src/os/windows/vm/os_windows.cpp

Thu, 14 Jun 2018 09:15:08 -0700

author
kevinw
date
Thu, 14 Jun 2018 09:15:08 -0700
changeset 9327
f96fcd9e1e1b
parent 8660
719accf109f5
child 9334
95b3ba140211
permissions
-rw-r--r--

8081202: Hotspot compile warning: "Invalid suffix on literal; C++11 requires a space between literal and identifier"
Summary: Need to add a space between macro identifier and string literal
Reviewed-by: bpittore, stefank, dholmes, kbarrett

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/orderAccess.inline.hpp"
    55 #include "runtime/osThread.hpp"
    56 #include "runtime/perfMemory.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/statSampler.hpp"
    59 #include "runtime/stubRoutines.hpp"
    60 #include "runtime/thread.inline.hpp"
    61 #include "runtime/threadCritical.hpp"
    62 #include "runtime/timer.hpp"
    63 #include "services/attachListener.hpp"
    64 #include "services/memTracker.hpp"
    65 #include "services/runtimeService.hpp"
    66 #include "utilities/decoder.hpp"
    67 #include "utilities/defaultStream.hpp"
    68 #include "utilities/events.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 #ifdef _DEBUG
    73 #include <crtdbg.h>
    74 #endif
    77 #include <windows.h>
    78 #include <sys/types.h>
    79 #include <sys/stat.h>
    80 #include <sys/timeb.h>
    81 #include <objidl.h>
    82 #include <shlobj.h>
    84 #include <malloc.h>
    85 #include <signal.h>
    86 #include <direct.h>
    87 #include <errno.h>
    88 #include <fcntl.h>
    89 #include <io.h>
    90 #include <process.h>              // For _beginthreadex(), _endthreadex()
    91 #include <imagehlp.h>             // For os::dll_address_to_function_name
    92 /* for enumerating dll libraries */
    93 #include <vdmdbg.h>
    95 // for timer info max values which include all bits
    96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    98 // For DLL loading/load error detection
    99 // Values of PE COFF
   100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   103 static HANDLE main_process;
   104 static HANDLE main_thread;
   105 static int    main_thread_id;
   107 static FILETIME process_creation_time;
   108 static FILETIME process_exit_time;
   109 static FILETIME process_user_time;
   110 static FILETIME process_kernel_time;
   112 #ifdef _M_IA64
   113   #define __CPU__ ia64
   114 #else
   115   #ifdef _M_AMD64
   116     #define __CPU__ amd64
   117   #else
   118     #define __CPU__ i486
   119   #endif
   120 #endif
   122 // save DLL module handle, used by GetModuleFileName
   124 HINSTANCE vm_lib_handle;
   126 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   127   switch (reason) {
   128     case DLL_PROCESS_ATTACH:
   129       vm_lib_handle = hinst;
   130       if(ForceTimeHighResolution)
   131         timeBeginPeriod(1L);
   132       break;
   133     case DLL_PROCESS_DETACH:
   134       if(ForceTimeHighResolution)
   135         timeEndPeriod(1L);
   137       break;
   138     default:
   139       break;
   140   }
   141   return true;
   142 }
   144 static inline double fileTimeAsDouble(FILETIME* time) {
   145   const double high  = (double) ((unsigned int) ~0);
   146   const double split = 10000000.0;
   147   double result = (time->dwLowDateTime / split) +
   148                    time->dwHighDateTime * (high/split);
   149   return result;
   150 }
   152 // Implementation of os
   154 bool os::getenv(const char* name, char* buffer, int len) {
   155  int result = GetEnvironmentVariable(name, buffer, len);
   156  return result > 0 && result < len;
   157 }
   159 bool os::unsetenv(const char* name) {
   160   assert(name != NULL, "Null pointer");
   161   return (SetEnvironmentVariable(name, NULL) == TRUE);
   162 }
   164 // No setuid programs under Windows.
   165 bool os::have_special_privileges() {
   166   return false;
   167 }
   170 // This method is  a periodic task to check for misbehaving JNI applications
   171 // under CheckJNI, we can add any periodic checks here.
   172 // For Windows at the moment does nothing
   173 void os::run_periodic_checks() {
   174   return;
   175 }
   177 #ifndef _WIN64
   178 // previous UnhandledExceptionFilter, if there is one
   179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   182 #endif
   183 void os::init_system_properties_values() {
   184   /* sysclasspath, java_home, dll_dir */
   185   {
   186       char *home_path;
   187       char *dll_path;
   188       char *pslash;
   189       char *bin = "\\bin";
   190       char home_dir[MAX_PATH];
   192       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   193           os::jvm_path(home_dir, sizeof(home_dir));
   194           // Found the full path to jvm.dll.
   195           // Now cut the path to <java_home>/jre if we can.
   196           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   197           pslash = strrchr(home_dir, '\\');
   198           if (pslash != NULL) {
   199               *pslash = '\0';                 /* get rid of \{client|server} */
   200               pslash = strrchr(home_dir, '\\');
   201               if (pslash != NULL)
   202                   *pslash = '\0';             /* get rid of \bin */
   203           }
   204       }
   206       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   207       if (home_path == NULL)
   208           return;
   209       strcpy(home_path, home_dir);
   210       Arguments::set_java_home(home_path);
   212       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   213       if (dll_path == NULL)
   214           return;
   215       strcpy(dll_path, home_dir);
   216       strcat(dll_path, bin);
   217       Arguments::set_dll_dir(dll_path);
   219       if (!set_boot_path('\\', ';'))
   220           return;
   221   }
   223   /* library_path */
   224   #define EXT_DIR "\\lib\\ext"
   225   #define BIN_DIR "\\bin"
   226   #define PACKAGE_DIR "\\Sun\\Java"
   227   {
   228     /* Win32 library search order (See the documentation for LoadLibrary):
   229      *
   230      * 1. The directory from which application is loaded.
   231      * 2. The system wide Java Extensions directory (Java only)
   232      * 3. System directory (GetSystemDirectory)
   233      * 4. Windows directory (GetWindowsDirectory)
   234      * 5. The PATH environment variable
   235      * 6. The current directory
   236      */
   238     char *library_path;
   239     char tmp[MAX_PATH];
   240     char *path_str = ::getenv("PATH");
   242     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   243         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   245     library_path[0] = '\0';
   247     GetModuleFileName(NULL, tmp, sizeof(tmp));
   248     *(strrchr(tmp, '\\')) = '\0';
   249     strcat(library_path, tmp);
   251     GetWindowsDirectory(tmp, sizeof(tmp));
   252     strcat(library_path, ";");
   253     strcat(library_path, tmp);
   254     strcat(library_path, PACKAGE_DIR BIN_DIR);
   256     GetSystemDirectory(tmp, sizeof(tmp));
   257     strcat(library_path, ";");
   258     strcat(library_path, tmp);
   260     GetWindowsDirectory(tmp, sizeof(tmp));
   261     strcat(library_path, ";");
   262     strcat(library_path, tmp);
   264     if (path_str) {
   265         strcat(library_path, ";");
   266         strcat(library_path, path_str);
   267     }
   269     strcat(library_path, ";.");
   271     Arguments::set_library_path(library_path);
   272     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   273   }
   275   /* Default extensions directory */
   276   {
   277     char path[MAX_PATH];
   278     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   279     GetWindowsDirectory(path, MAX_PATH);
   280     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   281         path, PACKAGE_DIR, EXT_DIR);
   282     Arguments::set_ext_dirs(buf);
   283   }
   284   #undef EXT_DIR
   285   #undef BIN_DIR
   286   #undef PACKAGE_DIR
   288   /* Default endorsed standards directory. */
   289   {
   290     #define ENDORSED_DIR "\\lib\\endorsed"
   291     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   292     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   293     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   294     Arguments::set_endorsed_dirs(buf);
   295     #undef ENDORSED_DIR
   296   }
   298 #ifndef _WIN64
   299   // set our UnhandledExceptionFilter and save any previous one
   300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   301 #endif
   303   // Done
   304   return;
   305 }
   307 void os::breakpoint() {
   308   DebugBreak();
   309 }
   311 // Invoked from the BREAKPOINT Macro
   312 extern "C" void breakpoint() {
   313   os::breakpoint();
   314 }
   316 /*
   317  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   318  * So far, this method is only used by Native Memory Tracking, which is
   319  * only supported on Windows XP or later.
   320  */
   322 int os::get_native_stack(address* stack, int frames, int toSkip) {
   323 #ifdef _NMT_NOINLINE_
   324   toSkip ++;
   325 #endif
   326   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
   327     (PVOID*)stack, NULL);
   328   for (int index = captured; index < frames; index ++) {
   329     stack[index] = NULL;
   330   }
   331   return captured;
   332 }
   335 // os::current_stack_base()
   336 //
   337 //   Returns the base of the stack, which is the stack's
   338 //   starting address.  This function must be called
   339 //   while running on the stack of the thread being queried.
   341 address os::current_stack_base() {
   342   MEMORY_BASIC_INFORMATION minfo;
   343   address stack_bottom;
   344   size_t stack_size;
   346   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   347   stack_bottom =  (address)minfo.AllocationBase;
   348   stack_size = minfo.RegionSize;
   350   // Add up the sizes of all the regions with the same
   351   // AllocationBase.
   352   while( 1 )
   353   {
   354     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   355     if ( stack_bottom == (address)minfo.AllocationBase )
   356       stack_size += minfo.RegionSize;
   357     else
   358       break;
   359   }
   361 #ifdef _M_IA64
   362   // IA64 has memory and register stacks
   363   //
   364   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   365   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   366   // growing downwards, 2MB summed up)
   367   //
   368   // ...
   369   // ------- top of stack (high address) -----
   370   // |
   371   // |      1MB
   372   // |      Backing Store (Register Stack)
   373   // |
   374   // |         / \
   375   // |          |
   376   // |          |
   377   // |          |
   378   // ------------------------ stack base -----
   379   // |      1MB
   380   // |      Memory Stack
   381   // |
   382   // |          |
   383   // |          |
   384   // |          |
   385   // |         \ /
   386   // |
   387   // ----- bottom of stack (low address) -----
   388   // ...
   390   stack_size = stack_size / 2;
   391 #endif
   392   return stack_bottom + stack_size;
   393 }
   395 size_t os::current_stack_size() {
   396   size_t sz;
   397   MEMORY_BASIC_INFORMATION minfo;
   398   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   399   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   400   return sz;
   401 }
   403 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   404   const struct tm* time_struct_ptr = localtime(clock);
   405   if (time_struct_ptr != NULL) {
   406     *res = *time_struct_ptr;
   407     return res;
   408   }
   409   return NULL;
   410 }
   412 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   414 // Thread start routine for all new Java threads
   415 static unsigned __stdcall java_start(Thread* thread) {
   416   // Try to randomize the cache line index of hot stack frames.
   417   // This helps when threads of the same stack traces evict each other's
   418   // cache lines. The threads can be either from the same JVM instance, or
   419   // from different JVM instances. The benefit is especially true for
   420   // processors with hyperthreading technology.
   421   static int counter = 0;
   422   int pid = os::current_process_id();
   423   _alloca(((pid ^ counter++) & 7) * 128);
   425   OSThread* osthr = thread->osthread();
   426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   428   if (UseNUMA) {
   429     int lgrp_id = os::numa_get_group_id();
   430     if (lgrp_id != -1) {
   431       thread->set_lgrp_id(lgrp_id);
   432     }
   433   }
   436   // Install a win32 structured exception handler around every thread created
   437   // by VM, so VM can genrate error dump when an exception occurred in non-
   438   // Java thread (e.g. VM thread).
   439   __try {
   440      thread->run();
   441   } __except(topLevelExceptionFilter(
   442              (_EXCEPTION_POINTERS*)_exception_info())) {
   443       // Nothing to do.
   444   }
   446   // One less thread is executing
   447   // When the VMThread gets here, the main thread may have already exited
   448   // which frees the CodeHeap containing the Atomic::add code
   449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   451   }
   453   return 0;
   454 }
   456 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   457   // Allocate the OSThread object
   458   OSThread* osthread = new OSThread(NULL, NULL);
   459   if (osthread == NULL) return NULL;
   461   // Initialize support for Java interrupts
   462   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   463   if (interrupt_event == NULL) {
   464     delete osthread;
   465     return NULL;
   466   }
   467   osthread->set_interrupt_event(interrupt_event);
   469   // Store info on the Win32 thread into the OSThread
   470   osthread->set_thread_handle(thread_handle);
   471   osthread->set_thread_id(thread_id);
   473   if (UseNUMA) {
   474     int lgrp_id = os::numa_get_group_id();
   475     if (lgrp_id != -1) {
   476       thread->set_lgrp_id(lgrp_id);
   477     }
   478   }
   480   // Initial thread state is INITIALIZED, not SUSPENDED
   481   osthread->set_state(INITIALIZED);
   483   return osthread;
   484 }
   487 bool os::create_attached_thread(JavaThread* thread) {
   488 #ifdef ASSERT
   489   thread->verify_not_published();
   490 #endif
   491   HANDLE thread_h;
   492   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   493                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   494     fatal("DuplicateHandle failed\n");
   495   }
   496   OSThread* osthread = create_os_thread(thread, thread_h,
   497                                         (int)current_thread_id());
   498   if (osthread == NULL) {
   499      return false;
   500   }
   502   // Initial thread state is RUNNABLE
   503   osthread->set_state(RUNNABLE);
   505   thread->set_osthread(osthread);
   506   return true;
   507 }
   509 bool os::create_main_thread(JavaThread* thread) {
   510 #ifdef ASSERT
   511   thread->verify_not_published();
   512 #endif
   513   if (_starting_thread == NULL) {
   514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   515      if (_starting_thread == NULL) {
   516         return false;
   517      }
   518   }
   520   // The primordial thread is runnable from the start)
   521   _starting_thread->set_state(RUNNABLE);
   523   thread->set_osthread(_starting_thread);
   524   return true;
   525 }
   527 // Allocate and initialize a new OSThread
   528 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   529   unsigned thread_id;
   531   // Allocate the OSThread object
   532   OSThread* osthread = new OSThread(NULL, NULL);
   533   if (osthread == NULL) {
   534     return false;
   535   }
   537   // Initialize support for Java interrupts
   538   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   539   if (interrupt_event == NULL) {
   540     delete osthread;
   541     return NULL;
   542   }
   543   osthread->set_interrupt_event(interrupt_event);
   544   osthread->set_interrupted(false);
   546   thread->set_osthread(osthread);
   548   if (stack_size == 0) {
   549     switch (thr_type) {
   550     case os::java_thread:
   551       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   552       if (JavaThread::stack_size_at_create() > 0)
   553         stack_size = JavaThread::stack_size_at_create();
   554       break;
   555     case os::compiler_thread:
   556       if (CompilerThreadStackSize > 0) {
   557         stack_size = (size_t)(CompilerThreadStackSize * K);
   558         break;
   559       } // else fall through:
   560         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   561     case os::vm_thread:
   562     case os::pgc_thread:
   563     case os::cgc_thread:
   564     case os::watcher_thread:
   565       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   566       break;
   567     }
   568   }
   570   // Create the Win32 thread
   571   //
   572   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   573   // does not specify stack size. Instead, it specifies the size of
   574   // initially committed space. The stack size is determined by
   575   // PE header in the executable. If the committed "stack_size" is larger
   576   // than default value in the PE header, the stack is rounded up to the
   577   // nearest multiple of 1MB. For example if the launcher has default
   578   // stack size of 320k, specifying any size less than 320k does not
   579   // affect the actual stack size at all, it only affects the initial
   580   // commitment. On the other hand, specifying 'stack_size' larger than
   581   // default value may cause significant increase in memory usage, because
   582   // not only the stack space will be rounded up to MB, but also the
   583   // entire space is committed upfront.
   584   //
   585   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   586   // for CreateThread() that can treat 'stack_size' as stack size. However we
   587   // are not supposed to call CreateThread() directly according to MSDN
   588   // document because JVM uses C runtime library. The good news is that the
   589   // flag appears to work with _beginthredex() as well.
   591 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   592 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   593 #endif
   595   HANDLE thread_handle =
   596     (HANDLE)_beginthreadex(NULL,
   597                            (unsigned)stack_size,
   598                            (unsigned (__stdcall *)(void*)) java_start,
   599                            thread,
   600                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   601                            &thread_id);
   602   if (thread_handle == NULL) {
   603     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   604     // without the flag.
   605     thread_handle =
   606     (HANDLE)_beginthreadex(NULL,
   607                            (unsigned)stack_size,
   608                            (unsigned (__stdcall *)(void*)) java_start,
   609                            thread,
   610                            CREATE_SUSPENDED,
   611                            &thread_id);
   612   }
   613   if (thread_handle == NULL) {
   614     // Need to clean up stuff we've allocated so far
   615     CloseHandle(osthread->interrupt_event());
   616     thread->set_osthread(NULL);
   617     delete osthread;
   618     return NULL;
   619   }
   621   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   623   // Store info on the Win32 thread into the OSThread
   624   osthread->set_thread_handle(thread_handle);
   625   osthread->set_thread_id(thread_id);
   627   // Initial thread state is INITIALIZED, not SUSPENDED
   628   osthread->set_state(INITIALIZED);
   630   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   631   return true;
   632 }
   635 // Free Win32 resources related to the OSThread
   636 void os::free_thread(OSThread* osthread) {
   637   assert(osthread != NULL, "osthread not set");
   638   CloseHandle(osthread->thread_handle());
   639   CloseHandle(osthread->interrupt_event());
   640   delete osthread;
   641 }
   644 static int    has_performance_count = 0;
   645 static jlong first_filetime;
   646 static jlong initial_performance_count;
   647 static jlong performance_frequency;
   650 jlong as_long(LARGE_INTEGER x) {
   651   jlong result = 0; // initialization to avoid warning
   652   set_high(&result, x.HighPart);
   653   set_low(&result,  x.LowPart);
   654   return result;
   655 }
   658 jlong os::elapsed_counter() {
   659   LARGE_INTEGER count;
   660   if (has_performance_count) {
   661     QueryPerformanceCounter(&count);
   662     return as_long(count) - initial_performance_count;
   663   } else {
   664     FILETIME wt;
   665     GetSystemTimeAsFileTime(&wt);
   666     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   667   }
   668 }
   671 jlong os::elapsed_frequency() {
   672   if (has_performance_count) {
   673     return performance_frequency;
   674   } else {
   675    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   676    return 10000000;
   677   }
   678 }
   681 julong os::available_memory() {
   682   return win32::available_memory();
   683 }
   685 julong os::win32::available_memory() {
   686   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   687   // value if total memory is larger than 4GB
   688   MEMORYSTATUSEX ms;
   689   ms.dwLength = sizeof(ms);
   690   GlobalMemoryStatusEx(&ms);
   692   return (julong)ms.ullAvailPhys;
   693 }
   695 julong os::physical_memory() {
   696   return win32::physical_memory();
   697 }
   699 bool os::has_allocatable_memory_limit(julong* limit) {
   700   MEMORYSTATUSEX ms;
   701   ms.dwLength = sizeof(ms);
   702   GlobalMemoryStatusEx(&ms);
   703 #ifdef _LP64
   704   *limit = (julong)ms.ullAvailVirtual;
   705   return true;
   706 #else
   707   // Limit to 1400m because of the 2gb address space wall
   708   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   709   return true;
   710 #endif
   711 }
   713 // VC6 lacks DWORD_PTR
   714 #if _MSC_VER < 1300
   715 typedef UINT_PTR DWORD_PTR;
   716 #endif
   718 int os::active_processor_count() {
   719   DWORD_PTR lpProcessAffinityMask = 0;
   720   DWORD_PTR lpSystemAffinityMask = 0;
   721   int proc_count = processor_count();
   722   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   723       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   724     // Nof active processors is number of bits in process affinity mask
   725     int bitcount = 0;
   726     while (lpProcessAffinityMask != 0) {
   727       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   728       bitcount++;
   729     }
   730     return bitcount;
   731   } else {
   732     return proc_count;
   733   }
   734 }
   736 void os::set_native_thread_name(const char *name) {
   737   // Not yet implemented.
