src/share/vm/gc_implementation/g1/heapRegion.cpp

Thu, 14 Jun 2018 09:15:08 -0700

author
kevinw
date
Thu, 14 Jun 2018 09:15:08 -0700
changeset 9327
f96fcd9e1e1b
parent 8333
f21c5c4d5231
child 9448
73d689add964
child 9861
a248d0be1309
permissions
-rw-r--r--

8081202: Hotspot compile warning: "Invalid suffix on literal; C++11 requires a space between literal and identifier"
Summary: Need to add a space between macro identifier and string literal
Reviewed-by: bpittore, stefank, dholmes, kbarrett

     1 /*
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    34 #include "gc_implementation/shared/liveRange.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/iterator.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/orderAccess.inline.hpp"
    41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    43 int    HeapRegion::LogOfHRGrainBytes = 0;
    44 int    HeapRegion::LogOfHRGrainWords = 0;
    45 size_t HeapRegion::GrainBytes        = 0;
    46 size_t HeapRegion::GrainWords        = 0;
    47 size_t HeapRegion::CardsPerRegion    = 0;
    49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    50                                  HeapRegion* hr,
    51                                  G1ParPushHeapRSClosure* cl,
    52                                  CardTableModRefBS::PrecisionStyle precision) :
    53   DirtyCardToOopClosure(hr, cl, precision, NULL),
    54   _hr(hr), _rs_scan(cl), _g1(g1) { }
    56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    57                                                    OopClosure* oc) :
    58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    60 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    61                                       HeapWord* bottom,
    62                                       HeapWord* top) {
    63   G1CollectedHeap* g1h = _g1;
    64   size_t oop_size;
    65   HeapWord* cur = bottom;
    67   // Start filtering what we add to the remembered set. If the object is
    68   // not considered dead, either because it is marked (in the mark bitmap)
    69   // or it was allocated after marking finished, then we add it. Otherwise
    70   // we can safely ignore the object.
    71   if (!g1h->is_obj_dead(oop(cur), _hr)) {
    72     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
    73   } else {
    74     oop_size = _hr->block_size(cur);
    75   }
    77   cur += oop_size;
    79   if (cur < top) {
    80     oop cur_oop = oop(cur);
    81     oop_size = _hr->block_size(cur);
    82     HeapWord* next_obj = cur + oop_size;
    83     while (next_obj < top) {
    84       // Keep filtering the remembered set.
    85       if (!g1h->is_obj_dead(cur_oop, _hr)) {
    86         // Bottom lies entirely below top, so we can call the
    87         // non-memRegion version of oop_iterate below.
    88         cur_oop->oop_iterate(_rs_scan);
    89       }
    90       cur = next_obj;
    91       cur_oop = oop(cur);
    92       oop_size = _hr->block_size(cur);
    93       next_obj = cur + oop_size;
    94     }
    96     // Last object. Need to do dead-obj filtering here too.
    97     if (!g1h->is_obj_dead(oop(cur), _hr)) {
    98       oop(cur)->oop_iterate(_rs_scan, mr);
    99     }
   100   }
   101 }
   103 size_t HeapRegion::max_region_size() {
   104   return HeapRegionBounds::max_size();
   105 }
   107 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   108   uintx region_size = G1HeapRegionSize;
   109   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   110     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   111     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
   112                        (uintx) HeapRegionBounds::min_size());
   113   }
   115   int region_size_log = log2_long((jlong) region_size);
   116   // Recalculate the region size to make sure it's a power of
   117   // 2. This means that region_size is the largest power of 2 that's
   118   // <= what we've calculated so far.
   119   region_size = ((uintx)1 << region_size_log);
   121   // Now make sure that we don't go over or under our limits.
   122   if (region_size < HeapRegionBounds::min_size()) {
   123     region_size = HeapRegionBounds::min_size();
   124   } else if (region_size > HeapRegionBounds::max_size()) {
   125     region_size = HeapRegionBounds::max_size();
   126   }
   128   // And recalculate the log.
   129   region_size_log = log2_long((jlong) region_size);
   131   // Now, set up the globals.
   132   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   133   LogOfHRGrainBytes = region_size_log;
   135   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   136   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   138   guarantee(GrainBytes == 0, "we should only set it once");
   139   // The cast to int is safe, given that we've bounded region_size by
   140   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   141   GrainBytes = (size_t)region_size;
   143   guarantee(GrainWords == 0, "we should only set it once");
   144   GrainWords = GrainBytes >> LogHeapWordSize;
   145   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   147   guarantee(CardsPerRegion == 0, "we should only set it once");
   148   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   149 }
   151 void HeapRegion::reset_after_compaction() {
   152   G1OffsetTableContigSpace::reset_after_compaction();
   153   // After a compaction the mark bitmap is invalid, so we must
   154   // treat all objects as being inside the unmarked area.
