src/share/vm/opto/parse3.cpp

Wed, 09 Dec 2009 16:40:45 -0800

author
kvn
date
Wed, 09 Dec 2009 16:40:45 -0800
changeset 1535
f96a1a986f7b
parent 1424
148e5441d916
child 1573
dd57230ba8fe
permissions
-rw-r--r--

6895383: JCK test throws NPE for method compiled with Escape Analysis
Summary: Add missing checks for MemBar nodes in EA.
Reviewed-by: never

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse3.cpp.incl"
    28 //=============================================================================
    29 // Helper methods for _get* and _put* bytecodes
    30 //=============================================================================
    31 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
    32   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
    33   // Better to check now than to Deoptimize as soon as we execute
    34   assert( field->is_static(), "Only check if field is static");
    35   // is_being_initialized() is too generous.  It allows access to statics
    36   // by threads that are not running the <clinit> before the <clinit> finishes.
    37   // return field->holder()->is_being_initialized();
    39   // The following restriction is correct but conservative.
    40   // It is also desirable to allow compilation of methods called from <clinit>
    41   // but this generated code will need to be made safe for execution by
    42   // other threads, or the transition from interpreted to compiled code would
    43   // need to be guarded.
    44   ciInstanceKlass *field_holder = field->holder();
    46   bool access_OK = false;
    47   if (method->holder()->is_subclass_of(field_holder)) {
    48     if (method->is_static()) {
    49       if (method->name() == ciSymbol::class_initializer_name()) {
    50         // OK to access static fields inside initializer
    51         access_OK = true;
    52       }
    53     } else {
    54       if (method->name() == ciSymbol::object_initializer_name()) {
    55         // It's also OK to access static fields inside a constructor,
    56         // because any thread calling the constructor must first have
    57         // synchronized on the class by executing a '_new' bytecode.
    58         access_OK = true;
    59       }
    60     }
    61   }
    63   return access_OK;
    65 }
    68 void Parse::do_field_access(bool is_get, bool is_field) {
    69   bool will_link;
    70   ciField* field = iter().get_field(will_link);
    71   assert(will_link, "getfield: typeflow responsibility");
    73   ciInstanceKlass* field_holder = field->holder();
    75   if (is_field == field->is_static()) {
    76     // Interpreter will throw java_lang_IncompatibleClassChangeError
    77     // Check this before allowing <clinit> methods to access static fields
    78     uncommon_trap(Deoptimization::Reason_unhandled,
    79                   Deoptimization::Action_none);
    80     return;
    81   }
    83   if (!is_field && !field_holder->is_initialized()) {
    84     if (!static_field_ok_in_clinit(field, method())) {
    85       uncommon_trap(Deoptimization::Reason_uninitialized,
    86                     Deoptimization::Action_reinterpret,
    87                     NULL, "!static_field_ok_in_clinit");
    88       return;
    89     }
    90   }
    92   assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
    94   // Note:  We do not check for an unloaded field type here any more.
    96   // Generate code for the object pointer.
    97   Node* obj;
    98   if (is_field) {
    99     int obj_depth = is_get ? 0 : field->type()->size();
   100     obj = do_null_check(peek(obj_depth), T_OBJECT);
   101     // Compile-time detect of null-exception?
   102     if (stopped())  return;
   104     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
   105     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
   107     if (is_get) {
   108       --_sp;  // pop receiver before getting
   109       do_get_xxx(tjp, obj, field, is_field);
   110     } else {
   111       do_put_xxx(tjp, obj, field, is_field);
   112       --_sp;  // pop receiver after putting
   113     }
   114   } else {
   115     const TypeKlassPtr* tkp = TypeKlassPtr::make(field_holder);
   116     obj = _gvn.makecon(tkp);
   117     if (is_get) {
   118       do_get_xxx(tkp, obj, field, is_field);
   119     } else {
   120       do_put_xxx(tkp, obj, field, is_field);
   121     }
   122   }
   123 }
   126 void Parse::do_get_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
   127   // Does this field have a constant value?  If so, just push the value.
