src/share/vm/opto/memnode.cpp

Wed, 09 Dec 2009 16:40:45 -0800

author
kvn
date
Wed, 09 Dec 2009 16:40:45 -0800
changeset 1535
f96a1a986f7b
parent 1515
7c57aead6d3e
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6895383: JCK test throws NPE for method compiled with Escape Analysis
Summary: Add missing checks for MemBar nodes in EA.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_known_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
    98   Node *prev = NULL;
    99   Node *result = mchain;
   100   while (prev != result) {
   101     prev = result;
   102     if (result == start_mem)
   103       break;  // hit one of our sentinels
   104     // skip over a call which does not affect this memory slice
   105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   106       Node *proj_in = result->in(0);
   107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   108         break;  // hit one of our sentinels
   109       } else if (proj_in->is_Call()) {
   110         CallNode *call = proj_in->as_Call();
   111         if (!call->may_modify(t_adr, phase)) {
   112           result = call->in(TypeFunc::Memory);
   113         }
   114       } else if (proj_in->is_Initialize()) {
   115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   116         // Stop if this is the initialization for the object instance which
   117         // which contains this memory slice, otherwise skip over it.
   118         if (alloc != NULL && alloc->_idx != instance_id) {
   119           result = proj_in->in(TypeFunc::Memory);
   120         }
   121       } else if (proj_in->is_MemBar()) {
   122         result = proj_in->in(TypeFunc::Memory);
   123       } else {
   124         assert(false, "unexpected projection");
   125       }
   126     } else if (result->is_ClearArray()) {
   127       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   128         // Can not bypass initialization of the instance
   129         // we are looking for.
   130         break;
   131       }
   132       // Otherwise skip it (the call updated 'result' value).
   133     } else if (result->is_MergeMem()) {
   134       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   135     }
   136   }
   137   return result;
   138 }
   140 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   141   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   142   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   143   PhaseIterGVN *igvn = phase->is_IterGVN();
   144   Node *result = mchain;
   145   result = optimize_simple_memory_chain(result, t_adr, phase);
   146   if (is_instance && igvn != NULL  && result->is_Phi()) {
   147     PhiNode *mphi = result->as_Phi();
   148     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   149     const TypePtr *t = mphi->adr_type();
   150     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   151         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   152         t->is_oopptr()->cast_to_exactness(true)
   153          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   154          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   155       // clone the Phi with our address type
   156       result = mphi->split_out_instance(t_adr, igvn);
   157     } else {
   158       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   159     }
   160   }
   161   return result;
   162 }
   164 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   165   uint alias_idx = phase->C->get_alias_index(tp);
   166   Node *mem = mmem;
   167 #ifdef ASSERT
   168   {
   169     // Check that current type is consistent with the alias index used during graph construction
   170     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   171     bool consistent =  adr_check == NULL || adr_check->empty() ||
   172                        phase->C->must_alias(adr_check, alias_idx );
   173     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   174     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   175                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   176         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   177         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   178           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   179           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   180       // don't assert if it is dead code.
   181       consistent = true;
   182     }
   183     if( !consistent ) {
   184       st->print("alias_idx==%d, adr_check==", alias_idx);
   185       if( adr_check == NULL ) {
   186         st->print("NULL");
   187       } else {
   188         adr_check->dump();
   189       }
   190       st->cr();
   191       print_alias_types();
   192       assert(consistent, "adr_check must match alias idx");
   193     }
   194   }
   195 #endif
   196   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   197   // means an array I have not precisely typed yet.  Do not do any
   198   // alias stuff with it any time soon.
   199   const TypeOopPtr *tinst = tp->isa_oopptr();
   200   if( tp->base() != Type::AnyPtr &&
   201       !(tinst &&
   202         tinst->klass()->is_java_lang_Object() &&
   203         tinst->offset() == Type::OffsetBot) ) {
   204     // compress paths and change unreachable cycles to TOP
   205     // If not, we can update the input infinitely along a MergeMem cycle
   206     // Equivalent code in PhiNode::Ideal
   207     Node* m  = phase->transform(mmem);
   208     // If transformed to a MergeMem, get the desired slice
   209     // Otherwise the returned node represents memory for every slice
   210     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   211     // Update input if it is progress over what we have now
   212   }
   213   return mem;
   214 }
   216 //--------------------------Ideal_common---------------------------------------
   217 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   218 // Unhook non-raw memories from complete (macro-expanded) initializations.
   219 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   220   // If our control input is a dead region, kill all below the region
   221   Node *ctl = in(MemNode::Control);
   222   if (ctl && remove_dead_region(phase, can_reshape))
   223     return this;
   224   ctl = in(MemNode::Control);
   225   // Don't bother trying to transform a dead node
   226   if( ctl && ctl->is_top() )  return NodeSentinel;
   228   PhaseIterGVN *igvn = phase->is_IterGVN();
   229   // Wait if control on the worklist.
   230   if (ctl && can_reshape && igvn != NULL) {
   231     Node* bol = NULL;
   232     Node* cmp = NULL;
   233     if (ctl->in(0)->is_If()) {
   234       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   235       bol = ctl->in(0)->in(1);
   236       if (bol->is_Bool())
   237         cmp = ctl->in(0)->in(1)->in(1);
   238     }
   239     if (igvn->_worklist.member(ctl) ||
   240         (bol != NULL && igvn->_worklist.member(bol)) ||
   241         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   242       // This control path may be dead.
   243       // Delay this memory node transformation until the control is processed.
   244       phase->is_IterGVN()->_worklist.push(this);
   245       return NodeSentinel; // caller will return NULL
   246     }
   247   }
   248   // Ignore if memory is dead, or self-loop
   249   Node *mem = in(MemNode::Memory);
   250   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   251   assert( mem != this, "dead loop in MemNode::Ideal" );
   253   Node *address = in(MemNode::Address);
   254   const Type *t_adr = phase->type( address );
   255   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   257   if( can_reshape && igvn != NULL &&
   258       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
   259     // The address's base and type may change when the address is processed.
   260     // Delay this mem node transformation until the address is processed.
   261     phase->is_IterGVN()->_worklist.push(this);
   262     return NodeSentinel; // caller will return NULL
   263   }
   265   // Do NOT remove or optimize the next lines: ensure a new alias index
   266   // is allocated for an oop pointer type before Escape Analysis.
   267   // Note: C++ will not remove it since the call has side effect.
   268   if ( t_adr->isa_oopptr() ) {
   269     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   270   }
   272 #ifdef ASSERT
   273   Node* base = NULL;
   274   if (address->is_AddP())
   275     base = address->in(AddPNode::Base);
   276   assert(base == NULL || t_adr->isa_rawptr() ||
   277         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   278 #endif
   280   // Avoid independent memory operations
   281   Node* old_mem = mem;
   283   // The code which unhooks non-raw memories from complete (macro-expanded)
   284   // initializations was removed. After macro-expansion all stores catched
   285   // by Initialize node became raw stores and there is no information
   286   // which memory slices they modify. So it is unsafe to move any memory
   287   // operation above these stores. Also in most cases hooked non-raw memories
   288   // were already unhooked by using information from detect_ptr_independence()
   289   // and find_previous_store().
   291   if (mem->is_MergeMem()) {
   292     MergeMemNode* mmem = mem->as_MergeMem();
   293     const TypePtr *tp = t_adr->is_ptr();
   295     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   296   }
   298   if (mem != old_mem) {
   299     set_req(MemNode::Memory, mem);
   300     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   301     return this;
   302   }
   304   // let the subclass continue analyzing...
   305   return NULL;
   306 }
   308 // Helper function for proving some simple control dominations.
   309 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   310 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   311 // is not a constant (dominated by the method's StartNode).
   312 // Used by MemNode::find_previous_store to prove that the
   313 // control input of a memory operation predates (dominates)
   314 // an allocation it wants to look past.
   315 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   316   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   317     return false; // Conservative answer for dead code
   319   // Check 'dom'. Skip Proj and CatchProj nodes.
   320   dom = dom->find_exact_control(dom);
   321   if (dom == NULL || dom->is_top())
   322     return false; // Conservative answer for dead code
   324   if (dom == sub) {
   325     // For the case when, for example, 'sub' is Initialize and the original
   326     // 'dom' is Proj node of the 'sub'.
   327     return false;
   328   }
   330   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   331     return true;
   333   // 'dom' dominates 'sub' if its control edge and control edges
   334   // of all its inputs dominate or equal to sub's control edge.
   336   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   337   // Or Region for the check in LoadNode::Ideal();
   338   // 'sub' should have sub->in(0) != NULL.
   339   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   340          sub->is_Region(), "expecting only these nodes");
   342   // Get control edge of 'sub'.
   343   Node* orig_sub = sub;
   344   sub = sub->find_exact_control(sub->in(0));
   345   if (sub == NULL || sub->is_top())
   346     return false; // Conservative answer for dead code
   348   assert(sub->is_CFG(), "expecting control");
   350   if (sub == dom)
   351     return true;
   353   if (sub->is_Start() || sub->is_Root())
   354     return false;
   356   {
   357     // Check all control edges of 'dom'.
   359     ResourceMark rm;
   360     Arena* arena = Thread::current()->resource_area();
   361     Node_List nlist(arena);
   362     Unique_Node_List dom_list(arena);
   364     dom_list.push(dom);
   365     bool only_dominating_controls = false;
   367     for (uint next = 0; next < dom_list.size(); next++) {
   368       Node* n = dom_list.at(next);
   369       if (n == orig_sub)
   370         return false; // One of dom's inputs dominated by sub.
   371       if (!n->is_CFG() && n->pinned()) {
   372         // Check only own control edge for pinned non-control nodes.
   373         n = n->find_exact_control(n->in(0));
   374         if (n == NULL || n->is_top())
   375           return false; // Conservative answer for dead code
   376         assert(n->is_CFG(), "expecting control");
   377         dom_list.push(n);
   378       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   379         only_dominating_controls = true;
   380       } else if (n->is_CFG()) {
   381         if (n->dominates(sub, nlist))
   382           only_dominating_controls = true;
   383         else
   384           return false;
   385       } else {
   386         // First, own control edge.
   387         Node* m = n->find_exact_control(n->in(0));
   388         if (m != NULL) {
   389           if (m->is_top())
   390             return false; // Conservative answer for dead code
   391           dom_list.push(m);
   392         }
   393         // Now, the rest of edges.
   394         uint cnt = n->req();
   395         for (uint i = 1; i < cnt; i++) {
   396           m = n->find_exact_control(n->in(i));
   397           if (m == NULL || m->is_top())
   398             continue;
   399           dom_list.push(m);
   400         }
   401       }
   402     }
   403     return only_dominating_controls;
   404   }
   405 }
   407 //---------------------detect_ptr_independence---------------------------------
   408 // Used by MemNode::find_previous_store to prove that two base
   409 // pointers are never equal.
   410 // The pointers are accompanied by their associated allocations,
   411 // if any, which have been previously discovered by the caller.
   412 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   413                                       Node* p2, AllocateNode* a2,
   414                                       PhaseTransform* phase) {
   415   // Attempt to prove that these two pointers cannot be aliased.
   416   // They may both manifestly be allocations, and they should differ.
   417   // Or, if they are not both allocations, they can be distinct constants.
   418   // Otherwise, one is an allocation and the other a pre-existing value.
   419   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   420     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   421   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   422     return (a1 != a2);
   423   } else if (a1 != NULL) {                  // one allocation a1
   424     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   425     return all_controls_dominate(p2, a1);
   426   } else { //(a2 != NULL)                   // one allocation a2
   427     return all_controls_dominate(p1, a2);
   428   }
   429   return false;
   430 }
   433 // The logic for reordering loads and stores uses four steps:
   434 // (a) Walk carefully past stores and initializations which we
   435 //     can prove are independent of this load.
   436 // (b) Observe that the next memory state makes an exact match
   437 //     with self (load or store), and locate the relevant store.
   438 // (c) Ensure that, if we were to wire self directly to the store,
   439 //     the optimizer would fold it up somehow.
   440 // (d) Do the rewiring, and return, depending on some other part of
   441 //     the optimizer to fold up the load.
   442 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   443 // specific to loads and stores, so they are handled by the callers.
   444 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   445 //
   446 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   447   Node*         ctrl   = in(MemNode::Control);
   448   Node*         adr    = in(MemNode::Address);
   449   intptr_t      offset = 0;
   450   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   451   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   453   if (offset == Type::OffsetBot)
   454     return NULL;            // cannot unalias unless there are precise offsets
   456   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   458   intptr_t size_in_bytes = memory_size();
   460   Node* mem = in(MemNode::Memory);   // start searching here...
   462   int cnt = 50;             // Cycle limiter
   463   for (;;) {                // While we can dance past unrelated stores...
   464     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   466     if (mem->is_Store()) {
   467       Node* st_adr = mem->in(MemNode::Address);
   468       intptr_t st_offset = 0;
   469       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   470       if (st_base == NULL)
   471         break;              // inscrutable pointer
   472       if (st_offset != offset && st_offset != Type::OffsetBot) {
   473         const int MAX_STORE = BytesPerLong;
   474         if (st_offset >= offset + size_in_bytes ||
   475             st_offset <= offset - MAX_STORE ||
   476             st_offset <= offset - mem->as_Store()->memory_size()) {
   477           // Success:  The offsets are provably independent.
   478           // (You may ask, why not just test st_offset != offset and be done?
   479           // The answer is that stores of different sizes can co-exist
   480           // in the same sequence of RawMem effects.  We sometimes initialize
   481           // a whole 'tile' of array elements with a single jint or jlong.)
   482           mem = mem->in(MemNode::Memory);
   483           continue;           // (a) advance through independent store memory
   484         }
   485       }
   486       if (st_base != base &&
   487           detect_ptr_independence(base, alloc,
   488                                   st_base,
   489                                   AllocateNode::Ideal_allocation(st_base, phase),
   490                                   phase)) {
   491         // Success:  The bases are provably independent.
   492         mem = mem->in(MemNode::Memory);
   493         continue;           // (a) advance through independent store memory
   494       }
   496       // (b) At this point, if the bases or offsets do not agree, we lose,
   497       // since we have not managed to prove 'this' and 'mem' independent.
   498       if (st_base == base && st_offset == offset) {
   499         return mem;         // let caller handle steps (c), (d)
   500       }
   502     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   503       InitializeNode* st_init = mem->in(0)->as_Initialize();
   504       AllocateNode*  st_alloc = st_init->allocation();
   505       if (st_alloc == NULL)
   506         break;              // something degenerated
   507       bool known_identical = false;
   508       bool known_independent = false;
   509       if (alloc == st_alloc)
   510         known_identical = true;
   511       else if (alloc != NULL)
   512         known_independent = true;
   513       else if (all_controls_dominate(this, st_alloc))
   514         known_independent = true;
   516       if (known_independent) {
   517         // The bases are provably independent: Either they are
   518         // manifestly distinct allocations, or else the control
   519         // of this load dominates the store's allocation.
   520         int alias_idx = phase->C->get_alias_index(adr_type());
   521         if (alias_idx == Compile::AliasIdxRaw) {
   522           mem = st_alloc->in(TypeFunc::Memory);
   523         } else {
   524           mem = st_init->memory(alias_idx);
   525         }
   526         continue;           // (a) advance through independent store memory
   527       }
   529       // (b) at this point, if we are not looking at a store initializing
   530       // the same allocation we are loading from, we lose.
   531       if (known_identical) {
   532         // From caller, can_see_stored_value will consult find_captured_store.
   533         return mem;         // let caller handle steps (c), (d)
   534       }
   536     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   537       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   538       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   539         CallNode *call = mem->in(0)->as_Call();
   540         if (!call->may_modify(addr_t, phase)) {
   541           mem = call->in(TypeFunc::Memory);
   542           continue;         // (a) advance through independent call memory
   543         }
   544       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   545         mem = mem->in(0)->in(TypeFunc::Memory);
   546         continue;           // (a) advance through independent MemBar memory
   547       } else if (mem->is_ClearArray()) {
   548         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   549           // (the call updated 'mem' value)
   550           continue;         // (a) advance through independent allocation memory
   551         } else {
   552           // Can not bypass initialization of the instance
   553           // we are looking for.
   554           return mem;
   555         }
   556       } else if (mem->is_MergeMem()) {
   557         int alias_idx = phase->C->get_alias_index(adr_type());
   558         mem = mem->as_MergeMem()->memory_at(alias_idx);
   559         continue;           // (a) advance through independent MergeMem memory
   560       }
   561     }
   563     // Unless there is an explicit 'continue', we must bail out here,
   564     // because 'mem' is an inscrutable memory state (e.g., a call).
   565     break;
   566   }
   568   return NULL;              // bail out
   569 }
   571 //----------------------calculate_adr_type-------------------------------------
   572 // Helper function.  Notices when the given type of address hits top or bottom.