   738   return;
   739 }
   741 bool os::distribute_processes(uint length, uint* distribution) {
   742   // Not yet implemented.
   743   return false;
   744 }
   746 bool os::bind_to_processor(uint processor_id) {
   747   // Not yet implemented.
   748   return false;
   749 }
   751 static void initialize_performance_counter() {
   752   LARGE_INTEGER count;
   753   if (QueryPerformanceFrequency(&count)) {
   754     has_performance_count = 1;
   755     performance_frequency = as_long(count);
   756     QueryPerformanceCounter(&count);
   757     initial_performance_count = as_long(count);
   758   } else {
   759     has_performance_count = 0;
   760     FILETIME wt;
   761     GetSystemTimeAsFileTime(&wt);
   762     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   763   }
   764 }
   767 double os::elapsedTime() {
   768   return (double) elapsed_counter() / (double) elapsed_frequency();
   769 }
   772 // Windows format:
   773 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   774 // Java format:
   775 //   Java standards require the number of milliseconds since 1/1/1970
   777 // Constant offset - calculated using offset()
   778 static jlong  _offset   = 116444736000000000;
   779 // Fake time counter for reproducible results when debugging
   780 static jlong  fake_time = 0;
   782 #ifdef ASSERT
   783 // Just to be safe, recalculate the offset in debug mode
   784 static jlong _calculated_offset = 0;
   785 static int   _has_calculated_offset = 0;
   787 jlong offset() {
   788   if (_has_calculated_offset) return _calculated_offset;
   789   SYSTEMTIME java_origin;
   790   java_origin.wYear          = 1970;
   791   java_origin.wMonth         = 1;
   792   java_origin.wDayOfWeek     = 0; // ignored
   793   java_origin.wDay           = 1;
   794   java_origin.wHour          = 0;
   795   java_origin.wMinute        = 0;
   796   java_origin.wSecond        = 0;
   797   java_origin.wMilliseconds  = 0;
   798   FILETIME jot;
   799   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   800     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   801   }
   802   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   803   _has_calculated_offset = 1;
   804   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   805   return _calculated_offset;
   806 }
   807 #else
   808 jlong offset() {
   809   return _offset;
   810 }
   811 #endif
   813 jlong windows_to_java_time(FILETIME wt) {
   814   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   815   return (a - offset()) / 10000;
   816 }
   818 FILETIME java_to_windows_time(jlong l) {
   819   jlong a = (l * 10000) + offset();
   820   FILETIME result;
   821   result.dwHighDateTime = high(a);
   822   result.dwLowDateTime  = low(a);
   823   return result;
   824 }
   826 bool os::supports_vtime() { return true; }
   827 bool os::enable_vtime() { return false; }
   828 bool os::vtime_enabled() { return false; }
   830 double os::elapsedVTime() {
   831   FILETIME created;
   832   FILETIME exited;
   833   FILETIME kernel;
   834   FILETIME user;
   835   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   836     // the resolution of windows_to_java_time() should be sufficient (ms)
   837     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   838   } else {
   839     return elapsedTime();
   840   }
   841 }
   843 jlong os::javaTimeMillis() {
   844   if (UseFakeTimers) {
   845     return fake_time++;
   846   } else {
   847     FILETIME wt;
   848     GetSystemTimeAsFileTime(&wt);
   849     return windows_to_java_time(wt);
   850   }
   851 }
   853 jlong os::javaTimeNanos() {
   854   if (!has_performance_count) {
   855     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   856   } else {
   857     LARGE_INTEGER current_count;
   858     QueryPerformanceCounter(&current_count);
   859     double current = as_long(current_count);
   860     double freq = performance_frequency;
   861     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   862     return time;
   863   }
   864 }
   866 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   867   if (!has_performance_count) {
   868     // javaTimeMillis() doesn't have much percision,
   869     // but it is not going to wrap -- so all 64 bits
   870     info_ptr->max_value = ALL_64_BITS;
   872     // this is a wall clock timer, so may skip
   873     info_ptr->may_skip_backward = true;
   874     info_ptr->may_skip_forward = true;
   875   } else {
   876     jlong freq = performance_frequency;
   877     if (freq < NANOSECS_PER_SEC) {
   878       // the performance counter is 64 bits and we will
   879       // be multiplying it -- so no wrap in 64 bits
   880       info_ptr->max_value = ALL_64_BITS;
   881     } else if (freq > NANOSECS_PER_SEC) {
   882       // use the max value the counter can reach to
   883       // determine the max value which could be returned
   884       julong max_counter = (julong)ALL_64_BITS;
   885       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   886     } else {
   887       // the performance counter is 64 bits and we will
   888       // be using it directly -- so no wrap in 64 bits
   889       info_ptr->max_value = ALL_64_BITS;
   890     }
   892     // using a counter, so no skipping
   893     info_ptr->may_skip_backward = false;
   894     info_ptr->may_skip_forward = false;
   895   }
   896   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   897 }
   899 char* os::local_time_string(char *buf, size_t buflen) {
   900   SYSTEMTIME st;
   901   GetLocalTime(&st);
   902   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   903                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   904   return buf;
   905 }
   907 bool os::getTimesSecs(double* process_real_time,
   908                      double* process_user_time,
   909                      double* process_system_time) {
   910   HANDLE h_process = GetCurrentProcess();
   911   FILETIME create_time, exit_time, kernel_time, user_time;
   912   BOOL result = GetProcessTimes(h_process,
   913                                &create_time,
   914                                &exit_time,
   915                                &kernel_time,
   916                                &user_time);
   917   if (result != 0) {
   918     FILETIME wt;
   919     GetSystemTimeAsFileTime(&wt);
   920     jlong rtc_millis = windows_to_java_time(wt);
   921     jlong user_millis = windows_to_java_time(user_time);
   922     jlong system_millis = windows_to_java_time(kernel_time);
   923     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   924     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   925     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   926     return true;
   927   } else {
   928     return false;
   929   }
   930 }
   932 void os::shutdown() {
   934   // allow PerfMemory to attempt cleanup of any persistent resources
   935   perfMemory_exit();
   937   // flush buffered output, finish log files
   938   ostream_abort();
   940   // Check for abort hook
   941   abort_hook_t abort_hook = Arguments::abort_hook();
   942   if (abort_hook != NULL) {
   943     abort_hook();
   944   }
   945 }
   948 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   949                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   951 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   952   HINSTANCE dbghelp;
   953   EXCEPTION_POINTERS ep;
   954   MINIDUMP_EXCEPTION_INFORMATION mei;
   955   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   957   HANDLE hProcess = GetCurrentProcess();
   958   DWORD processId = GetCurrentProcessId();
   959   HANDLE dumpFile;
   960   MINIDUMP_TYPE dumpType;
   961   static const char* cwd;
   963 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   964 #ifndef ASSERT
   965   // If running on a client version of Windows and user has not explicitly enabled dumping
   966   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   967     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   968     return;
   969     // If running on a server version of Windows and user has explictly disabled dumping
   970   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   971     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   972     return;
   973   }
   974 #else
   975   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   976     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   977     return;
   978   }
   979 #endif
   981   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   983   if (dbghelp == NULL) {
   984     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   985     return;
   986   }
   988   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   989     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   990     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
   991     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
   993   if (_MiniDumpWriteDump == NULL) {
   994     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
   995     return;
   996   }
   998   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
  1000 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
  1001 // API_VERSION_NUMBER 11 or higher contains the ones we want though
  1002 #if API_VERSION_NUMBER >= 11
  1003   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
  1004     MiniDumpWithUnloadedModules);
  1005 #endif
  1007   cwd = get_current_directory(NULL, 0);
  1008   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
  1009   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1011   if (dumpFile == INVALID_HANDLE_VALUE) {
  1012     VMError::report_coredump_status("Failed to create file for dumping", false);
  1013     return;
  1015   if (exceptionRecord != NULL && contextRecord != NULL) {
  1016     ep.ContextRecord = (PCONTEXT) contextRecord;
  1017     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1019     mei.ThreadId = GetCurrentThreadId();
  1020     mei.ExceptionPointers = &ep;
  1021     pmei = &mei;
  1022   } else {
  1023     pmei = NULL;
  1027   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1028   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1029   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1030       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1031         DWORD error = GetLastError();
  1032         LPTSTR msgbuf = NULL;
  1034         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1035                       FORMAT_MESSAGE_FROM_SYSTEM |
  1036                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1037                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1039           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1040           LocalFree(msgbuf);
  1041         } else {
  1042           // Call to FormatMessage failed, just include the result from GetLastError
  1043           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1045         VMError::report_coredump_status(buffer, false);
  1046   } else {
  1047     VMError::report_coredump_status(buffer, true);
  1050   CloseHandle(dumpFile);
  1055 void os::abort(bool dump_core)
  1057   os::shutdown();
  1058   // no core dump on Windows
  1059   ::exit(1);
  1062 // Die immediately, no exit hook, no abort hook, no cleanup.
  1063 void os::die() {
  1064   _exit(-1);
  1067 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1068 //  * dirent_md.c       1.15 00/02/02
  1069 //
  1070 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1072 /* Caller must have already run dirname through JVM_NativePath, which removes
  1073    duplicate slashes and converts all instances of '/' into '\\'. */
  1075 DIR *
  1076 os::opendir(const char *dirname)
  1078     assert(dirname != NULL, "just checking");   // hotspot change
  1079     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1080     DWORD fattr;                                // hotspot change
  1081     char alt_dirname[4] = { 0, 0, 0, 0 };
  1083     if (dirp == 0) {
  1084         errno = ENOMEM;
  1085         return 0;
  1088     /*
  1089      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1090      * as a directory in FindFirstFile().  We detect this case here and
  1091      * prepend the current drive name.
  1092      */
  1093     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1094         alt_dirname[0] = _getdrive() + 'A' - 1;
  1095         alt_dirname[1] = ':';
  1096         alt_dirname[2] = '\\';
  1097         alt_dirname[3] = '\0';
  1098         dirname = alt_dirname;
  1101     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1102     if (dirp->path == 0) {
  1103         free(dirp, mtInternal);
  1104         errno = ENOMEM;
  1105         return 0;
  1107     strcpy(dirp->path, dirname);
  1109     fattr = GetFileAttributes(dirp->path);
  1110     if (fattr == 0xffffffff) {
  1111         free(dirp->path, mtInternal);
  1112         free(dirp, mtInternal);
  1113         errno = ENOENT;
  1114         return 0;
  1115     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1116         free(dirp->path, mtInternal);
  1117         free(dirp, mtInternal);
  1118         errno = ENOTDIR;
  1119         return 0;
  1122     /* Append "*.*", or possibly "\\*.*", to path */
  1123     if (dirp->path[1] == ':'
  1124         && (dirp->path[2] == '\0'
  1125             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1126         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1127         strcat(dirp->path, "*.*");
  1128     } else {
  1129         strcat(dirp->path, "\\*.*");
  1132     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1133     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1134         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1135             free(dirp->path, mtInternal);
  1136             free(dirp, mtInternal);
  1137             errno = EACCES;
  1138             return 0;
  1141     return dirp;
  1144 /* parameter dbuf unused on Windows */
  1146 struct dirent *
  1147 os::readdir(DIR *dirp, dirent *dbuf)
  1149     assert(dirp != NULL, "just checking");      // hotspot change
  1150     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1151         return 0;
  1154     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1156     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1157         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1158             errno = EBADF;
  1159             return 0;
  1161         FindClose(dirp->handle);
  1162         dirp->handle = INVALID_HANDLE_VALUE;
  1165     return &dirp->dirent;
  1168 int
  1169 os::closedir(DIR *dirp)
  1171     assert(dirp != NULL, "just checking");      // hotspot change
  1172     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1173         if (!FindClose(dirp->handle)) {
  1174             errno = EBADF;
  1175             return -1;
  1177         dirp->handle = INVALID_HANDLE_VALUE;
  1179     free(dirp->path, mtInternal);
  1180     free(dirp, mtInternal);
  1181     return 0;
  1184 // This must be hard coded because it's the system's temporary
  1185 // directory not the java application's temp directory, ala java.io.tmpdir.
  1186 const char* os::get_temp_directory() {
  1187   static char path_buf[MAX_PATH];
  1188   if (GetTempPath(MAX_PATH, path_buf)>0)
  1189     return path_buf;
  1190   else{
  1191     path_buf[0]='\0';
  1192     return path_buf;
  1196 static bool file_exists(const char* filename) {
  1197   if (filename == NULL || strlen(filename) == 0) {
  1198     return false;
  1200   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1203 bool os::dll_build_name(char *buffer, size_t buflen,
  1204                         const char* pname, const char* fname) {
  1205   bool retval = false;
  1206   const size_t pnamelen = pname ? strlen(pname) : 0;
  1207   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1209   // Return error on buffer overflow.
  1210   if (pnamelen + strlen(fname) + 10 > buflen) {
  1211     return retval;
  1214   if (pnamelen == 0) {
  1215     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1216     retval = true;
  1217   } else if (c == ':' || c == '\\') {
  1218     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1219     retval = true;
  1220   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1221     int n;
  1222     char** pelements = split_path(pname, &n);
  1223     if (pelements == NULL) {
  1224       return false;
  1226     for (int i = 0 ; i < n ; i++) {
  1227       char* path = pelements[i];
  1228       // Really shouldn't be NULL, but check can't hurt
  1229       size_t plen = (path == NULL) ? 0 : strlen(path);
  1230       if (plen == 0) {
  1231         continue; // skip the empty path values
  1233       const char lastchar = path[plen - 1];
  1234       if (lastchar == ':' || lastchar == '\\') {
  1235         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1236       } else {
  1237         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1239       if (file_exists(buffer)) {
  1240         retval = true;
  1241         break;
  1244     // release the storage
  1245     for (int i = 0 ; i < n ; i++) {
  1246       if (pelements[i] != NULL) {
  1247         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1250     if (pelements != NULL) {
  1251       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1253   } else {
  1254     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1255     retval = true;
  1257   return retval;
  1260 // Needs to be in os specific directory because windows requires another
  1261 // header file <direct.h>
  1262 const char* os::get_current_directory(char *buf, size_t buflen) {
  1263   int n = static_cast<int>(buflen);
  1264   if (buflen > INT_MAX)  n = INT_MAX;
  1265   return _getcwd(buf, n);
  1268 //-----------------------------------------------------------
  1269 // Helper functions for fatal error handler
  1270 #ifdef _WIN64
  1271 // Helper routine which returns true if address in
  1272 // within the NTDLL address space.
  1273 //
  1274 static bool _addr_in_ntdll( address addr )
  1276   HMODULE hmod;
  1277   MODULEINFO minfo;
  1279   hmod = GetModuleHandle("NTDLL.DLL");
  1280   if ( hmod == NULL ) return false;
  1281   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1282                                &minfo, sizeof(MODULEINFO)) )
  1283     return false;
  1285   if ( (addr >= minfo.lpBaseOfDll) &&
  1286        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1287     return true;
  1288   else
  1289     return false;
  1291 #endif
  1294 // Enumerate all modules for a given process ID
  1295 //
  1296 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1297 // different API for doing this. We use PSAPI.DLL on NT based
  1298 // Windows and ToolHelp on 95/98/Me.
  1300 // Callback function that is called by enumerate_modules() on
  1301 // every DLL module.
  1302 // Input parameters:
  1303 //    int       pid,
  1304 //    char*     module_file_name,
  1305 //    address   module_base_addr,
  1306 //    unsigned  module_size,
  1307 //    void*     param
  1308 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1310 // enumerate_modules for Windows NT, using PSAPI
  1311 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1313   HANDLE   hProcess ;
  1315 # define MAX_NUM_MODULES 128
  1316   HMODULE     modules[MAX_NUM_MODULES];
  1317   static char filename[ MAX_PATH ];
  1318   int         result = 0;
  1320   if (!os::PSApiDll::PSApiAvailable()) {
  1321     return 0;
  1324   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1325                          FALSE, pid ) ;
  1326   if (hProcess == NULL) return 0;
  1328   DWORD size_needed;
  1329   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1330                            sizeof(modules), &size_needed)) {
  1331       CloseHandle( hProcess );
  1332       return 0;
  1335   // number of modules that are currently loaded
  1336   int num_modules = size_needed / sizeof(HMODULE);
  1338   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1339     // Get Full pathname:
  1340     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1341                              filename, sizeof(filename))) {
  1342         filename[0] = '\0';
  1345     MODULEINFO modinfo;
  1346     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1347                                &modinfo, sizeof(modinfo))) {
  1348         modinfo.lpBaseOfDll = NULL;
  1349         modinfo.SizeOfImage = 0;
  1352     // Invoke callback function
  1353     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1354                   modinfo.SizeOfImage, param);
  1355     if (result) break;
  1358   CloseHandle( hProcess ) ;
  1359   return result;
  1363 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1364 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1366   HANDLE                hSnapShot ;
  1367   static MODULEENTRY32  modentry ;
  1368   int                   result = 0;
  1370   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1371     return 0;
  1374   // Get a handle to a Toolhelp snapshot of the system
  1375   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1376   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1377       return FALSE ;
  1380   // iterate through all modules
  1381   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1382   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1384   while( not_done ) {
  1385     // invoke the callback
  1386     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1387                 modentry.modBaseSize, param);
  1388     if (result) break;
  1390     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1391     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1394   CloseHandle(hSnapShot);
  1395   return result;
  1398 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1400   // Get current process ID if caller doesn't provide it.
  1401   if (!pid) pid = os::current_process_id();
  1403   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1404   else                    return _enumerate_modules_windows(pid, func, param);
  1407 struct _modinfo {
  1408    address addr;
  1409    char*   full_path;   // point to a char buffer
  1410    int     buflen;      // size of the buffer
  1411    address base_addr;
  1412 };
  1414 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1415                                   unsigned size, void * param) {
  1416    struct _modinfo *pmod = (struct _modinfo *)param;
  1417    if (!pmod) return -1;
  1419    if (base_addr     <= pmod->addr &&
  1420        base_addr+size > pmod->addr) {
  1421      // if a buffer is provided, copy path name to the buffer
  1422      if (pmod->full_path) {
  1423        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1425      pmod->base_addr = base_addr;
  1426      return 1;
  1428    return 0;
  1431 bool os::dll_address_to_library_name(address addr, char* buf,
  1432                                      int buflen, int* offset) {
  1433   // buf is not optional, but offset is optional
  1434   assert(buf != NULL, "sanity check");
  1436 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1437 //       return the full path to the DLL file, sometimes it returns path
  1438 //       to the corresponding PDB file (debug info); sometimes it only
  1439 //       returns partial path, which makes life painful.
