src/share/vm/runtime/deoptimization.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2260
ce6848d0666d
child 2462
8012aa3ccede
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/methodOop.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef COMPILER2
    63 #ifdef TARGET_ARCH_MODEL_x86_32
    64 # include "adfiles/ad_x86_32.hpp"
    65 #endif
    66 #ifdef TARGET_ARCH_MODEL_x86_64
    67 # include "adfiles/ad_x86_64.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_MODEL_sparc
    70 # include "adfiles/ad_sparc.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_zero
    73 # include "adfiles/ad_zero.hpp"
    74 #endif
    75 #endif
    77 bool DeoptimizationMarker::_is_active = false;
    79 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    80                                          int  caller_adjustment,
    81                                          int  number_of_frames,
    82                                          intptr_t* frame_sizes,
    83                                          address* frame_pcs,
    84                                          BasicType return_type) {
    85   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    86   _caller_adjustment         = caller_adjustment;
    87   _number_of_frames          = number_of_frames;
    88   _frame_sizes               = frame_sizes;
    89   _frame_pcs                 = frame_pcs;
    90   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
    91   _return_type               = return_type;
    92   // PD (x86 only)
    93   _counter_temp              = 0;
    94   _initial_fp                = 0;
    95   _unpack_kind               = 0;
    96   _sender_sp_temp            = 0;
    98   _total_frame_sizes         = size_of_frames();
    99 }
   102 Deoptimization::UnrollBlock::~UnrollBlock() {
   103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
   104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
   105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
   106 }
   109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   110   assert(register_number < RegisterMap::reg_count, "checking register number");
   111   return &_register_block[register_number * 2];
   112 }
   116 int Deoptimization::UnrollBlock::size_of_frames() const {
   117   // Acount first for the adjustment of the initial frame
   118   int result = _caller_adjustment;
   119   for (int index = 0; index < number_of_frames(); index++) {
   120     result += frame_sizes()[index];
   121   }
   122   return result;
   123 }
   126 void Deoptimization::UnrollBlock::print() {
   127   ttyLocker ttyl;
   128   tty->print_cr("UnrollBlock");
   129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   130   tty->print(   "  frame_sizes: ");
   131   for (int index = 0; index < number_of_frames(); index++) {
   132     tty->print("%d ", frame_sizes()[index]);
   133   }
   134   tty->cr();
   135 }
   138 // In order to make fetch_unroll_info work properly with escape
   139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   141 // of previously eliminated objects occurs in realloc_objects, which is
   142 // called from the method fetch_unroll_info_helper below.
   143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   145   // but makes the entry a little slower. There is however a little dance we have to
   146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   148   // fetch_unroll_info() is called at the beginning of the deoptimization
   149   // handler. Note this fact before we start generating temporary frames
   150   // that can confuse an asynchronous stack walker. This counter is
   151   // decremented at the end of unpack_frames().
   152   thread->inc_in_deopt_handler();
   154   return fetch_unroll_info_helper(thread);
   155 JRT_END
   158 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   159 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   161   // Note: there is a safepoint safety issue here. No matter whether we enter
   162   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   163   // the vframeArray is created.
   164   //
   166   // Allocate our special deoptimization ResourceMark
   167   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   168   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   169   thread->set_deopt_mark(dmark);
   171   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   172   RegisterMap map(thread, true);
   173   RegisterMap dummy_map(thread, false);
   174   // Now get the deoptee with a valid map
   175   frame deoptee = stub_frame.sender(&map);
   176   // Set the deoptee nmethod
   177   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   178   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   180   // Create a growable array of VFrames where each VFrame represents an inlined
   181   // Java frame.  This storage is allocated with the usual system arena.
   182   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   183   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   184   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   185   while (!vf->is_top()) {
   186     assert(vf->is_compiled_frame(), "Wrong frame type");
   187     chunk->push(compiledVFrame::cast(vf));
   188     vf = vf->sender();
   189   }
   190   assert(vf->is_compiled_frame(), "Wrong frame type");
   191   chunk->push(compiledVFrame::cast(vf));
   193 #ifdef COMPILER2
   194   // Reallocate the non-escaping objects and restore their fields. Then
   195   // relock objects if synchronization on them was eliminated.
