can only throw so disconnect it.
  1281       Node* proj = proj_out(TypeFunc::Control);
  1282       Node* catchproj = NULL;
  1283       if (proj != NULL) {
  1284         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
  1285           Node *cn = proj->fast_out(i);
  1286           if (cn->is_Catch()) {
  1287             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
  1288             break;
  1292       if (catchproj != NULL && catchproj->outcnt() > 0 &&
  1293           (catchproj->outcnt() > 1 ||
  1294            catchproj->unique_out()->Opcode() != Op_Halt)) {
  1295         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
  1296         Node* nproj = catchproj->clone();
  1297         igvn->register_new_node_with_optimizer(nproj);
  1299         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
  1300         frame = phase->transform(frame);
  1301         // Halt & Catch Fire
  1302         Node *halt = new (phase->C) HaltNode( nproj, frame );
  1303         phase->C->root()->add_req(halt);
  1304         phase->transform(halt);
  1306         igvn->replace_node(catchproj, phase->C->top());
  1307         return this;
  1309     } else {
  1310       // Can't correct it during regular GVN so register for IGVN
  1311       phase->C->record_for_igvn(this);
  1314   return NULL;
  1317 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
  1318 // CastII, if appropriate.  If we are not allowed to create new nodes, and
  1319 // a CastII is appropriate, return NULL.
  1320 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
  1321   Node *length = in(AllocateNode::ALength);
  1322   assert(length != NULL, "length is not null");
  1324   const TypeInt* length_type = phase->find_int_type(length);
  1325   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
  1327   if (ary_type != NULL && length_type != NULL) {
  1328     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
  1329     if (narrow_length_type != length_type) {
  1330       // Assert one of:
  1331       //   - the narrow_length is 0
  1332       //   - the narrow_length is not wider than length
  1333       assert(narrow_length_type == TypeInt::ZERO ||
  1334              length_type->is_con() && narrow_length_type->is_con() &&
  1335                 (narrow_length_type->_hi <= length_type->_lo) ||
  1336              (narrow_length_type->_hi <= length_type->_hi &&
  1337               narrow_length_type->_lo >= length_type->_lo),
  1338              "narrow type must be narrower than length type");
  1340       // Return NULL if new nodes are not allowed
  1341       if (!allow_new_nodes) return NULL;
  1342       // Create a cast which is control dependent on the initialization to
  1343       // propagate the fact that the array length must be positive.
  1344       length = new (phase->C) CastIINode(length, narrow_length_type);
  1345       length->set_req(0, initialization()->proj_out(0));
  1349   return length;
  1352 //=============================================================================
  1353 uint LockNode::size_of() const { return sizeof(*this); }
  1355 // Redundant lock elimination
  1356 //
  1357 // There are various patterns of locking where we release and
  1358 // immediately reacquire a lock in a piece of code where no operations
  1359 // occur in between that would be observable.  In those cases we can
  1360 // skip releasing and reacquiring the lock without violating any
  1361 // fairness requirements.  Doing this around a loop could cause a lock
  1362 // to be held for a very long time so we concentrate on non-looping
  1363 // control flow.  We also require that the operations are fully
  1364 // redundant meaning that we don't introduce new lock operations on
  1365 // some paths so to be able to eliminate it on others ala PRE.  This
  1366 // would probably require some more extensive graph manipulation to
  1367 // guarantee that the memory edges were all handled correctly.
  1368 //
  1369 // Assuming p is a simple predicate which can't trap in any way and s
  1370 // is a synchronized method consider this code:
  1371 //
  1372 //   s();
  1373 //   if (p)
  1374 //     s();
  1375 //   else
  1376 //     s();
  1377 //   s();
  1378 //
  1379 // 1. The unlocks of the first call to s can be eliminated if the
  1380 // locks inside the then and else branches are eliminated.
  1381 //
  1382 // 2. The unlocks of the then and else branches can be eliminated if
  1383 // the lock of the final call to s is eliminated.