  1441   struct _modinfo mi;
  1442   mi.addr      = addr;
  1443   mi.full_path = buf;
  1444   mi.buflen    = buflen;
  1445   int pid = os::current_process_id();
  1446   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1447     // buf already contains path name
  1448     if (offset) *offset = addr - mi.base_addr;
  1449     return true;
  1452   buf[0] = '\0';
  1453   if (offset) *offset = -1;
  1454   return false;
  1457 bool os::dll_address_to_function_name(address addr, char *buf,
  1458                                       int buflen, int *offset) {
  1459   // buf is not optional, but offset is optional
  1460   assert(buf != NULL, "sanity check");
  1462   if (Decoder::decode(addr, buf, buflen, offset)) {
  1463     return true;
  1465   if (offset != NULL)  *offset  = -1;
  1466   buf[0] = '\0';
  1467   return false;
  1470 // save the start and end address of jvm.dll into param[0] and param[1]
  1471 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1472                     unsigned size, void * param) {
  1473    if (!param) return -1;
  1475    if (base_addr     <= (address)_locate_jvm_dll &&
  1476        base_addr+size > (address)_locate_jvm_dll) {
  1477          ((address*)param)[0] = base_addr;
  1478          ((address*)param)[1] = base_addr + size;
  1479          return 1;
  1481    return 0;
  1484 address vm_lib_location[2];    // start and end address of jvm.dll
  1486 // check if addr is inside jvm.dll
  1487 bool os::address_is_in_vm(address addr) {
  1488   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1489     int pid = os::current_process_id();
  1490     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1491       assert(false, "Can't find jvm module.");
  1492       return false;
  1496   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1499 // print module info; param is outputStream*
  1500 static int _print_module(int pid, char* fname, address base,
  1501                          unsigned size, void* param) {
  1502    if (!param) return -1;
  1504    outputStream* st = (outputStream*)param;
  1506    address end_addr = base + size;
  1507    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1508    return 0;
  1511 // Loads .dll/.so and
  1512 // in case of error it checks if .dll/.so was built for the
  1513 // same architecture as Hotspot is running on
  1514 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1516   void * result = LoadLibrary(name);
  1517   if (result != NULL)
  1519     return result;
  1522   DWORD errcode = GetLastError();
  1523   if (errcode == ERROR_MOD_NOT_FOUND) {
  1524     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1525     ebuf[ebuflen-1]='\0';
  1526     return NULL;
  1529   // Parsing dll below
  1530   // If we can read dll-info and find that dll was built
  1531   // for an architecture other than Hotspot is running in
  1532   // - then print to buffer "DLL was built for a different architecture"
  1533   // else call os::lasterror to obtain system error message
  1535   // Read system error message into ebuf
  1536   // It may or may not be overwritten below (in the for loop and just above)
  1537   lasterror(ebuf, (size_t) ebuflen);
  1538   ebuf[ebuflen-1]='\0';
  1539   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1540   if (file_descriptor<0)
  1542     return NULL;
  1545   uint32_t signature_offset;
  1546   uint16_t lib_arch=0;
  1547   bool failed_to_get_lib_arch=
  1549     //Go to position 3c in the dll
  1550     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1551     ||
  1552     // Read loacation of signature
  1553     (sizeof(signature_offset)!=
  1554       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1555     ||
  1556     //Go to COFF File Header in dll
  1557     //that is located after"signature" (4 bytes long)
  1558     (os::seek_to_file_offset(file_descriptor,
  1559       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1560     ||
  1561     //Read field that contains code of architecture
  1562     // that dll was build for
  1563     (sizeof(lib_arch)!=
  1564       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1565   );
  1567   ::close(file_descriptor);
  1568   if (failed_to_get_lib_arch)
  1570     // file i/o error - report os::lasterror(...) msg
  1571     return NULL;
  1574   typedef struct
  1576     uint16_t arch_code;
  1577     char* arch_name;
  1578   } arch_t;
  1580   static const arch_t arch_array[]={
  1581     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1582     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1583     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1584   };
  1585   #if   (defined _M_IA64)
  1586     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1587   #elif (defined _M_AMD64)
  1588     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1589   #elif (defined _M_IX86)
  1590     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1591   #else
  1592     #error Method os::dll_load requires that one of following \
  1593            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1594   #endif
  1597   // Obtain a string for printf operation
  1598   // lib_arch_str shall contain string what platform this .dll was built for
  1599   // running_arch_str shall string contain what platform Hotspot was built for
  1600   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1601   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1603     if (lib_arch==arch_array[i].arch_code)
  1604       lib_arch_str=arch_array[i].arch_name;
  1605     if (running_arch==arch_array[i].arch_code)
  1606       running_arch_str=arch_array[i].arch_name;
  1609   assert(running_arch_str,
  1610     "Didn't find runing architecture code in arch_array");
  1612   // If the architure is right
  1613   // but some other error took place - report os::lasterror(...) msg
  1614   if (lib_arch == running_arch)
  1616     return NULL;
  1619   if (lib_arch_str!=NULL)
  1621     ::_snprintf(ebuf, ebuflen-1,
  1622       "Can't load %s-bit .dll on a %s-bit platform",
  1623       lib_arch_str,running_arch_str);
  1625   else
  1627     // don't know what architecture this dll was build for
  1628     ::_snprintf(ebuf, ebuflen-1,
  1629       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1630       lib_arch,running_arch_str);
  1633   return NULL;
  1637 void os::print_dll_info(outputStream *st) {
  1638    int pid = os::current_process_id();
  1639    st->print_cr("Dynamic libraries:");
  1640    enumerate_modules(pid, _print_module, (void *)st);
  1643 void os::print_os_info_brief(outputStream* st) {
  1644   os::print_os_info(st);
  1647 void os::print_os_info(outputStream* st) {
  1648   st->print("OS:");
  1650   os::win32::print_windows_version(st);
  1653 void os::win32::print_windows_version(outputStream* st) {
  1654   OSVERSIONINFOEX osvi;
  1655   VS_FIXEDFILEINFO *file_info;
  1656   TCHAR kernel32_path[MAX_PATH];
  1657   UINT len, ret;
  1659   // Use the GetVersionEx information to see if we're on a server or
  1660   // workstation edition of Windows. Starting with Windows 8.1 we can't
  1661   // trust the OS version information returned by this API.
  1662   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1663   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1664   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1665     st->print_cr("Call to GetVersionEx failed");
  1666     return;
  1668   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
  1670   // Get the full path to \Windows\System32\kernel32.dll and use that for
  1671   // determining what version of Windows we're running on.
  1672   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
  1673   ret = GetSystemDirectory(kernel32_path, len);
  1674   if (ret == 0 || ret > len) {
  1675     st->print_cr("Call to GetSystemDirectory failed");
  1676     return;
  1678   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
  1680   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
  1681   if (version_size == 0) {
  1682     st->print_cr("Call to GetFileVersionInfoSize failed");
  1683     return;
  1686   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
  1687   if (version_info == NULL) {
  1688     st->print_cr("Failed to allocate version_info");
  1689     return;
  1692   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
  1693     os::free(version_info);
  1694     st->print_cr("Call to GetFileVersionInfo failed");
  1695     return;
  1698   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
  1699     os::free(version_info);
  1700     st->print_cr("Call to VerQueryValue failed");
  1701     return;
  1704   int major_version = HIWORD(file_info->dwProductVersionMS);
  1705   int minor_version = LOWORD(file_info->dwProductVersionMS);
  1706   int build_number = HIWORD(file_info->dwProductVersionLS);
  1707   int build_minor = LOWORD(file_info->dwProductVersionLS);
  1708   int os_vers = major_version * 1000 + minor_version;
  1709   os::free(version_info);
  1711   st->print(" Windows ");
  1712   switch (os_vers) {
  1714   case 6000:
  1715     if (is_workstation) {
  1716       st->print("Vista");
  1717     } else {
  1718       st->print("Server 2008");
  1720     break;
  1722   case 6001:
  1723     if (is_workstation) {
  1724       st->print("7");
  1725     } else {
  1726       st->print("Server 2008 R2");
  1728     break;
  1730   case 6002:
  1731     if (is_workstation) {
  1732       st->print("8");
  1733     } else {
  1734       st->print("Server 2012");
  1736     break;
  1738   case 6003:
  1739     if (is_workstation) {
  1740       st->print("8.1");
  1741     } else {
  1742       st->print("Server 2012 R2");
  1744     break;
  1746   case 6004:
  1747     if (is_workstation) {
  1748       st->print("10");
  1749     } else {
  1750       st->print("Server 2016");
  1752     break;
  1754   default:
  1755     // Unrecognized windows, print out its major and minor versions
  1756     st->print("%d.%d", major_version, minor_version);
  1757     break;
  1760   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1761   // find out whether we are running on 64 bit processor or not
  1762   SYSTEM_INFO si;
  1763   ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1764   os::Kernel32Dll::GetNativeSystemInfo(&si);
  1765   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
  1766     st->print(" , 64 bit");
  1769   st->print(" Build %d", build_number);
  1770   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
  1771   st->cr();
  1774 void os::pd_print_cpu_info(outputStream* st) {
  1775   // Nothing to do for now.
  1778 void os::print_memory_info(outputStream* st) {
  1779   st->print("Memory:");
  1780   st->print(" %dk page", os::vm_page_size()>>10);
  1782   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1783   // value if total memory is larger than 4GB
  1784   MEMORYSTATUSEX ms;
  1785   ms.dwLength = sizeof(ms);
  1786   GlobalMemoryStatusEx(&ms);
  1788   st->print(", physical %uk", os::physical_memory() >> 10);
  1789   st->print("(%uk free)", os::available_memory() >> 10);
  1791   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1792   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1793   st->cr();
  1796 void os::print_siginfo(outputStream *st, void *siginfo) {
  1797   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1798   st->print("siginfo:");
  1799   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1801   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1802       er->NumberParameters >= 2) {
  1803       switch (er->ExceptionInformation[0]) {
  1804       case 0: st->print(", reading address"); break;
  1805       case 1: st->print(", writing address"); break;
  1806       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1807                             er->ExceptionInformation[0]);
  1809       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1810   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1811              er->NumberParameters >= 2 && UseSharedSpaces) {
  1812     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1813     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1814       st->print("\n\nError accessing class data sharing archive."       \
  1815                 " Mapped file inaccessible during execution, "          \
  1816                 " possible disk/network problem.");
  1818   } else {
  1819     int num = er->NumberParameters;
  1820     if (num > 0) {
  1821       st->print(", ExceptionInformation=");
  1822       for (int i = 0; i < num; i++) {
  1823         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1827   st->cr();
  1830 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1831   // do nothing
  1834 static char saved_jvm_path[MAX_PATH] = {0};
  1836 // Find the full path to the current module, jvm.dll
  1837 void os::jvm_path(char *buf, jint buflen) {
  1838   // Error checking.
  1839   if (buflen < MAX_PATH) {
  1840     assert(false, "must use a large-enough buffer");
  1841     buf[0] = '\0';
  1842     return;
  1844   // Lazy resolve the path to current module.
  1845   if (saved_jvm_path[0] != 0) {
  1846     strcpy(buf, saved_jvm_path);
  1847     return;
  1850   buf[0] = '\0';
  1851   if (Arguments::created_by_gamma_launcher()) {
  1852      // Support for the gamma launcher. Check for an
  1853      // JAVA_HOME environment variable
  1854      // and fix up the path so it looks like
  1855      // libjvm.so is installed there (append a fake suffix
  1856      // hotspot/libjvm.so).
  1857      char* java_home_var = ::getenv("JAVA_HOME");
  1858      if (java_home_var != NULL && java_home_var[0] != 0 &&
  1859          strlen(java_home_var) < (size_t)buflen) {
  1861         strncpy(buf, java_home_var, buflen);
  1863         // determine if this is a legacy image or modules image
  1864         // modules image doesn't have "jre" subdirectory
  1865         size_t len = strlen(buf);
  1866         char* jrebin_p = buf + len;
  1867         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1868         if (0 != _access(buf, 0)) {
  1869           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1871         len = strlen(buf);
  1872         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1876   if(buf[0] == '\0') {
  1877     GetModuleFileName(vm_lib_handle, buf, buflen);
  1879   strncpy(saved_jvm_path, buf, MAX_PATH);
  1883 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1884 #ifndef _WIN64
  1885   st->print("_");
  1886 #endif
  1890 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1891 #ifndef _WIN64
  1892   st->print("@%d", args_size  * sizeof(int));
  1893 #endif
  1896 // This method is a copy of JDK's sysGetLastErrorString
  1897 // from src/windows/hpi/src/system_md.c
  1899 size_t os::lasterror(char* buf, size_t len) {
  1900   DWORD errval;
  1902   if ((errval = GetLastError()) != 0) {
  1903     // DOS error
  1904     size_t n = (size_t)FormatMessage(
  1905           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1906           NULL,
  1907           errval,
  1908           0,
  1909           buf,
  1910           (DWORD)len,
  1911           NULL);
  1912     if (n > 3) {
  1913       // Drop final '.', CR, LF
  1914       if (buf[n - 1] == '\n') n--;
  1915       if (buf[n - 1] == '\r') n--;
  1916       if (buf[n - 1] == '.') n--;
  1917       buf[n] = '\0';
  1919     return n;
  1922   if (errno != 0) {
  1923     // C runtime error that has no corresponding DOS error code
  1924     const char* s = strerror(errno);
  1925     size_t n = strlen(s);
  1926     if (n >= len) n = len - 1;
  1927     strncpy(buf, s, n);
  1928     buf[n] = '\0';
  1929     return n;
  1932   return 0;
  1935 int os::get_last_error() {
  1936   DWORD error = GetLastError();
  1937   if (error == 0)
  1938     error = errno;
  1939   return (int)error;
  1942 // sun.misc.Signal
  1943 // NOTE that this is a workaround for an apparent kernel bug where if
  1944 // a signal handler for SIGBREAK is installed then that signal handler
  1945 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1946 // See bug 4416763.
  1947 static void (*sigbreakHandler)(int) = NULL;
  1949 static void UserHandler(int sig, void *siginfo, void *context) {
  1950   os::signal_notify(sig);
  1951   // We need to reinstate the signal handler each time...
  1952   os::signal(sig, (void*)UserHandler);
  1955 void* os::user_handler() {
  1956   return (void*) UserHandler;
  1959 void* os::signal(int signal_number, void* handler) {
  1960   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1961     void (*oldHandler)(int) = sigbreakHandler;
  1962     sigbreakHandler = (void (*)(int)) handler;
  1963     return (void*) oldHandler;
  1964   } else {
  1965     return (void*)::signal(signal_number, (void (*)(int))handler);
  1969 void os::signal_raise(int signal_number) {
  1970   raise(signal_number);
  1973 // The Win32 C runtime library maps all console control events other than ^C
  1974 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1975 // logoff, and shutdown events.  We therefore install our own console handler
  1976 // that raises SIGTERM for the latter cases.
  1977 //
  1978 static BOOL WINAPI consoleHandler(DWORD event) {
  1979   switch(event) {
  1980     case CTRL_C_EVENT:
  1981       if (is_error_reported()) {
  1982         // Ctrl-C is pressed during error reporting, likely because the error
  1983         // handler fails to abort. Let VM die immediately.
  1984         os::die();
  1987       os::signal_raise(SIGINT);
  1988       return TRUE;
  1989       break;
  1990     case CTRL_BREAK_EVENT:
  1991       if (sigbreakHandler != NULL) {
  1992         (*sigbreakHandler)(SIGBREAK);
  1994       return TRUE;
  1995       break;
  1996     case CTRL_LOGOFF_EVENT: {
  1997       // Don't terminate JVM if it is running in a non-interactive session,
  1998       // such as a service process.
  1999       USEROBJECTFLAGS flags;
  2000       HANDLE handle = GetProcessWindowStation();
  2001       if (handle != NULL &&
  2002           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  2003             sizeof( USEROBJECTFLAGS), NULL)) {
  2004         // If it is a non-interactive session, let next handler to deal
  2005         // with it.
  2006         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  2007           return FALSE;
  2011     case CTRL_CLOSE_EVENT:
  2012     case CTRL_SHUTDOWN_EVENT:
  2013       os::signal_raise(SIGTERM);
  2014       return TRUE;
  2015       break;
  2016     default:
  2017       break;
  2019   return FALSE;
  2022 /*
  2023  * The following code is moved from os.cpp for making this
  2024  * code platform specific, which it is by its very nature.
  2025  */
  2027 // Return maximum OS signal used + 1 for internal use only
  2028 // Used as exit signal for signal_thread
  2029 int os::sigexitnum_pd(){
  2030   return NSIG;
  2033 // a counter for each possible signal value, including signal_thread exit signal
  2034 static volatile jint pending_signals[NSIG+1] = { 0 };
  2035 static HANDLE sig_sem = NULL;
  2037 void os::signal_init_pd() {
  2038   // Initialize signal structures
  2039   memset((void*)pending_signals, 0, sizeof(pending_signals));
  2041   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  2043   // Programs embedding the VM do not want it to attempt to receive
  2044   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  2045   // shutdown hooks mechanism introduced in 1.3.  For example, when
  2046   // the VM is run as part of a Windows NT service (i.e., a servlet
  2047   // engine in a web server), the correct behavior is for any console
  2048   // control handler to return FALSE, not TRUE, because the OS's
  2049   // "final" handler for such events allows the process to continue if
  2050   // it is a service (while terminating it if it is not a service).
  2051   // To make this behavior uniform and the mechanism simpler, we
  2052   // completely disable the VM's usage of these console events if -Xrs
  2053   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2054   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2055   // case.  See bugs 4323062, 4345157, and related bugs.
  2057   if (!ReduceSignalUsage) {
  2058     // Add a CTRL-C handler
  2059     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2063 void os::signal_notify(int signal_number) {
  2064   BOOL ret;
  2065   if (sig_sem != NULL) {
  2066     Atomic::inc(&pending_signals[signal_number]);
  2067     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2068     assert(ret != 0, "ReleaseSemaphore() failed");
  2072 static int check_pending_signals(bool wait_for_signal) {
  2073   DWORD ret;
  2074   while (true) {
  2075     for (int i = 0; i < NSIG + 1; i++) {
  2076       jint n = pending_signals[i];
  2077       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2078         return i;
  2081     if (!wait_for_signal) {
  2082       return -1;
  2085     JavaThread *thread = JavaThread::current();
  2087     ThreadBlockInVM tbivm(thread);
  2089     bool threadIsSuspended;
  2090     do {
  2091       thread->set_suspend_equivalent();
  2092       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2093       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2094       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2096       // were we externally suspended while we were waiting?
  2097       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2098       if (threadIsSuspended) {
  2099         //
  2100         // The semaphore has been incremented, but while we were waiting
  2101         // another thread suspended us. We don't want to continue running
  2102         // while suspended because that would surprise the thread that
  2103         // suspended us.
  2104         //
  2105         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2106         assert(ret != 0, "ReleaseSemaphore() failed");
  2108         thread->java_suspend_self();
  2110     } while (threadIsSuspended);
  2114 int os::signal_lookup() {
  2115   return check_pending_signals(false);
  2118 int os::signal_wait() {
  2119   return check_pending_signals(true);
  2122 // Implicit OS exception handling
  2124 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2125   JavaThread* thread = JavaThread::current();
  2126   // Save pc in thread
  2127 #ifdef _M_IA64
  2128   // Do not blow up if no thread info available.
  2129   if (thread) {
  2130     // Saving PRECISE pc (with slot information) in thread.
  2131     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2132     // Convert precise PC into "Unix" format
  2133     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2134     thread->set_saved_exception_pc((address)precise_pc);
  2136   // Set pc to handler
  2137   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2138   // Clear out psr.ri (= Restart Instruction) in order to continue
  2139   // at the beginning of the target bundle.
  2140   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2141   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2142 #else
  2143   #ifdef _M_AMD64
  2144   // Do not blow up if no thread info available.
  2145   if (thread) {
  2146     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2148   // Set pc to handler
  2149   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2150   #else
  2151   // Do not blow up if no thread info available.
  2152   if (thread) {
  2153     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2155   // Set pc to handler
  2156   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2157   #endif
  2158 #endif
  2160   // Continue the execution
  2161   return EXCEPTION_CONTINUE_EXECUTION;
  2165 // Used for PostMortemDump
  2166 extern "C" void safepoints();
  2167 extern "C" void find(int x);
  2168 extern "C" void events();
  2170 // According to Windows API documentation, an illegal instruction sequence should generate
  2171 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2172 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2173 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2175 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2177 // From "Execution Protection in the Windows Operating System" draft 0.35
  2178 // Once a system header becomes available, the "real" define should be
  2179 // included or copied here.