   573 // Also, asserts a cross-check of the type against the expected address type.
   574 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   575   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   576   #ifdef PRODUCT
   577   cross_check = NULL;
   578   #else
   579   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   580   #endif
   581   const TypePtr* tp = t->isa_ptr();
   582   if (tp == NULL) {
   583     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   584     return TypePtr::BOTTOM;           // touches lots of memory
   585   } else {
   586     #ifdef ASSERT
   587     // %%%% [phh] We don't check the alias index if cross_check is
   588     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   589     if (cross_check != NULL &&
   590         cross_check != TypePtr::BOTTOM &&
   591         cross_check != TypeRawPtr::BOTTOM) {
   592       // Recheck the alias index, to see if it has changed (due to a bug).
   593       Compile* C = Compile::current();
   594       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   595              "must stay in the original alias category");
   596       // The type of the address must be contained in the adr_type,
   597       // disregarding "null"-ness.
   598       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   599       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   600       assert(cross_check->meet(tp_notnull) == cross_check,
   601              "real address must not escape from expected memory type");
   602     }
   603     #endif
   604     return tp;
   605   }
   606 }
   608 //------------------------adr_phi_is_loop_invariant----------------------------
   609 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   610 // loop is loop invariant. Make a quick traversal of Phi and associated
   611 // CastPP nodes, looking to see if they are a closed group within the loop.
   612 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   613   // The idea is that the phi-nest must boil down to only CastPP nodes
   614   // with the same data. This implies that any path into the loop already
   615   // includes such a CastPP, and so the original cast, whatever its input,
   616   // must be covered by an equivalent cast, with an earlier control input.
   617   ResourceMark rm;
   619   // The loop entry input of the phi should be the unique dominating
   620   // node for every Phi/CastPP in the loop.
   621   Unique_Node_List closure;
   622   closure.push(adr_phi->in(LoopNode::EntryControl));
   624   // Add the phi node and the cast to the worklist.
   625   Unique_Node_List worklist;
   626   worklist.push(adr_phi);
   627   if( cast != NULL ){
   628     if( !cast->is_ConstraintCast() ) return false;
   629     worklist.push(cast);
   630   }
   632   // Begin recursive walk of phi nodes.
   633   while( worklist.size() ){
   634     // Take a node off the worklist
   635     Node *n = worklist.pop();
   636     if( !closure.member(n) ){
   637       // Add it to the closure.
   638       closure.push(n);
   639       // Make a sanity check to ensure we don't waste too much time here.
   640       if( closure.size() > 20) return false;
   641       // This node is OK if:
   642       //  - it is a cast of an identical value
   643       //  - or it is a phi node (then we add its inputs to the worklist)
   644       // Otherwise, the node is not OK, and we presume the cast is not invariant
   645       if( n->is_ConstraintCast() ){
   646         worklist.push(n->in(1));
   647       } else if( n->is_Phi() ) {
   648         for( uint i = 1; i < n->req(); i++ ) {
   649           worklist.push(n->in(i));
   650         }
   651       } else {
   652         return false;
   653       }
   654     }
   655   }
   657   // Quit when the worklist is empty, and we've found no offending nodes.
   658   return true;
   659 }
   661 //------------------------------Ideal_DU_postCCP-------------------------------
   662 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   663 // going away in this pass and we need to make this memory op depend on the
   664 // gating null check.
   665 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   666   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   667 }
   669 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   670 // some sense; we get to keep around the knowledge that an oop is not-null
   671 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   672 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   673 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   674 // some of the more trivial cases in the optimizer.  Removing more useless
   675 // Phi's started allowing Loads to illegally float above null checks.  I gave
   676 // up on this approach.  CNC 10/20/2000
   677 // This static method may be called not from MemNode (EncodePNode calls it).
   678 // Only the control edge of the node 'n' might be updated.
   679 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   680   Node *skipped_cast = NULL;
   681   // Need a null check?  Regular static accesses do not because they are
   682   // from constant addresses.  Array ops are gated by the range check (which
   683   // always includes a NULL check).  Just check field ops.
   684   if( n->in(MemNode::Control) == NULL ) {
   685     // Scan upwards for the highest location we can place this memory op.
   686     while( true ) {
   687       switch( adr->Opcode() ) {
   689       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   690         adr = adr->in(AddPNode::Base);
   691         continue;
   693       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   694         adr = adr->in(1);
   695         continue;
   697       case Op_CastPP:
   698         // If the CastPP is useless, just peek on through it.
   699         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   700           // Remember the cast that we've peeked though. If we peek
   701           // through more than one, then we end up remembering the highest
   702           // one, that is, if in a loop, the one closest to the top.
   703           skipped_cast = adr;
   704           adr = adr->in(1);
   705           continue;
   706         }
   707         // CastPP is going away in this pass!  We need this memory op to be
   708         // control-dependent on the test that is guarding the CastPP.
   709         ccp->hash_delete(n);
   710         n->set_req(MemNode::Control, adr->in(0));
   711         ccp->hash_insert(n);
   712         return n;
   714       case Op_Phi:
   715         // Attempt to float above a Phi to some dominating point.
   716         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   717           // If we've already peeked through a Cast (which could have set the
   718           // control), we can't float above a Phi, because the skipped Cast
   719           // may not be loop invariant.
   720           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   721             adr = adr->in(1);
   722             continue;
   723           }
   724         }
   726         // Intentional fallthrough!
   728         // No obvious dominating point.  The mem op is pinned below the Phi
   729         // by the Phi itself.  If the Phi goes away (no true value is merged)
   730         // then the mem op can float, but not indefinitely.  It must be pinned
   731         // behind the controls leading to the Phi.
   732       case Op_CheckCastPP:
   733         // These usually stick around to change address type, however a
   734         // useless one can be elided and we still need to pick up a control edge
   735         if (adr->in(0) == NULL) {
   736           // This CheckCastPP node has NO control and is likely useless. But we
   737           // need check further up the ancestor chain for a control input to keep
   738           // the node in place. 4959717.
   739           skipped_cast = adr;
   740           adr = adr->in(1);
   741           continue;
   742         }
   743         ccp->hash_delete(n);
   744         n->set_req(MemNode::Control, adr->in(0));
   745         ccp->hash_insert(n);
   746         return n;
   748         // List of "safe" opcodes; those that implicitly block the memory
   749         // op below any null check.
   750       case Op_CastX2P:          // no null checks on native pointers
   751       case Op_Parm:             // 'this' pointer is not null
   752       case Op_LoadP:            // Loading from within a klass
   753       case Op_LoadN:            // Loading from within a klass
   754       case Op_LoadKlass:        // Loading from within a klass
   755       case Op_LoadNKlass:       // Loading from within a klass
   756       case Op_ConP:             // Loading from a klass
   757       case Op_ConN:             // Loading from a klass
   758       case Op_CreateEx:         // Sucking up the guts of an exception oop
   759       case Op_Con:              // Reading from TLS
   760       case Op_CMoveP:           // CMoveP is pinned
   761       case Op_CMoveN:           // CMoveN is pinned
   762         break;                  // No progress
   764       case Op_Proj:             // Direct call to an allocation routine
   765       case Op_SCMemProj:        // Memory state from store conditional ops
   766 #ifdef ASSERT
   767         {
   768           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   769           const Node* call = adr->in(0);
   770           if (call->is_CallJava()) {
   771             const CallJavaNode* call_java = call->as_CallJava();
   772             const TypeTuple *r = call_java->tf()->range();
   773             assert(r->cnt() > TypeFunc::Parms, "must return value");
   774             const Type* ret_type = r->field_at(TypeFunc::Parms);
   775             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   776             // We further presume that this is one of
   777             // new_instance_Java, new_array_Java, or
   778             // the like, but do not assert for this.
   779           } else if (call->is_Allocate()) {
   780             // similar case to new_instance_Java, etc.
   781           } else if (!call->is_CallLeaf()) {
   782             // Projections from fetch_oop (OSR) are allowed as well.
   783             ShouldNotReachHere();
   784           }
   785         }
   786 #endif
   787         break;
   788       default:
   789         ShouldNotReachHere();
   790       }
   791       break;
   792     }
   793   }
   795   return  NULL;               // No progress
   796 }
   799 //=============================================================================
   800 uint LoadNode::size_of() const { return sizeof(*this); }
   801 uint LoadNode::cmp( const Node &n ) const
   802 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   803 const Type *LoadNode::bottom_type() const { return _type; }
   804 uint LoadNode::ideal_reg() const {
   805   return Matcher::base2reg[_type->base()];
   806 }
   808 #ifndef PRODUCT
   809 void LoadNode::dump_spec(outputStream *st) const {
   810   MemNode::dump_spec(st);
   811   if( !Verbose && !WizardMode ) {
   812     // standard dump does this in Verbose and WizardMode
   813     st->print(" #"); _type->dump_on(st);
   814   }
   815 }
   816 #endif
   819 //----------------------------LoadNode::make-----------------------------------
   820 // Polymorphic factory method:
   821 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   822   Compile* C = gvn.C;
   824   // sanity check the alias category against the created node type
   825   assert(!(adr_type->isa_oopptr() &&
   826            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   827          "use LoadKlassNode instead");
   828   assert(!(adr_type->isa_aryptr() &&
   829            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   830          "use LoadRangeNode instead");
   831   switch (bt) {
   832   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   833   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   834   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   835   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   836   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   837   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   838   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   839   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   840   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   841   case T_OBJECT:
   842 #ifdef _LP64
   843     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   844       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   845       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   846     } else
   847 #endif
   848     {
   849       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   850       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   851     }
   852   }
   853   ShouldNotReachHere();
   854   return (LoadNode*)NULL;
   855 }
   857 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   858   bool require_atomic = true;
   859   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   860 }
   865 //------------------------------hash-------------------------------------------
   866 uint LoadNode::hash() const {
   867   // unroll addition of interesting fields
   868   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   869 }
   871 //---------------------------can_see_stored_value------------------------------
   872 // This routine exists to make sure this set of tests is done the same
   873 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   874 // will change the graph shape in a way which makes memory alive twice at the
   875 // same time (uses the Oracle model of aliasing), then some
   876 // LoadXNode::Identity will fold things back to the equivalence-class model
   877 // of aliasing.
   878 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   879   Node* ld_adr = in(MemNode::Address);
   881   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   882   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   883   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   884       atp->field() != NULL && !atp->field()->is_volatile()) {
   885     uint alias_idx = atp->index();
   886     bool final = atp->field()->is_final();
   887     Node* result = NULL;
   888     Node* current = st;
   889     // Skip through chains of MemBarNodes checking the MergeMems for
   890     // new states for the slice of this load.  Stop once any other
   891     // kind of node is encountered.  Loads from final memory can skip
   892     // through any kind of MemBar but normal loads shouldn't skip
   893     // through MemBarAcquire since the could allow them to move out of
   894     // a synchronized region.
   895     while (current->is_Proj()) {
   896       int opc = current->in(0)->Opcode();
   897       if ((final && opc == Op_MemBarAcquire) ||
   898           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   899         Node* mem = current->in(0)->in(TypeFunc::Memory);
   900         if (mem->is_MergeMem()) {
   901           MergeMemNode* merge = mem->as_MergeMem();
   902           Node* new_st = merge->memory_at(alias_idx);
   903           if (new_st == merge->base_memory()) {
   904             // Keep searching
   905             current = merge->base_memory();
   906             continue;
   907           }
   908           // Save the new memory state for the slice and fall through
   909           // to exit.
   910           result = new_st;
   911         }
   912       }
   913       break;
   914     }
   915     if (result != NULL) {
   916       st = result;
   917     }
   918   }
   921   // Loop around twice in the case Load -> Initialize -> Store.
   922   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   923   for (int trip = 0; trip <= 1; trip++) {
   925     if (st->is_Store()) {
   926       Node* st_adr = st->in(MemNode::Address);
   927       if (!phase->eqv(st_adr, ld_adr)) {
   928         // Try harder before giving up...  Match raw and non-raw pointers.
   929         intptr_t st_off = 0;
   930         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   931         if (alloc == NULL)       return NULL;
   932         intptr_t ld_off = 0;
   933         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   934         if (alloc != allo2)      return NULL;
   935         if (ld_off != st_off)    return NULL;
   936         // At this point we have proven something like this setup:
   937         //  A = Allocate(...)
   938         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   939         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   940         // (Actually, we haven't yet proven the Q's are the same.)
   941         // In other words, we are loading from a casted version of
   942         // the same pointer-and-offset that we stored to.
   943         // Thus, we are able to replace L by V.
   944       }
   945       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   946       if (store_Opcode() != st->Opcode())
   947         return NULL;
   948       return st->in(MemNode::ValueIn);
   949     }
   951     intptr_t offset = 0;  // scratch
   953     // A load from a freshly-created object always returns zero.
   954     // (This can happen after LoadNode::Ideal resets the load's memory input
   955     // to find_captured_store, which returned InitializeNode::zero_memory.)
   956     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   957         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   958         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   959       // return a zero value for the load's basic type
   960       // (This is one of the few places where a generic PhaseTransform
   961       // can create new nodes.  Think of it as lazily manifesting
   962       // virtually pre-existing constants.)
   963       return phase->zerocon(memory_type());
   964     }
   966     // A load from an initialization barrier can match a captured store.
   967     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   968       InitializeNode* init = st->in(0)->as_Initialize();
   969       AllocateNode* alloc = init->allocation();
   970       if (alloc != NULL &&
   971           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   972         // examine a captured store value
   973         st = init->find_captured_store(offset, memory_size(), phase);
   974         if (st != NULL)
   975           continue;             // take one more trip around
   976       }
   977     }
   979     break;
   980   }
   982   return NULL;
   983 }
   985 //----------------------is_instance_field_load_with_local_phi------------------
   986 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   987   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   988       in(MemNode::Address)->is_AddP() ) {
   989     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   990     // Only instances.
   991     if( t_oop != NULL && t_oop->is_known_instance_field() &&
   992         t_oop->offset() != Type::OffsetBot &&
   993         t_oop->offset() != Type::OffsetTop) {
   994       return true;
   995     }
   996   }
   997   return false;
   998 }
  1000 //------------------------------Identity---------------------------------------
  1001 // Loads are identity if previous store is to same address
  1002 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1003   // If the previous store-maker is the right kind of Store, and the store is
  1004   // to the same address, then we are equal to the value stored.
  1005   Node* mem = in(MemNode::Memory);
  1006   Node* value = can_see_stored_value(mem, phase);
  1007   if( value ) {
  1008     // byte, short & char stores truncate naturally.
  1009     // A load has to load the truncated value which requires
  1010     // some sort of masking operation and that requires an
  1011     // Ideal call instead of an Identity call.
  1012     if (memory_size() < BytesPerInt) {
  1013       // If the input to the store does not fit with the load's result type,
  1014       // it must be truncated via an Ideal call.
  1015       if (!phase->type(value)->higher_equal(phase->type(this)))
  1016         return this;
  1018     // (This works even when value is a Con, but LoadNode::Value
  1019     // usually runs first, producing the singleton type of the Con.)
  1020     return value;
  1023   // Search for an existing data phi which was generated before for the same
  1024   // instance's field to avoid infinite generation of phis in a loop.
  1025   Node *region = mem->in(0);
  1026   if (is_instance_field_load_with_local_phi(region)) {
  1027     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1028     int this_index  = phase->C->get_alias_index(addr_t);
  1029     int this_offset = addr_t->offset();
  1030     int this_id    = addr_t->is_oopptr()->instance_id();
  1031     const Type* this_type = bottom_type();
  1032     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1033       Node* phi = region->fast_out(i);
  1034       if (phi->is_Phi() && phi != mem &&
  1035           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1036         return phi;
  1041   return this;
  1045 // Returns true if the AliasType refers to the field that holds the
  1046 // cached box array.  Currently only handles the IntegerCache case.
  1047 static bool is_autobox_cache(Compile::AliasType* atp) {
  1048   if (atp != NULL && atp->field() != NULL) {
  1049     ciField* field = atp->field();
  1050     ciSymbol* klass = field->holder()->name();
  1051     if (field->name() == ciSymbol::cache_field_name() &&
  1052         field->holder()->uses_default_loader() &&
  1053         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1054       return true;
  1057   return false;
  1060 // Fetch the base value in the autobox array
  1061 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1062   if (atp != NULL && atp->field() != NULL) {
  1063     ciField* field = atp->field();
  1064     ciSymbol* klass = field->holder()->name();
  1065     if (field->name() == ciSymbol::cache_field_name() &&
  1066         field->holder()->uses_default_loader() &&
  1067         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1068       assert(field->is_constant(), "what?");
  1069       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1070       // Fetch the box object at the base of the array and get its value
  1071       ciInstance* box = array->obj_at(0)->as_instance();
  1072       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1073       if (ik->nof_nonstatic_fields() == 1) {
  1074         // This should be true nonstatic_field_at requires calling
  1075         // nof_nonstatic_fields so check it anyway
  1076         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1077         cache_offset = c.as_int();
  1079       return true;
  1082   return false;
  1085 // Returns true if the AliasType refers to the value field of an
  1086 // autobox object.  Currently only handles Integer.