   128   if (field->is_constant() && push_constant(field->constant_value()))  return;
   130   ciType* field_klass = field->type();
   131   bool is_vol = field->is_volatile();
   133   // Compute address and memory type.
   134   int offset = field->offset_in_bytes();
   135   const TypePtr* adr_type = C->alias_type(field)->adr_type();
   136   Node *adr = basic_plus_adr(obj, obj, offset);
   137   BasicType bt = field->layout_type();
   139   // Build the resultant type of the load
   140   const Type *type;
   142   bool must_assert_null = false;
   144   if( bt == T_OBJECT ) {
   145     if (!field->type()->is_loaded()) {
   146       type = TypeInstPtr::BOTTOM;
   147       must_assert_null = true;
   148     } else if (field->is_constant()) {
   149       // This can happen if the constant oop is non-perm.
   150       ciObject* con = field->constant_value().as_object();
   151       // Do not "join" in the previous type; it doesn't add value,
   152       // and may yield a vacuous result if the field is of interface type.
   153       type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   154       assert(type != NULL, "field singleton type must be consistent");
   155     } else {
   156       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
   157     }
   158   } else {
   159     type = Type::get_const_basic_type(bt);
   160   }
   161   // Build the load.
   162   Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
   164   // Adjust Java stack
   165   if (type2size[bt] == 1)
   166     push(ld);
   167   else
   168     push_pair(ld);
   170   if (must_assert_null) {
   171     // Do not take a trap here.  It's possible that the program
   172     // will never load the field's class, and will happily see
   173     // null values in this field forever.  Don't stumble into a
   174     // trap for such a program, or we might get a long series
   175     // of useless recompilations.  (Or, we might load a class
   176     // which should not be loaded.)  If we ever see a non-null
   177     // value, we will then trap and recompile.  (The trap will
   178     // not need to mention the class index, since the class will
   179     // already have been loaded if we ever see a non-null value.)
   180     // uncommon_trap(iter().get_field_signature_index());
   181 #ifndef PRODUCT
   182     if (PrintOpto && (Verbose || WizardMode)) {
   183       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
   184     }
   185 #endif
   186     if (C->log() != NULL) {
   187       C->log()->elem("assert_null reason='field' klass='%d'",
   188                      C->log()->identify(field->type()));
   189     }
   190     // If there is going to be a trap, put it at the next bytecode:
   191     set_bci(iter().next_bci());
   192     do_null_assert(peek(), T_OBJECT);
   193     set_bci(iter().cur_bci()); // put it back
   194   }
   196   // If reference is volatile, prevent following memory ops from
   197   // floating up past the volatile read.  Also prevents commoning
   198   // another volatile read.
   199   if (field->is_volatile()) {
   200     // Memory barrier includes bogus read of value to force load BEFORE membar
   201     insert_mem_bar(Op_MemBarAcquire, ld);
   202   }
   203 }
   205 void Parse::do_put_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
   206   bool is_vol = field->is_volatile();
   207   // If reference is volatile, prevent following memory ops from
   208   // floating down past the volatile write.  Also prevents commoning
   209   // another volatile read.
   210   if (is_vol)  insert_mem_bar(Op_MemBarRelease);
   212   // Compute address and memory type.
   213   int offset = field->offset_in_bytes();
   214   const TypePtr* adr_type = C->alias_type(field)->adr_type();
   215   Node* adr = basic_plus_adr(obj, obj, offset);
   216   BasicType bt = field->layout_type();
   217   // Value to be stored
   218   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
   219   // Round doubles before storing
   220   if (bt == T_DOUBLE)  val = dstore_rounding(val);
   222   // Store the value.
   223   Node* store;
   224   if (bt == T_OBJECT) {
   225     const TypeOopPtr* field_type;
   226     if (!field->type()->is_loaded()) {
   227       field_type = TypeInstPtr::BOTTOM;
   228     } else {
   229       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
   230     }
   231     store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
   232   } else {
   233     store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
   234   }
   236   // If reference is volatile, prevent following volatiles ops from
   237   // floating up before the volatile write.