  2180 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2182 // Handle NAT Bit consumption on IA64.
  2183 #ifdef _M_IA64
  2184 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2185 #endif
  2187 // Windows Vista/2008 heap corruption check
  2188 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2190 #define def_excpt(val) #val, val
  2192 struct siglabel {
  2193   char *name;
  2194   int   number;
  2195 };
  2197 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2198 // C++ compiler contain this error code. Because this is a compiler-generated
  2199 // error, the code is not listed in the Win32 API header files.
  2200 // The code is actually a cryptic mnemonic device, with the initial "E"
  2201 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2202 // ASCII values of "msc".
  2204 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2207 struct siglabel exceptlabels[] = {
  2208     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2209     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2210     def_excpt(EXCEPTION_BREAKPOINT),
  2211     def_excpt(EXCEPTION_SINGLE_STEP),
  2212     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2213     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2214     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2215     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2216     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2217     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2218     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2219     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2220     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2221     def_excpt(EXCEPTION_INT_OVERFLOW),
  2222     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2223     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2224     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2225     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2226     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2227     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2228     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2229     def_excpt(EXCEPTION_GUARD_PAGE),
  2230     def_excpt(EXCEPTION_INVALID_HANDLE),
  2231     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2232     def_excpt(EXCEPTION_HEAP_CORRUPTION),
  2233 #ifdef _M_IA64
  2234     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
  2235 #endif
  2236     NULL, 0
  2237 };
  2239 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2240   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2241     if (exceptlabels[i].number == exception_code) {
  2242        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2243        return buf;
  2247   return NULL;
  2250 //-----------------------------------------------------------------------------
  2251 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2252   // handle exception caused by idiv; should only happen for -MinInt/-1
  2253   // (division by zero is handled explicitly)
  2254 #ifdef _M_IA64
  2255   assert(0, "Fix Handle_IDiv_Exception");
  2256 #else
  2257   #ifdef  _M_AMD64
  2258   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2259   address pc = (address)ctx->Rip;
  2260   assert(pc[0] == 0xF7, "not an idiv opcode");
  2261   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2262   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2263   // set correct result values and continue after idiv instruction
  2264   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2265   ctx->Rax = (DWORD)min_jint;      // result
  2266   ctx->Rdx = (DWORD)0;             // remainder
  2267   // Continue the execution
  2268   #else
  2269   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2270   address pc = (address)ctx->Eip;
  2271   assert(pc[0] == 0xF7, "not an idiv opcode");
  2272   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2273   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2274   // set correct result values and continue after idiv instruction
  2275   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2276   ctx->Eax = (DWORD)min_jint;      // result
  2277   ctx->Edx = (DWORD)0;             // remainder
  2278   // Continue the execution
  2279   #endif
  2280 #endif
  2281   return EXCEPTION_CONTINUE_EXECUTION;
  2284 #ifndef  _WIN64
  2285 //-----------------------------------------------------------------------------
  2286 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2287   // handle exception caused by native method modifying control word
  2288   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2289   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2291   switch (exception_code) {
  2292     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2293     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2294     case EXCEPTION_FLT_INEXACT_RESULT:
  2295     case EXCEPTION_FLT_INVALID_OPERATION:
  2296     case EXCEPTION_FLT_OVERFLOW:
  2297     case EXCEPTION_FLT_STACK_CHECK:
  2298     case EXCEPTION_FLT_UNDERFLOW:
  2299       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2300       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2301         // Restore FPCW and mask out FLT exceptions
  2302         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2303         // Mask out pending FLT exceptions
  2304         ctx->FloatSave.StatusWord &=  0xffffff00;
  2305         return EXCEPTION_CONTINUE_EXECUTION;
  2309   if (prev_uef_handler != NULL) {
  2310     // We didn't handle this exception so pass it to the previous
  2311     // UnhandledExceptionFilter.
  2312     return (prev_uef_handler)(exceptionInfo);
  2315   return EXCEPTION_CONTINUE_SEARCH;
  2317 #else //_WIN64
  2318 /*
  2319   On Windows, the mxcsr control bits are non-volatile across calls
  2320   See also CR 6192333
  2321   If EXCEPTION_FLT_* happened after some native method modified
  2322   mxcsr - it is not a jvm fault.
  2323   However should we decide to restore of mxcsr after a faulty
  2324   native method we can uncomment following code
  2325       jint MxCsr = INITIAL_MXCSR;
  2326         // we can't use StubRoutines::addr_mxcsr_std()
  2327         // because in Win64 mxcsr is not saved there
  2328       if (MxCsr != ctx->MxCsr) {
  2329         ctx->MxCsr = MxCsr;
  2330         return EXCEPTION_CONTINUE_EXECUTION;
  2333 */
  2334 #endif // _WIN64
  2337 static inline void report_error(Thread* t, DWORD exception_code,
  2338                                 address addr, void* siginfo, void* context) {
  2339   VMError err(t, exception_code, addr, siginfo, context);
  2340   err.report_and_die();
  2342   // If UseOsErrorReporting, this will return here and save the error file
  2343   // somewhere where we can find it in the minidump.
  2346 //-----------------------------------------------------------------------------
  2347 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2348   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2349   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2350 #ifdef _M_IA64
  2351   // On Itanium, we need the "precise pc", which has the slot number coded
  2352   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2353   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2354   // Convert the pc to "Unix format", which has the slot number coded
  2355   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2356   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2357   // information is saved in the Unix format.
  2358   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2359 #else
  2360   #ifdef _M_AMD64
  2361   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2362   #else
  2363   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2364   #endif
  2365 #endif
  2366   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2368   // Handle SafeFetch32 and SafeFetchN exceptions.
  2369   if (StubRoutines::is_safefetch_fault(pc)) {
  2370     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
  2373 #ifndef _WIN64
  2374   // Execution protection violation - win32 running on AMD64 only
  2375   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2376   // This is safe to do because we have a new/unique ExceptionInformation
  2377   // code for this condition.
  2378   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2379     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2380     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2381     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2383     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2384       int page_size = os::vm_page_size();
  2386       // Make sure the pc and the faulting address are sane.
  2387       //
  2388       // If an instruction spans a page boundary, and the page containing
  2389       // the beginning of the instruction is executable but the following
  2390       // page is not, the pc and the faulting address might be slightly
  2391       // different - we still want to unguard the 2nd page in this case.
  2392       //
  2393       // 15 bytes seems to be a (very) safe value for max instruction size.
  2394       bool pc_is_near_addr =
  2395         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2396       bool instr_spans_page_boundary =
  2397         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2398                          (intptr_t) page_size) > 0);
  2400       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2401         static volatile address last_addr =
  2402           (address) os::non_memory_address_word();
  2404         // In conservative mode, don't unguard unless the address is in the VM
  2405         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2406             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2408           // Set memory to RWX and retry
  2409           address page_start =
  2410             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2411           bool res = os::protect_memory((char*) page_start, page_size,
  2412                                         os::MEM_PROT_RWX);
  2414           if (PrintMiscellaneous && Verbose) {
  2415             char buf[256];
  2416             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2417                          "at " INTPTR_FORMAT
  2418                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2419                          page_start, (res ? "success" : strerror(errno)));
  2420             tty->print_raw_cr(buf);
  2423           // Set last_addr so if we fault again at the same address, we don't
  2424           // end up in an endless loop.
  2425           //
  2426           // There are two potential complications here.  Two threads trapping
  2427           // at the same address at the same time could cause one of the
  2428           // threads to think it already unguarded, and abort the VM.  Likely
  2429           // very rare.
  2430           //
  2431           // The other race involves two threads alternately trapping at
  2432           // different addresses and failing to unguard the page, resulting in
  2433           // an endless loop.  This condition is probably even more unlikely
  2434           // than the first.
  2435           //
  2436           // Although both cases could be avoided by using locks or thread
  2437           // local last_addr, these solutions are unnecessary complication:
  2438           // this handler is a best-effort safety net, not a complete solution.
  2439           // It is disabled by default and should only be used as a workaround
  2440           // in case we missed any no-execute-unsafe VM code.
  2442           last_addr = addr;
  2444           return EXCEPTION_CONTINUE_EXECUTION;
  2448       // Last unguard failed or not unguarding
  2449       tty->print_raw_cr("Execution protection violation");
  2450       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2451                    exceptionInfo->ContextRecord);
  2452       return EXCEPTION_CONTINUE_SEARCH;
  2455 #endif // _WIN64
  2457   // Check to see if we caught the safepoint code in the
  2458   // process of write protecting the memory serialization page.
  2459   // It write enables the page immediately after protecting it
  2460   // so just return.
  2461   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2462     JavaThread* thread = (JavaThread*) t;
  2463     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2464     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2465     if ( os::is_memory_serialize_page(thread, addr) ) {
  2466       // Block current thread until the memory serialize page permission restored.
  2467       os::block_on_serialize_page_trap();
  2468       return EXCEPTION_CONTINUE_EXECUTION;
  2472   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
  2473       VM_Version::is_cpuinfo_segv_addr(pc)) {
  2474     // Verify that OS save/restore AVX registers.
  2475     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
  2478   if (t != NULL && t->is_Java_thread()) {
  2479     JavaThread* thread = (JavaThread*) t;
  2480     bool in_java = thread->thread_state() == _thread_in_Java;
  2482     // Handle potential stack overflows up front.
  2483     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2484       if (os::uses_stack_guard_pages()) {
  2485 #ifdef _M_IA64
  2486         // Use guard page for register stack.
  2487         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2488         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2489         // Check for a register stack overflow on Itanium
  2490         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2491           // Fatal red zone violation happens if the Java program
  2492           // catches a StackOverflow error and does so much processing
  2493           // that it runs beyond the unprotected yellow guard zone. As
  2494           // a result, we are out of here.
  2495           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2496         } else if(thread->addr_inside_register_stack(addr)) {
  2497           // Disable the yellow zone which sets the state that
  2498           // we've got a stack overflow problem.
  2499           if (thread->stack_yellow_zone_enabled()) {
  2500             thread->disable_stack_yellow_zone();
  2502           // Give us some room to process the exception.
  2503           thread->disable_register_stack_guard();
  2504           // Tracing with +Verbose.
  2505           if (Verbose) {
  2506             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2507             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2508             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2509             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2510                           thread->register_stack_base(),
  2511                           thread->register_stack_base() + thread->stack_size());
  2514           // Reguard the permanent register stack red zone just to be sure.
  2515           // We saw Windows silently disabling this without telling us.
  2516           thread->enable_register_stack_red_zone();
  2518           return Handle_Exception(exceptionInfo,
  2519             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2521 #endif
  2522         if (thread->stack_yellow_zone_enabled()) {
  2523           // Yellow zone violation.  The o/s has unprotected the first yellow
  2524           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2525           // update the enabled status, even if the zone contains only one page.
  2526           thread->disable_stack_yellow_zone();
  2527           // If not in java code, return and hope for the best.
  2528           return in_java ? Handle_Exception(exceptionInfo,
  2529             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2530             :  EXCEPTION_CONTINUE_EXECUTION;
  2531         } else {
  2532           // Fatal red zone violation.
  2533           thread->disable_stack_red_zone();
  2534           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2535           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2536                        exceptionInfo->ContextRecord);
  2537           return EXCEPTION_CONTINUE_SEARCH;
  2539       } else if (in_java) {
  2540         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2541         // a one-time-only guard page, which it has released to us.  The next
  2542         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2543         return Handle_Exception(exceptionInfo,
  2544           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2545       } else {
  2546         // Can only return and hope for the best.  Further stack growth will
  2547         // result in an ACCESS_VIOLATION.
  2548         return EXCEPTION_CONTINUE_EXECUTION;
  2550     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2551       // Either stack overflow or null pointer exception.
  2552       if (in_java) {
  2553         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2554         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2555         address stack_end = thread->stack_base() - thread->stack_size();
  2556         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2557           // Stack overflow.
  2558           assert(!os::uses_stack_guard_pages(),
  2559             "should be caught by red zone code above.");
  2560           return Handle_Exception(exceptionInfo,
  2561             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2563         //
  2564         // Check for safepoint polling and implicit null
  2565         // We only expect null pointers in the stubs (vtable)
  2566         // the rest are checked explicitly now.
  2567         //
  2568         CodeBlob* cb = CodeCache::find_blob(pc);
  2569         if (cb != NULL) {
  2570           if (os::is_poll_address(addr)) {
  2571             address stub = SharedRuntime::get_poll_stub(pc);
  2572             return Handle_Exception(exceptionInfo, stub);
  2576 #ifdef _WIN64
  2577           //
  2578           // If it's a legal stack address map the entire region in
  2579           //
  2580           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2581           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2582           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2583                   addr = (address)((uintptr_t)addr &
  2584                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2585                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2586                                     !ExecMem);
  2587                   return EXCEPTION_CONTINUE_EXECUTION;
  2589           else
  2590 #endif
  2592             // Null pointer exception.
  2593 #ifdef _M_IA64
  2594             // Process implicit null checks in compiled code. Note: Implicit null checks
  2595             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2596             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2597               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2598               // Handle implicit null check in UEP method entry
  2599               if (cb && (cb->is_frame_complete_at(pc) ||
  2600                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2601                 if (Verbose) {
  2602                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2603                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2604                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2605                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2606                                 *(bundle_start + 1), *bundle_start);
  2608                 return Handle_Exception(exceptionInfo,
  2609                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2613             // Implicit null checks were processed above.  Hence, we should not reach
  2614             // here in the usual case => die!
  2615             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2616             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2617                          exceptionInfo->ContextRecord);
  2618             return EXCEPTION_CONTINUE_SEARCH;
  2620 #else // !IA64
  2622             // Windows 98 reports faulting addresses incorrectly
  2623             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2624                 !os::win32::is_nt()) {
  2625               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2626               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2628             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2629                          exceptionInfo->ContextRecord);
  2630             return EXCEPTION_CONTINUE_SEARCH;
  2631 #endif
  2636 #ifdef _WIN64
  2637       // Special care for fast JNI field accessors.
  2638       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2639       // in and the heap gets shrunk before the field access.
  2640       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2641         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2642         if (addr != (address)-1) {
  2643           return Handle_Exception(exceptionInfo, addr);
  2646 #endif
  2648       // Stack overflow or null pointer exception in native code.
  2649       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2650                    exceptionInfo->ContextRecord);
  2651       return EXCEPTION_CONTINUE_SEARCH;
  2652     } // /EXCEPTION_ACCESS_VIOLATION
  2653     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2654 #if defined _M_IA64
  2655     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2656               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2657       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2659       // Compiled method patched to be non entrant? Following conditions must apply:
  2660       // 1. must be first instruction in bundle
  2661       // 2. must be a break instruction with appropriate code
  2662       if((((uint64_t) pc & 0x0F) == 0) &&
  2663          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2664         return Handle_Exception(exceptionInfo,
  2665                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2667     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2668 #endif
  2671     if (in_java) {
  2672       switch (exception_code) {
  2673       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2674         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2676       case EXCEPTION_INT_OVERFLOW:
  2677         return Handle_IDiv_Exception(exceptionInfo);
  2679       } // switch
  2681 #ifndef _WIN64
  2682     if (((thread->thread_state() == _thread_in_Java) ||
  2683         (thread->thread_state() == _thread_in_native)) &&
  2684         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2686       LONG result=Handle_FLT_Exception(exceptionInfo);
  2687       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2689 #endif //_WIN64
  2692   if (exception_code != EXCEPTION_BREAKPOINT) {
  2693     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2694                  exceptionInfo->ContextRecord);
  2696   return EXCEPTION_CONTINUE_SEARCH;
  2699 #ifndef _WIN64
  2700 // Special care for fast JNI accessors.
  2701 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2702 // the heap gets shrunk before the field access.
  2703 // Need to install our own structured exception handler since native code may
  2704 // install its own.
  2705 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2706   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2707   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2708     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2709     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2710     if (addr != (address)-1) {
  2711       return Handle_Exception(exceptionInfo, addr);
  2714   return EXCEPTION_CONTINUE_SEARCH;
  2717 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2718 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2719   __try { \
  2720     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2721   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2722   } \
  2723   return 0; \
  2726 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2727 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2728 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2729 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2730 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2731 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2732 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2733 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2735 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2736   switch (type) {
  2737     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2738     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2739     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2740     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2741     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2742     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2743     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2744     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2745     default:        ShouldNotReachHere();
  2747   return (address)-1;
  2749 #endif
  2751 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
  2752   // Install a win32 structured exception handler around the test
  2753   // function call so the VM can generate an error dump if needed.
  2754   __try {
  2755     (*funcPtr)();
  2756   } __except(topLevelExceptionFilter(
  2757              (_EXCEPTION_POINTERS*)_exception_info())) {
  2758     // Nothing to do.
  2762 // Virtual Memory
  2764 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2765 int os::vm_allocation_granularity() {
  2766   return os::win32::vm_allocation_granularity();
  2769 // Windows large page support is available on Windows 2003. In order to use
  2770 // large page memory, the administrator must first assign additional privilege
  2771 // to the user:
  2772 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2773 //   + select Local Policies -> User Rights Assignment
  2774 //   + double click "Lock pages in memory", add users and/or groups
  2775 //   + reboot
  2776 // Note the above steps are needed for administrator as well, as administrators
  2777 // by default do not have the privilege to lock pages in memory.
  2778 //
  2779 // Note about Windows 2003: although the API supports committing large page
  2780 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2781 // scenario, I found through experiment it only uses large page if the entire
  2782 // memory region is reserved and committed in a single VirtualAlloc() call.
  2783 // This makes Windows large page support more or less like Solaris ISM, in
  2784 // that the entire heap must be committed upfront. This probably will change
  2785 // in the future, if so the code below needs to be revisited.
  2787 #ifndef MEM_LARGE_PAGES
  2788 #define MEM_LARGE_PAGES 0x20000000
  2789 #endif
  2791 static HANDLE    _hProcess;
  2792 static HANDLE    _hToken;
  2794 // Container for NUMA node list info
  2795 class NUMANodeListHolder {
  2796 private:
  2797   int *_numa_used_node_list;  // allocated below
  2798   int _numa_used_node_count;
  2800   void free_node_list() {
  2801     if (_numa_used_node_list != NULL) {
  2802       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2806 public:
  2807   NUMANodeListHolder() {
  2808     _numa_used_node_count = 0;
  2809     _numa_used_node_list = NULL;
  2810     // do rest of initialization in build routine (after function pointers are set up)
  2813   ~NUMANodeListHolder() {
  2814     free_node_list();
  2817   bool build() {
  2818     DWORD_PTR proc_aff_mask;
  2819     DWORD_PTR sys_aff_mask;
  2820     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2821     ULONG highest_node_number;
  2822     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2823     free_node_list();
  2824     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2825     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2826       ULONGLONG proc_mask_numa_node;
  2827       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2828       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2829         _numa_used_node_list[_numa_used_node_count++] = i;
  2832     return (_numa_used_node_count > 1);
  2835   int get_count() {return _numa_used_node_count;}
  2836   int get_node_list_entry(int n) {
  2837     // for indexes out of range, returns -1
  2838     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2841 } numa_node_list_holder;
  2845 static size_t _large_page_size = 0;
  2847 static bool resolve_functions_for_large_page_init() {
  2848   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2849     os::Advapi32Dll::AdvapiAvailable();
  2852 static bool request_lock_memory_privilege() {
  2853   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2854                                 os::current_process_id());
  2856   LUID luid;
  2857   if (_hProcess != NULL &&
  2858       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2859       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2861     TOKEN_PRIVILEGES tp;
  2862     tp.PrivilegeCount = 1;
  2863     tp.Privileges[0].Luid = luid;
  2864     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2866     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2867     // privilege. Check GetLastError() too. See MSDN document.