  1384 //
  1385 // Either of these cases subsumes the simple case of sequential control flow
  1386 //
  1387 // Addtionally we can eliminate versions without the else case:
  1388 //
  1389 //   s();
  1390 //   if (p)
  1391 //     s();
  1392 //   s();
  1393 //
  1394 // 3. In this case we eliminate the unlock of the first s, the lock
  1395 // and unlock in the then case and the lock in the final s.
  1396 //
  1397 // Note also that in all these cases the then/else pieces don't have
  1398 // to be trivial as long as they begin and end with synchronization
  1399 // operations.
  1400 //
  1401 //   s();
  1402 //   if (p)
  1403 //     s();
  1404 //     f();
  1405 //     s();
  1406 //   s();
  1407 //
  1408 // The code will work properly for this case, leaving in the unlock
  1409 // before the call to f and the relock after it.
  1410 //
  1411 // A potentially interesting case which isn't handled here is when the
  1412 // locking is partially redundant.
  1413 //
  1414 //   s();
  1415 //   if (p)
  1416 //     s();
  1417 //
  1418 // This could be eliminated putting unlocking on the else case and
  1419 // eliminating the first unlock and the lock in the then side.
  1420 // Alternatively the unlock could be moved out of the then side so it
  1421 // was after the merge and the first unlock and second lock
  1422 // eliminated.  This might require less manipulation of the memory
  1423 // state to get correct.
  1424 //
  1425 // Additionally we might allow work between a unlock and lock before
  1426 // giving up eliminating the locks.  The current code disallows any
  1427 // conditional control flow between these operations.  A formulation
  1428 // similar to partial redundancy elimination computing the
  1429 // availability of unlocking and the anticipatability of locking at a
  1430 // program point would allow detection of fully redundant locking with
  1431 // some amount of work in between.  I'm not sure how often I really
  1432 // think that would occur though.  Most of the cases I've seen
  1433 // indicate it's likely non-trivial work would occur in between.
  1434 // There may be other more complicated constructs where we could
  1435 // eliminate locking but I haven't seen any others appear as hot or
  1436 // interesting.
  1437 //
  1438 // Locking and unlocking have a canonical form in ideal that looks
  1439 // roughly like this:
  1440 //
  1441 //              <obj>
  1442 //                | \\------+
  1443 //                |  \       \
  1444 //                | BoxLock   \
  1445 //                |  |   |     \
  1446 //                |  |    \     \
  1447 //                |  |   FastLock
  1448 //                |  |   /
  1449 //                |  |  /
  1450 //                |  |  |
  1451 //
  1452 //               Lock
  1453 //                |
  1454 //            Proj #0
  1455 //                |
  1456 //            MembarAcquire
  1457 //                |
  1458 //            Proj #0
  1459 //
  1460 //            MembarRelease
  1461 //                |
  1462 //            Proj #0
  1463 //                |
  1464 //              Unlock
  1465 //                |
  1466 //            Proj #0
  1467 //
  1468 //
  1469 // This code proceeds by processing Lock nodes during PhaseIterGVN
  1470 // and searching back through its control for the proper code
  1471 // patterns.  Once it finds a set of lock and unlock operations to
  1472 // eliminate they are marked as eliminatable which causes the
  1473 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
  1474 //
  1475 //=============================================================================
  1477 //
  1478 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
  1479 //   - copy regions.  (These may not have been optimized away yet.)
  1480 //   - eliminated locking nodes
  1481 //
  1482 static Node *next_control(Node *ctrl) {
  1483   if (ctrl == NULL)
  1484     return NULL;
  1485   while (1) {
  1486     if (ctrl->is_Region()) {
  1487       RegionNode *r = ctrl->as_Region();
  1488       Node *n = r->is_copy();
  1489       if (n == NULL)
  1490         break;  // hit a region, return it
  1491       else
  1492         ctrl = n;
  1493     } else if (ctrl->is_Proj()) {
  1494       Node *in0 = ctrl->in(0);
  1495       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
  1496         ctrl = in0->in(0);
  1497       } else {
  1498         break;
  1500     } else {
  1501       break; // found an interesting control
  1504   return ctrl;
  1506 //
  1507 // Given a control, see if it's the control projection of an Unlock which
  1508 // operating on the same object as lock.