  1087 static bool is_autobox_object(Compile::AliasType* atp) {
  1088   if (atp != NULL && atp->field() != NULL) {
  1089     ciField* field = atp->field();
  1090     ciSymbol* klass = field->holder()->name();
  1091     if (field->name() == ciSymbol::value_name() &&
  1092         field->holder()->uses_default_loader() &&
  1093         klass == ciSymbol::java_lang_Integer()) {
  1094       return true;
  1097   return false;
  1101 // We're loading from an object which has autobox behaviour.
  1102 // If this object is result of a valueOf call we'll have a phi
  1103 // merging a newly allocated object and a load from the cache.
  1104 // We want to replace this load with the original incoming
  1105 // argument to the valueOf call.
  1106 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1107   Node* base = in(Address)->in(AddPNode::Base);
  1108   if (base->is_Phi() && base->req() == 3) {
  1109     AllocateNode* allocation = NULL;
  1110     int allocation_index = -1;
  1111     int load_index = -1;
  1112     for (uint i = 1; i < base->req(); i++) {
  1113       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1114       if (allocation != NULL) {
  1115         allocation_index = i;
  1116         load_index = 3 - allocation_index;
  1117         break;
  1120     bool has_load = ( allocation != NULL &&
  1121                       (base->in(load_index)->is_Load() ||
  1122                        base->in(load_index)->is_DecodeN() &&
  1123                        base->in(load_index)->in(1)->is_Load()) );
  1124     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1125       // Push the loads from the phi that comes from valueOf up
  1126       // through it to allow elimination of the loads and the recovery
  1127       // of the original value.
  1128       Node* mem_phi = in(Memory);
  1129       Node* offset = in(Address)->in(AddPNode::Offset);
  1130       Node* region = base->in(0);
  1132       Node* in1 = clone();
  1133       Node* in1_addr = in1->in(Address)->clone();
  1134       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1135       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1136       in1_addr->set_req(AddPNode::Offset, offset);
  1137       in1->set_req(0, region->in(allocation_index));
  1138       in1->set_req(Address, in1_addr);
  1139       in1->set_req(Memory, mem_phi->in(allocation_index));
  1141       Node* in2 = clone();
  1142       Node* in2_addr = in2->in(Address)->clone();
  1143       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1144       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1145       in2_addr->set_req(AddPNode::Offset, offset);
  1146       in2->set_req(0, region->in(load_index));
  1147       in2->set_req(Address, in2_addr);
  1148       in2->set_req(Memory, mem_phi->in(load_index));
  1150       in1_addr = phase->transform(in1_addr);
  1151       in1 =      phase->transform(in1);
  1152       in2_addr = phase->transform(in2_addr);
  1153       in2 =      phase->transform(in2);
  1155       PhiNode* result = PhiNode::make_blank(region, this);
  1156       result->set_req(allocation_index, in1);
  1157       result->set_req(load_index, in2);
  1158       return result;
  1160   } else if (base->is_Load() ||
  1161              base->is_DecodeN() && base->in(1)->is_Load()) {
  1162     if (base->is_DecodeN()) {
  1163       // Get LoadN node which loads cached Integer object
  1164       base = base->in(1);
  1166     // Eliminate the load of Integer.value for integers from the cache
  1167     // array by deriving the value from the index into the array.
  1168     // Capture the offset of the load and then reverse the computation.
  1169     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1170     if (load_base->is_DecodeN()) {
  1171       // Get LoadN node which loads IntegerCache.cache field
  1172       load_base = load_base->in(1);
  1174     if (load_base != NULL) {
  1175       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1176       intptr_t cache_offset;
  1177       int shift = -1;
  1178       Node* cache = NULL;
  1179       if (is_autobox_cache(atp)) {
  1180         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1181         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1183       if (cache != NULL && base->in(Address)->is_AddP()) {
  1184         Node* elements[4];
  1185         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1186         int cache_low;
  1187         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1188           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1189           // Add up all the offsets making of the address of the load
  1190           Node* result = elements[0];
  1191           for (int i = 1; i < count; i++) {
  1192             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1194           // Remove the constant offset from the address and then
  1195           // remove the scaling of the offset to recover the original index.
  1196           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1197           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1198             // Peel the shift off directly but wrap it in a dummy node
  1199             // since Ideal can't return existing nodes
  1200             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1201           } else {
  1202             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1204 #ifdef _LP64
  1205           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1206 #endif
  1207           return result;
  1212   return NULL;
  1215 //------------------------------split_through_phi------------------------------
  1216 // Split instance field load through Phi.
  1217 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1218   Node* mem     = in(MemNode::Memory);
  1219   Node* address = in(MemNode::Address);
  1220   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1221   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1223   assert(mem->is_Phi() && (t_oop != NULL) &&
  1224          t_oop->is_known_instance_field(), "invalide conditions");
  1226   Node *region = mem->in(0);
  1227   if (region == NULL) {
  1228     return NULL; // Wait stable graph
  1230   uint cnt = mem->req();
  1231   for( uint i = 1; i < cnt; i++ ) {
  1232     Node *in = mem->in(i);
  1233     if( in == NULL ) {
  1234       return NULL; // Wait stable graph
  1237   // Check for loop invariant.
  1238   if (cnt == 3) {
  1239     for( uint i = 1; i < cnt; i++ ) {
  1240       Node *in = mem->in(i);
  1241       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1242       if (m == mem) {
  1243         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1244         return this;
  1248   // Split through Phi (see original code in loopopts.cpp).
  1249   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1251   // Do nothing here if Identity will find a value
  1252   // (to avoid infinite chain of value phis generation).
  1253   if ( !phase->eqv(this, this->Identity(phase)) )
  1254     return NULL;
  1256   // Skip the split if the region dominates some control edge of the address.
  1257   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1258     return NULL;
  1260   const Type* this_type = this->bottom_type();
  1261   int this_index  = phase->C->get_alias_index(addr_t);
  1262   int this_offset = addr_t->offset();
  1263   int this_iid    = addr_t->is_oopptr()->instance_id();
  1264   int wins = 0;
  1265   PhaseIterGVN *igvn = phase->is_IterGVN();
  1266   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1267   for( uint i = 1; i < region->req(); i++ ) {
  1268     Node *x;
  1269     Node* the_clone = NULL;
  1270     if( region->in(i) == phase->C->top() ) {
  1271       x = phase->C->top();      // Dead path?  Use a dead data op
  1272     } else {
  1273       x = this->clone();        // Else clone up the data op
  1274       the_clone = x;            // Remember for possible deletion.
  1275       // Alter data node to use pre-phi inputs
  1276       if( this->in(0) == region ) {
  1277         x->set_req( 0, region->in(i) );
  1278       } else {
  1279         x->set_req( 0, NULL );
  1281       for( uint j = 1; j < this->req(); j++ ) {
  1282         Node *in = this->in(j);
  1283         if( in->is_Phi() && in->in(0) == region )
  1284           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1287     // Check for a 'win' on some paths
  1288     const Type *t = x->Value(igvn);
  1290     bool singleton = t->singleton();
  1292     // See comments in PhaseIdealLoop::split_thru_phi().
  1293     if( singleton && t == Type::TOP ) {
  1294       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1297     if( singleton ) {
  1298       wins++;
  1299       x = igvn->makecon(t);
  1300     } else {
  1301       // We now call Identity to try to simplify the cloned node.
  1302       // Note that some Identity methods call phase->type(this).
  1303       // Make sure that the type array is big enough for
  1304       // our new node, even though we may throw the node away.
  1305       // (This tweaking with igvn only works because x is a new node.)
  1306       igvn->set_type(x, t);
  1307       // If x is a TypeNode, capture any more-precise type permanently into Node
  1308       // otherwise it will be not updated during igvn->transform since
  1309       // igvn->type(x) is set to x->Value() already.
  1310       x->raise_bottom_type(t);
  1311       Node *y = x->Identity(igvn);
  1312       if( y != x ) {
  1313         wins++;
  1314         x = y;
  1315       } else {
  1316         y = igvn->hash_find(x);
  1317         if( y ) {
  1318           wins++;
  1319           x = y;
  1320         } else {
  1321           // Else x is a new node we are keeping
  1322           // We do not need register_new_node_with_optimizer
  1323           // because set_type has already been called.
  1324           igvn->_worklist.push(x);
  1328     if (x != the_clone && the_clone != NULL)
  1329       igvn->remove_dead_node(the_clone);
  1330     phi->set_req(i, x);
  1332   if( wins > 0 ) {
  1333     // Record Phi
  1334     igvn->register_new_node_with_optimizer(phi);
  1335     return phi;
  1337   igvn->remove_dead_node(phi);
  1338   return NULL;
  1341 //------------------------------Ideal------------------------------------------
  1342 // If the load is from Field memory and the pointer is non-null, we can
  1343 // zero out the control input.
  1344 // If the offset is constant and the base is an object allocation,
  1345 // try to hook me up to the exact initializing store.
  1346 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1347   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1348   if (p)  return (p == NodeSentinel) ? NULL : p;
  1350   Node* ctrl    = in(MemNode::Control);
  1351   Node* address = in(MemNode::Address);
  1353   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1354   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1355   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1356       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1357     ctrl = ctrl->in(0);
  1358     set_req(MemNode::Control,ctrl);
  1361   intptr_t ignore = 0;
  1362   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1363   if (base != NULL
  1364       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1365     // Check for useless control edge in some common special cases
  1366     if (in(MemNode::Control) != NULL
  1367         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1368         && all_controls_dominate(base, phase->C->start())) {
  1369       // A method-invariant, non-null address (constant or 'this' argument).
  1370       set_req(MemNode::Control, NULL);
  1373     if (EliminateAutoBox && can_reshape) {
  1374       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1375       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1376       if (is_autobox_object(atp)) {
  1377         Node* result = eliminate_autobox(phase);
  1378         if (result != NULL) return result;
  1383   Node* mem = in(MemNode::Memory);
  1384   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1386   if (addr_t != NULL) {
  1387     // try to optimize our memory input
  1388     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1389     if (opt_mem != mem) {
  1390       set_req(MemNode::Memory, opt_mem);
  1391       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1392       return this;
  1394     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1395     if (can_reshape && opt_mem->is_Phi() &&
  1396         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1397       // Split instance field load through Phi.
  1398       Node* result = split_through_phi(phase);
  1399       if (result != NULL) return result;
  1403   // Check for prior store with a different base or offset; make Load
  1404   // independent.  Skip through any number of them.  Bail out if the stores
  1405   // are in an endless dead cycle and report no progress.  This is a key
  1406   // transform for Reflection.  However, if after skipping through the Stores
  1407   // we can't then fold up against a prior store do NOT do the transform as
  1408   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1409   // array memory alive twice: once for the hoisted Load and again after the
  1410   // bypassed Store.  This situation only works if EVERYBODY who does
  1411   // anti-dependence work knows how to bypass.  I.e. we need all
  1412   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1413   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1414   // fold up, do so.
  1415   Node* prev_mem = find_previous_store(phase);
  1416   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1417   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1418     // (c) See if we can fold up on the spot, but don't fold up here.
  1419     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1420     // just return a prior value, which is done by Identity calls.
  1421     if (can_see_stored_value(prev_mem, phase)) {
  1422       // Make ready for step (d):
  1423       set_req(MemNode::Memory, prev_mem);
  1424       return this;
  1428   return NULL;                  // No further progress
  1431 // Helper to recognize certain Klass fields which are invariant across
  1432 // some group of array types (e.g., int[] or all T[] where T < Object).
  1433 const Type*
  1434 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1435                                  ciKlass* klass) const {
  1436   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1437     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1438     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1439     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1440     return TypeInt::make(klass->modifier_flags());
  1442   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1443     // The field is Klass::_access_flags.  Return its (constant) value.
  1444     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1445     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1446     return TypeInt::make(klass->access_flags());
  1448   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1449     // The field is Klass::_layout_helper.  Return its constant value if known.
  1450     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1451     return TypeInt::make(klass->layout_helper());
  1454   // No match.
  1455   return NULL;
  1458 //------------------------------Value-----------------------------------------
  1459 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1460   // Either input is TOP ==> the result is TOP
  1461   Node* mem = in(MemNode::Memory);
  1462   const Type *t1 = phase->type(mem);
  1463   if (t1 == Type::TOP)  return Type::TOP;
  1464   Node* adr = in(MemNode::Address);
  1465   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1466   if (tp == NULL || tp->empty())  return Type::TOP;
  1467   int off = tp->offset();
  1468   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1470   // Try to guess loaded type from pointer type
  1471   if (tp->base() == Type::AryPtr) {
  1472     const Type *t = tp->is_aryptr()->elem();
  1473     // Don't do this for integer types. There is only potential profit if
  1474     // the element type t is lower than _type; that is, for int types, if _type is
  1475     // more restrictive than t.  This only happens here if one is short and the other
  1476     // char (both 16 bits), and in those cases we've made an intentional decision
  1477     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1478     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1479     //
  1480     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1481     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1482     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1483     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1484     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1485     // In fact, that could have been the original type of p1, and p1 could have
  1486     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1487     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1488     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1489         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1490       // t might actually be lower than _type, if _type is a unique
  1491       // concrete subclass of abstract class t.
  1492       // Make sure the reference is not into the header, by comparing
  1493       // the offset against the offset of the start of the array's data.
  1494       // Different array types begin at slightly different offsets (12 vs. 16).
  1495       // We choose T_BYTE as an example base type that is least restrictive
  1496       // as to alignment, which will therefore produce the smallest
  1497       // possible base offset.
  1498       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1499       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1500         const Type* jt = t->join(_type);
  1501         // In any case, do not allow the join, per se, to empty out the type.
  1502         if (jt->empty() && !t->empty()) {
  1503           // This can happen if a interface-typed array narrows to a class type.
  1504           jt = _type;
  1507         if (EliminateAutoBox && adr->is_AddP()) {
  1508           // The pointers in the autobox arrays are always non-null
  1509           Node* base = adr->in(AddPNode::Base);
  1510           if (base != NULL &&
  1511               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1512             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1513             if (is_autobox_cache(atp)) {
  1514               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1518         return jt;
  1521   } else if (tp->base() == Type::InstPtr) {
  1522     const TypeInstPtr* tinst = tp->is_instptr();
  1523     ciKlass* klass = tinst->klass();
  1524     assert( off != Type::OffsetBot ||
  1525             // arrays can be cast to Objects
  1526             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1527             // unsafe field access may not have a constant offset
  1528             phase->C->has_unsafe_access(),
  1529             "Field accesses must be precise" );
  1530     // For oop loads, we expect the _type to be precise
  1531     if (OptimizeStringConcat && klass == phase->C->env()->String_klass() &&
  1532         adr->is_AddP() && off != Type::OffsetBot) {
  1533       // For constant Strings treat the fields as compile time constants.
  1534       Node* base = adr->in(AddPNode::Base);
  1535       if (base->Opcode() == Op_ConP) {
  1536         const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1537         ciObject* string = t->const_oop();
  1538         ciConstant constant = string->as_instance()->field_value_by_offset(off);
  1539         if (constant.basic_type() == T_INT) {
  1540           return TypeInt::make(constant.as_int());
  1541         } else if (constant.basic_type() == T_ARRAY) {
  1542           if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1543             return TypeNarrowOop::make_from_constant(constant.as_object());
  1544           } else {
  1545             return TypeOopPtr::make_from_constant(constant.as_object());
  1550   } else if (tp->base() == Type::KlassPtr) {
  1551     assert( off != Type::OffsetBot ||
  1552             // arrays can be cast to Objects
  1553             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1554             // also allow array-loading from the primary supertype
  1555             // array during subtype checks
  1556             Opcode() == Op_LoadKlass,
  1557             "Field accesses must be precise" );
  1558     // For klass/static loads, we expect the _type to be precise
  1561   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1562   if (tkls != NULL && !StressReflectiveCode) {
  1563     ciKlass* klass = tkls->klass();
  1564     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1565       // We are loading a field from a Klass metaobject whose identity
  1566       // is known at compile time (the type is "exact" or "precise").
  1567       // Check for fields we know are maintained as constants by the VM.
  1568       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1569         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1570         // (Folds up type checking code.)
  1571         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1572         return TypeInt::make(klass->super_check_offset());
  1574       // Compute index into primary_supers array
  1575       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1576       // Check for overflowing; use unsigned compare to handle the negative case.