  2868     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2869         (GetLastError() == ERROR_SUCCESS)) {
  2870       return true;
  2874   return false;
  2877 static void cleanup_after_large_page_init() {
  2878   if (_hProcess) CloseHandle(_hProcess);
  2879   _hProcess = NULL;
  2880   if (_hToken) CloseHandle(_hToken);
  2881   _hToken = NULL;
  2884 static bool numa_interleaving_init() {
  2885   bool success = false;
  2886   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2888   // print a warning if UseNUMAInterleaving flag is specified on command line
  2889   bool warn_on_failure = use_numa_interleaving_specified;
  2890 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2892   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2893   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2894   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2896   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2897     if (numa_node_list_holder.build()) {
  2898       if (PrintMiscellaneous && Verbose) {
  2899         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2900         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2901           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2903         tty->print("\n");
  2905       success = true;
  2906     } else {
  2907       WARN("Process does not cover multiple NUMA nodes.");
  2909   } else {
  2910     WARN("NUMA Interleaving is not supported by the operating system.");
  2912   if (!success) {
  2913     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2915   return success;
  2916 #undef WARN
  2919 // this routine is used whenever we need to reserve a contiguous VA range
  2920 // but we need to make separate VirtualAlloc calls for each piece of the range
  2921 // Reasons for doing this:
  2922 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2923 //  * UseNUMAInterleaving requires a separate node for each piece
  2924 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2925                                          bool should_inject_error=false) {
  2926   char * p_buf;
  2927   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2928   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2929   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2931   // first reserve enough address space in advance since we want to be
  2932   // able to break a single contiguous virtual address range into multiple
  2933   // large page commits but WS2003 does not allow reserving large page space
  2934   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2935   // address space. then we will deallocate that reservation, and re alloc
  2936   // using large pages
  2937   const size_t size_of_reserve = bytes + chunk_size;
  2938   if (bytes > size_of_reserve) {
  2939     // Overflowed.
  2940     return NULL;
  2942   p_buf = (char *) VirtualAlloc(addr,
  2943                                 size_of_reserve,  // size of Reserve
  2944                                 MEM_RESERVE,
  2945                                 PAGE_READWRITE);
  2946   // If reservation failed, return NULL
  2947   if (p_buf == NULL) return NULL;
  2948   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
  2949   os::release_memory(p_buf, bytes + chunk_size);
  2951   // we still need to round up to a page boundary (in case we are using large pages)
  2952   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2953   // instead we handle this in the bytes_to_rq computation below
  2954   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2956   // now go through and allocate one chunk at a time until all bytes are
  2957   // allocated
  2958   size_t  bytes_remaining = bytes;
  2959   // An overflow of align_size_up() would have been caught above
  2960   // in the calculation of size_of_reserve.
  2961   char * next_alloc_addr = p_buf;
  2962   HANDLE hProc = GetCurrentProcess();
  2964 #ifdef ASSERT
  2965   // Variable for the failure injection
  2966   long ran_num = os::random();
  2967   size_t fail_after = ran_num % bytes;
  2968 #endif
  2970   int count=0;
  2971   while (bytes_remaining) {
  2972     // select bytes_to_rq to get to the next chunk_size boundary
  2974     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2975     // Note allocate and commit
  2976     char * p_new;
  2978 #ifdef ASSERT
  2979     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2980 #else
  2981     const bool inject_error_now = false;
  2982 #endif
  2984     if (inject_error_now) {
  2985       p_new = NULL;
  2986     } else {
  2987       if (!UseNUMAInterleaving) {
  2988         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2989                                       bytes_to_rq,
  2990                                       flags,
  2991                                       prot);
  2992       } else {
  2993         // get the next node to use from the used_node_list
  2994         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2995         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  2996         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  2997                                                             next_alloc_addr,
  2998                                                             bytes_to_rq,
  2999                                                             flags,
  3000                                                             prot,
  3001                                                             node);
  3005     if (p_new == NULL) {
  3006       // Free any allocated pages
  3007       if (next_alloc_addr > p_buf) {
  3008         // Some memory was committed so release it.
  3009         size_t bytes_to_release = bytes - bytes_remaining;
  3010         // NMT has yet to record any individual blocks, so it
  3011         // need to create a dummy 'reserve' record to match
  3012         // the release.
  3013         MemTracker::record_virtual_memory_reserve((address)p_buf,
  3014           bytes_to_release, CALLER_PC);
  3015         os::release_memory(p_buf, bytes_to_release);
  3017 #ifdef ASSERT
  3018       if (should_inject_error) {
  3019         if (TracePageSizes && Verbose) {
  3020           tty->print_cr("Reserving pages individually failed.");
  3023 #endif
  3024       return NULL;
  3027     bytes_remaining -= bytes_to_rq;
  3028     next_alloc_addr += bytes_to_rq;
  3029     count++;
  3031   // Although the memory is allocated individually, it is returned as one.
  3032   // NMT records it as one block.
  3033   if ((flags & MEM_COMMIT) != 0) {
  3034     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
  3035   } else {
  3036     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
  3039   // made it this far, success
  3040   return p_buf;
  3045 void os::large_page_init() {
  3046   if (!UseLargePages) return;
  3048   // print a warning if any large page related flag is specified on command line
  3049   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  3050                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3051   bool success = false;
  3053 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3054   if (resolve_functions_for_large_page_init()) {
  3055     if (request_lock_memory_privilege()) {
  3056       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  3057       if (s) {
  3058 #if defined(IA32) || defined(AMD64)
  3059         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  3060           WARN("JVM cannot use large pages bigger than 4mb.");
  3061         } else {
  3062 #endif
  3063           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3064             _large_page_size = LargePageSizeInBytes;
  3065           } else {
  3066             _large_page_size = s;
  3068           success = true;
  3069 #if defined(IA32) || defined(AMD64)
  3071 #endif
  3072       } else {
  3073         WARN("Large page is not supported by the processor.");
  3075     } else {
  3076       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3078   } else {
  3079     WARN("Large page is not supported by the operating system.");
  3081 #undef WARN
  3083   const size_t default_page_size = (size_t) vm_page_size();
  3084   if (success && _large_page_size > default_page_size) {
  3085     _page_sizes[0] = _large_page_size;
  3086     _page_sizes[1] = default_page_size;
  3087     _page_sizes[2] = 0;
  3090   cleanup_after_large_page_init();
  3091   UseLargePages = success;
  3094 // On win32, one cannot release just a part of reserved memory, it's an
  3095 // all or nothing deal.  When we split a reservation, we must break the
  3096 // reservation into two reservations.
  3097 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3098                               bool realloc) {
  3099   if (size > 0) {
  3100     release_memory(base, size);
  3101     if (realloc) {
  3102       reserve_memory(split, base);
  3104     if (size != split) {
  3105       reserve_memory(size - split, base + split);
  3110 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3111 // virtual space to get requested alignment, like posix-like os's.
  3112 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3113 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3114   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3115       "Alignment must be a multiple of allocation granularity (page size)");
  3116   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3118   size_t extra_size = size + alignment;
  3119   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3121   char* aligned_base = NULL;
  3123   do {
  3124     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3125     if (extra_base == NULL) {
  3126       return NULL;
  3128     // Do manual alignment
  3129     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3131     os::release_memory(extra_base, extra_size);
  3133     aligned_base = os::reserve_memory(size, aligned_base);
  3135   } while (aligned_base == NULL);
  3137   return aligned_base;
  3140 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3141   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3142          "reserve alignment");
  3143   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3144   char* res;
  3145   // note that if UseLargePages is on, all the areas that require interleaving
  3146   // will go thru reserve_memory_special rather than thru here.
  3147   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3148   if (!use_individual) {
  3149     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3150   } else {
  3151     elapsedTimer reserveTimer;
  3152     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3153     // in numa interleaving, we have to allocate pages individually
  3154     // (well really chunks of NUMAInterleaveGranularity size)
  3155     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3156     if (res == NULL) {
  3157       warning("NUMA page allocation failed");
  3159     if( Verbose && PrintMiscellaneous ) {
  3160       reserveTimer.stop();
  3161       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3162                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3165   assert(res == NULL || addr == NULL || addr == res,
  3166          "Unexpected address from reserve.");
  3168   return res;
  3171 // Reserve memory at an arbitrary address, only if that area is
  3172 // available (and not reserved for something else).
  3173 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3174   // Windows os::reserve_memory() fails of the requested address range is
  3175   // not avilable.
  3176   return reserve_memory(bytes, requested_addr);
  3179 size_t os::large_page_size() {
  3180   return _large_page_size;
  3183 bool os::can_commit_large_page_memory() {
  3184   // Windows only uses large page memory when the entire region is reserved
  3185   // and committed in a single VirtualAlloc() call. This may change in the
  3186   // future, but with Windows 2003 it's not possible to commit on demand.
  3187   return false;
  3190 bool os::can_execute_large_page_memory() {
  3191   return true;
  3194 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
  3195   assert(UseLargePages, "only for large pages");
  3197   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3198     return NULL; // Fallback to small pages.
  3201   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3202   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3204   // with large pages, there are two cases where we need to use Individual Allocation
  3205   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3206   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3207   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3208     if (TracePageSizes && Verbose) {
  3209        tty->print_cr("Reserving large pages individually.");
  3211     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3212     if (p_buf == NULL) {
  3213       // give an appropriate warning message
  3214       if (UseNUMAInterleaving) {
  3215         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3217       if (UseLargePagesIndividualAllocation) {
  3218         warning("Individually allocated large pages failed, "
  3219                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3221       return NULL;
  3224     return p_buf;
  3226   } else {
  3227     if (TracePageSizes && Verbose) {
  3228        tty->print_cr("Reserving large pages in a single large chunk.");
  3230     // normal policy just allocate it all at once
  3231     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3232     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
  3233     if (res != NULL) {
  3234       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
  3237     return res;
  3241 bool os::release_memory_special(char* base, size_t bytes) {
  3242   assert(base != NULL, "Sanity check");
  3243   return release_memory(base, bytes);
  3246 void os::print_statistics() {
  3249 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3250   int err = os::get_last_error();
  3251   char buf[256];
  3252   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3253   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3254           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3255           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3258 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3259   if (bytes == 0) {
  3260     // Don't bother the OS with noops.
  3261     return true;
  3263   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3264   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3265   // Don't attempt to print anything if the OS call fails. We're
  3266   // probably low on resources, so the print itself may cause crashes.
  3268   // unless we have NUMAInterleaving enabled, the range of a commit
  3269   // is always within a reserve covered by a single VirtualAlloc
  3270   // in that case we can just do a single commit for the requested size
  3271   if (!UseNUMAInterleaving) {
  3272     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3273       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3274       return false;
  3276     if (exec) {
  3277       DWORD oldprot;
  3278       // Windows doc says to use VirtualProtect to get execute permissions
  3279       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3280         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3281         return false;
  3284     return true;
  3285   } else {
  3287     // when NUMAInterleaving is enabled, the commit might cover a range that
  3288     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3289     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3290     // returns represents the number of bytes that can be committed in one step.
  3291     size_t bytes_remaining = bytes;
  3292     char * next_alloc_addr = addr;
  3293     while (bytes_remaining > 0) {
  3294       MEMORY_BASIC_INFORMATION alloc_info;
  3295       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3296       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3297       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3298                        PAGE_READWRITE) == NULL) {
  3299         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3300                                             exec);)
  3301         return false;
  3303       if (exec) {
  3304         DWORD oldprot;
  3305         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3306                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3307           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3308                                               exec);)
  3309           return false;
  3312       bytes_remaining -= bytes_to_rq;
  3313       next_alloc_addr += bytes_to_rq;
  3316   // if we made it this far, return true
  3317   return true;
  3320 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3321                        bool exec) {
  3322   // alignment_hint is ignored on this OS
  3323   return pd_commit_memory(addr, size, exec);
  3326 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3327                                   const char* mesg) {
  3328   assert(mesg != NULL, "mesg must be specified");
  3329   if (!pd_commit_memory(addr, size, exec)) {
  3330     warn_fail_commit_memory(addr, size, exec);
  3331     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3335 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3336                                   size_t alignment_hint, bool exec,
  3337                                   const char* mesg) {
  3338   // alignment_hint is ignored on this OS
  3339   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3342 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3343   if (bytes == 0) {
  3344     // Don't bother the OS with noops.
  3345     return true;
  3347   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3348   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3349   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3352 bool os::pd_release_memory(char* addr, size_t bytes) {
  3353   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3356 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3357   return os::commit_memory(addr, size, !ExecMem);
  3360 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3361   return os::uncommit_memory(addr, size);
  3364 // Set protections specified
  3365 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3366                         bool is_committed) {
  3367   unsigned int p = 0;
  3368   switch (prot) {
  3369   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3370   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3371   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3372   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3373   default:
  3374     ShouldNotReachHere();
  3377   DWORD old_status;
  3379   // Strange enough, but on Win32 one can change protection only for committed
  3380   // memory, not a big deal anyway, as bytes less or equal than 64K
  3381   if (!is_committed) {
  3382     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3383                           "cannot commit protection page");
  3385   // One cannot use os::guard_memory() here, as on Win32 guard page
  3386   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3387   //
  3388   // Pages in the region become guard pages. Any attempt to access a guard page
  3389   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3390   // the guard page status. Guard pages thus act as a one-time access alarm.
  3391   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3394 bool os::guard_memory(char* addr, size_t bytes) {
  3395   DWORD old_status;
  3396   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3399 bool os::unguard_memory(char* addr, size_t bytes) {
  3400   DWORD old_status;
  3401   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3404 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3405 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3406 void os::numa_make_global(char *addr, size_t bytes)    { }
  3407 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3408 bool os::numa_topology_changed()                       { return false; }
  3409 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3410 int os::numa_get_group_id()                            { return 0; }
  3411 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3412   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3413     // Provide an answer for UMA systems
  3414     ids[0] = 0;
  3415     return 1;
  3416   } else {
  3417     // check for size bigger than actual groups_num
  3418     size = MIN2(size, numa_get_groups_num());
  3419     for (int i = 0; i < (int)size; i++) {
  3420       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3422     return size;
  3426 bool os::get_page_info(char *start, page_info* info) {
  3427   return false;
  3430 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3431   return end;
  3434 char* os::non_memory_address_word() {
  3435   // Must never look like an address returned by reserve_memory,
  3436   // even in its subfields (as defined by the CPU immediate fields,
  3437   // if the CPU splits constants across multiple instructions).
  3438   return (char*)-1;
  3441 #define MAX_ERROR_COUNT 100
  3442 #define SYS_THREAD_ERROR 0xffffffffUL
  3444 void os::pd_start_thread(Thread* thread) {
  3445   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3446   // Returns previous suspend state:
  3447   // 0:  Thread was not suspended
  3448   // 1:  Thread is running now
  3449   // >1: Thread is still suspended.
  3450   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3453 class HighResolutionInterval : public CHeapObj<mtThread> {
  3454   // The default timer resolution seems to be 10 milliseconds.
  3455   // (Where is this written down?)
  3456   // If someone wants to sleep for only a fraction of the default,
  3457   // then we set the timer resolution down to 1 millisecond for
  3458   // the duration of their interval.
  3459   // We carefully set the resolution back, since otherwise we
  3460   // seem to incur an overhead (3%?) that we don't need.
  3461   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3462   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3463   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3464   // timeBeginPeriod() if the relative error exceeded some threshold.
  3465   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3466   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3467   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3468   // resolution timers running.
  3469 private:
  3470     jlong resolution;
  3471 public:
  3472   HighResolutionInterval(jlong ms) {
  3473     resolution = ms % 10L;
  3474     if (resolution != 0) {
  3475       MMRESULT result = timeBeginPeriod(1L);
  3478   ~HighResolutionInterval() {
  3479     if (resolution != 0) {
  3480       MMRESULT result = timeEndPeriod(1L);
  3482     resolution = 0L;
  3484 };
  3486 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3487   jlong limit = (jlong) MAXDWORD;
  3489   while(ms > limit) {
  3490     int res;
  3491     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3492       return res;
  3493     ms -= limit;
  3496   assert(thread == Thread::current(),  "thread consistency check");
  3497   OSThread* osthread = thread->osthread();
  3498   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3499   int result;
  3500   if (interruptable) {
  3501     assert(thread->is_Java_thread(), "must be java thread");
  3502     JavaThread *jt = (JavaThread *) thread;
  3503     ThreadBlockInVM tbivm(jt);
  3505     jt->set_suspend_equivalent();
  3506     // cleared by handle_special_suspend_equivalent_condition() or
  3507     // java_suspend_self() via check_and_wait_while_suspended()
  3509     HANDLE events[1];
  3510     events[0] = osthread->interrupt_event();
  3511     HighResolutionInterval *phri=NULL;
  3512     if(!ForceTimeHighResolution)
  3513       phri = new HighResolutionInterval( ms );
  3514     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3515       result = OS_TIMEOUT;
  3516     } else {
  3517       ResetEvent(osthread->interrupt_event());
  3518       osthread->set_interrupted(false);
  3519       result = OS_INTRPT;
  3521     delete phri; //if it is NULL, harmless
  3523     // were we externally suspended while we were waiting?
  3524     jt->check_and_wait_while_suspended();
  3525   } else {
  3526     assert(!thread->is_Java_thread(), "must not be java thread");
  3527     Sleep((long) ms);
  3528     result = OS_TIMEOUT;
  3530   return result;
  3533 //
  3534 // Short sleep, direct OS call.
  3535 //
  3536 // ms = 0, means allow others (if any) to run.
  3537 //
  3538 void os::naked_short_sleep(jlong ms) {
  3539   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3540   Sleep(ms);
  3543 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3544 void os::infinite_sleep() {
  3545   while (true) {    // sleep forever ...
  3546     Sleep(100000);  // ... 100 seconds at a time
  3550 typedef BOOL (WINAPI * STTSignature)(void) ;
  3552 os::YieldResult os::NakedYield() {
  3553   // Use either SwitchToThread() or Sleep(0)
  3554   // Consider passing back the return value from SwitchToThread().
  3555   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3556     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3557   } else {
  3558     Sleep(0);
  3560   return os::YIELD_UNKNOWN ;
  3563 void os::yield() {  os::NakedYield(); }
  3565 void os::yield_all(int attempts) {
  3566   // Yields to all threads, including threads with lower priorities
  3567   Sleep(1);
  3570 // Win32 only gives you access to seven real priorities at a time,
  3571 // so we compress Java's ten down to seven.  It would be better
  3572 // if we dynamically adjusted relative priorities.
  3574 int os::java_to_os_priority[CriticalPriority + 1] = {
  3575   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3576   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3577   THREAD_PRIORITY_LOWEST,                       // 2
  3578   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3579   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3580   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3581   THREAD_PRIORITY_NORMAL,                       // 6
  3582   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3583   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3584   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3585   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3586   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3587 };
  3589 int prio_policy1[CriticalPriority + 1] = {
  3590   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3591   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3592   THREAD_PRIORITY_LOWEST,                       // 2
  3593   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3594   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3595   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3596   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3597   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3598   THREAD_PRIORITY_HIGHEST,                      // 8
  3599   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3600   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3601   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3602 };
  3604 static int prio_init() {
  3605   // If ThreadPriorityPolicy is 1, switch tables
  3606   if (ThreadPriorityPolicy == 1) {
  3607     int i;
  3608     for (i = 0; i < CriticalPriority + 1; i++) {
  3609       os::java_to_os_priority[i] = prio_policy1[i];
  3612   if (UseCriticalJavaThreadPriority) {
  3613     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3615   return 0;
  3618 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3619   if (!UseThreadPriorities) return OS_OK;
  3620   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3621   return ret ? OS_OK : OS_ERR;
  3624 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3625   if ( !UseThreadPriorities ) {
  3626     *priority_ptr = java_to_os_priority[NormPriority];
  3627     return OS_OK;
  3629   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3630   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3631     assert(false, "GetThreadPriority failed");
  3632     return OS_ERR;
  3634   *priority_ptr = os_prio;
  3635   return OS_OK;
  3639 // Hint to the underlying OS that a task switch would not be good.