  1509 //
  1510 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
  1511                                             GrowableArray<AbstractLockNode*> &lock_ops) {
  1512   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  1513   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
  1514     Node *n = ctrl_proj->in(0);
  1515     if (n != NULL && n->is_Unlock()) {
  1516       UnlockNode *unlock = n->as_Unlock();
  1517       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
  1518           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
  1519           !unlock->is_eliminated()) {
  1520         lock_ops.append(unlock);
  1521         return true;
  1525   return false;
  1528 //
  1529 // Find the lock matching an unlock.  Returns null if a safepoint
  1530 // or complicated control is encountered first.
  1531 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  1532   LockNode *lock_result = NULL;
  1533   // find the matching lock, or an intervening safepoint
  1534   Node *ctrl = next_control(unlock->in(0));
  1535   while (1) {
  1536     assert(ctrl != NULL, "invalid control graph");
  1537     assert(!ctrl->is_Start(), "missing lock for unlock");
  1538     if (ctrl->is_top()) break;  // dead control path
  1539     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
  1540     if (ctrl->is_SafePoint()) {
  1541         break;  // found a safepoint (may be the lock we are searching for)
  1542     } else if (ctrl->is_Region()) {
  1543       // Check for a simple diamond pattern.  Punt on anything more complicated
  1544       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
  1545         Node *in1 = next_control(ctrl->in(1));
  1546         Node *in2 = next_control(ctrl->in(2));
  1547         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
  1548              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
  1549           ctrl = next_control(in1->in(0)->in(0));
  1550         } else {
  1551           break;
  1553       } else {
  1554         break;
  1556     } else {
  1557       ctrl = next_control(ctrl->in(0));  // keep searching
  1560   if (ctrl->is_Lock()) {
  1561     LockNode *lock = ctrl->as_Lock();
  1562     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
  1563         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
  1564       lock_result = lock;
  1567   return lock_result;
  1570 // This code corresponds to case 3 above.
  1572 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
  1573                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
  1574   Node* if_node = node->in(0);
  1575   bool  if_true = node->is_IfTrue();
  1577   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
  1578     Node *lock_ctrl = next_control(if_node->in(0));
  1579     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
  1580       Node* lock1_node = NULL;
  1581       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
  1582       if (if_true) {
  1583         if (proj->is_IfFalse() && proj->outcnt() == 1) {
  1584           lock1_node = proj->unique_out();
  1586       } else {
  1587         if (proj->is_IfTrue() && proj->outcnt() == 1) {
  1588           lock1_node = proj->unique_out();
  1591       if (lock1_node != NULL && lock1_node->is_Lock()) {
  1592         LockNode *lock1 = lock1_node->as_Lock();
  1593         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
  1594             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
  1595             !lock1->is_eliminated()) {
  1596           lock_ops.append(lock1);
  1597           return true;
  1603   lock_ops.trunc_to(0);
  1604   return false;
  1607 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
  1608                                GrowableArray<AbstractLockNode*> &lock_ops) {
  1609   // check each control merging at this point for a matching unlock.
  1610   // in(0) should be self edge so skip it.
  1611   for (int i = 1; i < (int)region->req(); i++) {
  1612     Node *in_node = next_control(region->in(i));
  1613     if (in_node != NULL) {
  1614       if (find_matching_unlock(in_node, lock, lock_ops)) {
  1615         // found a match so keep on checking.
  1616         continue;
  1617       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
  1618         continue;
  1621       // If we fall through to here then it was some kind of node we
  1622       // don't understand or there wasn't a matching unlock, so give
  1623       // up trying to merge locks.