   196   if (DoEscapeAnalysis) {
   197     if (EliminateAllocations) {
   198       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   199       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   201       // The flag return_oop() indicates call sites which return oop
   202       // in compiled code. Such sites include java method calls,
   203       // runtime calls (for example, used to allocate new objects/arrays
   204       // on slow code path) and any other calls generated in compiled code.
   205       // It is not guaranteed that we can get such information here only
   206       // by analyzing bytecode in deoptimized frames. This is why this flag
   207       // is set during method compilation (see Compile::Process_OopMap_Node()).
   208       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   209       Handle return_value;
   210       if (save_oop_result) {
   211         // Reallocation may trigger GC. If deoptimization happened on return from
   212         // call which returns oop we need to save it since it is not in oopmap.
   213         oop result = deoptee.saved_oop_result(&map);
   214         assert(result == NULL || result->is_oop(), "must be oop");
   215         return_value = Handle(thread, result);
   216         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   217         if (TraceDeoptimization) {
   218           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   219         }
   220       }
   221       bool reallocated = false;
   222       if (objects != NULL) {
   223         JRT_BLOCK
   224           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   225         JRT_END
   226       }
   227       if (reallocated) {
   228         reassign_fields(&deoptee, &map, objects);
   229 #ifndef PRODUCT
   230         if (TraceDeoptimization) {
   231           ttyLocker ttyl;
   232           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   233           print_objects(objects);
   234         }
   235 #endif
   236       }
   237       if (save_oop_result) {
   238         // Restore result.
   239         deoptee.set_saved_oop_result(&map, return_value());
   240       }
   241     }
   242     if (EliminateLocks) {
   243 #ifndef PRODUCT
   244       bool first = true;
   245 #endif
   246       for (int i = 0; i < chunk->length(); i++) {
   247         compiledVFrame* cvf = chunk->at(i);
   248         assert (cvf->scope() != NULL,"expect only compiled java frames");
   249         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   250         if (monitors->is_nonempty()) {
   251           relock_objects(monitors, thread);
   252 #ifndef PRODUCT
   253           if (TraceDeoptimization) {
   254             ttyLocker ttyl;
   255             for (int j = 0; j < monitors->length(); j++) {
   256               MonitorInfo* mi = monitors->at(j);
   257               if (mi->eliminated()) {
   258                 if (first) {
   259                   first = false;
   260                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   261                 }
   262                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   263               }
   264             }
   265           }
   266 #endif
   267         }
   268       }
   269     }
   270   }
   271 #endif // COMPILER2
   272   // Ensure that no safepoint is taken after pointers have been stored
   273   // in fields of rematerialized objects.  If a safepoint occurs from here on
   274   // out the java state residing in the vframeArray will be missed.
   275   No_Safepoint_Verifier no_safepoint;
   277   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   279   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   280   thread->set_vframe_array_head(array);
   282   // Now that the vframeArray has been created if we have any deferred local writes
   283   // added by jvmti then we can free up that structure as the data is now in the
   284   // vframeArray
   286   if (thread->deferred_locals() != NULL) {
   287     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   288     int i = 0;
   289     do {
   290       // Because of inlining we could have multiple vframes for a single frame
   291       // and several of the vframes could have deferred writes. Find them all.
   292       if (list->at(i)->id() == array->original().id()) {
   293         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   294         list->remove_at(i);
   295         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   296         delete dlv;
   297       } else {
   298         i++;
   299       }
   300     } while ( i < list->length() );
   301     if (list->length() == 0) {
   302       thread->set_deferred_locals(NULL);
   303       // free the list and elements back to C heap.
   304       delete list;
   305     }
   307   }
   309 #ifndef SHARK
   310   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   311   CodeBlob* cb = stub_frame.cb();
   312   // Verify we have the right vframeArray
   313   assert(cb->frame_size() >= 0, "Unexpected frame size");
   314   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   316   // If the deopt call site is a MethodHandle invoke call site we have
   317   // to adjust the unpack_sp.