  3640 // Void return because it's a hint and can fail.
  3641 void os::hint_no_preempt() {}
  3643 void os::interrupt(Thread* thread) {
  3644   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3645          "possibility of dangling Thread pointer");
  3647   OSThread* osthread = thread->osthread();
  3648   osthread->set_interrupted(true);
  3649   // More than one thread can get here with the same value of osthread,
  3650   // resulting in multiple notifications.  We do, however, want the store
  3651   // to interrupted() to be visible to other threads before we post
  3652   // the interrupt event.
  3653   OrderAccess::release();
  3654   SetEvent(osthread->interrupt_event());
  3655   // For JSR166:  unpark after setting status
  3656   if (thread->is_Java_thread())
  3657     ((JavaThread*)thread)->parker()->unpark();
  3659   ParkEvent * ev = thread->_ParkEvent ;
  3660   if (ev != NULL) ev->unpark() ;
  3665 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3666   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3667          "possibility of dangling Thread pointer");
  3669   OSThread* osthread = thread->osthread();
  3670   // There is no synchronization between the setting of the interrupt
  3671   // and it being cleared here. It is critical - see 6535709 - that
  3672   // we only clear the interrupt state, and reset the interrupt event,
  3673   // if we are going to report that we were indeed interrupted - else
  3674   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3675   // depending on the timing. By checking thread interrupt event to see
  3676   // if the thread gets real interrupt thus prevent spurious wakeup.
  3677   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
  3678   if (interrupted && clear_interrupted) {
  3679     osthread->set_interrupted(false);
  3680     ResetEvent(osthread->interrupt_event());
  3681   } // Otherwise leave the interrupted state alone
  3683   return interrupted;
  3686 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3687 ExtendedPC os::get_thread_pc(Thread* thread) {
  3688   CONTEXT context;
  3689   context.ContextFlags = CONTEXT_CONTROL;
  3690   HANDLE handle = thread->osthread()->thread_handle();
  3691 #ifdef _M_IA64
  3692   assert(0, "Fix get_thread_pc");
  3693   return ExtendedPC(NULL);
  3694 #else
  3695   if (GetThreadContext(handle, &context)) {
  3696 #ifdef _M_AMD64
  3697     return ExtendedPC((address) context.Rip);
  3698 #else
  3699     return ExtendedPC((address) context.Eip);
  3700 #endif
  3701   } else {
  3702     return ExtendedPC(NULL);
  3704 #endif
  3707 // GetCurrentThreadId() returns DWORD
  3708 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3710 static int _initial_pid = 0;
  3712 int os::current_process_id()
  3714   return (_initial_pid ? _initial_pid : _getpid());
  3717 int    os::win32::_vm_page_size       = 0;
  3718 int    os::win32::_vm_allocation_granularity = 0;
  3719 int    os::win32::_processor_type     = 0;
  3720 // Processor level is not available on non-NT systems, use vm_version instead
  3721 int    os::win32::_processor_level    = 0;
  3722 julong os::win32::_physical_memory    = 0;
  3723 size_t os::win32::_default_stack_size = 0;
  3725          intx os::win32::_os_thread_limit    = 0;
  3726 volatile intx os::win32::_os_thread_count    = 0;
  3728 bool   os::win32::_is_nt              = false;
  3729 bool   os::win32::_is_windows_2003    = false;
  3730 bool   os::win32::_is_windows_server  = false;
  3732 void os::win32::initialize_system_info() {
  3733   SYSTEM_INFO si;
  3734   GetSystemInfo(&si);
  3735   _vm_page_size    = si.dwPageSize;
  3736   _vm_allocation_granularity = si.dwAllocationGranularity;
  3737   _processor_type  = si.dwProcessorType;
  3738   _processor_level = si.wProcessorLevel;
  3739   set_processor_count(si.dwNumberOfProcessors);
  3741   MEMORYSTATUSEX ms;
  3742   ms.dwLength = sizeof(ms);
  3744   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3745   // dwMemoryLoad (% of memory in use)
  3746   GlobalMemoryStatusEx(&ms);
  3747   _physical_memory = ms.ullTotalPhys;
  3749   OSVERSIONINFOEX oi;
  3750   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3751   GetVersionEx((OSVERSIONINFO*)&oi);
  3752   switch(oi.dwPlatformId) {
  3753     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3754     case VER_PLATFORM_WIN32_NT:
  3755       _is_nt = true;
  3757         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3758         if (os_vers == 5002) {
  3759           _is_windows_2003 = true;
  3761         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3762           oi.wProductType == VER_NT_SERVER) {
  3763             _is_windows_server = true;
  3766       break;
  3767     default: fatal("Unknown platform");
  3770   _default_stack_size = os::current_stack_size();
  3771   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3772   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3773     "stack size not a multiple of page size");
  3775   initialize_performance_counter();
  3777   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3778   // known to deadlock the system, if the VM issues to thread operations with
  3779   // a too high frequency, e.g., such as changing the priorities.
  3780   // The 6000 seems to work well - no deadlocks has been notices on the test
  3781   // programs that we have seen experience this problem.
  3782   if (!os::win32::is_nt()) {
  3783     StarvationMonitorInterval = 6000;
  3788 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3789   char path[MAX_PATH];
  3790   DWORD size;
  3791   DWORD pathLen = (DWORD)sizeof(path);
  3792   HINSTANCE result = NULL;
  3794   // only allow library name without path component
  3795   assert(strchr(name, '\\') == NULL, "path not allowed");
  3796   assert(strchr(name, ':') == NULL, "path not allowed");
  3797   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3798     jio_snprintf(ebuf, ebuflen,
  3799       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3800     return NULL;
  3803   // search system directory
  3804   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3805     strcat(path, "\\");
  3806     strcat(path, name);
  3807     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3808       return result;
  3812   // try Windows directory
  3813   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3814     strcat(path, "\\");
  3815     strcat(path, name);
  3816     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3817       return result;
  3821   jio_snprintf(ebuf, ebuflen,
  3822     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3823   return NULL;
  3826 void os::win32::setmode_streams() {
  3827   _setmode(_fileno(stdin), _O_BINARY);
  3828   _setmode(_fileno(stdout), _O_BINARY);
  3829   _setmode(_fileno(stderr), _O_BINARY);
  3833 bool os::is_debugger_attached() {
  3834   return IsDebuggerPresent() ? true : false;
  3838 void os::wait_for_keypress_at_exit(void) {
  3839   if (PauseAtExit) {
  3840     fprintf(stderr, "Press any key to continue...\n");
  3841     fgetc(stdin);
  3846 int os::message_box(const char* title, const char* message) {
  3847   int result = MessageBox(NULL, message, title,
  3848                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3849   return result == IDYES;
  3852 int os::allocate_thread_local_storage() {
  3853   return TlsAlloc();
  3857 void os::free_thread_local_storage(int index) {
  3858   TlsFree(index);
  3862 void os::thread_local_storage_at_put(int index, void* value) {
  3863   TlsSetValue(index, value);
  3864   assert(thread_local_storage_at(index) == value, "Just checking");
  3868 void* os::thread_local_storage_at(int index) {
  3869   return TlsGetValue(index);
  3873 #ifndef PRODUCT
  3874 #ifndef _WIN64
  3875 // Helpers to check whether NX protection is enabled
  3876 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3877   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3878       pex->ExceptionRecord->NumberParameters > 0 &&
  3879       pex->ExceptionRecord->ExceptionInformation[0] ==
  3880       EXCEPTION_INFO_EXEC_VIOLATION) {
  3881     return EXCEPTION_EXECUTE_HANDLER;
  3883   return EXCEPTION_CONTINUE_SEARCH;
  3886 void nx_check_protection() {
  3887   // If NX is enabled we'll get an exception calling into code on the stack
  3888   char code[] = { (char)0xC3 }; // ret
  3889   void *code_ptr = (void *)code;
  3890   __try {
  3891     __asm call code_ptr
  3892   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3893     tty->print_raw_cr("NX protection detected.");
  3896 #endif // _WIN64
  3897 #endif // PRODUCT
  3899 // this is called _before_ the global arguments have been parsed
  3900 void os::init(void) {
  3901   _initial_pid = _getpid();
  3903   init_random(1234567);
  3905   win32::initialize_system_info();
  3906   win32::setmode_streams();
  3907   init_page_sizes((size_t) win32::vm_page_size());
  3909   // For better scalability on MP systems (must be called after initialize_system_info)
  3910 #ifndef PRODUCT
  3911   if (is_MP()) {
  3912     NoYieldsInMicrolock = true;
  3914 #endif
  3915   // This may be overridden later when argument processing is done.
  3916   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3917     os::win32::is_windows_2003());
  3919   // Initialize main_process and main_thread
  3920   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3921  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3922                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3923     fatal("DuplicateHandle failed\n");
  3925   main_thread_id = (int) GetCurrentThreadId();
  3928 // To install functions for atexit processing
  3929 extern "C" {
  3930   static void perfMemory_exit_helper() {
  3931     perfMemory_exit();
  3935 static jint initSock();
  3937 // this is called _after_ the global arguments have been parsed
  3938 jint os::init_2(void) {
  3939   // Allocate a single page and mark it as readable for safepoint polling
  3940   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3941   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3943   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3944   guarantee( return_page != NULL, "Commit Failed for polling page");
  3946   os::set_polling_page( polling_page );
  3948 #ifndef PRODUCT
  3949   if( Verbose && PrintMiscellaneous )
  3950     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3951 #endif
  3953   if (!UseMembar) {
  3954     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3955     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3957     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3958     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3960     os::set_memory_serialize_page( mem_serialize_page );
  3962 #ifndef PRODUCT
  3963     if(Verbose && PrintMiscellaneous)
  3964       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3965 #endif
  3968   // Setup Windows Exceptions
  3970   // for debugging float code generation bugs
  3971   if (ForceFloatExceptions) {
  3972 #ifndef  _WIN64
  3973     static long fp_control_word = 0;
  3974     __asm { fstcw fp_control_word }
  3975     // see Intel PPro Manual, Vol. 2, p 7-16
  3976     const long precision = 0x20;
  3977     const long underflow = 0x10;
  3978     const long overflow  = 0x08;
  3979     const long zero_div  = 0x04;
  3980     const long denorm    = 0x02;
  3981     const long invalid   = 0x01;
  3982     fp_control_word |= invalid;
  3983     __asm { fldcw fp_control_word }
  3984 #endif
  3987   // If stack_commit_size is 0, windows will reserve the default size,
  3988   // but only commit a small portion of it.
  3989   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3990   size_t default_reserve_size = os::win32::default_stack_size();
  3991   size_t actual_reserve_size = stack_commit_size;
  3992   if (stack_commit_size < default_reserve_size) {
  3993     // If stack_commit_size == 0, we want this too
  3994     actual_reserve_size = default_reserve_size;
  3997   // Check minimum allowable stack size for thread creation and to initialize
  3998   // the java system classes, including StackOverflowError - depends on page
  3999   // size.  Add a page for compiler2 recursion in main thread.
  4000   // Add in 2*BytesPerWord times page size to account for VM stack during
  4001   // class initialization depending on 32 or 64 bit VM.
  4002   size_t min_stack_allowed =
  4003             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4004             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  4005   if (actual_reserve_size < min_stack_allowed) {
  4006     tty->print_cr("\nThe stack size specified is too small, "
  4007                   "Specify at least %dk",
  4008                   min_stack_allowed / K);
  4009     return JNI_ERR;
  4012   JavaThread::set_stack_size_at_create(stack_commit_size);
  4014   // Calculate theoretical max. size of Threads to guard gainst artifical
  4015   // out-of-memory situations, where all available address-space has been
  4016   // reserved by thread stacks.
  4017   assert(actual_reserve_size != 0, "Must have a stack");
  4019   // Calculate the thread limit when we should start doing Virtual Memory
  4020   // banging. Currently when the threads will have used all but 200Mb of space.
  4021   //
  4022   // TODO: consider performing a similar calculation for commit size instead
  4023   // as reserve size, since on a 64-bit platform we'll run into that more
  4024   // often than running out of virtual memory space.  We can use the
  4025   // lower value of the two calculations as the os_thread_limit.
  4026   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  4027   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  4029   // at exit methods are called in the reverse order of their registration.
  4030   // there is no limit to the number of functions registered. atexit does
  4031   // not set errno.
  4033   if (PerfAllowAtExitRegistration) {
  4034     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4035     // atexit functions can be delayed until process exit time, which
  4036     // can be problematic for embedded VM situations. Embedded VMs should
  4037     // call DestroyJavaVM() to assure that VM resources are released.
  4039     // note: perfMemory_exit_helper atexit function may be removed in
  4040     // the future if the appropriate cleanup code can be added to the
  4041     // VM_Exit VMOperation's doit method.
  4042     if (atexit(perfMemory_exit_helper) != 0) {
  4043       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4047 #ifndef _WIN64
  4048   // Print something if NX is enabled (win32 on AMD64)
  4049   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  4050 #endif
  4052   // initialize thread priority policy
  4053   prio_init();
  4055   if (UseNUMA && !ForceNUMA) {
  4056     UseNUMA = false; // We don't fully support this yet
  4059   if (UseNUMAInterleaving) {
  4060     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  4061     bool success = numa_interleaving_init();
  4062     if (!success) UseNUMAInterleaving = false;
  4065   if (initSock() != JNI_OK) {
  4066     return JNI_ERR;
  4069   return JNI_OK;
  4072 // Mark the polling page as unreadable
  4073 void os::make_polling_page_unreadable(void) {
  4074   DWORD old_status;
  4075   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4076     fatal("Could not disable polling page");
  4077 };
  4079 // Mark the polling page as readable
  4080 void os::make_polling_page_readable(void) {
  4081   DWORD old_status;
  4082   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4083     fatal("Could not enable polling page");
  4084 };
  4087 int os::stat(const char *path, struct stat *sbuf) {
  4088   char pathbuf[MAX_PATH];
  4089   if (strlen(path) > MAX_PATH - 1) {
  4090     errno = ENAMETOOLONG;
  4091     return -1;
  4093   os::native_path(strcpy(pathbuf, path));
  4094   int ret = ::stat(pathbuf, sbuf);
  4095   if (sbuf != NULL && UseUTCFileTimestamp) {
  4096     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4097     // the system timezone and so can return different values for the
  4098     // same file if/when daylight savings time changes.  This adjustment
  4099     // makes sure the same timestamp is returned regardless of the TZ.
  4100     //
  4101     // See:
  4102     // http://msdn.microsoft.com/library/
  4103     //   default.asp?url=/library/en-us/sysinfo/base/
  4104     //   time_zone_information_str.asp
  4105     // and
  4106     // http://msdn.microsoft.com/library/default.asp?url=
  4107     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4108     //
  4109     // NOTE: there is a insidious bug here:  If the timezone is changed
  4110     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4111     // the adjustment we do here will be wrong and we'll return the wrong
  4112     // value (which will likely end up creating an invalid class data
  4113     // archive).  Absent a better API for this, or some time zone locking
  4114     // mechanism, we'll have to live with this risk.
  4115     TIME_ZONE_INFORMATION tz;
  4116     DWORD tzid = GetTimeZoneInformation(&tz);
  4117     int daylightBias =
  4118       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4119     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4121   return ret;
  4125 #define FT2INT64(ft) \
  4126   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4129 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4130 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4131 // of a thread.
  4132 //
  4133 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4134 // the fast estimate available on the platform.
  4136 // current_thread_cpu_time() is not optimized for Windows yet
  4137 jlong os::current_thread_cpu_time() {
  4138   // return user + sys since the cost is the same
  4139   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4142 jlong os::thread_cpu_time(Thread* thread) {
  4143   // consistent with what current_thread_cpu_time() returns.
  4144   return os::thread_cpu_time(thread, true /* user+sys */);
  4147 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4148   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4151 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4152   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4153   // If this function changes, os::is_thread_cpu_time_supported() should too
  4154   if (os::win32::is_nt()) {
  4155     FILETIME CreationTime;
  4156     FILETIME ExitTime;
  4157     FILETIME KernelTime;
  4158     FILETIME UserTime;
  4160     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4161                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4162       return -1;
  4163     else
  4164       if (user_sys_cpu_time) {
  4165         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4166       } else {
  4167         return FT2INT64(UserTime) * 100;
  4169   } else {
  4170     return (jlong) timeGetTime() * 1000000;
  4174 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4175   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4176   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4177   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4178   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4181 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4182   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4183   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4184   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4185   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4188 bool os::is_thread_cpu_time_supported() {
  4189   // see os::thread_cpu_time
  4190   if (os::win32::is_nt()) {
  4191     FILETIME CreationTime;
  4192     FILETIME ExitTime;
  4193     FILETIME KernelTime;
  4194     FILETIME UserTime;
  4196     if ( GetThreadTimes(GetCurrentThread(),
  4197                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4198       return false;
  4199     else
  4200       return true;
  4201   } else {
  4202     return false;
  4206 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4207 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4208 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4209 // If we wanted to implement loadavg on Windows, we have a few options:
  4210 //
  4211 // a) Query CPU usage and run queue length and "fake" an answer by
  4212 //    returning the CPU usage if it's under 100%, and the run queue
  4213 //    length otherwise.  It turns out that querying is pretty slow
  4214 //    on Windows, on the order of 200 microseconds on a fast machine.
  4215 //    Note that on the Windows the CPU usage value is the % usage
  4216 //    since the last time the API was called (and the first call
  4217 //    returns 100%), so we'd have to deal with that as well.
  4218 //
  4219 // b) Sample the "fake" answer using a sampling thread and store
  4220 //    the answer in a global variable.  The call to loadavg would
  4221 //    just return the value of the global, avoiding the slow query.
  4222 //
  4223 // c) Sample a better answer using exponential decay to smooth the
  4224 //    value.  This is basically the algorithm used by UNIX kernels.
  4225 //
  4226 // Note that sampling thread starvation could affect both (b) and (c).
  4227 int os::loadavg(double loadavg[], int nelem) {
  4228   return -1;
  4232 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4233 bool os::dont_yield() {
  4234   return DontYieldALot;
  4237 // This method is a slightly reworked copy of JDK's sysOpen
  4238 // from src/windows/hpi/src/sys_api_md.c
  4240 int os::open(const char *path, int oflag, int mode) {
  4241   char pathbuf[MAX_PATH];
  4243   if (strlen(path) > MAX_PATH - 1) {
  4244     errno = ENAMETOOLONG;
  4245           return -1;
  4247   os::native_path(strcpy(pathbuf, path));
  4248   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4251 FILE* os::open(int fd, const char* mode) {
  4252   return ::_fdopen(fd, mode);
  4255 // Is a (classpath) directory empty?
  4256 bool os::dir_is_empty(const char* path) {
  4257   WIN32_FIND_DATA fd;
  4258   HANDLE f = FindFirstFile(path, &fd);
  4259   if (f == INVALID_HANDLE_VALUE) {
  4260     return true;
  4262   FindClose(f);
  4263   return false;
  4266 // create binary file, rewriting existing file if required
  4267 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4268   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4269   if (!rewrite_existing) {
  4270     oflags |= _O_EXCL;
  4272   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4275 // return current position of file pointer
  4276 jlong os::current_file_offset(int fd) {
  4277   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4280 // move file pointer to the specified offset
  4281 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4282   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4286 jlong os::lseek(int fd, jlong offset, int whence) {
  4287   return (jlong) ::_lseeki64(fd, offset, whence);
  4290 // This method is a slightly reworked copy of JDK's sysNativePath
  4291 // from src/windows/hpi/src/path_md.c
  4293 /* Convert a pathname to native format.  On win32, this involves forcing all
  4294    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4295    sometimes rejects '/') and removing redundant separators.  The input path is
  4296    assumed to have been converted into the character encoding used by the local
  4297    system.  Because this might be a double-byte encoding, care is taken to
  4298    treat double-byte lead characters correctly.