   155   zero_marked_bytes();
   156   init_top_at_mark_start();
   157 }
   159 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   160   assert(_humongous_start_region == NULL,
   161          "we should have already filtered out humongous regions");
   162   assert(_end == _orig_end,
   163          "we should have already filtered out humongous regions");
   165   _in_collection_set = false;
   167   set_allocation_context(AllocationContext::system());
   168   set_young_index_in_cset(-1);
   169   uninstall_surv_rate_group();
   170   set_free();
   171   reset_pre_dummy_top();
   173   if (!par) {
   174     // If this is parallel, this will be done later.
   175     HeapRegionRemSet* hrrs = rem_set();
   176     if (locked) {
   177       hrrs->clear_locked();
   178     } else {
   179       hrrs->clear();
   180     }
   181     _claimed = InitialClaimValue;
   182   }
   183   zero_marked_bytes();
   185   _offsets.resize(HeapRegion::GrainWords);
   186   init_top_at_mark_start();
   187   if (clear_space) clear(SpaceDecorator::Mangle);
   188 }
   190 void HeapRegion::par_clear() {
   191   assert(used() == 0, "the region should have been already cleared");
   192   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   193   HeapRegionRemSet* hrrs = rem_set();
   194   hrrs->clear();
   195   CardTableModRefBS* ct_bs =
   196                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   197   ct_bs->clear(MemRegion(bottom(), end()));
   198 }
   200 void HeapRegion::calc_gc_efficiency() {
   201   // GC efficiency is the ratio of how much space would be
   202   // reclaimed over how long we predict it would take to reclaim it.
   203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   204   G1CollectorPolicy* g1p = g1h->g1_policy();
   206   // Retrieve a prediction of the elapsed time for this region for
   207   // a mixed gc because the region will only be evacuated during a
   208   // mixed gc.
   209   double region_elapsed_time_ms =
   210     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   211   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   212 }
   214 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   215   assert(!isHumongous(), "sanity / pre-condition");
   216   assert(end() == _orig_end,
   217          "Should be normal before the humongous object allocation");
   218   assert(top() == bottom(), "should be empty");
   219   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   221   _type.set_starts_humongous();
   222   _humongous_start_region = this;
   224   set_end(new_end);
   225   _offsets.set_for_starts_humongous(new_top);
   226 }
   228 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   229   assert(!isHumongous(), "sanity / pre-condition");
   230   assert(end() == _orig_end,
   231          "Should be normal before the humongous object allocation");
   232   assert(top() == bottom(), "should be empty");
   233   assert(first_hr->startsHumongous(), "pre-condition");
   235   _type.set_continues_humongous();
   236   _humongous_start_region = first_hr;
   237 }
   239 void HeapRegion::clear_humongous() {
   240   assert(isHumongous(), "pre-condition");
   242   if (startsHumongous()) {
   243     assert(top() <= end(), "pre-condition");
   244     set_end(_orig_end);
   245     if (top() > end()) {
   246       // at least one "continues humongous" region after it
   247       set_top(end());
   248     }
   249   } else {
   250     // continues humongous
   251     assert(end() == _orig_end, "sanity");
   252   }
   254   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   255   _humongous_start_region = NULL;
   256 }
   258 bool HeapRegion::claimHeapRegion(jint claimValue) {
   259   jint current = _claimed;
   260   if (current != claimValue) {
   261     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   262     if (res == current) {
   263       return true;
   264     }
   265   }
   266   return false;
   267 }
   269 HeapRegion::HeapRegion(uint hrm_index,
   270                        G1BlockOffsetSharedArray* sharedOffsetArray,
   271                        MemRegion mr) :
   272     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   273     _hrm_index(hrm_index),
   274     _allocation_context(AllocationContext::system()),
   275     _humongous_start_region(NULL),
   276     _in_collection_set(false),
   277     _next_in_special_set(NULL), _orig_end(NULL),
   278     _claimed(InitialClaimValue), _evacuation_failed(false),
   279     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   280     _next_young_region(NULL),
   281     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
   282 #ifdef ASSERT
   283     _containing_set(NULL),
   284 #endif // ASSERT
   285      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   286     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   287     _predicted_bytes_to_copy(0)
   288 {
   289   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   290   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   292   initialize(mr);
   293 }
   295 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   296   assert(_rem_set->is_empty(), "Remembered set must be empty");
   298   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
   300   _orig_end = mr.end();
   301   hr_clear(false /*par*/, false /*clear_space*/);
   302   set_top(bottom());
   303   record_timestamp();
   304 }
   306 CompactibleSpace* HeapRegion::next_compaction_space() const {
   307   return G1CollectedHeap::heap()->next_compaction_region(this);
   308 }
   310 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   311                                                     bool during_conc_mark) {
   312   // We always recreate the prev marking info and we'll explicitly
   313   // mark all objects we find to be self-forwarded on the prev
   314   // bitmap. So all objects need to be below PTAMS.