  1577       if( depth < ciKlass::primary_super_limit() ) {
  1578         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1579         // (Folds up type checking code.)
  1580         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1581         ciKlass *ss = klass->super_of_depth(depth);
  1582         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1584       const Type* aift = load_array_final_field(tkls, klass);
  1585       if (aift != NULL)  return aift;
  1586       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1587           && klass->is_array_klass()) {
  1588         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1589         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1590         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1591         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1593       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1594         // The field is Klass::_java_mirror.  Return its (constant) value.
  1595         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1596         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1597         return TypeInstPtr::make(klass->java_mirror());
  1601     // We can still check if we are loading from the primary_supers array at a
  1602     // shallow enough depth.  Even though the klass is not exact, entries less
  1603     // than or equal to its super depth are correct.
  1604     if (klass->is_loaded() ) {
  1605       ciType *inner = klass->klass();
  1606       while( inner->is_obj_array_klass() )
  1607         inner = inner->as_obj_array_klass()->base_element_type();
  1608       if( inner->is_instance_klass() &&
  1609           !inner->as_instance_klass()->flags().is_interface() ) {
  1610         // Compute index into primary_supers array
  1611         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1612         // Check for overflowing; use unsigned compare to handle the negative case.
  1613         if( depth < ciKlass::primary_super_limit() &&
  1614             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1615           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1616           // (Folds up type checking code.)
  1617           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1618           ciKlass *ss = klass->super_of_depth(depth);
  1619           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1624     // If the type is enough to determine that the thing is not an array,
  1625     // we can give the layout_helper a positive interval type.
  1626     // This will help short-circuit some reflective code.
  1627     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1628         && !klass->is_array_klass() // not directly typed as an array
  1629         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1630         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1631         ) {
  1632       // Note:  When interfaces are reliable, we can narrow the interface
  1633       // test to (klass != Serializable && klass != Cloneable).
  1634       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1635       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1636       // The key property of this type is that it folds up tests
  1637       // for array-ness, since it proves that the layout_helper is positive.
  1638       // Thus, a generic value like the basic object layout helper works fine.
  1639       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1643   // If we are loading from a freshly-allocated object, produce a zero,
  1644   // if the load is provably beyond the header of the object.
  1645   // (Also allow a variable load from a fresh array to produce zero.)
  1646   if (ReduceFieldZeroing) {
  1647     Node* value = can_see_stored_value(mem,phase);
  1648     if (value != NULL && value->is_Con())
  1649       return value->bottom_type();
  1652   const TypeOopPtr *tinst = tp->isa_oopptr();
  1653   if (tinst != NULL && tinst->is_known_instance_field()) {
  1654     // If we have an instance type and our memory input is the
  1655     // programs's initial memory state, there is no matching store,
  1656     // so just return a zero of the appropriate type
  1657     Node *mem = in(MemNode::Memory);
  1658     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1659       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1660       return Type::get_zero_type(_type->basic_type());
  1663   return _type;
  1666 //------------------------------match_edge-------------------------------------
  1667 // Do we Match on this edge index or not?  Match only the address.
  1668 uint LoadNode::match_edge(uint idx) const {
  1669   return idx == MemNode::Address;
  1672 //--------------------------LoadBNode::Ideal--------------------------------------
  1673 //
  1674 //  If the previous store is to the same address as this load,
  1675 //  and the value stored was larger than a byte, replace this load
  1676 //  with the value stored truncated to a byte.  If no truncation is
  1677 //  needed, the replacement is done in LoadNode::Identity().
  1678 //
  1679 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1680   Node* mem = in(MemNode::Memory);
  1681   Node* value = can_see_stored_value(mem,phase);
  1682   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1683     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1684     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1686   // Identity call will handle the case where truncation is not needed.
  1687   return LoadNode::Ideal(phase, can_reshape);
  1690 //--------------------------LoadUBNode::Ideal-------------------------------------
  1691 //
  1692 //  If the previous store is to the same address as this load,
  1693 //  and the value stored was larger than a byte, replace this load
  1694 //  with the value stored truncated to a byte.  If no truncation is
  1695 //  needed, the replacement is done in LoadNode::Identity().
  1696 //
  1697 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1698   Node* mem = in(MemNode::Memory);
  1699   Node* value = can_see_stored_value(mem, phase);
  1700   if (value && !phase->type(value)->higher_equal(_type))
  1701     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1702   // Identity call will handle the case where truncation is not needed.
  1703   return LoadNode::Ideal(phase, can_reshape);
  1706 //--------------------------LoadUSNode::Ideal-------------------------------------
  1707 //
  1708 //  If the previous store is to the same address as this load,
  1709 //  and the value stored was larger than a char, replace this load
  1710 //  with the value stored truncated to a char.  If no truncation is
  1711 //  needed, the replacement is done in LoadNode::Identity().
  1712 //
  1713 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1714   Node* mem = in(MemNode::Memory);
  1715   Node* value = can_see_stored_value(mem,phase);
  1716   if( value && !phase->type(value)->higher_equal( _type ) )
  1717     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1718   // Identity call will handle the case where truncation is not needed.
  1719   return LoadNode::Ideal(phase, can_reshape);
  1722 //--------------------------LoadSNode::Ideal--------------------------------------
  1723 //
  1724 //  If the previous store is to the same address as this load,
  1725 //  and the value stored was larger than a short, replace this load
  1726 //  with the value stored truncated to a short.  If no truncation is
  1727 //  needed, the replacement is done in LoadNode::Identity().
  1728 //
  1729 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1730   Node* mem = in(MemNode::Memory);
  1731   Node* value = can_see_stored_value(mem,phase);
  1732   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1733     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1734     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1736   // Identity call will handle the case where truncation is not needed.
  1737   return LoadNode::Ideal(phase, can_reshape);
  1740 //=============================================================================
  1741 //----------------------------LoadKlassNode::make------------------------------
  1742 // Polymorphic factory method:
  1743 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1744   Compile* C = gvn.C;
  1745   Node *ctl = NULL;
  1746   // sanity check the alias category against the created node type
  1747   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1748   assert(adr_type != NULL, "expecting TypeOopPtr");
  1749 #ifdef _LP64
  1750   if (adr_type->is_ptr_to_narrowoop()) {
  1751     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1752     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1754 #endif
  1755   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1756   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1759 //------------------------------Value------------------------------------------
  1760 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1761   return klass_value_common(phase);
  1764 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1765   // Either input is TOP ==> the result is TOP
  1766   const Type *t1 = phase->type( in(MemNode::Memory) );
  1767   if (t1 == Type::TOP)  return Type::TOP;
  1768   Node *adr = in(MemNode::Address);
  1769   const Type *t2 = phase->type( adr );
  1770   if (t2 == Type::TOP)  return Type::TOP;
  1771   const TypePtr *tp = t2->is_ptr();
  1772   if (TypePtr::above_centerline(tp->ptr()) ||
  1773       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1775   // Return a more precise klass, if possible
  1776   const TypeInstPtr *tinst = tp->isa_instptr();
  1777   if (tinst != NULL) {
  1778     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1779     int offset = tinst->offset();
  1780     if (ik == phase->C->env()->Class_klass()
  1781         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1782             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1783       // We are loading a special hidden field from a Class mirror object,
  1784       // the field which points to the VM's Klass metaobject.
  1785       ciType* t = tinst->java_mirror_type();
  1786       // java_mirror_type returns non-null for compile-time Class constants.
  1787       if (t != NULL) {
  1788         // constant oop => constant klass
  1789         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1790           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1792         if (!t->is_klass()) {
  1793           // a primitive Class (e.g., int.class) has NULL for a klass field
  1794           return TypePtr::NULL_PTR;
  1796         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1797         return TypeKlassPtr::make(t->as_klass());
  1799       // non-constant mirror, so we can't tell what's going on
  1801     if( !ik->is_loaded() )
  1802       return _type;             // Bail out if not loaded
  1803     if (offset == oopDesc::klass_offset_in_bytes()) {
  1804       if (tinst->klass_is_exact()) {
  1805         return TypeKlassPtr::make(ik);
  1807       // See if we can become precise: no subklasses and no interface
  1808       // (Note:  We need to support verified interfaces.)
  1809       if (!ik->is_interface() && !ik->has_subklass()) {
  1810         //assert(!UseExactTypes, "this code should be useless with exact types");
  1811         // Add a dependence; if any subclass added we need to recompile
  1812         if (!ik->is_final()) {
  1813           // %%% should use stronger assert_unique_concrete_subtype instead
  1814           phase->C->dependencies()->assert_leaf_type(ik);
  1816         // Return precise klass
  1817         return TypeKlassPtr::make(ik);
  1820       // Return root of possible klass
  1821       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1825   // Check for loading klass from an array
  1826   const TypeAryPtr *tary = tp->isa_aryptr();
  1827   if( tary != NULL ) {
  1828     ciKlass *tary_klass = tary->klass();
  1829     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1830         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1831       if (tary->klass_is_exact()) {
  1832         return TypeKlassPtr::make(tary_klass);
  1834       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1835       // If the klass is an object array, we defer the question to the
  1836       // array component klass.
  1837       if( ak->is_obj_array_klass() ) {
  1838         assert( ak->is_loaded(), "" );
  1839         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1840         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1841           ciInstanceKlass* ik = base_k->as_instance_klass();
  1842           // See if we can become precise: no subklasses and no interface
  1843           if (!ik->is_interface() && !ik->has_subklass()) {
  1844             //assert(!UseExactTypes, "this code should be useless with exact types");
  1845             // Add a dependence; if any subclass added we need to recompile
  1846             if (!ik->is_final()) {
  1847               phase->C->dependencies()->assert_leaf_type(ik);
  1849             // Return precise array klass
  1850             return TypeKlassPtr::make(ak);
  1853         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1854       } else {                  // Found a type-array?
  1855         //assert(!UseExactTypes, "this code should be useless with exact types");
  1856         assert( ak->is_type_array_klass(), "" );
  1857         return TypeKlassPtr::make(ak); // These are always precise
  1862   // Check for loading klass from an array klass
  1863   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1864   if (tkls != NULL && !StressReflectiveCode) {
  1865     ciKlass* klass = tkls->klass();
  1866     if( !klass->is_loaded() )
  1867       return _type;             // Bail out if not loaded
  1868     if( klass->is_obj_array_klass() &&
  1869         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1870       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1871       // // Always returning precise element type is incorrect,
  1872       // // e.g., element type could be object and array may contain strings
  1873       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1875       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1876       // according to the element type's subclassing.
  1877       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1879     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1880         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1881       ciKlass* sup = klass->as_instance_klass()->super();
  1882       // The field is Klass::_super.  Return its (constant) value.
  1883       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1884       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1888   // Bailout case
  1889   return LoadNode::Value(phase);
  1892 //------------------------------Identity---------------------------------------
  1893 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1894 // Also feed through the klass in Allocate(...klass...)._klass.
  1895 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1896   return klass_identity_common(phase);
  1899 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1900   Node* x = LoadNode::Identity(phase);
  1901   if (x != this)  return x;
  1903   // Take apart the address into an oop and and offset.
  1904   // Return 'this' if we cannot.
  1905   Node*    adr    = in(MemNode::Address);
  1906   intptr_t offset = 0;
  1907   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1908   if (base == NULL)     return this;
  1909   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1910   if (toop == NULL)     return this;
  1912   // We can fetch the klass directly through an AllocateNode.
  1913   // This works even if the klass is not constant (clone or newArray).
  1914   if (offset == oopDesc::klass_offset_in_bytes()) {
  1915     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1916     if (allocated_klass != NULL) {
  1917       return allocated_klass;
  1921   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1922   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1923   // See inline_native_Class_query for occurrences of these patterns.
  1924   // Java Example:  x.getClass().isAssignableFrom(y)
  1925   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1926   //
  1927   // This improves reflective code, often making the Class
  1928   // mirror go completely dead.  (Current exception:  Class
  1929   // mirrors may appear in debug info, but we could clean them out by
  1930   // introducing a new debug info operator for klassOop.java_mirror).
  1931   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1932       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1933           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1934     // We are loading a special hidden field from a Class mirror,
  1935     // the field which points to its Klass or arrayKlass metaobject.
  1936     if (base->is_Load()) {
  1937       Node* adr2 = base->in(MemNode::Address);
  1938       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1939       if (tkls != NULL && !tkls->empty()
  1940           && (tkls->klass()->is_instance_klass() ||
  1941               tkls->klass()->is_array_klass())
  1942           && adr2->is_AddP()
  1943           ) {
  1944         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1945         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1946           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1948         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1949           return adr2->in(AddPNode::Base);
  1955   return this;
  1959 //------------------------------Value------------------------------------------
  1960 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1961   const Type *t = klass_value_common(phase);
  1962   if (t == Type::TOP)
  1963     return t;
  1965   return t->make_narrowoop();
  1968 //------------------------------Identity---------------------------------------
  1969 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1970 // Also feed through the klass in Allocate(...klass...)._klass.
  1971 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1972   Node *x = klass_identity_common(phase);
  1974   const Type *t = phase->type( x );
  1975   if( t == Type::TOP ) return x;
  1976   if( t->isa_narrowoop()) return x;
  1978   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  1981 //------------------------------Value-----------------------------------------
  1982 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1983   // Either input is TOP ==> the result is TOP
  1984   const Type *t1 = phase->type( in(MemNode::Memory) );
  1985   if( t1 == Type::TOP ) return Type::TOP;
  1986   Node *adr = in(MemNode::Address);
  1987   const Type *t2 = phase->type( adr );
  1988   if( t2 == Type::TOP ) return Type::TOP;
  1989   const TypePtr *tp = t2->is_ptr();
  1990   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1991   const TypeAryPtr *tap = tp->isa_aryptr();
  1992   if( !tap ) return _type;
  1993   return tap->size();
  1996 //-------------------------------Ideal---------------------------------------
  1997 // Feed through the length in AllocateArray(...length...)._length.
  1998 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1999   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2000   if (p)  return (p == NodeSentinel) ? NULL : p;
  2002   // Take apart the address into an oop and and offset.
  2003   // Return 'this' if we cannot.
  2004   Node*    adr    = in(MemNode::Address);
  2005   intptr_t offset = 0;
  2006   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2007   if (base == NULL)     return NULL;
  2008   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2009   if (tary == NULL)     return NULL;
  2011   // We can fetch the length directly through an AllocateArrayNode.
  2012   // This works even if the length is not constant (clone or newArray).
  2013   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2014     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2015     if (alloc != NULL) {
  2016       Node* allocated_length = alloc->Ideal_length();
  2017       Node* len = alloc->make_ideal_length(tary, phase);
  2018       if (allocated_length != len) {
  2019         // New CastII improves on this.
  2020         return len;
  2025   return NULL;
  2028 //------------------------------Identity---------------------------------------
  2029 // Feed through the length in AllocateArray(...length...)._length.
  2030 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2031   Node* x = LoadINode::Identity(phase);
  2032   if (x != this)  return x;
  2034   // Take apart the address into an oop and and offset.
  2035   // Return 'this' if we cannot.
  2036   Node*    adr    = in(MemNode::Address);
  2037   intptr_t offset = 0;
  2038   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2039   if (base == NULL)     return this;
  2040   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2041   if (tary == NULL)     return this;
  2043   // We can fetch the length directly through an AllocateArrayNode.
  2044   // This works even if the length is not constant (clone or newArray).
  2045   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2046     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2047     if (alloc != NULL) {
  2048       Node* allocated_length = alloc->Ideal_length();
  2049       // Do not allow make_ideal_length to allocate a CastII node.
  2050       Node* len = alloc->make_ideal_length(tary, phase, false);
  2051       if (allocated_length == len) {
  2052         // Return allocated_length only if it would not be improved by a CastII.
  2053         return allocated_length;
  2058   return this;
  2062 //=============================================================================
  2063 //---------------------------StoreNode::make-----------------------------------
  2064 // Polymorphic factory method:
  2065 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2066   Compile* C = gvn.C;
  2068   switch (bt) {
  2069   case T_BOOLEAN:
  2070   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2071   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2072   case T_CHAR:
  2073   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2074   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2075   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2076   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2077   case T_ADDRESS:
  2078   case T_OBJECT:
  2079 #ifdef _LP64
  2080     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2081         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2082          adr->bottom_type()->isa_rawptr())) {
  2083       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2084       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2085     } else
  2086 #endif
  2088       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2091   ShouldNotReachHere();
  2092   return (StoreNode*)NULL;
  2095 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2096   bool require_atomic = true;
  2097   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2101 //--------------------------bottom_type----------------------------------------
  2102 const Type *StoreNode::bottom_type() const {
  2103   return Type::MEMORY;
  2106 //------------------------------hash-------------------------------------------
  2107 uint StoreNode::hash() const {
  2108   // unroll addition of interesting fields
  2109   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2111   // Since they are not commoned, do not hash them:
  2112   return NO_HASH;
  2115 //------------------------------Ideal------------------------------------------
  2116 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2117 // When a store immediately follows a relevant allocation/initialization,
  2118 // try to capture it into the initialization, or hoist it above.