   318   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   319   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   320     unpack_sp = deoptee.unextended_sp();
   322 #ifdef ASSERT
   323   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   324   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
   325 #endif
   326 #else
   327   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   328 #endif // !SHARK
   330   // This is a guarantee instead of an assert because if vframe doesn't match
   331   // we will unpack the wrong deoptimized frame and wind up in strange places
   332   // where it will be very difficult to figure out what went wrong. Better
   333   // to die an early death here than some very obscure death later when the
   334   // trail is cold.
   335   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   336   // in that it will fail to detect a problem when there is one. This needs
   337   // more work in tiger timeframe.
   338   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   340   int number_of_frames = array->frames();
   342   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   343   // virtual activation, which is the reverse of the elements in the vframes array.
   344   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
   345   // +1 because we always have an interpreter return address for the final slot.
   346   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
   347   int callee_parameters = 0;
   348   int callee_locals = 0;
   349   int popframe_extra_args = 0;
   350   // Create an interpreter return address for the stub to use as its return
   351   // address so the skeletal frames are perfectly walkable
   352   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   354   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   355   // activation be put back on the expression stack of the caller for reexecution
   356   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   357     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   358   }
   360   //
   361   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   362   // frame_sizes/frame_pcs[1] next oldest frame (int)
   363   // frame_sizes/frame_pcs[n] youngest frame (int)
   364   //
   365   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   366   // owns the space for the return address to it's caller).  Confusing ain't it.
   367   //
   368   // The vframe array can address vframes with indices running from
   369   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   370   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   371   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   372   // so things look a little strange in this loop.
   373   //
   374   for (int index = 0; index < array->frames(); index++ ) {
   375     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   376     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   377     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   378     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   379                                                                                                     callee_locals,
   380                                                                                                     index == 0,
   381                                                                                                     popframe_extra_args);
   382     // This pc doesn't have to be perfect just good enough to identify the frame
   383     // as interpreted so the skeleton frame will be walkable
   384     // The correct pc will be set when the skeleton frame is completely filled out
   385     // The final pc we store in the loop is wrong and will be overwritten below
   386     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   388     callee_parameters = array->element(index)->method()->size_of_parameters();
   389     callee_locals = array->element(index)->method()->max_locals();
   390     popframe_extra_args = 0;
   391   }
   393   // Compute whether the root vframe returns a float or double value.
   394   BasicType return_type;
   395   {
   396     HandleMark hm;
   397     methodHandle method(thread, array->element(0)->method());
   398     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
   399     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
   400   }
   402   // Compute information for handling adapters and adjusting the frame size of the caller.
   403   int caller_adjustment = 0;
   405   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   406   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   407   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   408   //
   409   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   410   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   412   // Compute the amount the oldest interpreter frame will have to adjust
   413   // its caller's stack by. If the caller is a compiled frame then
   414   // we pretend that the callee has no parameters so that the
   415   // extension counts for the full amount of locals and not just
   416   // locals-parms. This is because without a c2i adapter the parm
   417   // area as created by the compiled frame will not be usable by
   418   // the interpreter. (Depending on the calling convention there
   419   // may not even be enough space).
   421   // QQQ I'd rather see this pushed down into last_frame_adjust
   422   // and have it take the sender (aka caller).
   424   if (deopt_sender.is_compiled_frame()) {
   425     caller_adjustment = last_frame_adjust(0, callee_locals);
   426   } else if (callee_locals > callee_parameters) {
   427     // The caller frame may need extending to accommodate
   428     // non-parameter locals of the first unpacked interpreted frame.
   429     // Compute that adjustment.
   430     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   431   }
   434   // If the sender is deoptimized the we must retrieve the address of the handler
   435   // since the frame will "magically" show the original pc before the deopt
   436   // and we'd undo the deopt.