   315   _prev_marked_bytes = 0;
   317   if (during_initial_mark) {
   318     // During initial-mark, we'll also explicitly mark all objects
   319     // we find to be self-forwarded on the next bitmap. So all
   320     // objects need to be below NTAMS.
   321     _next_top_at_mark_start = top();
   322     _next_marked_bytes = 0;
   323   } else if (during_conc_mark) {
   324     // During concurrent mark, all objects in the CSet (including
   325     // the ones we find to be self-forwarded) are implicitly live.
   326     // So all objects need to be above NTAMS.
   327     _next_top_at_mark_start = bottom();
   328     _next_marked_bytes = 0;
   329   }
   330 }
   332 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   333                                                   bool during_conc_mark,
   334                                                   size_t marked_bytes) {
   335   assert(0 <= marked_bytes && marked_bytes <= used(),
   336          err_msg("marked: " SIZE_FORMAT " used: " SIZE_FORMAT,
   337                  marked_bytes, used()));
   338   _prev_top_at_mark_start = top();
   339   _prev_marked_bytes = marked_bytes;
   340 }
   342 HeapWord*
   343 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   344                                                  ObjectClosure* cl) {
   345   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   346   // We used to use "block_start_careful" here.  But we're actually happy
   347   // to update the BOT while we do this...
   348   HeapWord* cur = block_start(mr.start());
   349   mr = mr.intersection(used_region());
   350   if (mr.is_empty()) return NULL;
   351   // Otherwise, find the obj that extends onto mr.start().
   353   assert(cur <= mr.start()
   354          && (oop(cur)->klass_or_null() == NULL ||
   355              cur + oop(cur)->size() > mr.start()),
   356          "postcondition of block_start");
   357   oop obj;
   358   while (cur < mr.end()) {
   359     obj = oop(cur);
   360     if (obj->klass_or_null() == NULL) {
   361       // Ran into an unparseable point.
   362       return cur;
   363     } else if (!g1h->is_obj_dead(obj)) {
   364       cl->do_object(obj);
   365     }
   366     if (cl->abort()) return cur;
   367     // The check above must occur before the operation below, since an
   368     // abort might invalidate the "size" operation.
   369     cur += block_size(cur);
   370   }
   371   return NULL;
   372 }
   374 HeapWord*
   375 HeapRegion::
   376 oops_on_card_seq_iterate_careful(MemRegion mr,
   377                                  FilterOutOfRegionClosure* cl,
   378                                  bool filter_young,
   379                                  jbyte* card_ptr) {
   380   // Currently, we should only have to clean the card if filter_young
   381   // is true and vice versa.
   382   if (filter_young) {
   383     assert(card_ptr != NULL, "pre-condition");
   384   } else {
   385     assert(card_ptr == NULL, "pre-condition");
   386   }
   387   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   389   // If we're within a stop-world GC, then we might look at a card in a
   390   // GC alloc region that extends onto a GC LAB, which may not be
   391   // parseable.  Stop such at the "scan_top" of the region.
   392   if (g1h->is_gc_active()) {
   393     mr = mr.intersection(MemRegion(bottom(), scan_top()));
   394   } else {
   395     mr = mr.intersection(used_region());
   396   }
   397   if (mr.is_empty()) return NULL;
   398   // Otherwise, find the obj that extends onto mr.start().
   400   // The intersection of the incoming mr (for the card) and the
   401   // allocated part of the region is non-empty. This implies that
   402   // we have actually allocated into this region. The code in
   403   // G1CollectedHeap.cpp that allocates a new region sets the
   404   // is_young tag on the region before allocating. Thus we
   405   // safely know if this region is young.