  2119 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2120   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2121   if (p)  return (p == NodeSentinel) ? NULL : p;
  2123   Node* mem     = in(MemNode::Memory);
  2124   Node* address = in(MemNode::Address);
  2126   // Back-to-back stores to same address?  Fold em up.
  2127   // Generally unsafe if I have intervening uses...
  2128   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  2129     // Looking at a dead closed cycle of memory?
  2130     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2132     assert(Opcode() == mem->Opcode() ||
  2133            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2134            "no mismatched stores, except on raw memory");
  2136     if (mem->outcnt() == 1 &&           // check for intervening uses
  2137         mem->as_Store()->memory_size() <= this->memory_size()) {
  2138       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2139       // For example, 'mem' might be the final state at a conditional return.
  2140       // Or, 'mem' might be used by some node which is live at the same time
  2141       // 'this' is live, which might be unschedulable.  So, require exactly
  2142       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2143       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2144       if (can_reshape) {  // (%%% is this an anachronism?)
  2145         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2146                   phase->is_IterGVN());
  2147       } else {
  2148         // It's OK to do this in the parser, since DU info is always accurate,
  2149         // and the parser always refers to nodes via SafePointNode maps.
  2150         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2152       return this;
  2156   // Capture an unaliased, unconditional, simple store into an initializer.
  2157   // Or, if it is independent of the allocation, hoist it above the allocation.
  2158   if (ReduceFieldZeroing && /*can_reshape &&*/
  2159       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2160     InitializeNode* init = mem->in(0)->as_Initialize();
  2161     intptr_t offset = init->can_capture_store(this, phase);
  2162     if (offset > 0) {
  2163       Node* moved = init->capture_store(this, offset, phase);
  2164       // If the InitializeNode captured me, it made a raw copy of me,
  2165       // and I need to disappear.
  2166       if (moved != NULL) {
  2167         // %%% hack to ensure that Ideal returns a new node:
  2168         mem = MergeMemNode::make(phase->C, mem);
  2169         return mem;             // fold me away
  2174   return NULL;                  // No further progress
  2177 //------------------------------Value-----------------------------------------
  2178 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2179   // Either input is TOP ==> the result is TOP
  2180   const Type *t1 = phase->type( in(MemNode::Memory) );
  2181   if( t1 == Type::TOP ) return Type::TOP;
  2182   const Type *t2 = phase->type( in(MemNode::Address) );
  2183   if( t2 == Type::TOP ) return Type::TOP;
  2184   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2185   if( t3 == Type::TOP ) return Type::TOP;
  2186   return Type::MEMORY;
  2189 //------------------------------Identity---------------------------------------
  2190 // Remove redundant stores:
  2191 //   Store(m, p, Load(m, p)) changes to m.
  2192 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2193 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2194   Node* mem = in(MemNode::Memory);
  2195   Node* adr = in(MemNode::Address);
  2196   Node* val = in(MemNode::ValueIn);
  2198   // Load then Store?  Then the Store is useless
  2199   if (val->is_Load() &&
  2200       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2201       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2202       val->as_Load()->store_Opcode() == Opcode()) {
  2203     return mem;
  2206   // Two stores in a row of the same value?
  2207   if (mem->is_Store() &&
  2208       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2209       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2210       mem->Opcode() == Opcode()) {
  2211     return mem;
  2214   // Store of zero anywhere into a freshly-allocated object?
  2215   // Then the store is useless.
  2216   // (It must already have been captured by the InitializeNode.)
  2217   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2218     // a newly allocated object is already all-zeroes everywhere
  2219     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2220       return mem;
  2223     // the store may also apply to zero-bits in an earlier object
  2224     Node* prev_mem = find_previous_store(phase);
  2225     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2226     if (prev_mem != NULL) {
  2227       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2228       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2229         // prev_val and val might differ by a cast; it would be good
  2230         // to keep the more informative of the two.
  2231         return mem;
  2236   return this;
  2239 //------------------------------match_edge-------------------------------------
  2240 // Do we Match on this edge index or not?  Match only memory & value
  2241 uint StoreNode::match_edge(uint idx) const {
  2242   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2245 //------------------------------cmp--------------------------------------------
  2246 // Do not common stores up together.  They generally have to be split
  2247 // back up anyways, so do not bother.
  2248 uint StoreNode::cmp( const Node &n ) const {
  2249   return (&n == this);          // Always fail except on self
  2252 //------------------------------Ideal_masked_input-----------------------------
  2253 // Check for a useless mask before a partial-word store
  2254 // (StoreB ... (AndI valIn conIa) )
  2255 // If (conIa & mask == mask) this simplifies to
  2256 // (StoreB ... (valIn) )
  2257 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2258   Node *val = in(MemNode::ValueIn);
  2259   if( val->Opcode() == Op_AndI ) {
  2260     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2261     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2262       set_req(MemNode::ValueIn, val->in(1));
  2263       return this;
  2266   return NULL;
  2270 //------------------------------Ideal_sign_extended_input----------------------
  2271 // Check for useless sign-extension before a partial-word store
  2272 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2273 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2274 // (StoreB ... (valIn) )
  2275 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2276   Node *val = in(MemNode::ValueIn);
  2277   if( val->Opcode() == Op_RShiftI ) {
  2278     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2279     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2280       Node *shl = val->in(1);
  2281       if( shl->Opcode() == Op_LShiftI ) {
  2282         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2283         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2284           set_req(MemNode::ValueIn, shl->in(1));
  2285           return this;
  2290   return NULL;
  2293 //------------------------------value_never_loaded-----------------------------------
  2294 // Determine whether there are any possible loads of the value stored.
  2295 // For simplicity, we actually check if there are any loads from the
  2296 // address stored to, not just for loads of the value stored by this node.
  2297 //
  2298 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2299   Node *adr = in(Address);
  2300   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2301   if (adr_oop == NULL)
  2302     return false;
  2303   if (!adr_oop->is_known_instance_field())
  2304     return false; // if not a distinct instance, there may be aliases of the address
  2305   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2306     Node *use = adr->fast_out(i);
  2307     int opc = use->Opcode();
  2308     if (use->is_Load() || use->is_LoadStore()) {
  2309       return false;
  2312   return true;
  2315 //=============================================================================
  2316 //------------------------------Ideal------------------------------------------
  2317 // If the store is from an AND mask that leaves the low bits untouched, then
  2318 // we can skip the AND operation.  If the store is from a sign-extension
  2319 // (a left shift, then right shift) we can skip both.
  2320 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2321   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2322   if( progress != NULL ) return progress;
  2324   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2325   if( progress != NULL ) return progress;
  2327   // Finally check the default case
  2328   return StoreNode::Ideal(phase, can_reshape);
  2331 //=============================================================================
  2332 //------------------------------Ideal------------------------------------------
  2333 // If the store is from an AND mask that leaves the low bits untouched, then
  2334 // we can skip the AND operation
  2335 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2336   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2337   if( progress != NULL ) return progress;
  2339   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2340   if( progress != NULL ) return progress;
  2342   // Finally check the default case
  2343   return StoreNode::Ideal(phase, can_reshape);
  2346 //=============================================================================
  2347 //------------------------------Identity---------------------------------------
  2348 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2349   // No need to card mark when storing a null ptr
  2350   Node* my_store = in(MemNode::OopStore);
  2351   if (my_store->is_Store()) {
  2352     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2353     if( t1 == TypePtr::NULL_PTR ) {
  2354       return in(MemNode::Memory);
  2357   return this;
  2360 //=============================================================================
  2361 //------------------------------Ideal---------------------------------------
  2362 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2363   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2364   if (progress != NULL) return progress;
  2366   Node* my_store = in(MemNode::OopStore);
  2367   if (my_store->is_MergeMem()) {
  2368     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2369     set_req(MemNode::OopStore, mem);
  2370     return this;
  2373   return NULL;
  2376 //------------------------------Value-----------------------------------------
  2377 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2378   // Either input is TOP ==> the result is TOP
  2379   const Type *t = phase->type( in(MemNode::Memory) );
  2380   if( t == Type::TOP ) return Type::TOP;
  2381   t = phase->type( in(MemNode::Address) );
  2382   if( t == Type::TOP ) return Type::TOP;
  2383   t = phase->type( in(MemNode::ValueIn) );
  2384   if( t == Type::TOP ) return Type::TOP;
  2385   // If extra input is TOP ==> the result is TOP
  2386   t = phase->type( in(MemNode::OopStore) );
  2387   if( t == Type::TOP ) return Type::TOP;
  2389   return StoreNode::Value( phase );
  2393 //=============================================================================
  2394 //----------------------------------SCMemProjNode------------------------------
  2395 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2397   return bottom_type();
  2400 //=============================================================================
  2401 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2402   init_req(MemNode::Control, c  );
  2403   init_req(MemNode::Memory , mem);
  2404   init_req(MemNode::Address, adr);
  2405   init_req(MemNode::ValueIn, val);
  2406   init_req(         ExpectedIn, ex );
  2407   init_class_id(Class_LoadStore);
  2411 //=============================================================================
  2412 //-------------------------------adr_type--------------------------------------
  2413 // Do we Match on this edge index or not?  Do not match memory
  2414 const TypePtr* ClearArrayNode::adr_type() const {
  2415   Node *adr = in(3);
  2416   return MemNode::calculate_adr_type(adr->bottom_type());
  2419 //------------------------------match_edge-------------------------------------
  2420 // Do we Match on this edge index or not?  Do not match memory
  2421 uint ClearArrayNode::match_edge(uint idx) const {
  2422   return idx > 1;
  2425 //------------------------------Identity---------------------------------------
  2426 // Clearing a zero length array does nothing
  2427 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2428   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2431 //------------------------------Idealize---------------------------------------
  2432 // Clearing a short array is faster with stores
  2433 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2434   const int unit = BytesPerLong;
  2435   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2436   if (!t)  return NULL;
  2437   if (!t->is_con())  return NULL;
  2438   intptr_t raw_count = t->get_con();
  2439   intptr_t size = raw_count;
  2440   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2441   // Clearing nothing uses the Identity call.
  2442   // Negative clears are possible on dead ClearArrays
  2443   // (see jck test stmt114.stmt11402.val).
  2444   if (size <= 0 || size % unit != 0)  return NULL;
  2445   intptr_t count = size / unit;
  2446   // Length too long; use fast hardware clear
  2447   if (size > Matcher::init_array_short_size)  return NULL;
  2448   Node *mem = in(1);
  2449   if( phase->type(mem)==Type::TOP ) return NULL;
  2450   Node *adr = in(3);
  2451   const Type* at = phase->type(adr);
  2452   if( at==Type::TOP ) return NULL;
  2453   const TypePtr* atp = at->isa_ptr();
  2454   // adjust atp to be the correct array element address type
  2455   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2456   else              atp = atp->add_offset(Type::OffsetBot);
  2457   // Get base for derived pointer purposes
  2458   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2459   Node *base = adr->in(1);
  2461   Node *zero = phase->makecon(TypeLong::ZERO);
  2462   Node *off  = phase->MakeConX(BytesPerLong);
  2463   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2464   count--;
  2465   while( count-- ) {
  2466     mem = phase->transform(mem);
  2467     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2468     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2470   return mem;
  2473 //----------------------------step_through----------------------------------
  2474 // Return allocation input memory edge if it is different instance
  2475 // or itself if it is the one we are looking for.
  2476 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2477   Node* n = *np;
  2478   assert(n->is_ClearArray(), "sanity");
  2479   intptr_t offset;
  2480   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2481   // This method is called only before Allocate nodes are expanded during
  2482   // macro nodes expansion. Before that ClearArray nodes are only generated
  2483   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2484   assert(alloc != NULL, "should have allocation");
  2485   if (alloc->_idx == instance_id) {
  2486     // Can not bypass initialization of the instance we are looking for.
  2487     return false;
  2489   // Otherwise skip it.
  2490   InitializeNode* init = alloc->initialization();
  2491   if (init != NULL)
  2492     *np = init->in(TypeFunc::Memory);
  2493   else
  2494     *np = alloc->in(TypeFunc::Memory);
  2495   return true;
  2498 //----------------------------clear_memory-------------------------------------
  2499 // Generate code to initialize object storage to zero.
  2500 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2501                                    intptr_t start_offset,
  2502                                    Node* end_offset,
  2503                                    PhaseGVN* phase) {
  2504   Compile* C = phase->C;
  2505   intptr_t offset = start_offset;
  2507   int unit = BytesPerLong;
  2508   if ((offset % unit) != 0) {
  2509     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2510     adr = phase->transform(adr);
  2511     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2512     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2513     mem = phase->transform(mem);
  2514     offset += BytesPerInt;
  2516   assert((offset % unit) == 0, "");
  2518   // Initialize the remaining stuff, if any, with a ClearArray.
  2519   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2522 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2523                                    Node* start_offset,
  2524                                    Node* end_offset,
  2525                                    PhaseGVN* phase) {
  2526   if (start_offset == end_offset) {
  2527     // nothing to do
  2528     return mem;
  2531   Compile* C = phase->C;
  2532   int unit = BytesPerLong;
  2533   Node* zbase = start_offset;
  2534   Node* zend  = end_offset;
  2536   // Scale to the unit required by the CPU:
  2537   if (!Matcher::init_array_count_is_in_bytes) {
  2538     Node* shift = phase->intcon(exact_log2(unit));
  2539     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2540     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2543   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2544   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2546   // Bulk clear double-words
  2547   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2548   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2549   return phase->transform(mem);
  2552 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2553                                    intptr_t start_offset,
  2554                                    intptr_t end_offset,
  2555                                    PhaseGVN* phase) {
  2556   if (start_offset == end_offset) {
  2557     // nothing to do
  2558     return mem;
  2561   Compile* C = phase->C;
  2562   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2563   intptr_t done_offset = end_offset;
  2564   if ((done_offset % BytesPerLong) != 0) {
  2565     done_offset -= BytesPerInt;
  2567   if (done_offset > start_offset) {
  2568     mem = clear_memory(ctl, mem, dest,
  2569                        start_offset, phase->MakeConX(done_offset), phase);
  2571   if (done_offset < end_offset) { // emit the final 32-bit store
  2572     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2573     adr = phase->transform(adr);
  2574     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2575     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2576     mem = phase->transform(mem);
  2577     done_offset += BytesPerInt;
  2579   assert(done_offset == end_offset, "");
  2580   return mem;
  2583 //=============================================================================
  2584 // Do we match on this edge? No memory edges
  2585 uint StrCompNode::match_edge(uint idx) const {
  2586   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
  2589 //------------------------------Ideal------------------------------------------
  2590 // Return a node which is more "ideal" than the current node.  Strip out
  2591 // control copies
  2592 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2593   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2596 //=============================================================================
  2597 // Do we match on this edge? No memory edges
  2598 uint StrEqualsNode::match_edge(uint idx) const {
  2599   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
  2602 //------------------------------Ideal------------------------------------------
  2603 // Return a node which is more "ideal" than the current node.  Strip out
  2604 // control copies
  2605 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2606   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2609 //=============================================================================
  2610 // Do we match on this edge? No memory edges
  2611 uint StrIndexOfNode::match_edge(uint idx) const {
  2612   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
  2615 //------------------------------Ideal------------------------------------------
  2616 // Return a node which is more "ideal" than the current node.  Strip out
  2617 // control copies
  2618 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2619   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2622 //=============================================================================
  2623 // Do we match on this edge? No memory edges
  2624 uint AryEqNode::match_edge(uint idx) const {
  2625   return idx == 2 || idx == 3; // StrEquals ary1 ary2
  2627 //------------------------------Ideal------------------------------------------
  2628 // Return a node which is more "ideal" than the current node.  Strip out
  2629 // control copies
  2630 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2631   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2634 //=============================================================================
  2635 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2636   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2637     _adr_type(C->get_adr_type(alias_idx))
  2639   init_class_id(Class_MemBar);
  2640   Node* top = C->top();
  2641   init_req(TypeFunc::I_O,top);
  2642   init_req(TypeFunc::FramePtr,top);
  2643   init_req(TypeFunc::ReturnAdr,top);
  2644   if (precedent != NULL)
  2645     init_req(TypeFunc::Parms, precedent);
  2648 //------------------------------cmp--------------------------------------------
  2649 uint MemBarNode::hash() const { return NO_HASH; }
  2650 uint MemBarNode::cmp( const Node &n ) const {
  2651   return (&n == this);          // Always fail except on self
  2654 //------------------------------make-------------------------------------------
  2655 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2656   int len = Precedent + (pn == NULL? 0: 1);
  2657   switch (opcode) {
  2658   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2659   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2660   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2661   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2662   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2663   default:                 ShouldNotReachHere(); return NULL;
  2667 //------------------------------Ideal------------------------------------------
  2668 // Return a node which is more "ideal" than the current node.  Strip out
  2669 // control copies
  2670 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2671   if (remove_dead_region(phase, can_reshape)) return this;
  2673   // Eliminate volatile MemBars for scalar replaced objects.