   238   if (is_vol) {
   239     // First place the specific membar for THIS volatile index. This first
   240     // membar is dependent on the store, keeping any other membars generated
   241     // below from floating up past the store.
   242     int adr_idx = C->get_alias_index(adr_type);
   243     insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
   245     // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
   246     // volatile alias indices. Skip this if the membar is redundant.
   247     if (adr_idx != Compile::AliasIdxBot) {
   248       insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
   249     }
   251     // Finally, place alias-index-specific membars for each volatile index
   252     // that isn't the adr_idx membar. Typically there's only 1 or 2.
   253     for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
   254       if (i != adr_idx && C->alias_type(i)->is_volatile()) {
   255         insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
   256       }
   257     }
   258   }
   260   // If the field is final, the rules of Java say we are in <init> or <clinit>.
   261   // Note the presence of writes to final non-static fields, so that we
   262   // can insert a memory barrier later on to keep the writes from floating
   263   // out of the constructor.
   264   if (is_field && field->is_final()) {
   265     set_wrote_final(true);
   266   }
   267 }
   270 bool Parse::push_constant(ciConstant constant, bool require_constant) {
   271   switch (constant.basic_type()) {
   272   case T_BOOLEAN:  push( intcon(constant.as_boolean()) ); break;
   273   case T_INT:      push( intcon(constant.as_int())     ); break;
   274   case T_CHAR:     push( intcon(constant.as_char())    ); break;
   275   case T_BYTE:     push( intcon(constant.as_byte())    ); break;
   276   case T_SHORT:    push( intcon(constant.as_short())   ); break;
   277   case T_FLOAT:    push( makecon(TypeF::make(constant.as_float())) );  break;
   278   case T_DOUBLE:   push_pair( makecon(TypeD::make(constant.as_double())) );  break;
   279   case T_LONG:     push_pair( longcon(constant.as_long()) ); break;
   280   case T_ARRAY:
   281   case T_OBJECT: {
   282     // cases:
   283     //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   284     //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   285     // An oop is not scavengable if it is in the perm gen.
   286     ciObject* oop_constant = constant.as_object();
   287     if (oop_constant->is_null_object()) {
   288       push( zerocon(T_OBJECT) );
   289       break;
   290     } else if (require_constant || oop_constant->should_be_constant()) {
   291       push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) );
   292       break;
   293     } else {
   294       // we cannot inline the oop, but we can use it later to narrow a type
   295       return false;
   296     }
   297   }
   298   case T_ILLEGAL: {
   299     // Invalid ciConstant returned due to OutOfMemoryError in the CI
   300     assert(C->env()->failing(), "otherwise should not see this");
   301     // These always occur because of object types; we are going to
   302     // bail out anyway, so make the stack depths match up
   303     push( zerocon(T_OBJECT) );
   304     return false;
   305   }
   306   default:
   307     ShouldNotReachHere();
   308     return false;
   309   }
   311   // success
   312   return true;
   313 }
   317 //=============================================================================
   318 void Parse::do_anewarray() {
   319   bool will_link;
   320   ciKlass* klass = iter().get_klass(will_link);
   322   // Uncommon Trap when class that array contains is not loaded
   323   // we need the loaded class for the rest of graph; do not
   324   // initialize the container class (see Java spec)!!!
   325   assert(will_link, "anewarray: typeflow responsibility");
   327   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
   328   // Check that array_klass object is loaded
   329   if (!array_klass->is_loaded()) {
   330     // Generate uncommon_trap for unloaded array_class
   331     uncommon_trap(Deoptimization::Reason_unloaded,
   332                   Deoptimization::Action_reinterpret,
   333                   array_klass);
   334     return;
   335   }
   337   kill_dead_locals();
   339   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
   340   Node* count_val = pop();
   341   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
   342   push(obj);
   343 }
   346 void Parse::do_newarray(BasicType elem_type) {
   347   kill_dead_locals();
   349   Node*   count_val = pop();
   350   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
   351   Node*   obj = new_array(makecon(array_klass), count_val, 1);
   352   // Push resultant oop onto stack
   353   push(obj);
   354 }
   356 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
   357 // Also handle the degenerate 1-dimensional case of anewarray.