   406   if (is_young() && filter_young) {
   407     return NULL;
   408   }
   410   assert(!is_young(), "check value of filter_young");
   412   // We can only clean the card here, after we make the decision that
   413   // the card is not young. And we only clean the card if we have been
   414   // asked to (i.e., card_ptr != NULL).
   415   if (card_ptr != NULL) {
   416     *card_ptr = CardTableModRefBS::clean_card_val();
   417     // We must complete this write before we do any of the reads below.
   418     OrderAccess::storeload();
   419   }
   421   // Cache the boundaries of the memory region in some const locals
   422   HeapWord* const start = mr.start();
   423   HeapWord* const end = mr.end();
   425   // We used to use "block_start_careful" here.  But we're actually happy
   426   // to update the BOT while we do this...
   427   HeapWord* cur = block_start(start);
   428   assert(cur <= start, "Postcondition");
   430   oop obj;
   432   HeapWord* next = cur;
   433   do {
   434     cur = next;
   435     obj = oop(cur);
   436     if (obj->klass_or_null() == NULL) {
   437       // Ran into an unparseable point.
   438       return cur;
   439     }
   440     // Otherwise...
   441     next = cur + block_size(cur);
   442   } while (next <= start);
   444   // If we finish the above loop...We have a parseable object that
   445   // begins on or before the start of the memory region, and ends
   446   // inside or spans the entire region.
   447   assert(cur <= start, "Loop postcondition");
   448   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   450   do {
   451     obj = oop(cur);
   452     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
   453     if (obj->klass_or_null() == NULL) {
   454       // Ran into an unparseable point.
   455       return cur;
   456     }
   458     // Advance the current pointer. "obj" still points to the object to iterate.
   459     cur = cur + block_size(cur);
   461     if (!g1h->is_obj_dead(obj)) {
   462       // Non-objArrays are sometimes marked imprecise at the object start. We
   463       // always need to iterate over them in full.
   464       // We only iterate over object arrays in full if they are completely contained
   465       // in the memory region.
   466       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
   467         obj->oop_iterate(cl);
   468       } else {
   469         obj->oop_iterate(cl, mr);
   470       }
   471     }
   472   } while (cur < end);
   474   return NULL;
   475 }
   477 // Code roots support
   479 void HeapRegion::add_strong_code_root(nmethod* nm) {
   480   HeapRegionRemSet* hrrs = rem_set();
   481   hrrs->add_strong_code_root(nm);
   482 }
   484 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
   485   assert_locked_or_safepoint(CodeCache_lock);
   486   HeapRegionRemSet* hrrs = rem_set();
   487   hrrs->add_strong_code_root_locked(nm);
   488 }
   490 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   491   HeapRegionRemSet* hrrs = rem_set();
   492   hrrs->remove_strong_code_root(nm);
   493 }
   495 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   496   HeapRegionRemSet* hrrs = rem_set();
   497   hrrs->strong_code_roots_do(blk);
   498 }
   500 class VerifyStrongCodeRootOopClosure: public OopClosure {
   501   const HeapRegion* _hr;
   502   nmethod* _nm;
   503   bool _failures;
   504   bool _has_oops_in_region;
   506   template <class T> void do_oop_work(T* p) {
   507     T heap_oop = oopDesc::load_heap_oop(p);
   508     if (!oopDesc::is_null(heap_oop)) {
   509       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   511       // Note: not all the oops embedded in the nmethod are in the
   512       // current region. We only look at those which are.
   513       if (_hr->is_in(obj)) {
   514         // Object is in the region. Check that its less than top
   515         if (_hr->top() <= (HeapWord*)obj) {
   516           // Object is above top
   517           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
   518                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
   519                                  "top " PTR_FORMAT,
   520                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   521           _failures = true;
   522           return;
   523         }
   524         // Nmethod has at least one oop in the current region
   525         _has_oops_in_region = true;
   526       }
   527     }
   528   }
   530 public:
   531   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   532     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   534   void do_oop(narrowOop* p) { do_oop_work(p); }
   535   void do_oop(oop* p)       { do_oop_work(p); }
   537   bool failures()           { return _failures; }
   538   bool has_oops_in_region() { return _has_oops_in_region; }
   539 };
   541 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   542   const HeapRegion* _hr;
   543   bool _failures;
   544 public:
   545   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   546     _hr(hr), _failures(false) {}
   548   void do_code_blob(CodeBlob* cb) {
   549     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   550     if (nm != NULL) {
   551       // Verify that the nemthod is live
   552       if (!nm->is_alive()) {
   553         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
   554                                PTR_FORMAT " in its strong code roots",
   555                                _hr->bottom(), _hr->end(), nm);
   556         _failures = true;
   557       } else {
   558         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   559         nm->oops_do(&oop_cl);
   560         if (!oop_cl.has_oops_in_region()) {
   561           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
   562                                  PTR_FORMAT " in its strong code roots "
   563                                  "with no pointers into region",
   564                                  _hr->bottom(), _hr->end(), nm);
   565           _failures = true;
   566         } else if (oop_cl.failures()) {
   567           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
   568                                  "failures for nmethod " PTR_FORMAT,
   569                                  _hr->bottom(), _hr->end(), nm);
   570           _failures = true;
   571         }
   572       }
   573     }
   574   }
   576   bool failures()       { return _failures; }
   577 };
   579 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   580   if (!G1VerifyHeapRegionCodeRoots) {
   581     // We're not verifying code roots.