  2674   if (can_reshape && req() == (Precedent+1) &&
  2675       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2676     // Volatile field loads and stores.
  2677     Node* my_mem = in(MemBarNode::Precedent);
  2678     if (my_mem != NULL && my_mem->is_Mem()) {
  2679       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2680       // Check for scalar replaced object reference.
  2681       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2682           t_oop->offset() != Type::OffsetBot &&
  2683           t_oop->offset() != Type::OffsetTop) {
  2684         // Replace MemBar projections by its inputs.
  2685         PhaseIterGVN* igvn = phase->is_IterGVN();
  2686         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2687         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2688         // Must return either the original node (now dead) or a new node
  2689         // (Do not return a top here, since that would break the uniqueness of top.)
  2690         return new (phase->C, 1) ConINode(TypeInt::ZERO);
  2694   return NULL;
  2697 //------------------------------Value------------------------------------------
  2698 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2699   if( !in(0) ) return Type::TOP;
  2700   if( phase->type(in(0)) == Type::TOP )
  2701     return Type::TOP;
  2702   return TypeTuple::MEMBAR;
  2705 //------------------------------match------------------------------------------
  2706 // Construct projections for memory.
  2707 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2708   switch (proj->_con) {
  2709   case TypeFunc::Control:
  2710   case TypeFunc::Memory:
  2711     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2713   ShouldNotReachHere();
  2714   return NULL;
  2717 //===========================InitializeNode====================================
  2718 // SUMMARY:
  2719 // This node acts as a memory barrier on raw memory, after some raw stores.
  2720 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2721 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2722 // It can coalesce related raw stores into larger units (called 'tiles').
  2723 // It can avoid zeroing new storage for memory units which have raw inits.
  2724 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2725 //
  2726 // EXAMPLE:
  2727 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2728 //   ctl = incoming control; mem* = incoming memory
  2729 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2730 // First allocate uninitialized memory and fill in the header:
  2731 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2732 //   ctl := alloc.Control; mem* := alloc.Memory*
  2733 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2734 // Then initialize to zero the non-header parts of the raw memory block:
  2735 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2736 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2737 // After the initialize node executes, the object is ready for service:
  2738 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2739 // Suppose its body is immediately initialized as {1,2}:
  2740 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2741 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2742 //   mem.SLICE(#short[*]) := store2
  2743 //
  2744 // DETAILS:
  2745 // An InitializeNode collects and isolates object initialization after
  2746 // an AllocateNode and before the next possible safepoint.  As a
  2747 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2748 // down past any safepoint or any publication of the allocation.
  2749 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2750 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2751 //
  2752 // The semantics of the InitializeNode include an implicit zeroing of
  2753 // the new object from object header to the end of the object.
  2754 // (The object header and end are determined by the AllocateNode.)
  2755 //
  2756 // Certain stores may be added as direct inputs to the InitializeNode.
  2757 // These stores must update raw memory, and they must be to addresses
  2758 // derived from the raw address produced by AllocateNode, and with
  2759 // a constant offset.  They must be ordered by increasing offset.
  2760 // The first one is at in(RawStores), the last at in(req()-1).
  2761 // Unlike most memory operations, they are not linked in a chain,
  2762 // but are displayed in parallel as users of the rawmem output of
  2763 // the allocation.
  2764 //
  2765 // (See comments in InitializeNode::capture_store, which continue
  2766 // the example given above.)
  2767 //
  2768 // When the associated Allocate is macro-expanded, the InitializeNode
  2769 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2770 // may also be created at that point to represent any required zeroing.
  2771 // The InitializeNode is then marked 'complete', prohibiting further
  2772 // capturing of nearby memory operations.
  2773 //
  2774 // During macro-expansion, all captured initializations which store
  2775 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2776 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2777 // initialized in fewer memory operations.  Memory words which are
  2778 // covered by neither tiles nor non-constant stores are pre-zeroed
  2779 // by explicit stores of zero.  (The code shape happens to do all
  2780 // zeroing first, then all other stores, with both sequences occurring
  2781 // in order of ascending offsets.)
  2782 //
  2783 // Alternatively, code may be inserted between an AllocateNode and its
  2784 // InitializeNode, to perform arbitrary initialization of the new object.
  2785 // E.g., the object copying intrinsics insert complex data transfers here.
  2786 // The initialization must then be marked as 'complete' disable the
  2787 // built-in zeroing semantics and the collection of initializing stores.
  2788 //
  2789 // While an InitializeNode is incomplete, reads from the memory state
  2790 // produced by it are optimizable if they match the control edge and
  2791 // new oop address associated with the allocation/initialization.
  2792 // They return a stored value (if the offset matches) or else zero.
  2793 // A write to the memory state, if it matches control and address,
  2794 // and if it is to a constant offset, may be 'captured' by the
  2795 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2796 // inside the initialization, to the raw oop produced by the allocation.
  2797 // Operations on addresses which are provably distinct (e.g., to
  2798 // other AllocateNodes) are allowed to bypass the initialization.
  2799 //
  2800 // The effect of all this is to consolidate object initialization
  2801 // (both arrays and non-arrays, both piecewise and bulk) into a
  2802 // single location, where it can be optimized as a unit.
  2803 //
  2804 // Only stores with an offset less than TrackedInitializationLimit words
  2805 // will be considered for capture by an InitializeNode.  This puts a
  2806 // reasonable limit on the complexity of optimized initializations.
  2808 //---------------------------InitializeNode------------------------------------
  2809 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2810   : _is_complete(false),
  2811     MemBarNode(C, adr_type, rawoop)
  2813   init_class_id(Class_Initialize);
  2815   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2816   assert(in(RawAddress) == rawoop, "proper init");
  2817   // Note:  allocation() can be NULL, for secondary initialization barriers
  2820 // Since this node is not matched, it will be processed by the
  2821 // register allocator.  Declare that there are no constraints
  2822 // on the allocation of the RawAddress edge.
  2823 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2824   // This edge should be set to top, by the set_complete.  But be conservative.
  2825   if (idx == InitializeNode::RawAddress)
  2826     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2827   return RegMask::Empty;
  2830 Node* InitializeNode::memory(uint alias_idx) {
  2831   Node* mem = in(Memory);
  2832   if (mem->is_MergeMem()) {
  2833     return mem->as_MergeMem()->memory_at(alias_idx);
  2834   } else {
  2835     // incoming raw memory is not split
  2836     return mem;
  2840 bool InitializeNode::is_non_zero() {
  2841   if (is_complete())  return false;
  2842   remove_extra_zeroes();
  2843   return (req() > RawStores);
  2846 void InitializeNode::set_complete(PhaseGVN* phase) {
  2847   assert(!is_complete(), "caller responsibility");
  2848   _is_complete = true;
  2850   // After this node is complete, it contains a bunch of
  2851   // raw-memory initializations.  There is no need for
  2852   // it to have anything to do with non-raw memory effects.
  2853   // Therefore, tell all non-raw users to re-optimize themselves,
  2854   // after skipping the memory effects of this initialization.
  2855   PhaseIterGVN* igvn = phase->is_IterGVN();
  2856   if (igvn)  igvn->add_users_to_worklist(this);
  2859 // convenience function
  2860 // return false if the init contains any stores already
  2861 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2862   InitializeNode* init = initialization();
  2863   if (init == NULL || init->is_complete())  return false;
  2864   init->remove_extra_zeroes();
  2865   // for now, if this allocation has already collected any inits, bail:
  2866   if (init->is_non_zero())  return false;
  2867   init->set_complete(phase);
  2868   return true;
  2871 void InitializeNode::remove_extra_zeroes() {
  2872   if (req() == RawStores)  return;
  2873   Node* zmem = zero_memory();
  2874   uint fill = RawStores;
  2875   for (uint i = fill; i < req(); i++) {
  2876     Node* n = in(i);
  2877     if (n->is_top() || n == zmem)  continue;  // skip
  2878     if (fill < i)  set_req(fill, n);          // compact
  2879     ++fill;
  2881   // delete any empty spaces created:
  2882   while (fill < req()) {
  2883     del_req(fill);
  2887 // Helper for remembering which stores go with which offsets.
  2888 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2889   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2890   intptr_t offset = -1;
  2891   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2892                                                phase, offset);
  2893   if (base == NULL)     return -1;  // something is dead,
  2894   if (offset < 0)       return -1;  //        dead, dead
  2895   return offset;
  2898 // Helper for proving that an initialization expression is
  2899 // "simple enough" to be folded into an object initialization.
  2900 // Attempts to prove that a store's initial value 'n' can be captured
  2901 // within the initialization without creating a vicious cycle, such as:
  2902 //     { Foo p = new Foo(); p.next = p; }
  2903 // True for constants and parameters and small combinations thereof.
  2904 bool InitializeNode::detect_init_independence(Node* n,
  2905                                               bool st_is_pinned,
  2906                                               int& count) {
  2907   if (n == NULL)      return true;   // (can this really happen?)
  2908   if (n->is_Proj())   n = n->in(0);
  2909   if (n == this)      return false;  // found a cycle
  2910   if (n->is_Con())    return true;
  2911   if (n->is_Start())  return true;   // params, etc., are OK
  2912   if (n->is_Root())   return true;   // even better
  2914   Node* ctl = n->in(0);
  2915   if (ctl != NULL && !ctl->is_top()) {
  2916     if (ctl->is_Proj())  ctl = ctl->in(0);
  2917     if (ctl == this)  return false;
  2919     // If we already know that the enclosing memory op is pinned right after
  2920     // the init, then any control flow that the store has picked up
  2921     // must have preceded the init, or else be equal to the init.
  2922     // Even after loop optimizations (which might change control edges)
  2923     // a store is never pinned *before* the availability of its inputs.
  2924     if (!MemNode::all_controls_dominate(n, this))
  2925       return false;                  // failed to prove a good control
  2929   // Check data edges for possible dependencies on 'this'.
  2930   if ((count += 1) > 20)  return false;  // complexity limit
  2931   for (uint i = 1; i < n->req(); i++) {
  2932     Node* m = n->in(i);
  2933     if (m == NULL || m == n || m->is_top())  continue;
  2934     uint first_i = n->find_edge(m);
  2935     if (i != first_i)  continue;  // process duplicate edge just once
  2936     if (!detect_init_independence(m, st_is_pinned, count)) {
  2937       return false;
  2941   return true;
  2944 // Here are all the checks a Store must pass before it can be moved into
  2945 // an initialization.  Returns zero if a check fails.
  2946 // On success, returns the (constant) offset to which the store applies,
  2947 // within the initialized memory.
  2948 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2949   const int FAIL = 0;
  2950   if (st->req() != MemNode::ValueIn + 1)
  2951     return FAIL;                // an inscrutable StoreNode (card mark?)
  2952   Node* ctl = st->in(MemNode::Control);
  2953   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2954     return FAIL;                // must be unconditional after the initialization
  2955   Node* mem = st->in(MemNode::Memory);
  2956   if (!(mem->is_Proj() && mem->in(0) == this))
  2957     return FAIL;                // must not be preceded by other stores
  2958   Node* adr = st->in(MemNode::Address);
  2959   intptr_t offset;
  2960   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2961   if (alloc == NULL)
  2962     return FAIL;                // inscrutable address
  2963   if (alloc != allocation())
  2964     return FAIL;                // wrong allocation!  (store needs to float up)
  2965   Node* val = st->in(MemNode::ValueIn);
  2966   int complexity_count = 0;
  2967   if (!detect_init_independence(val, true, complexity_count))
  2968     return FAIL;                // stored value must be 'simple enough'
  2970   return offset;                // success
  2973 // Find the captured store in(i) which corresponds to the range
  2974 // [start..start+size) in the initialized object.
  2975 // If there is one, return its index i.  If there isn't, return the
  2976 // negative of the index where it should be inserted.
  2977 // Return 0 if the queried range overlaps an initialization boundary
  2978 // or if dead code is encountered.
  2979 // If size_in_bytes is zero, do not bother with overlap checks.
  2980 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2981                                                    int size_in_bytes,
  2982                                                    PhaseTransform* phase) {
  2983   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2985   if (is_complete())
  2986     return FAIL;                // arraycopy got here first; punt
  2988   assert(allocation() != NULL, "must be present");
  2990   // no negatives, no header fields:
  2991   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2993   // after a certain size, we bail out on tracking all the stores:
  2994   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2995   if (start >= ti_limit)  return FAIL;
  2997   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2998     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3000     Node*    st     = in(i);
  3001     intptr_t st_off = get_store_offset(st, phase);
  3002     if (st_off < 0) {
  3003       if (st != zero_memory()) {
  3004         return FAIL;            // bail out if there is dead garbage
  3006     } else if (st_off > start) {
  3007       // ...we are done, since stores are ordered
  3008       if (st_off < start + size_in_bytes) {
  3009         return FAIL;            // the next store overlaps
  3011       return -(int)i;           // not found; here is where to put it
  3012     } else if (st_off < start) {
  3013       if (size_in_bytes != 0 &&
  3014           start < st_off + MAX_STORE &&
  3015           start < st_off + st->as_Store()->memory_size()) {
  3016         return FAIL;            // the previous store overlaps
  3018     } else {
  3019       if (size_in_bytes != 0 &&
  3020           st->as_Store()->memory_size() != size_in_bytes) {
  3021         return FAIL;            // mismatched store size
  3023       return i;
  3026     ++i;
  3030 // Look for a captured store which initializes at the offset 'start'
  3031 // with the given size.  If there is no such store, and no other
  3032 // initialization interferes, then return zero_memory (the memory
  3033 // projection of the AllocateNode).
  3034 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3035                                           PhaseTransform* phase) {
  3036   assert(stores_are_sane(phase), "");
  3037   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3038   if (i == 0) {
  3039     return NULL;                // something is dead
  3040   } else if (i < 0) {
  3041     return zero_memory();       // just primordial zero bits here
  3042   } else {
  3043     Node* st = in(i);           // here is the store at this position
  3044     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3045     return st;
  3049 // Create, as a raw pointer, an address within my new object at 'offset'.
  3050 Node* InitializeNode::make_raw_address(intptr_t offset,
  3051                                        PhaseTransform* phase) {
  3052   Node* addr = in(RawAddress);
  3053   if (offset != 0) {
  3054     Compile* C = phase->C;
  3055     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  3056                                                  phase->MakeConX(offset)) );
  3058   return addr;
  3061 // Clone the given store, converting it into a raw store
  3062 // initializing a field or element of my new object.
  3063 // Caller is responsible for retiring the original store,
  3064 // with subsume_node or the like.
  3065 //
  3066 // From the example above InitializeNode::InitializeNode,
  3067 // here are the old stores to be captured:
  3068 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3069 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3070 //
  3071 // Here is the changed code; note the extra edges on init:
  3072 //   alloc = (Allocate ...)
  3073 //   rawoop = alloc.RawAddress
  3074 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3075 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3076 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3077 //                      rawstore1 rawstore2)
  3078 //
  3079 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3080                                     PhaseTransform* phase) {
  3081   assert(stores_are_sane(phase), "");
  3083   if (start < 0)  return NULL;
  3084   assert(can_capture_store(st, phase) == start, "sanity");
  3086   Compile* C = phase->C;
  3087   int size_in_bytes = st->memory_size();
  3088   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3089   if (i == 0)  return NULL;     // bail out
  3090   Node* prev_mem = NULL;        // raw memory for the captured store
  3091   if (i > 0) {
  3092     prev_mem = in(i);           // there is a pre-existing store under this one
  3093     set_req(i, C->top());       // temporarily disconnect it
  3094     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3095   } else {
  3096     i = -i;                     // no pre-existing store
  3097     prev_mem = zero_memory();   // a slice of the newly allocated object
  3098     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3099       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3100     else
  3101       ins_req(i, C->top());     // build a new edge
  3103   Node* new_st = st->clone();
  3104   new_st->set_req(MemNode::Control, in(Control));
  3105   new_st->set_req(MemNode::Memory,  prev_mem);
  3106   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3107   new_st = phase->transform(new_st);
  3109   // At this point, new_st might have swallowed a pre-existing store
  3110   // at the same offset, or perhaps new_st might have disappeared,
  3111   // if it redundantly stored the same value (or zero to fresh memory).