   438   frame_pcs[0] = deopt_sender.raw_pc();
   440 #ifndef SHARK
   441   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   442 #endif // SHARK
   444   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   445                                       caller_adjustment * BytesPerWord,
   446                                       number_of_frames,
   447                                       frame_sizes,
   448                                       frame_pcs,
   449                                       return_type);
   450 #if defined(IA32) || defined(AMD64)
   451   // We need a way to pass fp to the unpacking code so the skeletal frames
   452   // come out correct. This is only needed for x86 because of c2 using ebp
   453   // as an allocatable register. So this update is useless (and harmless)
   454   // on the other platforms. It would be nice to do this in a different
   455   // way but even the old style deoptimization had a problem with deriving
   456   // this value. NEEDS_CLEANUP
   457   // Note: now that c1 is using c2's deopt blob we must do this on all
   458   // x86 based platforms
   459   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
   460   *fp_addr = array->sender().fp(); // was adapter_caller
   461 #endif /* IA32 || AMD64 */
   463   if (array->frames() > 1) {
   464     if (VerifyStack && TraceDeoptimization) {
   465       tty->print_cr("Deoptimizing method containing inlining");
   466     }
   467   }
   469   array->set_unroll_block(info);
   470   return info;
   471 }
   473 // Called to cleanup deoptimization data structures in normal case
   474 // after unpacking to stack and when stack overflow error occurs
   475 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   476                                         vframeArray *array) {
   478   // Get array if coming from exception
   479   if (array == NULL) {
   480     array = thread->vframe_array_head();
   481   }
   482   thread->set_vframe_array_head(NULL);
   484   // Free the previous UnrollBlock
   485   vframeArray* old_array = thread->vframe_array_last();
   486   thread->set_vframe_array_last(array);
   488   if (old_array != NULL) {
   489     UnrollBlock* old_info = old_array->unroll_block();
   490     old_array->set_unroll_block(NULL);
   491     delete old_info;
   492     delete old_array;
   493   }
   495   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   496   // inside the vframeArray (StackValueCollections)
   498   delete thread->deopt_mark();
   499   thread->set_deopt_mark(NULL);
   500   thread->set_deopt_nmethod(NULL);
   503   if (JvmtiExport::can_pop_frame()) {
   504 #ifndef CC_INTERP
   505     // Regardless of whether we entered this routine with the pending
   506     // popframe condition bit set, we should always clear it now
   507     thread->clear_popframe_condition();
   508 #else
   509     // C++ interpeter will clear has_pending_popframe when it enters
   510     // with method_resume. For deopt_resume2 we clear it now.
   511     if (thread->popframe_forcing_deopt_reexecution())
   512         thread->clear_popframe_condition();
   513 #endif /* CC_INTERP */
   514   }
   516   // unpack_frames() is called at the end of the deoptimization handler
   517   // and (in C2) at the end of the uncommon trap handler. Note this fact
   518   // so that an asynchronous stack walker can work again. This counter is
   519   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   520   // the beginning of uncommon_trap().
   521   thread->dec_in_deopt_handler();
   522 }
   525 // Return BasicType of value being returned
   526 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   528   // We are already active int he special DeoptResourceMark any ResourceObj's we
   529   // allocate will be freed at the end of the routine.
   531   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   532   // but makes the entry a little slower. There is however a little dance we have to
   533   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   534   ResetNoHandleMark rnhm; // No-op in release/product versions
   535   HandleMark hm;
   537   frame stub_frame = thread->last_frame();
   539   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   540   // must point to the vframeArray for the unpack frame.
   541   vframeArray* array = thread->vframe_array_head();
   543 #ifndef PRODUCT
   544   if (TraceDeoptimization) {
   545     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   546   }
   547 #endif
   549   UnrollBlock* info = array->unroll_block();
   551   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   552   array->unpack_to_stack(stub_frame, exec_mode);
   554   BasicType bt = info->return_type();
   556   // If we have an exception pending, claim that the return type is an oop
   557   // so the deopt_blob does not overwrite the exception_oop.