   582     return;
   583   }
   584   if (vo == VerifyOption_G1UseMarkWord) {
   585     // Marking verification during a full GC is performed after class
   586     // unloading, code cache unloading, etc so the strong code roots
   587     // attached to each heap region are in an inconsistent state. They won't
   588     // be consistent until the strong code roots are rebuilt after the
   589     // actual GC. Skip verifying the strong code roots in this particular
   590     // time.
   591     assert(VerifyDuringGC, "only way to get here");
   592     return;
   593   }
   595   HeapRegionRemSet* hrrs = rem_set();
   596   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   598   // if this region is empty then there should be no entries
   599   // on its strong code root list
   600   if (is_empty()) {
   601     if (strong_code_roots_length > 0) {
   602       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
   603                              "but has " SIZE_FORMAT " code root entries",
   604                              bottom(), end(), strong_code_roots_length);
   605       *failures = true;
   606     }
   607     return;
   608   }
   610   if (continuesHumongous()) {
   611     if (strong_code_roots_length > 0) {
   612       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
   613                              "region but has " SIZE_FORMAT " code root entries",
   614                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   615       *failures = true;
   616     }
   617     return;
   618   }
   620   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   621   strong_code_roots_do(&cb_cl);
   623   if (cb_cl.failures()) {
   624     *failures = true;
   625   }
   626 }
   628 void HeapRegion::print() const { print_on(gclog_or_tty); }
   629 void HeapRegion::print_on(outputStream* st) const {
   630   st->print("AC%4u", allocation_context());
   631   st->print(" %2s", get_short_type_str());
   632   if (in_collection_set())
   633     st->print(" CS");
   634   else
   635     st->print("   ");
   636   st->print(" TS %5d", _gc_time_stamp);
   637   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
   638             prev_top_at_mark_start(), next_top_at_mark_start());
   639   G1OffsetTableContigSpace::print_on(st);
   640 }
   642 class G1VerificationClosure : public OopClosure {
   643 protected:
   644   G1CollectedHeap* _g1h;
   645   CardTableModRefBS* _bs;
   646   oop _containing_obj;
   647   bool _failures;
   648   int _n_failures;
   649   VerifyOption _vo;
   650 public:
   651   // _vo == UsePrevMarking -> use "prev" marking information,
   652   // _vo == UseNextMarking -> use "next" marking information,
   653   // _vo == UseMarkWord    -> use mark word from object header.