  4300    This procedure modifies the given path in place, as the result is never
  4301    longer than the original.  There is no error return; this operation always
  4302    succeeds. */
  4303 char * os::native_path(char *path) {
  4304   char *src = path, *dst = path, *end = path;
  4305   char *colon = NULL;           /* If a drive specifier is found, this will
  4306                                         point to the colon following the drive
  4307                                         letter */
  4309   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4310   assert(((!::IsDBCSLeadByte('/'))
  4311     && (!::IsDBCSLeadByte('\\'))
  4312     && (!::IsDBCSLeadByte(':'))),
  4313     "Illegal lead byte");
  4315   /* Check for leading separators */
  4316 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4317   while (isfilesep(*src)) {
  4318     src++;
  4321   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4322     /* Remove leading separators if followed by drive specifier.  This
  4323       hack is necessary to support file URLs containing drive
  4324       specifiers (e.g., "file://c:/path").  As a side effect,
  4325       "/c:/path" can be used as an alternative to "c:/path". */
  4326     *dst++ = *src++;
  4327     colon = dst;
  4328     *dst++ = ':';
  4329     src++;
  4330   } else {
  4331     src = path;
  4332     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4333       /* UNC pathname: Retain first separator; leave src pointed at
  4334          second separator so that further separators will be collapsed
  4335          into the second separator.  The result will be a pathname
  4336          beginning with "\\\\" followed (most likely) by a host name. */
  4337       src = dst = path + 1;
  4338       path[0] = '\\';     /* Force first separator to '\\' */
  4342   end = dst;
  4344   /* Remove redundant separators from remainder of path, forcing all
  4345       separators to be '\\' rather than '/'. Also, single byte space
  4346       characters are removed from the end of the path because those
  4347       are not legal ending characters on this operating system.
  4348   */
  4349   while (*src != '\0') {
  4350     if (isfilesep(*src)) {
  4351       *dst++ = '\\'; src++;
  4352       while (isfilesep(*src)) src++;
  4353       if (*src == '\0') {
  4354         /* Check for trailing separator */
  4355         end = dst;
  4356         if (colon == dst - 2) break;                      /* "z:\\" */
  4357         if (dst == path + 1) break;                       /* "\\" */
  4358         if (dst == path + 2 && isfilesep(path[0])) {
  4359           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4360             beginning of a UNC pathname.  Even though it is not, by
  4361             itself, a valid UNC pathname, we leave it as is in order
  4362             to be consistent with the path canonicalizer as well
  4363             as the win32 APIs, which treat this case as an invalid
  4364             UNC pathname rather than as an alias for the root
  4365             directory of the current drive. */
  4366           break;
  4368         end = --dst;  /* Path does not denote a root directory, so
  4369                                     remove trailing separator */
  4370         break;
  4372       end = dst;
  4373     } else {
  4374       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4375         *dst++ = *src++;
  4376         if (*src) *dst++ = *src++;
  4377         end = dst;
  4378       } else {         /* Copy a single-byte character */
  4379         char c = *src++;
  4380         *dst++ = c;
  4381         /* Space is not a legal ending character */
  4382         if (c != ' ') end = dst;
  4387   *end = '\0';
  4389   /* For "z:", add "." to work around a bug in the C runtime library */
  4390   if (colon == dst - 1) {
  4391           path[2] = '.';
  4392           path[3] = '\0';
  4395   return path;
  4398 // This code is a copy of JDK's sysSetLength
  4399 // from src/windows/hpi/src/sys_api_md.c
  4401 int os::ftruncate(int fd, jlong length) {
  4402   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4403   long high = (long)(length >> 32);
  4404   DWORD ret;
  4406   if (h == (HANDLE)(-1)) {
  4407     return -1;
  4410   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4411   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4412       return -1;
  4415   if (::SetEndOfFile(h) == FALSE) {
  4416     return -1;
  4419   return 0;
  4423 // This code is a copy of JDK's sysSync
  4424 // from src/windows/hpi/src/sys_api_md.c
  4425 // except for the legacy workaround for a bug in Win 98
  4427 int os::fsync(int fd) {
  4428   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4430   if ( (!::FlushFileBuffers(handle)) &&
  4431          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4432     /* from winerror.h */
  4433     return -1;
  4435   return 0;
  4438 static int nonSeekAvailable(int, long *);
  4439 static int stdinAvailable(int, long *);
  4441 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4442 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4444 // This code is a copy of JDK's sysAvailable
  4445 // from src/windows/hpi/src/sys_api_md.c
  4447 int os::available(int fd, jlong *bytes) {
  4448   jlong cur, end;
  4449   struct _stati64 stbuf64;
  4451   if (::_fstati64(fd, &stbuf64) >= 0) {
  4452     int mode = stbuf64.st_mode;
  4453     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4454       int ret;
  4455       long lpbytes;
  4456       if (fd == 0) {
  4457         ret = stdinAvailable(fd, &lpbytes);
  4458       } else {
  4459         ret = nonSeekAvailable(fd, &lpbytes);
  4461       (*bytes) = (jlong)(lpbytes);
  4462       return ret;
  4464     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4465       return FALSE;
  4466     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4467       return FALSE;
  4468     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4469       return FALSE;
  4471     *bytes = end - cur;
  4472     return TRUE;
  4473   } else {
  4474     return FALSE;
  4478 // This code is a copy of JDK's nonSeekAvailable
  4479 // from src/windows/hpi/src/sys_api_md.c
  4481 static int nonSeekAvailable(int fd, long *pbytes) {
  4482   /* This is used for available on non-seekable devices
  4483     * (like both named and anonymous pipes, such as pipes
  4484     *  connected to an exec'd process).
  4485     * Standard Input is a special case.
  4487     */
  4488   HANDLE han;
  4490   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4491     return FALSE;
  4494   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4495         /* PeekNamedPipe fails when at EOF.  In that case we
  4496          * simply make *pbytes = 0 which is consistent with the
  4497          * behavior we get on Solaris when an fd is at EOF.
  4498          * The only alternative is to raise an Exception,
  4499          * which isn't really warranted.
  4500          */
  4501     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4502       return FALSE;
  4504     *pbytes = 0;
  4506   return TRUE;
  4509 #define MAX_INPUT_EVENTS 2000
  4511 // This code is a copy of JDK's stdinAvailable
  4512 // from src/windows/hpi/src/sys_api_md.c
  4514 static int stdinAvailable(int fd, long *pbytes) {
  4515   HANDLE han;
  4516   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4517   DWORD numEvents = 0;  /* Number of events in buffer */
  4518   DWORD i = 0;          /* Loop index */
  4519   DWORD curLength = 0;  /* Position marker */
  4520   DWORD actualLength = 0;       /* Number of bytes readable */
  4521   BOOL error = FALSE;         /* Error holder */
  4522   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4524   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4525         return FALSE;
  4528   /* Construct an array of input records in the console buffer */
  4529   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4530   if (error == 0) {
  4531     return nonSeekAvailable(fd, pbytes);
  4534   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4535   if (numEvents > MAX_INPUT_EVENTS) {
  4536     numEvents = MAX_INPUT_EVENTS;
  4539   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4540   if (lpBuffer == NULL) {
  4541     return FALSE;
  4544   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4545   if (error == 0) {
  4546     os::free(lpBuffer, mtInternal);
  4547     return FALSE;
  4550   /* Examine input records for the number of bytes available */
  4551   for(i=0; i<numEvents; i++) {
  4552     if (lpBuffer[i].EventType == KEY_EVENT) {
  4554       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4555                                       &(lpBuffer[i].Event);
  4556       if (keyRecord->bKeyDown == TRUE) {
  4557         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4558         curLength++;
  4559         if (*keyPressed == '\r') {
  4560           actualLength = curLength;
  4566   if(lpBuffer != NULL) {
  4567     os::free(lpBuffer, mtInternal);
  4570   *pbytes = (long) actualLength;
  4571   return TRUE;
  4574 // Map a block of memory.
  4575 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4576                      char *addr, size_t bytes, bool read_only,
  4577                      bool allow_exec) {
  4578   HANDLE hFile;
  4579   char* base;
  4581   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4582                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4583   if (hFile == NULL) {
  4584     if (PrintMiscellaneous && Verbose) {
  4585       DWORD err = GetLastError();
  4586       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4588     return NULL;
  4591   if (allow_exec) {
  4592     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4593     // unless it comes from a PE image (which the shared archive is not.)
  4594     // Even VirtualProtect refuses to give execute access to mapped memory
  4595     // that was not previously executable.
  4596     //
  4597     // Instead, stick the executable region in anonymous memory.  Yuck.
  4598     // Penalty is that ~4 pages will not be shareable - in the future
  4599     // we might consider DLLizing the shared archive with a proper PE
  4600     // header so that mapping executable + sharing is possible.
  4602     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4603                                 PAGE_READWRITE);
  4604     if (base == NULL) {
  4605       if (PrintMiscellaneous && Verbose) {
  4606         DWORD err = GetLastError();
  4607         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4609       CloseHandle(hFile);
  4610       return NULL;
  4613     DWORD bytes_read;
  4614     OVERLAPPED overlapped;
  4615     overlapped.Offset = (DWORD)file_offset;
  4616     overlapped.OffsetHigh = 0;
  4617     overlapped.hEvent = NULL;
  4618     // ReadFile guarantees that if the return value is true, the requested
  4619     // number of bytes were read before returning.
  4620     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4621     if (!res) {
  4622       if (PrintMiscellaneous && Verbose) {
  4623         DWORD err = GetLastError();
  4624         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4626       release_memory(base, bytes);
  4627       CloseHandle(hFile);
  4628       return NULL;
  4630   } else {
  4631     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4632                                     NULL /*file_name*/);
  4633     if (hMap == NULL) {
  4634       if (PrintMiscellaneous && Verbose) {
  4635         DWORD err = GetLastError();
  4636         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4638       CloseHandle(hFile);
  4639       return NULL;
  4642     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4643     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4644                                   (DWORD)bytes, addr);
  4645     if (base == NULL) {
  4646       if (PrintMiscellaneous && Verbose) {
  4647         DWORD err = GetLastError();
  4648         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4650       CloseHandle(hMap);
  4651       CloseHandle(hFile);
  4652       return NULL;
  4655     if (CloseHandle(hMap) == 0) {
  4656       if (PrintMiscellaneous && Verbose) {
  4657         DWORD err = GetLastError();
  4658         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4660       CloseHandle(hFile);
  4661       return base;
  4665   if (allow_exec) {
  4666     DWORD old_protect;
  4667     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4668     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4670     if (!res) {
  4671       if (PrintMiscellaneous && Verbose) {
  4672         DWORD err = GetLastError();
  4673         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4675       // Don't consider this a hard error, on IA32 even if the
  4676       // VirtualProtect fails, we should still be able to execute
  4677       CloseHandle(hFile);
  4678       return base;
  4682   if (CloseHandle(hFile) == 0) {
  4683     if (PrintMiscellaneous && Verbose) {
  4684       DWORD err = GetLastError();
  4685       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4687     return base;
  4690   return base;
  4694 // Remap a block of memory.
  4695 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4696                        char *addr, size_t bytes, bool read_only,
  4697                        bool allow_exec) {
  4698   // This OS does not allow existing memory maps to be remapped so we
  4699   // have to unmap the memory before we remap it.
  4700   if (!os::unmap_memory(addr, bytes)) {
  4701     return NULL;
  4704   // There is a very small theoretical window between the unmap_memory()
  4705   // call above and the map_memory() call below where a thread in native
  4706   // code may be able to access an address that is no longer mapped.
  4708   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4709            read_only, allow_exec);
  4713 // Unmap a block of memory.
  4714 // Returns true=success, otherwise false.
  4716 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4717   BOOL result = UnmapViewOfFile(addr);
  4718   if (result == 0) {
  4719     if (PrintMiscellaneous && Verbose) {
  4720       DWORD err = GetLastError();
  4721       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4723     return false;
  4725   return true;
  4728 void os::pause() {
  4729   char filename[MAX_PATH];
  4730   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4731     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4732   } else {
  4733     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4736   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4737   if (fd != -1) {
  4738     struct stat buf;
  4739     ::close(fd);
  4740     while (::stat(filename, &buf) == 0) {
  4741       Sleep(100);
  4743   } else {
  4744     jio_fprintf(stderr,
  4745       "Could not open pause file '%s', continuing immediately.\n", filename);
  4749 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  4750   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
  4753 /*
  4754  * See the caveats for this class in os_windows.hpp
  4755  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
  4756  * into this method and returns false. If no OS EXCEPTION was raised, returns
  4757  * true.
  4758  * The callback is supposed to provide the method that should be protected.
  4759  */
  4760 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  4761   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  4762   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
  4763       "crash_protection already set?");
  4765   bool success = true;
  4766   __try {
  4767     WatcherThread::watcher_thread()->set_crash_protection(this);
  4768     cb.call();
  4769   } __except(EXCEPTION_EXECUTE_HANDLER) {
  4770     // only for protection, nothing to do
  4771     success = false;
  4773   WatcherThread::watcher_thread()->set_crash_protection(NULL);
  4774   return success;
  4777 // An Event wraps a win32 "CreateEvent" kernel handle.
  4778 //
  4779 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4780 //
  4781 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4782 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4783 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4784 //     In addition, an unpark() operation might fetch the handle field, but the
  4785 //     event could recycle between the fetch and the SetEvent() operation.
  4786 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4787 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4788 //     on an stale but recycled handle would be harmless, but in practice this might
  4789 //     confuse other non-Sun code, so it's not a viable approach.
  4790 //
  4791 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4792 //     with the Event.  The event handle is never closed.  This could be construed
  4793 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4794 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4795 //     permit a process to have hundreds of thousands of open handles.
  4796 //
  4797 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4798 //     and release unused handles.
  4799 //
  4800 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4801 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4802 //
  4803 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4804 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4805 //
  4806 // We use (2).
  4807 //
  4808 // TODO-FIXME:
  4809 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4810 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4811 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4812 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4813 //     into a single win32 CreateEvent() handle.
  4814 //
  4815 // _Event transitions in park()
  4816 //   -1 => -1 : illegal
  4817 //    1 =>  0 : pass - return immediately
  4818 //    0 => -1 : block
  4819 //
  4820 // _Event serves as a restricted-range semaphore :
  4821 //    -1 : thread is blocked
  4822 //     0 : neutral  - thread is running or ready
  4823 //     1 : signaled - thread is running or ready
  4824 //
  4825 // Another possible encoding of _Event would be
  4826 // with explicit "PARKED" and "SIGNALED" bits.
  4828 int os::PlatformEvent::park (jlong Millis) {
  4829     guarantee (_ParkHandle != NULL , "Invariant") ;
  4830     guarantee (Millis > 0          , "Invariant") ;
  4831     int v ;
  4833     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4834     // the initial park() operation.
  4836     for (;;) {
  4837         v = _Event ;
  4838         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4840     guarantee ((v == 0) || (v == 1), "invariant") ;
  4841     if (v != 0) return OS_OK ;
  4843     // Do this the hard way by blocking ...
  4844     // TODO: consider a brief spin here, gated on the success of recent
  4845     // spin attempts by this thread.
  4846     //
  4847     // We decompose long timeouts into series of shorter timed waits.
  4848     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4849     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4850     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4851     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4852     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4853     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4854     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4855     // for the already waited time.  This policy does not admit any new outcomes.
  4856     // In the future, however, we might want to track the accumulated wait time and
  4857     // adjust Millis accordingly if we encounter a spurious wakeup.
  4859     const int MAXTIMEOUT = 0x10000000 ;
  4860     DWORD rv = WAIT_TIMEOUT ;
  4861     while (_Event < 0 && Millis > 0) {
  4862        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4863        if (Millis > MAXTIMEOUT) {
  4864           prd = MAXTIMEOUT ;
  4866        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4867        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4868        if (rv == WAIT_TIMEOUT) {
  4869            Millis -= prd ;
  4872     v = _Event ;
  4873     _Event = 0 ;
  4874     // see comment at end of os::PlatformEvent::park() below:
  4875     OrderAccess::fence() ;
  4876     // If we encounter a nearly simultanous timeout expiry and unpark()
  4877     // we return OS_OK indicating we awoke via unpark().
  4878     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4879     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4882 void os::PlatformEvent::park () {
  4883     guarantee (_ParkHandle != NULL, "Invariant") ;
  4884     // Invariant: Only the thread associated with the Event/PlatformEvent
  4885     // may call park().
  4886     int v ;
  4887     for (;;) {
  4888         v = _Event ;
  4889         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4891     guarantee ((v == 0) || (v == 1), "invariant") ;
  4892     if (v != 0) return ;
  4894     // Do this the hard way by blocking ...
  4895     // TODO: consider a brief spin here, gated on the success of recent
  4896     // spin attempts by this thread.
  4897     while (_Event < 0) {
  4898        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4899        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4902     // Usually we'll find _Event == 0 at this point, but as
  4903     // an optional optimization we clear it, just in case can
  4904     // multiple unpark() operations drove _Event up to 1.
  4905     _Event = 0 ;
  4906     OrderAccess::fence() ;
  4907     guarantee (_Event >= 0, "invariant") ;
  4910 void os::PlatformEvent::unpark() {
  4911   guarantee (_ParkHandle != NULL, "Invariant") ;
  4913   // Transitions for _Event:
  4914   //    0 :=> 1
  4915   //    1 :=> 1
  4916   //   -1 :=> either 0 or 1; must signal target thread
  4917   //          That is, we can safely transition _Event from -1 to either
  4918   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4919   //          unpark() calls.
  4920   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4921   //
  4922   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4923   // that it will take two back-to-back park() calls for the owning
  4924   // thread to block. This has the benefit of forcing a spurious return
  4925   // from the first park() call after an unpark() call which will help
  4926   // shake out uses of park() and unpark() without condition variables.
  4928   if (Atomic::xchg(1, &_Event) >= 0) return;
  4930   ::SetEvent(_ParkHandle);
  4934 // JSR166
  4935 // -------------------------------------------------------
  4937 /*
  4938  * The Windows implementation of Park is very straightforward: Basic
  4939  * operations on Win32 Events turn out to have the right semantics to
  4940  * use them directly. We opportunistically resuse the event inherited
  4941  * from Monitor.
  4942  */
  4945 void Parker::park(bool isAbsolute, jlong time) {
  4946   guarantee (_ParkEvent != NULL, "invariant") ;
  4947   // First, demultiplex/decode time arguments
  4948   if (time < 0) { // don't wait
  4949     return;
  4951   else if (time == 0 && !isAbsolute) {
  4952     time = INFINITE;
  4954   else if  (isAbsolute) {
  4955     time -= os::javaTimeMillis(); // convert to relative time
  4956     if (time <= 0) // already elapsed
  4957       return;
  4959   else { // relative
  4960     time /= 1000000; // Must coarsen from nanos to millis
  4961     if (time == 0)   // Wait for the minimal time unit if zero
  4962       time = 1;
  4965   JavaThread* thread = (JavaThread*)(Thread::current());
  4966   assert(thread->is_Java_thread(), "Must be JavaThread");
  4967   JavaThread *jt = (JavaThread *)thread;
  4969   // Don't wait if interrupted or already triggered
  4970   if (Thread::is_interrupted(thread, false) ||
  4971     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4972     ResetEvent(_ParkEvent);
  4973     return;
  4975   else {
  4976     ThreadBlockInVM tbivm(jt);
  4977     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4978     jt->set_suspend_equivalent();
  4980     WaitForSingleObject(_ParkEvent,  time);
  4981     ResetEvent(_ParkEvent);
  4983     // If externally suspended while waiting, re-suspend
  4984     if (jt->handle_special_suspend_equivalent_condition()) {
  4985       jt->java_suspend_self();
  4990 void Parker::unpark() {
  4991   guarantee (_ParkEvent != NULL, "invariant") ;
  4992   SetEvent(_ParkEvent);
  4995 // Run the specified command in a separate process. Return its exit value,
  4996 // or -1 on failure (e.g. can't create a new process).