  3113   // In any case, wire it in:
  3114   set_req(i, new_st);
  3116   // The caller may now kill the old guy.
  3117   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3118   assert(check_st == new_st || check_st == NULL, "must be findable");
  3119   assert(!is_complete(), "");
  3120   return new_st;
  3123 static bool store_constant(jlong* tiles, int num_tiles,
  3124                            intptr_t st_off, int st_size,
  3125                            jlong con) {
  3126   if ((st_off & (st_size-1)) != 0)
  3127     return false;               // strange store offset (assume size==2**N)
  3128   address addr = (address)tiles + st_off;
  3129   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3130   switch (st_size) {
  3131   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3132   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3133   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3134   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3135   default: return false;        // strange store size (detect size!=2**N here)
  3137   return true;                  // return success to caller
  3140 // Coalesce subword constants into int constants and possibly
  3141 // into long constants.  The goal, if the CPU permits,
  3142 // is to initialize the object with a small number of 64-bit tiles.
  3143 // Also, convert floating-point constants to bit patterns.
  3144 // Non-constants are not relevant to this pass.
  3145 //
  3146 // In terms of the running example on InitializeNode::InitializeNode
  3147 // and InitializeNode::capture_store, here is the transformation
  3148 // of rawstore1 and rawstore2 into rawstore12:
  3149 //   alloc = (Allocate ...)
  3150 //   rawoop = alloc.RawAddress
  3151 //   tile12 = 0x00010002
  3152 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3153 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3154 //
  3155 void
  3156 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3157                                         Node* size_in_bytes,
  3158                                         PhaseGVN* phase) {
  3159   Compile* C = phase->C;
  3161   assert(stores_are_sane(phase), "");
  3162   // Note:  After this pass, they are not completely sane,
  3163   // since there may be some overlaps.
  3165   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3167   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3168   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3169   size_limit = MIN2(size_limit, ti_limit);
  3170   size_limit = align_size_up(size_limit, BytesPerLong);
  3171   int num_tiles = size_limit / BytesPerLong;
  3173   // allocate space for the tile map:
  3174   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3175   jlong  tiles_buf[small_len];
  3176   Node*  nodes_buf[small_len];
  3177   jlong  inits_buf[small_len];
  3178   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3179                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3180   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3181                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3182   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3183                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3184   // tiles: exact bitwise model of all primitive constants
  3185   // nodes: last constant-storing node subsumed into the tiles model
  3186   // inits: which bytes (in each tile) are touched by any initializations
  3188   //// Pass A: Fill in the tile model with any relevant stores.
  3190   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3191   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3192   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3193   Node* zmem = zero_memory(); // initially zero memory state
  3194   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3195     Node* st = in(i);
  3196     intptr_t st_off = get_store_offset(st, phase);
  3198     // Figure out the store's offset and constant value:
  3199     if (st_off < header_size)             continue; //skip (ignore header)
  3200     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3201     int st_size = st->as_Store()->memory_size();
  3202     if (st_off + st_size > size_limit)    break;
  3204     // Record which bytes are touched, whether by constant or not.
  3205     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3206       continue;                 // skip (strange store size)
  3208     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3209     if (!val->singleton())                continue; //skip (non-con store)
  3210     BasicType type = val->basic_type();
  3212     jlong con = 0;
  3213     switch (type) {
  3214     case T_INT:    con = val->is_int()->get_con();  break;
  3215     case T_LONG:   con = val->is_long()->get_con(); break;
  3216     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3217     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3218     default:                              continue; //skip (odd store type)
  3221     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3222         st->Opcode() == Op_StoreL) {
  3223       continue;                 // This StoreL is already optimal.
  3226     // Store down the constant.
  3227     store_constant(tiles, num_tiles, st_off, st_size, con);
  3229     intptr_t j = st_off >> LogBytesPerLong;
  3231     if (type == T_INT && st_size == BytesPerInt
  3232         && (st_off & BytesPerInt) == BytesPerInt) {
  3233       jlong lcon = tiles[j];
  3234       if (!Matcher::isSimpleConstant64(lcon) &&
  3235           st->Opcode() == Op_StoreI) {
  3236         // This StoreI is already optimal by itself.
  3237         jint* intcon = (jint*) &tiles[j];
  3238         intcon[1] = 0;  // undo the store_constant()
  3240         // If the previous store is also optimal by itself, back up and
  3241         // undo the action of the previous loop iteration... if we can.
  3242         // But if we can't, just let the previous half take care of itself.
  3243         st = nodes[j];
  3244         st_off -= BytesPerInt;
  3245         con = intcon[0];
  3246         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3247           assert(st_off >= header_size, "still ignoring header");
  3248           assert(get_store_offset(st, phase) == st_off, "must be");
  3249           assert(in(i-1) == zmem, "must be");
  3250           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3251           assert(con == tcon->is_int()->get_con(), "must be");
  3252           // Undo the effects of the previous loop trip, which swallowed st:
  3253           intcon[0] = 0;        // undo store_constant()
  3254           set_req(i-1, st);     // undo set_req(i, zmem)
  3255           nodes[j] = NULL;      // undo nodes[j] = st
  3256           --old_subword;        // undo ++old_subword
  3258         continue;               // This StoreI is already optimal.
  3262     // This store is not needed.
  3263     set_req(i, zmem);
  3264     nodes[j] = st;              // record for the moment
  3265     if (st_size < BytesPerLong) // something has changed
  3266           ++old_subword;        // includes int/float, but who's counting...
  3267     else  ++old_long;
  3270   if ((old_subword + old_long) == 0)
  3271     return;                     // nothing more to do
  3273   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3274   // Be sure to insert them before overlapping non-constant stores.
  3275   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3276   for (int j = 0; j < num_tiles; j++) {
  3277     jlong con  = tiles[j];
  3278     jlong init = inits[j];
  3279     if (con == 0)  continue;
  3280     jint con0,  con1;           // split the constant, address-wise
  3281     jint init0, init1;          // split the init map, address-wise
  3282     { union { jlong con; jint intcon[2]; } u;
  3283       u.con = con;
  3284       con0  = u.intcon[0];
  3285       con1  = u.intcon[1];
  3286       u.con = init;
  3287       init0 = u.intcon[0];
  3288       init1 = u.intcon[1];
  3291     Node* old = nodes[j];
  3292     assert(old != NULL, "need the prior store");
  3293     intptr_t offset = (j * BytesPerLong);
  3295     bool split = !Matcher::isSimpleConstant64(con);
  3297     if (offset < header_size) {
  3298       assert(offset + BytesPerInt >= header_size, "second int counts");
  3299       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3300       split = true;             // only the second word counts
  3301       // Example:  int a[] = { 42 ... }
  3302     } else if (con0 == 0 && init0 == -1) {
  3303       split = true;             // first word is covered by full inits
  3304       // Example:  int a[] = { ... foo(), 42 ... }
  3305     } else if (con1 == 0 && init1 == -1) {
  3306       split = true;             // second word is covered by full inits
  3307       // Example:  int a[] = { ... 42, foo() ... }
  3310     // Here's a case where init0 is neither 0 nor -1:
  3311     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3312     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3313     // In this case the tile is not split; it is (jlong)42.
  3314     // The big tile is stored down, and then the foo() value is inserted.
  3315     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3317     Node* ctl = old->in(MemNode::Control);
  3318     Node* adr = make_raw_address(offset, phase);
  3319     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3321     // One or two coalesced stores to plop down.
  3322     Node*    st[2];
  3323     intptr_t off[2];
  3324     int  nst = 0;
  3325     if (!split) {
  3326       ++new_long;
  3327       off[nst] = offset;
  3328       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3329                                   phase->longcon(con), T_LONG);
  3330     } else {
  3331       // Omit either if it is a zero.
  3332       if (con0 != 0) {
  3333         ++new_int;
  3334         off[nst]  = offset;
  3335         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3336                                     phase->intcon(con0), T_INT);
  3338       if (con1 != 0) {
  3339         ++new_int;
  3340         offset += BytesPerInt;
  3341         adr = make_raw_address(offset, phase);
  3342         off[nst]  = offset;
  3343         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3344                                     phase->intcon(con1), T_INT);
  3348     // Insert second store first, then the first before the second.
  3349     // Insert each one just before any overlapping non-constant stores.
  3350     while (nst > 0) {
  3351       Node* st1 = st[--nst];
  3352       C->copy_node_notes_to(st1, old);
  3353       st1 = phase->transform(st1);
  3354       offset = off[nst];
  3355       assert(offset >= header_size, "do not smash header");
  3356       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3357       guarantee(ins_idx != 0, "must re-insert constant store");
  3358       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3359       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3360         set_req(--ins_idx, st1);
  3361       else
  3362         ins_req(ins_idx, st1);
  3366   if (PrintCompilation && WizardMode)
  3367     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3368                   old_subword, old_long, new_int, new_long);
  3369   if (C->log() != NULL)
  3370     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3371                    old_subword, old_long, new_int, new_long);
  3373   // Clean up any remaining occurrences of zmem:
  3374   remove_extra_zeroes();
  3377 // Explore forward from in(start) to find the first fully initialized
  3378 // word, and return its offset.  Skip groups of subword stores which
  3379 // together initialize full words.  If in(start) is itself part of a
  3380 // fully initialized word, return the offset of in(start).  If there
  3381 // are no following full-word stores, or if something is fishy, return
  3382 // a negative value.
  3383 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3384   int       int_map = 0;
  3385   intptr_t  int_map_off = 0;
  3386   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3388   for (uint i = start, limit = req(); i < limit; i++) {
  3389     Node* st = in(i);
  3391     intptr_t st_off = get_store_offset(st, phase);
  3392     if (st_off < 0)  break;  // return conservative answer
  3394     int st_size = st->as_Store()->memory_size();
  3395     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3396       return st_off;            // we found a complete word init
  3399     // update the map:
  3401     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3402     if (this_int_off != int_map_off) {
  3403       // reset the map:
  3404       int_map = 0;
  3405       int_map_off = this_int_off;
  3408     int subword_off = st_off - this_int_off;
  3409     int_map |= right_n_bits(st_size) << subword_off;
  3410     if ((int_map & FULL_MAP) == FULL_MAP) {
  3411       return this_int_off;      // we found a complete word init
  3414     // Did this store hit or cross the word boundary?
  3415     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3416     if (next_int_off == this_int_off + BytesPerInt) {
  3417       // We passed the current int, without fully initializing it.
  3418       int_map_off = next_int_off;
  3419       int_map >>= BytesPerInt;
  3420     } else if (next_int_off > this_int_off + BytesPerInt) {
  3421       // We passed the current and next int.
  3422       return this_int_off + BytesPerInt;
  3426   return -1;
  3430 // Called when the associated AllocateNode is expanded into CFG.
  3431 // At this point, we may perform additional optimizations.
  3432 // Linearize the stores by ascending offset, to make memory
  3433 // activity as coherent as possible.
  3434 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3435                                       intptr_t header_size,
  3436                                       Node* size_in_bytes,
  3437                                       PhaseGVN* phase) {
  3438   assert(!is_complete(), "not already complete");
  3439   assert(stores_are_sane(phase), "");
  3440   assert(allocation() != NULL, "must be present");
  3442   remove_extra_zeroes();
  3444   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3445     // reduce instruction count for common initialization patterns
  3446     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3448   Node* zmem = zero_memory();   // initially zero memory state
  3449   Node* inits = zmem;           // accumulating a linearized chain of inits
  3450   #ifdef ASSERT
  3451   intptr_t first_offset = allocation()->minimum_header_size();
  3452   intptr_t last_init_off = first_offset;  // previous init offset
  3453   intptr_t last_init_end = first_offset;  // previous init offset+size
  3454   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3455   #endif
  3456   intptr_t zeroes_done = header_size;
  3458   bool do_zeroing = true;       // we might give up if inits are very sparse
  3459   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3461   if (ZeroTLAB)  do_zeroing = false;
  3462   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3464   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3465     Node* st = in(i);
  3466     intptr_t st_off = get_store_offset(st, phase);
  3467     if (st_off < 0)
  3468       break;                    // unknown junk in the inits
  3469     if (st->in(MemNode::Memory) != zmem)
  3470       break;                    // complicated store chains somehow in list
  3472     int st_size = st->as_Store()->memory_size();
  3473     intptr_t next_init_off = st_off + st_size;
  3475     if (do_zeroing && zeroes_done < next_init_off) {
  3476       // See if this store needs a zero before it or under it.
  3477       intptr_t zeroes_needed = st_off;
  3479       if (st_size < BytesPerInt) {
  3480         // Look for subword stores which only partially initialize words.
  3481         // If we find some, we must lay down some word-level zeroes first,
  3482         // underneath the subword stores.
  3483         //
  3484         // Examples:
  3485         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3486         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3487         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3488         //
  3489         // Note:  coalesce_subword_stores may have already done this,
  3490         // if it was prompted by constant non-zero subword initializers.
  3491         // But this case can still arise with non-constant stores.
  3493         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3495         // In the examples above:
  3496         //   in(i)          p   q   r   s     x   y     z
  3497         //   st_off        12  13  14  15    12  13    14
  3498         //   st_size        1   1   1   1     1   1     1
  3499         //   next_full_s.  12  16  16  16    16  16    16
  3500         //   z's_done      12  16  16  16    12  16    12
  3501         //   z's_needed    12  16  16  16    16  16    16
  3502         //   zsize          0   0   0   0     4   0     4
  3503         if (next_full_store < 0) {
  3504           // Conservative tack:  Zero to end of current word.
  3505           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3506         } else {
  3507           // Zero to beginning of next fully initialized word.
  3508           // Or, don't zero at all, if we are already in that word.
  3509           assert(next_full_store >= zeroes_needed, "must go forward");
  3510           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3511           zeroes_needed = next_full_store;
  3515       if (zeroes_needed > zeroes_done) {
  3516         intptr_t zsize = zeroes_needed - zeroes_done;
  3517         // Do some incremental zeroing on rawmem, in parallel with inits.
  3518         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3519         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3520                                               zeroes_done, zeroes_needed,
  3521                                               phase);
  3522         zeroes_done = zeroes_needed;
  3523         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3524           do_zeroing = false;   // leave the hole, next time
  3528     // Collect the store and move on:
  3529     st->set_req(MemNode::Memory, inits);
  3530     inits = st;                 // put it on the linearized chain
  3531     set_req(i, zmem);           // unhook from previous position
  3533     if (zeroes_done == st_off)
  3534       zeroes_done = next_init_off;
  3536     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3538     #ifdef ASSERT
  3539     // Various order invariants.  Weaker than stores_are_sane because
  3540     // a large constant tile can be filled in by smaller non-constant stores.
  3541     assert(st_off >= last_init_off, "inits do not reverse");
  3542     last_init_off = st_off;
  3543     const Type* val = NULL;
  3544     if (st_size >= BytesPerInt &&
  3545         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3546         (int)val->basic_type() < (int)T_OBJECT) {
  3547       assert(st_off >= last_tile_end, "tiles do not overlap");
  3548       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3549       last_tile_end = MAX2(last_tile_end, next_init_off);
  3550     } else {
  3551       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3552       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3553       assert(st_off      >= last_init_end, "inits do not overlap");
  3554       last_init_end = next_init_off;  // it's a non-tile
  3556     #endif //ASSERT
  3559   remove_extra_zeroes();        // clear out all the zmems left over
  3560   add_req(inits);
  3562   if (!ZeroTLAB) {
  3563     // If anything remains to be zeroed, zero it all now.
  3564     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3565     // if it is the last unused 4 bytes of an instance, forget about it
  3566     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3567     if (zeroes_done + BytesPerLong >= size_limit) {
  3568       assert(allocation() != NULL, "");
  3569       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3570       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3571       if (zeroes_done == k->layout_helper())
  3572         zeroes_done = size_limit;
  3574     if (zeroes_done < size_limit) {
  3575       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3576                                             zeroes_done, size_in_bytes, phase);
  3580   set_complete(phase);
  3581   return rawmem;
  3585 #ifdef ASSERT
  3586 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3587   if (is_complete())
  3588     return true;                // stores could be anything at this point
  3589   assert(allocation() != NULL, "must be present");
  3590   intptr_t last_off = allocation()->minimum_header_size();
  3591   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3592     Node* st = in(i);
  3593     intptr_t st_off = get_store_offset(st, phase);
  3594     if (st_off < 0)  continue;  // ignore dead garbage
  3595     if (last_off > st_off) {
  3596       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3597       this->dump(2);
  3598       assert(false, "ascending store offsets");
  3599       return false;
  3601     last_off = st_off + st->as_Store()->memory_size();
  3603   return true;
  3605 #endif //ASSERT
  3610 //============================MergeMemNode=====================================
  3611 //
  3612 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3613 // contributing store or call operations.  Each contributor provides the memory
  3614 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3615 // if a MergeMem has an input X for alias category #6, then any memory reference
  3616 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3617 // to using the MergeMem as a whole.