   358 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
   359   Node* length = lengths[0];
   360   assert(length != NULL, "");
   361   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
   362   if (ndimensions > 1) {
   363     jint length_con = find_int_con(length, -1);
   364     guarantee(length_con >= 0, "non-constant multianewarray");
   365     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
   366     const TypePtr* adr_type = TypeAryPtr::OOPS;
   367     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
   368     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
   369     for (jint i = 0; i < length_con; i++) {
   370       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
   371       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
   372       Node*    eaddr  = basic_plus_adr(array, offset);
   373       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
   374     }
   375   }
   376   return array;
   377 }
   379 void Parse::do_multianewarray() {
   380   int ndimensions = iter().get_dimensions();
   382   // the m-dimensional array
   383   bool will_link;
   384   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
   385   assert(will_link, "multianewarray: typeflow responsibility");
   387   // Note:  Array classes are always initialized; no is_initialized check.
   389   enum { MAX_DIMENSION = 5 };
   390   if (ndimensions > MAX_DIMENSION || ndimensions <= 0) {
   391     uncommon_trap(Deoptimization::Reason_unhandled,
   392                   Deoptimization::Action_none);
   393     return;
   394   }
   396   kill_dead_locals();
   398   // get the lengths from the stack (first dimension is on top)
   399   Node* length[MAX_DIMENSION+1];
   400   length[ndimensions] = NULL;  // terminating null for make_runtime_call
   401   int j;
   402   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
   404   // The original expression was of this form: new T[length0][length1]...
   405   // It is often the case that the lengths are small (except the last).
   406   // If that happens, use the fast 1-d creator a constant number of times.
   407   const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
   408   jint expand_count = 1;        // count of allocations in the expansion
   409   jint expand_fanout = 1;       // running total fanout
   410   for (j = 0; j < ndimensions-1; j++) {
   411     jint dim_con = find_int_con(length[j], -1);
   412     expand_fanout *= dim_con;
   413     expand_count  += expand_fanout; // count the level-J sub-arrays
   414     if (dim_con <= 0
   415         || dim_con > expand_limit
   416         || expand_count > expand_limit) {
   417       expand_count = 0;
   418       break;
   419     }
   420   }
   422   // Can use multianewarray instead of [a]newarray if only one dimension,
   423   // or if all non-final dimensions are small constants.
   424   if (expand_count == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
   425     Node* obj = expand_multianewarray(array_klass, &length[0], ndimensions, ndimensions);
   426     push(obj);
   427     return;
   428   }
   430   address fun = NULL;
   431   switch (ndimensions) {
   432   //case 1: Actually, there is no case 1.  It's handled by new_array.
   433   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
   434   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
   435   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
   436   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
   437   default: ShouldNotReachHere();
   438   };
   440   Node* c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
   441                               OptoRuntime::multianewarray_Type(ndimensions),
   442                               fun, NULL, TypeRawPtr::BOTTOM,
   443                               makecon(TypeKlassPtr::make(array_klass)),
   444                               length[0], length[1], length[2],
   445                               length[3], length[4]);
   446   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms));
   448   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
   450   // Improve the type:  We know it's not null, exact, and of a given length.
   451   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
   452   type = type->is_aryptr()->cast_to_exactness(true);
   454   const TypeInt* ltype = _gvn.find_int_type(length[0]);
   455   if (ltype != NULL)
   456     type = type->is_aryptr()->cast_to_size(ltype);
   458   // We cannot sharpen the nested sub-arrays, since the top level is mutable.
   460   Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) );
   461   push(cast);
   463   // Possible improvements:
   464   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
   465   // - Issue CastII against length[*] values, to TypeInt::POS.
   466 }

mercurial