   654   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   655     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   656     _failures(false), _n_failures(0), _vo(vo)
   657   {
   658     BarrierSet* bs = _g1h->barrier_set();
   659     if (bs->is_a(BarrierSet::CardTableModRef))
   660       _bs = (CardTableModRefBS*)bs;
   661   }
   663   void set_containing_obj(oop obj) {
   664     _containing_obj = obj;
   665   }
   667   bool failures() { return _failures; }
   668   int n_failures() { return _n_failures; }
   670   void print_object(outputStream* out, oop obj) {
   671 #ifdef PRODUCT
   672     Klass* k = obj->klass();
   673     const char* class_name = InstanceKlass::cast(k)->external_name();
   674     out->print_cr("class name %s", class_name);
   675 #else // PRODUCT
   676     obj->print_on(out);
   677 #endif // PRODUCT
   678   }
   679 };
   681 class VerifyLiveClosure : public G1VerificationClosure {
   682 public:
   683   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
   684   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   685   virtual void do_oop(oop* p) { do_oop_work(p); }
   687   template <class T>
   688   void do_oop_work(T* p) {
   689     assert(_containing_obj != NULL, "Precondition");
   690     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   691       "Precondition");
   692     verify_liveness(p);
   693   }
   695   template <class T>
   696   void verify_liveness(T* p) {
   697     T heap_oop = oopDesc::load_heap_oop(p);
   698     if (!oopDesc::is_null(heap_oop)) {
   699       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   700       bool failed = false;
   701       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   702         MutexLockerEx x(ParGCRareEvent_lock,
   703           Mutex::_no_safepoint_check_flag);
   705         if (!_failures) {
   706           gclog_or_tty->cr();
   707           gclog_or_tty->print_cr("----------");
   708         }
   709         if (!_g1h->is_in_closed_subset(obj)) {
   710           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   711           gclog_or_tty->print_cr("Field " PTR_FORMAT
   712                                  " of live obj " PTR_FORMAT " in region "
   713                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   714                                  p, (void*) _containing_obj,
   715                                  from->bottom(), from->end());
   716           print_object(gclog_or_tty, _containing_obj);
   717           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
   718                                  (void*) obj);
   719         } else {
   720           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   721           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   722           gclog_or_tty->print_cr("Field " PTR_FORMAT
   723                                  " of live obj " PTR_FORMAT " in region "
   724                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   725                                  p, (void*) _containing_obj,
   726                                  from->bottom(), from->end());
   727           print_object(gclog_or_tty, _containing_obj);
   728           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
   729                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
   730                                  (void*) obj, to->bottom(), to->end());
   731           print_object(gclog_or_tty, obj);
   732         }
   733         gclog_or_tty->print_cr("----------");
   734         gclog_or_tty->flush();
   735         _failures = true;
   736         failed = true;
   737         _n_failures++;
   738       }
   739     }
   740   }
   741 };
   743 class VerifyRemSetClosure : public G1VerificationClosure {
   744 public:
   745   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
   746   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   747   virtual void do_oop(oop* p) { do_oop_work(p); }
   749   template <class T>
   750   void do_oop_work(T* p) {
   751     assert(_containing_obj != NULL, "Precondition");
   752     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   753       "Precondition");
   754     verify_remembered_set(p);
   755   }
   757   template <class T>
   758   void verify_remembered_set(T* p) {
   759     T heap_oop = oopDesc::load_heap_oop(p);
   760     if (!oopDesc::is_null(heap_oop)) {
   761       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   762       bool failed = false;
   763       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   764       HeapRegion* to   = _g1h->heap_region_containing(obj);
   765       if (from != NULL && to != NULL &&
   766           from != to &&
   767           !to->isHumongous()) {
   768         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   769         jbyte cv_field = *_bs->byte_for_const(p);
   770         const jbyte dirty = CardTableModRefBS::dirty_card_val();
   772         bool is_bad = !(from->is_young()
   773                         || to->rem_set()->contains_reference(p)
   774                         || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   775                             (_containing_obj->is_objArray() ?
   776                                 cv_field == dirty
   777                              : cv_obj == dirty || cv_field == dirty));
   778         if (is_bad) {
   779           MutexLockerEx x(ParGCRareEvent_lock,
   780                           Mutex::_no_safepoint_check_flag);
   782           if (!_failures) {
   783             gclog_or_tty->cr();
   784             gclog_or_tty->print_cr("----------");
   785           }
   786           gclog_or_tty->print_cr("Missing rem set entry:");
   787           gclog_or_tty->print_cr("Field " PTR_FORMAT " "
   788                                  "of obj " PTR_FORMAT ", "
   789                                  "in region " HR_FORMAT,
   790                                  p, (void*) _containing_obj,
   791                                  HR_FORMAT_PARAMS(from));
   792           _containing_obj->print_on(gclog_or_tty);
   793           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
   794                                  "in region " HR_FORMAT,
   795                                  (void*) obj,
   796                                  HR_FORMAT_PARAMS(to));
   797           if (obj->is_oop()) {
   798             obj->print_on(gclog_or_tty);
   799           }
   800           gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   801                         cv_obj, cv_field);
   802           gclog_or_tty->print_cr("----------");
   803           gclog_or_tty->flush();
   804           _failures = true;
   805           if (!failed) _n_failures++;
   806         }
   807       }
   808     }
   809   }
   810 };
   812 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   813 // We would need a mechanism to make that code skip dead objects.