  4997 int os::fork_and_exec(char* cmd) {
  4998   STARTUPINFO si;
  4999   PROCESS_INFORMATION pi;
  5001   memset(&si, 0, sizeof(si));
  5002   si.cb = sizeof(si);
  5003   memset(&pi, 0, sizeof(pi));
  5004   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  5005                             cmd,    // command line
  5006                             NULL,   // process security attribute
  5007                             NULL,   // thread security attribute
  5008                             TRUE,   // inherits system handles
  5009                             0,      // no creation flags
  5010                             NULL,   // use parent's environment block
  5011                             NULL,   // use parent's starting directory
  5012                             &si,    // (in) startup information
  5013                             &pi);   // (out) process information
  5015   if (rslt) {
  5016     // Wait until child process exits.
  5017     WaitForSingleObject(pi.hProcess, INFINITE);
  5019     DWORD exit_code;
  5020     GetExitCodeProcess(pi.hProcess, &exit_code);
  5022     // Close process and thread handles.
  5023     CloseHandle(pi.hProcess);
  5024     CloseHandle(pi.hThread);
  5026     return (int)exit_code;
  5027   } else {
  5028     return -1;
  5032 //--------------------------------------------------------------------------------------------------
  5033 // Non-product code
  5035 static int mallocDebugIntervalCounter = 0;
  5036 static int mallocDebugCounter = 0;
  5037 bool os::check_heap(bool force) {
  5038   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  5039   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  5040     // Note: HeapValidate executes two hardware breakpoints when it finds something
  5041     // wrong; at these points, eax contains the address of the offending block (I think).
  5042     // To get to the exlicit error message(s) below, just continue twice.
  5043     HANDLE heap = GetProcessHeap();
  5044     { HeapLock(heap);
  5045       PROCESS_HEAP_ENTRY phe;
  5046       phe.lpData = NULL;
  5047       while (HeapWalk(heap, &phe) != 0) {
  5048         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  5049             !HeapValidate(heap, 0, phe.lpData)) {
  5050           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  5051           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  5052           fatal("corrupted C heap");
  5055       DWORD err = GetLastError();
  5056       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  5057         fatal(err_msg("heap walk aborted with error %d", err));
  5059       HeapUnlock(heap);
  5061     mallocDebugIntervalCounter = 0;
  5063   return true;
  5067 bool os::find(address addr, outputStream* st) {
  5068   // Nothing yet
  5069   return false;
  5072 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  5073   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  5075   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  5076     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  5077     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  5078     address addr = (address) exceptionRecord->ExceptionInformation[1];
  5080     if (os::is_memory_serialize_page(thread, addr))
  5081       return EXCEPTION_CONTINUE_EXECUTION;
  5084   return EXCEPTION_CONTINUE_SEARCH;
  5087 // We don't build a headless jre for Windows
  5088 bool os::is_headless_jre() { return false; }
  5090 static jint initSock() {
  5091   WSADATA wsadata;
  5093   if (!os::WinSock2Dll::WinSock2Available()) {
  5094     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  5095       ::GetLastError());
  5096     return JNI_ERR;
  5099   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  5100     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  5101       ::GetLastError());
  5102     return JNI_ERR;
  5104   return JNI_OK;
  5107 struct hostent* os::get_host_by_name(char* name) {
  5108   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5111 int os::socket_close(int fd) {
  5112   return ::closesocket(fd);
  5115 int os::socket_available(int fd, jint *pbytes) {
  5116   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5117   return (ret < 0) ? 0 : 1;
  5120 int os::socket(int domain, int type, int protocol) {
  5121   return ::socket(domain, type, protocol);
  5124 int os::listen(int fd, int count) {
  5125   return ::listen(fd, count);
  5128 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5129   return ::connect(fd, him, len);
  5132 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5133   return ::accept(fd, him, len);
  5136 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5137                struct sockaddr* to, socklen_t tolen) {
  5139   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5142 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5143                  sockaddr* from, socklen_t* fromlen) {
  5145   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5148 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5149   return ::recv(fd, buf, (int)nBytes, flags);
  5152 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5153   return ::send(fd, buf, (int)nBytes, flags);
  5156 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5157   return ::send(fd, buf, (int)nBytes, flags);
  5160 int os::timeout(int fd, long timeout) {
  5161   fd_set tbl;
  5162   struct timeval t;
  5164   t.tv_sec  = timeout / 1000;
  5165   t.tv_usec = (timeout % 1000) * 1000;
  5167   tbl.fd_count    = 1;
  5168   tbl.fd_array[0] = fd;
  5170   return ::select(1, &tbl, 0, 0, &t);
  5173 int os::get_host_name(char* name, int namelen) {
  5174   return ::gethostname(name, namelen);
  5177 int os::socket_shutdown(int fd, int howto) {
  5178   return ::shutdown(fd, howto);
  5181 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5182   return ::bind(fd, him, len);
  5185 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5186   return ::getsockname(fd, him, len);
  5189 int os::get_sock_opt(int fd, int level, int optname,
  5190                      char* optval, socklen_t* optlen) {
  5191   return ::getsockopt(fd, level, optname, optval, optlen);
  5194 int os::set_sock_opt(int fd, int level, int optname,
  5195                      const char* optval, socklen_t optlen) {
  5196   return ::setsockopt(fd, level, optname, optval, optlen);
  5199 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5200 #if defined(IA32)
  5201 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5202 #elif defined (AMD64)
  5203 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5204 #endif
  5206 // returns true if thread could be suspended,
  5207 // false otherwise
  5208 static bool do_suspend(HANDLE* h) {
  5209   if (h != NULL) {
  5210     if (SuspendThread(*h) != ~0) {
  5211       return true;
  5214   return false;
  5217 // resume the thread
  5218 // calling resume on an active thread is a no-op
  5219 static void do_resume(HANDLE* h) {
  5220   if (h != NULL) {
  5221     ResumeThread(*h);
  5225 // retrieve a suspend/resume context capable handle
  5226 // from the tid. Caller validates handle return value.
  5227 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5228   if (h != NULL) {
  5229     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5233 //
  5234 // Thread sampling implementation
  5235 //
  5236 void os::SuspendedThreadTask::internal_do_task() {
  5237   CONTEXT    ctxt;
  5238   HANDLE     h = NULL;
  5240   // get context capable handle for thread
  5241   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5243   // sanity
  5244   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5245     return;
  5248   // suspend the thread
  5249   if (do_suspend(&h)) {
  5250     ctxt.ContextFlags = sampling_context_flags;
  5251     // get thread context
  5252     GetThreadContext(h, &ctxt);
  5253     SuspendedThreadTaskContext context(_thread, &ctxt);
  5254     // pass context to Thread Sampling impl
  5255     do_task(context);
  5256     // resume thread
  5257     do_resume(&h);
  5260   // close handle
  5261   CloseHandle(h);
  5265 // Kernel32 API
  5266 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5267 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5268 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5269 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5270 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5272 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5273 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5274 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5275 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5276 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5279 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5280 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5281   assert(initialized && _GetLargePageMinimum != NULL,
  5282     "GetLargePageMinimumAvailable() not yet called");
  5283   return _GetLargePageMinimum();
  5286 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5287   if (!initialized) {
  5288     initialize();
  5290   return _GetLargePageMinimum != NULL;
  5293 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5294   if (!initialized) {
  5295     initialize();
  5297   return _VirtualAllocExNuma != NULL;
  5300 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5301   assert(initialized && _VirtualAllocExNuma != NULL,
  5302     "NUMACallsAvailable() not yet called");
  5304   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5307 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5308   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5309     "NUMACallsAvailable() not yet called");
  5311   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5314 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5315   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5316     "NUMACallsAvailable() not yet called");
  5318   return _GetNumaNodeProcessorMask(node, proc_mask);
  5321 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5322   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5323     if (!initialized) {
  5324       initialize();
  5327     if (_RtlCaptureStackBackTrace != NULL) {
  5328       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5329         BackTrace, BackTraceHash);
  5330     } else {
  5331       return 0;
  5335 void os::Kernel32Dll::initializeCommon() {
  5336   if (!initialized) {
  5337     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5338     assert(handle != NULL, "Just check");
  5339     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5340     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5341     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5342     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5343     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5344     initialized = TRUE;
  5350 #ifndef JDK6_OR_EARLIER
  5352 void os::Kernel32Dll::initialize() {
  5353   initializeCommon();
  5357 // Kernel32 API
  5358 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5359   return ::SwitchToThread();
  5362 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5363   return true;
  5366   // Help tools
  5367 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5368   return true;
  5371 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5372   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5375 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5376   return ::Module32First(hSnapshot, lpme);
  5379 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5380   return ::Module32Next(hSnapshot, lpme);
  5383 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5384   ::GetNativeSystemInfo(lpSystemInfo);
  5387 // PSAPI API
  5388 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5389   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5392 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5393   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5396 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5397   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5400 inline BOOL os::PSApiDll::PSApiAvailable() {
  5401   return true;
  5405 // WinSock2 API
  5406 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5407   return ::WSAStartup(wVersionRequested, lpWSAData);
  5410 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5411   return ::gethostbyname(name);
  5414 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5415   return true;
  5418 // Advapi API
  5419 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5420    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5421    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5422      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5423        BufferLength, PreviousState, ReturnLength);
  5426 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5427   PHANDLE TokenHandle) {
  5428     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5431 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5432   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5435 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5436   return true;
  5439 void* os::get_default_process_handle() {
  5440   return (void*)GetModuleHandle(NULL);
  5443 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
  5444 // which is used to find statically linked in agents.
  5445 // Additionally for windows, takes into account __stdcall names.
  5446 // Parameters:
  5447 //            sym_name: Symbol in library we are looking for
  5448 //            lib_name: Name of library to look in, NULL for shared libs.
  5449 //            is_absolute_path == true if lib_name is absolute path to agent
  5450 //                                     such as "C:/a/b/L.dll"
  5451 //            == false if only the base name of the library is passed in
  5452 //               such as "L"
  5453 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
  5454                                     bool is_absolute_path) {
  5455   char *agent_entry_name;
  5456   size_t len;
  5457   size_t name_len;
  5458   size_t prefix_len = strlen(JNI_LIB_PREFIX);
  5459   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  5460   const char *start;
  5462   if (lib_name != NULL) {
  5463     len = name_len = strlen(lib_name);
  5464     if (is_absolute_path) {
  5465       // Need to strip path, prefix and suffix
  5466       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
  5467         lib_name = ++start;
  5468       } else {
  5469         // Need to check for drive prefix
  5470         if ((start = strchr(lib_name, ':')) != NULL) {
  5471           lib_name = ++start;
  5474       if (len <= (prefix_len + suffix_len)) {
  5475         return NULL;
  5477       lib_name += prefix_len;
  5478       name_len = strlen(lib_name) - suffix_len;
  5481   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  5482   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  5483   if (agent_entry_name == NULL) {
  5484     return NULL;
  5486   if (lib_name != NULL) {
  5487     const char *p = strrchr(sym_name, '@');
  5488     if (p != NULL && p != sym_name) {
  5489       // sym_name == _Agent_OnLoad@XX
  5490       strncpy(agent_entry_name, sym_name, (p - sym_name));
  5491       agent_entry_name[(p-sym_name)] = '\0';
  5492       // agent_entry_name == _Agent_OnLoad
  5493       strcat(agent_entry_name, "_");
  5494       strncat(agent_entry_name, lib_name, name_len);
  5495       strcat(agent_entry_name, p);
  5496       // agent_entry_name == _Agent_OnLoad_lib_name@XX
  5497     } else {
  5498       strcpy(agent_entry_name, sym_name);
  5499       strcat(agent_entry_name, "_");
  5500       strncat(agent_entry_name, lib_name, name_len);
  5502   } else {
  5503     strcpy(agent_entry_name, sym_name);
  5505   return agent_entry_name;
  5508 #else
  5509 // Kernel32 API
  5510 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5511 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5512 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5513 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5514 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5516 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5517 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5518 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5519 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5520 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5522 void os::Kernel32Dll::initialize() {
  5523   if (!initialized) {
  5524     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5525     assert(handle != NULL, "Just check");
  5527     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5528     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5529       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5530     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5531     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5532     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5533     initializeCommon();  // resolve the functions that always need resolving
  5535     initialized = TRUE;
  5539 BOOL os::Kernel32Dll::SwitchToThread() {
  5540   assert(initialized && _SwitchToThread != NULL,
  5541     "SwitchToThreadAvailable() not yet called");
  5542   return _SwitchToThread();
  5546 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5547   if (!initialized) {
  5548     initialize();
  5550   return _SwitchToThread != NULL;
  5553 // Help tools
  5554 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5555   if (!initialized) {
  5556     initialize();
  5558   return _CreateToolhelp32Snapshot != NULL &&
  5559          _Module32First != NULL &&
  5560          _Module32Next != NULL;
  5563 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5564   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5565     "HelpToolsAvailable() not yet called");
  5567   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5570 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5571   assert(initialized && _Module32First != NULL,
  5572     "HelpToolsAvailable() not yet called");
  5574   return _Module32First(hSnapshot, lpme);
  5577 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5578   assert(initialized && _Module32Next != NULL,
  5579     "HelpToolsAvailable() not yet called");
  5581   return _Module32Next(hSnapshot, lpme);
  5585 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5586   if (!initialized) {
  5587     initialize();
  5589   return _GetNativeSystemInfo != NULL;
  5592 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5593   assert(initialized && _GetNativeSystemInfo != NULL,
  5594     "GetNativeSystemInfoAvailable() not yet called");
  5596   _GetNativeSystemInfo(lpSystemInfo);
  5599 // PSAPI API
  5602 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5603 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5604 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5606 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5607 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5608 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5609 BOOL                    os::PSApiDll::initialized = FALSE;
  5611 void os::PSApiDll::initialize() {
  5612   if (!initialized) {
  5613     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5614     if (handle != NULL) {
  5615       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5616         "EnumProcessModules");
  5617       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5618         "GetModuleFileNameExA");
  5619       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5620         "GetModuleInformation");
  5622     initialized = TRUE;
  5628 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5629   assert(initialized && _EnumProcessModules != NULL,
  5630     "PSApiAvailable() not yet called");
  5631   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5634 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5635   assert(initialized && _GetModuleFileNameEx != NULL,
  5636     "PSApiAvailable() not yet called");
  5637   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5640 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5641   assert(initialized && _GetModuleInformation != NULL,
  5642     "PSApiAvailable() not yet called");
  5643   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5646 BOOL os::PSApiDll::PSApiAvailable() {
  5647   if (!initialized) {
  5648     initialize();
  5650   return _EnumProcessModules != NULL &&
  5651     _GetModuleFileNameEx != NULL &&
  5652     _GetModuleInformation != NULL;
  5656 // WinSock2 API
  5657 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5658 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5660 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5661 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5662 BOOL             os::WinSock2Dll::initialized = FALSE;
  5664 void os::WinSock2Dll::initialize() {
  5665   if (!initialized) {
  5666     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5667     if (handle != NULL) {
  5668       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5669       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5671     initialized = TRUE;
  5676 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5677   assert(initialized && _WSAStartup != NULL,
  5678     "WinSock2Available() not yet called");
  5679   return _WSAStartup(wVersionRequested, lpWSAData);
  5682 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5683   assert(initialized && _gethostbyname != NULL,
  5684     "WinSock2Available() not yet called");
  5685   return _gethostbyname(name);
  5688 BOOL os::WinSock2Dll::WinSock2Available() {
  5689   if (!initialized) {
  5690     initialize();
  5692   return _WSAStartup != NULL &&
  5693     _gethostbyname != NULL;
  5696 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5697 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5698 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5700 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5701 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5702 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5703 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5705 void os::Advapi32Dll::initialize() {
  5706   if (!initialized) {
  5707     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5708     if (handle != NULL) {
  5709       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5710         "AdjustTokenPrivileges");
  5711       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5712         "OpenProcessToken");
  5713       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5714         "LookupPrivilegeValueA");
  5716     initialized = TRUE;
  5720 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5721    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5722    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5723    assert(initialized && _AdjustTokenPrivileges != NULL,
  5724      "AdvapiAvailable() not yet called");
  5725    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5726        BufferLength, PreviousState, ReturnLength);
  5729 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5730   PHANDLE TokenHandle) {
  5731    assert(initialized && _OpenProcessToken != NULL,
  5732      "AdvapiAvailable() not yet called");
  5733     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5736 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5737    assert(initialized && _LookupPrivilegeValue != NULL,
  5738      "AdvapiAvailable() not yet called");
  5739   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5742 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5743   if (!initialized) {
  5744     initialize();
  5746   return _AdjustTokenPrivileges != NULL &&
  5747     _OpenProcessToken != NULL &&
  5748     _LookupPrivilegeValue != NULL;
  5751 #endif
  5753 #ifndef PRODUCT
  5755 // test the code path in reserve_memory_special() that tries to allocate memory in a single
  5756 // contiguous memory block at a particular address.
  5757 // The test first tries to find a good approximate address to allocate at by using the same
  5758 // method to allocate some memory at any address. The test then tries to allocate memory in
  5759 // the vicinity (not directly after it to avoid possible by-chance use of that location)
  5760 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
  5761 // the previously allocated memory is available for allocation. The only actual failure
  5762 // that is reported is when the test tries to allocate at a particular location but gets a
  5763 // different valid one. A NULL return value at this point is not considered an error but may
  5764 // be legitimate.
  5765 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
  5766 void TestReserveMemorySpecial_test() {
  5767   if (!UseLargePages) {
  5768     if (VerboseInternalVMTests) {
  5769       gclog_or_tty->print("Skipping test because large pages are disabled");
  5771     return;
  5773   // save current value of globals
  5774   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
  5775   bool old_use_numa_interleaving = UseNUMAInterleaving;
  5777   // set globals to make sure we hit the correct code path
  5778   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
  5780   // do an allocation at an address selected by the OS to get a good one.
  5781   const size_t large_allocation_size = os::large_page_size() * 4;
  5782   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
  5783   if (result == NULL) {
  5784     if (VerboseInternalVMTests) {
  5785       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
  5786         large_allocation_size);
  5788   } else {
  5789     os::release_memory_special(result, large_allocation_size);
  5791     // allocate another page within the recently allocated memory area which seems to be a good location. At least
  5792     // we managed to get it once.
  5793     const size_t expected_allocation_size = os::large_page_size();
  5794     char* expected_location = result + os::large_page_size();
  5795     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
  5796     if (actual_location == NULL) {
  5797       if (VerboseInternalVMTests) {
  5798         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
  5799           expected_location, large_allocation_size);
  5801     } else {
  5802       // release memory
  5803       os::release_memory_special(actual_location, expected_allocation_size);
  5804       // only now check, after releasing any memory to avoid any leaks.
  5805       assert(actual_location == expected_location,
  5806         err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
  5807           expected_location, expected_allocation_size, actual_location));
  5811   // restore globals
  5812   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
  5813   UseNUMAInterleaving = old_use_numa_interleaving;
  5815 #endif // PRODUCT

mercurial