  3618 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3619 //
  3620 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3621 //
  3622 // In one special case (and more cases in the future), alias categories overlap.
  3623 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3624 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3625 // it is exactly equivalent to that state W:
  3626 //   MergeMem(<Bot>: W) <==> W
  3627 //
  3628 // Usually, the merge has more than one input.  In that case, where inputs
  3629 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3630 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3631 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3632 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3633 //
  3634 // A merge can take a "wide" memory state as one of its narrow inputs.
  3635 // This simply means that the merge observes out only the relevant parts of
  3636 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3637 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3638 //
  3639 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3640 // and that memory slices "leak through":
  3641 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3642 //
  3643 // But, in such a cascade, repeated memory slices can "block the leak":
  3644 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3645 //
  3646 // In the last example, Y is not part of the combined memory state of the
  3647 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3648 // memory states from arising, so you can be sure that the state Y is somehow
  3649 // a precursor to state Y'.
  3650 //
  3651 //
  3652 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3653 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3654 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3655 // Compile::alias_type (and kin) produce and manage these indexes.
  3656 //
  3657 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3658 // (Note that this provides quick access to the top node inside MergeMem methods,
  3659 // without the need to reach out via TLS to Compile::current.)
  3660 //
  3661 // As a consequence of what was just described, a MergeMem that represents a full
  3662 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3663 // containing all alias categories.
  3664 //
  3665 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3666 //
  3667 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3668 // a memory state for the alias type <N>, or else the top node, meaning that
  3669 // there is no particular input for that alias type.  Note that the length of
  3670 // a MergeMem is variable, and may be extended at any time to accommodate new
  3671 // memory states at larger alias indexes.  When merges grow, they are of course
  3672 // filled with "top" in the unused in() positions.
  3673 //
  3674 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3675 // (Top was chosen because it works smoothly with passes like GCM.)
  3676 //
  3677 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3678 // the type of random VM bits like TLS references.)  Since it is always the
  3679 // first non-Bot memory slice, some low-level loops use it to initialize an
  3680 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3681 //
  3682 //
  3683 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3684 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3685 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3686 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3687 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3688 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3689 //
  3690 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3691 // really that different from the other memory inputs.  An abbreviation called
  3692 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3693 //
  3694 //
  3695 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3696 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3697 // that "emerges though" the base memory will be marked as excluding the alias types
  3698 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3699 //
  3700 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3701 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3702 //
  3703 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3704 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3705 // actually a disjoint union of memory states, rather than an overlay.
  3706 //
  3708 //------------------------------MergeMemNode-----------------------------------
  3709 Node* MergeMemNode::make_empty_memory() {
  3710   Node* empty_memory = (Node*) Compile::current()->top();
  3711   assert(empty_memory->is_top(), "correct sentinel identity");
  3712   return empty_memory;
  3715 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3716   init_class_id(Class_MergeMem);
  3717   // all inputs are nullified in Node::Node(int)
  3718   // set_input(0, NULL);  // no control input
  3720   // Initialize the edges uniformly to top, for starters.
  3721   Node* empty_mem = make_empty_memory();
  3722   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3723     init_req(i,empty_mem);
  3725   assert(empty_memory() == empty_mem, "");
  3727   if( new_base != NULL && new_base->is_MergeMem() ) {
  3728     MergeMemNode* mdef = new_base->as_MergeMem();
  3729     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3730     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3731       mms.set_memory(mms.memory2());
  3733     assert(base_memory() == mdef->base_memory(), "");
  3734   } else {
  3735     set_base_memory(new_base);
  3739 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3740 // If mem is itself a MergeMem, populate the result with the same edges.
  3741 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3742   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3745 //------------------------------cmp--------------------------------------------
  3746 uint MergeMemNode::hash() const { return NO_HASH; }
  3747 uint MergeMemNode::cmp( const Node &n ) const {
  3748   return (&n == this);          // Always fail except on self
  3751 //------------------------------Identity---------------------------------------
  3752 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3753   // Identity if this merge point does not record any interesting memory
  3754   // disambiguations.
  3755   Node* base_mem = base_memory();
  3756   Node* empty_mem = empty_memory();
  3757   if (base_mem != empty_mem) {  // Memory path is not dead?
  3758     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3759       Node* mem = in(i);
  3760       if (mem != empty_mem && mem != base_mem) {
  3761         return this;            // Many memory splits; no change
  3765   return base_mem;              // No memory splits; ID on the one true input
  3768 //------------------------------Ideal------------------------------------------
  3769 // This method is invoked recursively on chains of MergeMem nodes
  3770 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3771   // Remove chain'd MergeMems
  3772   //
  3773   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3774   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3775   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3776   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3777   Node *progress = NULL;
  3780   Node* old_base = base_memory();
  3781   Node* empty_mem = empty_memory();
  3782   if (old_base == empty_mem)
  3783     return NULL; // Dead memory path.
  3785   MergeMemNode* old_mbase;
  3786   if (old_base != NULL && old_base->is_MergeMem())
  3787     old_mbase = old_base->as_MergeMem();
  3788   else
  3789     old_mbase = NULL;
  3790   Node* new_base = old_base;
  3792   // simplify stacked MergeMems in base memory
  3793   if (old_mbase)  new_base = old_mbase->base_memory();
  3795   // the base memory might contribute new slices beyond my req()
  3796   if (old_mbase)  grow_to_match(old_mbase);
  3798   // Look carefully at the base node if it is a phi.
  3799   PhiNode* phi_base;
  3800   if (new_base != NULL && new_base->is_Phi())
  3801     phi_base = new_base->as_Phi();
  3802   else
  3803     phi_base = NULL;
  3805   Node*    phi_reg = NULL;
  3806   uint     phi_len = (uint)-1;
  3807   if (phi_base != NULL && !phi_base->is_copy()) {
  3808     // do not examine phi if degraded to a copy
  3809     phi_reg = phi_base->region();
  3810     phi_len = phi_base->req();
  3811     // see if the phi is unfinished
  3812     for (uint i = 1; i < phi_len; i++) {
  3813       if (phi_base->in(i) == NULL) {
  3814         // incomplete phi; do not look at it yet!
  3815         phi_reg = NULL;
  3816         phi_len = (uint)-1;
  3817         break;
  3822   // Note:  We do not call verify_sparse on entry, because inputs
  3823   // can normalize to the base_memory via subsume_node or similar
  3824   // mechanisms.  This method repairs that damage.
  3826   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3828   // Look at each slice.
  3829   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3830     Node* old_in = in(i);
  3831     // calculate the old memory value
  3832     Node* old_mem = old_in;
  3833     if (old_mem == empty_mem)  old_mem = old_base;
  3834     assert(old_mem == memory_at(i), "");
  3836     // maybe update (reslice) the old memory value
  3838     // simplify stacked MergeMems
  3839     Node* new_mem = old_mem;
  3840     MergeMemNode* old_mmem;
  3841     if (old_mem != NULL && old_mem->is_MergeMem())
  3842       old_mmem = old_mem->as_MergeMem();
  3843     else
  3844       old_mmem = NULL;
  3845     if (old_mmem == this) {
  3846       // This can happen if loops break up and safepoints disappear.
  3847       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3848       // safepoint can be rewritten to a merge of the same BotPtr with
  3849       // the BotPtr phi coming into the loop.  If that phi disappears
  3850       // also, we can end up with a self-loop of the mergemem.
  3851       // In general, if loops degenerate and memory effects disappear,
  3852       // a mergemem can be left looking at itself.  This simply means
  3853       // that the mergemem's default should be used, since there is
  3854       // no longer any apparent effect on this slice.
  3855       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3856       //       from start.  Update the input to TOP.
  3857       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3859     else if (old_mmem != NULL) {
  3860       new_mem = old_mmem->memory_at(i);
  3862     // else preceding memory was not a MergeMem
  3864     // replace equivalent phis (unfortunately, they do not GVN together)
  3865     if (new_mem != NULL && new_mem != new_base &&
  3866         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3867       if (new_mem->is_Phi()) {
  3868         PhiNode* phi_mem = new_mem->as_Phi();
  3869         for (uint i = 1; i < phi_len; i++) {
  3870           if (phi_base->in(i) != phi_mem->in(i)) {
  3871             phi_mem = NULL;
  3872             break;
  3875         if (phi_mem != NULL) {
  3876           // equivalent phi nodes; revert to the def
  3877           new_mem = new_base;
  3882     // maybe store down a new value
  3883     Node* new_in = new_mem;
  3884     if (new_in == new_base)  new_in = empty_mem;
  3886     if (new_in != old_in) {
  3887       // Warning:  Do not combine this "if" with the previous "if"
  3888       // A memory slice might have be be rewritten even if it is semantically
  3889       // unchanged, if the base_memory value has changed.
  3890       set_req(i, new_in);
  3891       progress = this;          // Report progress
  3895   if (new_base != old_base) {
  3896     set_req(Compile::AliasIdxBot, new_base);
  3897     // Don't use set_base_memory(new_base), because we need to update du.
  3898     assert(base_memory() == new_base, "");
  3899     progress = this;
  3902   if( base_memory() == this ) {
  3903     // a self cycle indicates this memory path is dead
  3904     set_req(Compile::AliasIdxBot, empty_mem);
  3907   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3908   // Recursion must occur after the self cycle check above
  3909   if( base_memory()->is_MergeMem() ) {
  3910     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3911     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3912     if( m != NULL && (m->is_top() ||
  3913         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3914       // propagate rollup of dead cycle to self
  3915       set_req(Compile::AliasIdxBot, empty_mem);
  3919   if( base_memory() == empty_mem ) {
  3920     progress = this;
  3921     // Cut inputs during Parse phase only.
  3922     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3923     if( !can_reshape ) {
  3924       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3925         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3930   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3931     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3932     // transform should be attempted. Look for this->phi->this cycle.
  3933     uint merge_width = req();
  3934     if (merge_width > Compile::AliasIdxRaw) {
  3935       PhiNode* phi = base_memory()->as_Phi();
  3936       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3937         if (phi->in(i) == this) {
  3938           phase->is_IterGVN()->_worklist.push(phi);
  3939           break;
  3945   assert(progress || verify_sparse(), "please, no dups of base");
  3946   return progress;
  3949 //-------------------------set_base_memory-------------------------------------
  3950 void MergeMemNode::set_base_memory(Node *new_base) {
  3951   Node* empty_mem = empty_memory();
  3952   set_req(Compile::AliasIdxBot, new_base);
  3953   assert(memory_at(req()) == new_base, "must set default memory");
  3954   // Clear out other occurrences of new_base:
  3955   if (new_base != empty_mem) {
  3956     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3957       if (in(i) == new_base)  set_req(i, empty_mem);
  3962 //------------------------------out_RegMask------------------------------------
  3963 const RegMask &MergeMemNode::out_RegMask() const {
  3964   return RegMask::Empty;
  3967 //------------------------------dump_spec--------------------------------------
  3968 #ifndef PRODUCT
  3969 void MergeMemNode::dump_spec(outputStream *st) const {
  3970   st->print(" {");
  3971   Node* base_mem = base_memory();
  3972   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3973     Node* mem = memory_at(i);
  3974     if (mem == base_mem) { st->print(" -"); continue; }
  3975     st->print( " N%d:", mem->_idx );
  3976     Compile::current()->get_adr_type(i)->dump_on(st);
  3978   st->print(" }");
  3980 #endif // !PRODUCT
  3983 #ifdef ASSERT
  3984 static bool might_be_same(Node* a, Node* b) {
  3985   if (a == b)  return true;
  3986   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3987   // phis shift around during optimization
  3988   return true;  // pretty stupid...
  3991 // verify a narrow slice (either incoming or outgoing)
  3992 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3993   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3994   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3995   if (Node::in_dump())      return;  // muzzle asserts when printing
  3996   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3997   assert(n != NULL, "");
  3998   // Elide intervening MergeMem's
  3999   while (n->is_MergeMem()) {
  4000     n = n->as_MergeMem()->memory_at(alias_idx);
  4002   Compile* C = Compile::current();
  4003   const TypePtr* n_adr_type = n->adr_type();
  4004   if (n == m->empty_memory()) {
  4005     // Implicit copy of base_memory()
  4006   } else if (n_adr_type != TypePtr::BOTTOM) {
  4007     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4008     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4009   } else {
  4010     // A few places like make_runtime_call "know" that VM calls are narrow,
  4011     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4012     bool expected_wide_mem = false;
  4013     if (n == m->base_memory()) {
  4014       expected_wide_mem = true;
  4015     } else if (alias_idx == Compile::AliasIdxRaw ||
  4016                n == m->memory_at(Compile::AliasIdxRaw)) {
  4017       expected_wide_mem = true;
  4018     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4019       // memory can "leak through" calls on channels that
  4020       // are write-once.  Allow this also.
  4021       expected_wide_mem = true;
  4023     assert(expected_wide_mem, "expected narrow slice replacement");
  4026 #else // !ASSERT
  4027 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4028 #endif
  4031 //-----------------------------memory_at---------------------------------------
  4032 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4033   assert(alias_idx >= Compile::AliasIdxRaw ||
  4034          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4035          "must avoid base_memory and AliasIdxTop");
  4037   // Otherwise, it is a narrow slice.
  4038   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4039   Compile *C = Compile::current();
  4040   if (is_empty_memory(n)) {
  4041     // the array is sparse; empty slots are the "top" node
  4042     n = base_memory();
  4043     assert(Node::in_dump()
  4044            || n == NULL || n->bottom_type() == Type::TOP
  4045            || n->adr_type() == TypePtr::BOTTOM
  4046            || n->adr_type() == TypeRawPtr::BOTTOM
  4047            || Compile::current()->AliasLevel() == 0,
  4048            "must be a wide memory");
  4049     // AliasLevel == 0 if we are organizing the memory states manually.
  4050     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4051   } else {
  4052     // make sure the stored slice is sane
  4053     #ifdef ASSERT
  4054     if (is_error_reported() || Node::in_dump()) {
  4055     } else if (might_be_same(n, base_memory())) {
  4056       // Give it a pass:  It is a mostly harmless repetition of the base.
  4057       // This can arise normally from node subsumption during optimization.
  4058     } else {
  4059       verify_memory_slice(this, alias_idx, n);
  4061     #endif
  4063   return n;
  4066 //---------------------------set_memory_at-------------------------------------
  4067 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4068   verify_memory_slice(this, alias_idx, n);
  4069   Node* empty_mem = empty_memory();
  4070   if (n == base_memory())  n = empty_mem;  // collapse default
  4071   uint need_req = alias_idx+1;
  4072   if (req() < need_req) {
  4073     if (n == empty_mem)  return;  // already the default, so do not grow me
  4074     // grow the sparse array
  4075     do {
  4076       add_req(empty_mem);
  4077     } while (req() < need_req);
  4079   set_req( alias_idx, n );
  4084 //--------------------------iteration_setup------------------------------------
  4085 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4086   if (other != NULL) {
  4087     grow_to_match(other);
  4088     // invariant:  the finite support of mm2 is within mm->req()
  4089     #ifdef ASSERT
  4090     for (uint i = req(); i < other->req(); i++) {
  4091       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4093     #endif
  4095   // Replace spurious copies of base_memory by top.
  4096   Node* base_mem = base_memory();
  4097   if (base_mem != NULL && !base_mem->is_top()) {
  4098     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4099       if (in(i) == base_mem)
  4100         set_req(i, empty_memory());
  4105 //---------------------------grow_to_match-------------------------------------
  4106 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4107   Node* empty_mem = empty_memory();
  4108   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4109   // look for the finite support of the other memory
  4110   for (uint i = other->req(); --i >= req(); ) {
  4111     if (other->in(i) != empty_mem) {
  4112       uint new_len = i+1;
  4113       while (req() < new_len)  add_req(empty_mem);
  4114       break;
  4119 //---------------------------verify_sparse-------------------------------------
  4120 #ifndef PRODUCT
  4121 bool MergeMemNode::verify_sparse() const {
  4122   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4123   Node* base_mem = base_memory();
  4124   // The following can happen in degenerate cases, since empty==top.
  4125   if (is_empty_memory(base_mem))  return true;
  4126   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4127     assert(in(i) != NULL, "sane slice");
  4128     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4130   return true;
  4133 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4134   Node* n;
  4135   n = mm->in(idx);
  4136   if (mem == n)  return true;  // might be empty_memory()
  4137   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4138   if (mem == n)  return true;
  4139   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4140     if (mem == n)  return true;
  4141     if (n == NULL)  break;
  4143   return false;
  4145 #endif // !PRODUCT

mercurial