   815 void HeapRegion::verify(VerifyOption vo,
   816                         bool* failures) const {
   817   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   818   *failures = false;
   819   HeapWord* p = bottom();
   820   HeapWord* prev_p = NULL;
   821   VerifyLiveClosure vl_cl(g1, vo);
   822   VerifyRemSetClosure vr_cl(g1, vo);
   823   bool is_humongous = isHumongous();
   824   bool do_bot_verify = !is_young();
   825   size_t object_num = 0;
   826   while (p < top()) {
   827     oop obj = oop(p);
   828     size_t obj_size = block_size(p);
   829     object_num += 1;
   831     if (is_humongous != g1->isHumongous(obj_size) &&
   832         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   833       gclog_or_tty->print_cr("obj " PTR_FORMAT " is of %shumongous size ("
   834                              SIZE_FORMAT " words) in a %shumongous region",
   835                              p, g1->isHumongous(obj_size) ? "" : "non-",
   836                              obj_size, is_humongous ? "" : "non-");
   837        *failures = true;
   838        return;
   839     }
   841     // If it returns false, verify_for_object() will output the
   842     // appropriate message.
   843     if (do_bot_verify &&
   844         !g1->is_obj_dead(obj, this) &&
   845         !_offsets.verify_for_object(p, obj_size)) {
   846       *failures = true;
   847       return;
   848     }
   850     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   851       if (obj->is_oop()) {
   852         Klass* klass = obj->klass();
   853         bool is_metaspace_object = Metaspace::contains(klass) ||
   854                                    (vo == VerifyOption_G1UsePrevMarking &&
   855                                    ClassLoaderDataGraph::unload_list_contains(klass));
   856         if (!is_metaspace_object) {
   857           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
   858                                  "not metadata", klass, (void *)obj);
   859           *failures = true;
   860           return;
   861         } else if (!klass->is_klass()) {
   862           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
   863                                  "not a klass", klass, (void *)obj);
   864           *failures = true;
   865           return;
   866         } else {
   867           vl_cl.set_containing_obj(obj);
   868           if (!g1->full_collection() || G1VerifyRSetsDuringFullGC) {
   869             // verify liveness and rem_set
   870             vr_cl.set_containing_obj(obj);
   871             G1Mux2Closure mux(&vl_cl, &vr_cl);
   872             obj->oop_iterate_no_header(&mux);
   874             if (vr_cl.failures()) {
   875               *failures = true;
   876             }
   877             if (G1MaxVerifyFailures >= 0 &&
   878               vr_cl.n_failures() >= G1MaxVerifyFailures) {
   879               return;
   880             }
   881           } else {
   882             // verify only liveness
   883             obj->oop_iterate_no_header(&vl_cl);
   884           }
   885           if (vl_cl.failures()) {
   886             *failures = true;
   887           }
   888           if (G1MaxVerifyFailures >= 0 &&
   889               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   890             return;
   891           }
   892         }
   893       } else {
   894         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", (void *)obj);
   895         *failures = true;
   896         return;
   897       }
   898     }
   899     prev_p = p;
   900     p += obj_size;
   901   }
   903   if (p != top()) {
   904     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
   905                            "does not match top " PTR_FORMAT, p, top());
   906     *failures = true;
   907     return;
   908   }
   910   HeapWord* the_end = end();
   911   assert(p == top(), "it should still hold");
   912   // Do some extra BOT consistency checking for addresses in the
   913   // range [top, end). BOT look-ups in this range should yield
   914   // top. No point in doing that if top == end (there's nothing there).