  1624       lock_ops.trunc_to(0);
  1625       return false;
  1628   return true;
  1632 #ifndef PRODUCT
  1633 //
  1634 // Create a counter which counts the number of times this lock is acquired
  1635 //
  1636 void AbstractLockNode::create_lock_counter(JVMState* state) {
  1637   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
  1640 void AbstractLockNode::set_eliminated_lock_counter() {
  1641   if (_counter) {
  1642     // Update the counter to indicate that this lock was eliminated.
  1643     // The counter update code will stay around even though the
  1644     // optimizer will eliminate the lock operation itself.
  1645     _counter->set_tag(NamedCounter::EliminatedLockCounter);
  1648 #endif
  1650 //=============================================================================
  1651 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1653   // perform any generic optimizations first (returns 'this' or NULL)
  1654   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1655   if (result != NULL)  return result;
  1656   // Don't bother trying to transform a dead node
  1657   if (in(0) && in(0)->is_top())  return NULL;
  1659   // Now see if we can optimize away this lock.  We don't actually
  1660   // remove the locking here, we simply set the _eliminate flag which
  1661   // prevents macro expansion from expanding the lock.  Since we don't
  1662   // modify the graph, the value returned from this function is the
  1663   // one computed above.
  1664   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
  1665     //
  1666     // If we are locking an unescaped object, the lock/unlock is unnecessary
  1667     //
  1668     ConnectionGraph *cgr = phase->C->congraph();
  1669     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
  1670       assert(!is_eliminated() || is_coarsened(), "sanity");
  1671       // The lock could be marked eliminated by lock coarsening
  1672       // code during first IGVN before EA. Replace coarsened flag
  1673       // to eliminate all associated locks/unlocks.
  1674 #ifdef ASSERT
  1675       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
  1676 #endif
  1677       this->set_non_esc_obj();
  1678       return result;
  1681     //
  1682     // Try lock coarsening
  1683     //
  1684     PhaseIterGVN* iter = phase->is_IterGVN();
  1685     if (iter != NULL && !is_eliminated()) {
  1687       GrowableArray<AbstractLockNode*>   lock_ops;
  1689       Node *ctrl = next_control(in(0));
  1691       // now search back for a matching Unlock
  1692       if (find_matching_unlock(ctrl, this, lock_ops)) {
  1693         // found an unlock directly preceding this lock.  This is the
  1694         // case of single unlock directly control dependent on a
  1695         // single lock which is the trivial version of case 1 or 2.
  1696       } else if (ctrl->is_Region() ) {
  1697         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
  1698         // found lock preceded by multiple unlocks along all paths
  1699         // joining at this point which is case 3 in description above.
  1701       } else {
  1702         // see if this lock comes from either half of an if and the
  1703         // predecessors merges unlocks and the other half of the if
  1704         // performs a lock.
  1705         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
  1706           // found unlock splitting to an if with locks on both branches.
  1710       if (lock_ops.length() > 0) {
  1711         // add ourselves to the list of locks to be eliminated.
  1712         lock_ops.append(this);
  1714   #ifndef PRODUCT
  1715         if (PrintEliminateLocks) {
  1716           int locks = 0;
  1717           int unlocks = 0;
  1718           for (int i = 0; i < lock_ops.length(); i++) {
  1719             AbstractLockNode* lock = lock_ops.at(i);
  1720             if (lock->Opcode() == Op_Lock)
  1721               locks++;
  1722             else
  1723               unlocks++;
  1724             if (Verbose) {
  1725               lock->dump(1);
  1728           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
  1730   #endif
  1732         // for each of the identified locks, mark them
  1733         // as eliminatable
  1734         for (int i = 0; i < lock_ops.length(); i++) {
  1735           AbstractLockNode* lock = lock_ops.at(i);
  1737           // Mark it eliminated by coarsening and update any counters
  1738 #ifdef ASSERT
  1739           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
  1740 #endif
  1741           lock->set_coarsened();
  1743       } else if (ctrl->is_Region() &&
  1744                  iter->_worklist.member(ctrl)) {
  1745         // We weren't able to find any opportunities but the region this
  1746         // lock is control dependent on hasn't been processed yet so put
  1747         // this lock back on the worklist so we can check again once any
  1748         // region simplification has occurred.