   915   if (p < the_end) {
   916     // Look up top
   917     HeapWord* addr_1 = p;
   918     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   919     if (b_start_1 != p) {
   920       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
   921                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   922                              addr_1, b_start_1, p);
   923       *failures = true;
   924       return;
   925     }
   927     // Look up top + 1
   928     HeapWord* addr_2 = p + 1;
   929     if (addr_2 < the_end) {
   930       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   931       if (b_start_2 != p) {
   932         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
   933                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   934                                addr_2, b_start_2, p);
   935         *failures = true;
   936         return;
   937       }
   938     }
   940     // Look up an address between top and end
   941     size_t diff = pointer_delta(the_end, p) / 2;
   942     HeapWord* addr_3 = p + diff;
   943     if (addr_3 < the_end) {
   944       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   945       if (b_start_3 != p) {
   946         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
   947                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   948                                addr_3, b_start_3, p);
   949         *failures = true;
   950         return;
   951       }
   952     }
   954     // Loook up end - 1
   955     HeapWord* addr_4 = the_end - 1;
   956     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   957     if (b_start_4 != p) {
   958       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
   959                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
   960                              addr_4, b_start_4, p);
   961       *failures = true;
   962       return;
   963     }
   964   }
   966   if (is_humongous && object_num > 1) {
   967     gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
   968                            "but has " SIZE_FORMAT ", objects",
   969                            bottom(), end(), object_num);
   970     *failures = true;
   971     return;
   972   }
   974   verify_strong_code_roots(vo, failures);
   975 }
   977 void HeapRegion::verify() const {
   978   bool dummy = false;
   979   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
   980 }
   982 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
   983   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   984   *failures = false;
   985   HeapWord* p = bottom();
   986   HeapWord* prev_p = NULL;
   987   VerifyRemSetClosure vr_cl(g1, vo);
   988   while (p < top()) {
   989     oop obj = oop(p);
   990     size_t obj_size = block_size(p);
   992     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   993       if (obj->is_oop()) {
   994         vr_cl.set_containing_obj(obj);
   995         obj->oop_iterate_no_header(&vr_cl);
   997         if (vr_cl.failures()) {
   998           *failures = true;
   999         }
  1000         if (G1MaxVerifyFailures >= 0 &&
  1001           vr_cl.n_failures() >= G1MaxVerifyFailures) {
  1002           return;
  1004       } else {
  1005         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", p2i(obj));
  1006         *failures = true;
  1007         return;
  1011     prev_p = p;
  1012     p += obj_size;
  1016 void HeapRegion::verify_rem_set() const {
  1017   bool failures = false;
  1018   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
  1019   guarantee(!failures, "HeapRegion RemSet verification failed");
  1022 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1023 // away eventually.
  1025 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1026   set_top(bottom());
  1027   _scan_top = bottom();
  1028   CompactibleSpace::clear(mangle_space);
  1029   reset_bot();
  1032 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1033   Space::set_bottom(new_bottom);
  1034   _offsets.set_bottom(new_bottom);
  1037 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1038   Space::set_end(new_end);
  1039   _offsets.resize(new_end - bottom());
  1042 void G1OffsetTableContigSpace::print() const {
  1043   print_short();
  1044   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1045                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1046                 bottom(), top(), _offsets.threshold(), end());
  1049 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1050   return _offsets.initialize_threshold();
  1053 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1054                                                     HeapWord* end) {
  1055   _offsets.alloc_block(start, end);
  1056   return _offsets.threshold();
  1059 HeapWord* G1OffsetTableContigSpace::scan_top() const {
  1060   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1061   HeapWord* local_top = top();
  1062   OrderAccess::loadload();
  1063   const unsigned local_time_stamp = _gc_time_stamp;
  1064   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
  1065   if (local_time_stamp < g1h->get_gc_time_stamp()) {
  1066     return local_top;
  1067   } else {
  1068     return _scan_top;
  1072 void G1OffsetTableContigSpace::record_timestamp() {
  1073   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1074   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1076   if (_gc_time_stamp < curr_gc_time_stamp) {
  1077     // Setting the time stamp here tells concurrent readers to look at
  1078     // scan_top to know the maximum allowed address to look at.
  1080     // scan_top should be bottom for all regions except for the
  1081     // retained old alloc region which should have scan_top == top
  1082     HeapWord* st = _scan_top;
  1083     guarantee(st == _bottom || st == _top, "invariant");
  1085     _gc_time_stamp = curr_gc_time_stamp;
  1089 void G1OffsetTableContigSpace::record_retained_region() {
  1090   // scan_top is the maximum address where it's safe for the next gc to
  1091   // scan this region.
  1092   _scan_top = top();
  1095 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1096   object_iterate(blk);
  1099 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1100   HeapWord* p = bottom();
  1101   while (p < top()) {
  1102     if (block_is_obj(p)) {
  1103       blk->do_object(oop(p));
  1105     p += block_size(p);
  1109 #define block_is_always_obj(q) true
  1110 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1111   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1113 #undef block_is_always_obj
  1115 G1OffsetTableContigSpace::
  1116 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1117                          MemRegion mr) :
  1118   _offsets(sharedOffsetArray, mr),
  1119   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1120   _gc_time_stamp(0)
  1122   _offsets.set_space(this);
  1125 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  1126   CompactibleSpace::initialize(mr, clear_space, mangle_space);
  1127   _top = bottom();
  1128   _scan_top = bottom();
  1129   set_saved_mark_word(NULL);
  1130   reset_bot();

mercurial