  1749         iter->_worklist.push(this);
  1754   return result;
  1757 //=============================================================================
  1758 bool LockNode::is_nested_lock_region() {
  1759   return is_nested_lock_region(NULL);
  1762 // p is used for access to compilation log; no logging if NULL
  1763 bool LockNode::is_nested_lock_region(Compile * c) {
  1764   BoxLockNode* box = box_node()->as_BoxLock();
  1765   int stk_slot = box->stack_slot();
  1766   if (stk_slot <= 0) {
  1767 #ifdef ASSERT
  1768     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
  1769 #endif
  1770     return false; // External lock or it is not Box (Phi node).
  1773   // Ignore complex cases: merged locks or multiple locks.
  1774   Node* obj = obj_node();
  1775   LockNode* unique_lock = NULL;
  1776   if (!box->is_simple_lock_region(&unique_lock, obj)) {
  1777 #ifdef ASSERT
  1778     this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
  1779 #endif
  1780     return false;
  1782   if (unique_lock != this) {
  1783 #ifdef ASSERT
  1784     this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
  1785 #endif
  1786     return false;
  1789   // Look for external lock for the same object.
  1790   SafePointNode* sfn = this->as_SafePoint();
  1791   JVMState* youngest_jvms = sfn->jvms();
  1792   int max_depth = youngest_jvms->depth();
  1793   for (int depth = 1; depth <= max_depth; depth++) {
  1794     JVMState* jvms = youngest_jvms->of_depth(depth);
  1795     int num_mon  = jvms->nof_monitors();
  1796     // Loop over monitors
  1797     for (int idx = 0; idx < num_mon; idx++) {
  1798       Node* obj_node = sfn->monitor_obj(jvms, idx);
  1799       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
  1800       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
  1801         return true;
  1805 #ifdef ASSERT
  1806   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
  1807 #endif
  1808   return false;
  1811 //=============================================================================
  1812 uint UnlockNode::size_of() const { return sizeof(*this); }
  1814 //=============================================================================
  1815 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1817   // perform any generic optimizations first (returns 'this' or NULL)
  1818   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1819   if (result != NULL)  return result;
  1820   // Don't bother trying to transform a dead node
  1821   if (in(0) && in(0)->is_top())  return NULL;
  1823   // Now see if we can optimize away this unlock.  We don't actually
  1824   // remove the unlocking here, we simply set the _eliminate flag which
  1825   // prevents macro expansion from expanding the unlock.  Since we don't
  1826   // modify the graph, the value returned from this function is the
  1827   // one computed above.
  1828   // Escape state is defined after Parse phase.
  1829   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
  1830     //
  1831     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
  1832     //
  1833     ConnectionGraph *cgr = phase->C->congraph();
  1834     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
  1835       assert(!is_eliminated() || is_coarsened(), "sanity");
  1836       // The lock could be marked eliminated by lock coarsening
  1837       // code during first IGVN before EA. Replace coarsened flag
  1838       // to eliminate all associated locks/unlocks.
  1839 #ifdef ASSERT
  1840       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
  1841 #endif
  1842       this->set_non_esc_obj();
  1845   return result;
  1848 const char * AbstractLockNode::kind_as_string() const {
  1849   return is_coarsened()   ? "coarsened" :
  1850          is_nested()      ? "nested" :
  1851          is_non_esc_obj() ? "non_escaping" :
  1852          "?";
  1855 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag)  const {
  1856   if (C == NULL) {
  1857     return;
  1859   CompileLog* log = C->log();
  1860   if (log != NULL) {
  1861     log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
  1862           tag, is_Lock(), C->compile_id(),
  1863           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
  1864           kind_as_string());
  1865     log->stamp();
  1866     log->end_head();
  1867     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
  1868     while (p != NULL) {
  1869       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1870       p = p->caller();
  1872     log->tail(tag);

mercurial