   559   if (exec_mode == Unpack_exception)
   560     bt = T_OBJECT;
   562   // Cleanup thread deopt data
   563   cleanup_deopt_info(thread, array);
   565 #ifndef PRODUCT
   566   if (VerifyStack) {
   567     ResourceMark res_mark;
   569     // Verify that the just-unpacked frames match the interpreter's
   570     // notions of expression stack and locals
   571     vframeArray* cur_array = thread->vframe_array_last();
   572     RegisterMap rm(thread, false);
   573     rm.set_include_argument_oops(false);
   574     bool is_top_frame = true;
   575     int callee_size_of_parameters = 0;
   576     int callee_max_locals = 0;
   577     for (int i = 0; i < cur_array->frames(); i++) {
   578       vframeArrayElement* el = cur_array->element(i);
   579       frame* iframe = el->iframe();
   580       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   582       // Get the oop map for this bci
   583       InterpreterOopMap mask;
   584       int cur_invoke_parameter_size = 0;
   585       bool try_next_mask = false;
   586       int next_mask_expression_stack_size = -1;
   587       int top_frame_expression_stack_adjustment = 0;
   588       methodHandle mh(thread, iframe->interpreter_frame_method());
   589       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   590       BytecodeStream str(mh);
   591       str.set_start(iframe->interpreter_frame_bci());
   592       int max_bci = mh->code_size();
   593       // Get to the next bytecode if possible
   594       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   595       // Check to see if we can grab the number of outgoing arguments
   596       // at an uncommon trap for an invoke (where the compiler
   597       // generates debug info before the invoke has executed)
   598       Bytecodes::Code cur_code = str.next();
   599       if (cur_code == Bytecodes::_invokevirtual ||
   600           cur_code == Bytecodes::_invokespecial ||
   601           cur_code == Bytecodes::_invokestatic  ||
   602           cur_code == Bytecodes::_invokeinterface) {
   603         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
   604         symbolHandle signature(thread, invoke->signature());
   605         ArgumentSizeComputer asc(signature);
   606         cur_invoke_parameter_size = asc.size();
   607         if (cur_code != Bytecodes::_invokestatic) {
   608           // Add in receiver
   609           ++cur_invoke_parameter_size;
   610         }
   611       }
   612       if (str.bci() < max_bci) {
   613         Bytecodes::Code bc = str.next();
   614         if (bc >= 0) {
   615           // The interpreter oop map generator reports results before
   616           // the current bytecode has executed except in the case of
   617           // calls. It seems to be hard to tell whether the compiler
   618           // has emitted debug information matching the "state before"
   619           // a given bytecode or the state after, so we try both
   620           switch (cur_code) {
   621             case Bytecodes::_invokevirtual:
   622             case Bytecodes::_invokespecial:
   623             case Bytecodes::_invokestatic:
   624             case Bytecodes::_invokeinterface:
   625             case Bytecodes::_athrow:
   626               break;
   627             default: {
   628               InterpreterOopMap next_mask;
   629               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   630               next_mask_expression_stack_size = next_mask.expression_stack_size();
   631               // Need to subtract off the size of the result type of
   632               // the bytecode because this is not described in the
   633               // debug info but returned to the interpreter in the TOS
   634               // caching register
   635               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   636               if (bytecode_result_type != T_ILLEGAL) {
   637                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   638               }
   639               assert(top_frame_expression_stack_adjustment >= 0, "");
   640               try_next_mask = true;
   641               break;
   642             }
   643           }
   644         }
   645       }
   647       // Verify stack depth and oops in frame
   648       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   649       if (!(
   650             /* SPARC */
   651             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   652             /* x86 */
   653             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   654             (try_next_mask &&
   655              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   656                                                                     top_frame_expression_stack_adjustment))) ||
   657             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   658             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   659              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   660             )) {
   661         ttyLocker ttyl;
   663         // Print out some information that will help us debug the problem
   664         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   665         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   666         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   667                       iframe->interpreter_frame_expression_stack_size());
   668         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   669         tty->print_cr("  try_next_mask = %d", try_next_mask);
   670         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   671         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   672         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   673         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   674         tty->print_cr("  exec_mode = %d", exec_mode);
   675         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   676         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   677         tty->print_cr("  Interpreted frames:");
   678         for (int k = 0; k < cur_array->frames(); k++) {
   679           vframeArrayElement* el = cur_array->element(k);
   680           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   681         }
   682         cur_array->print_on_2(tty);
   683         guarantee(false, "wrong number of expression stack elements during deopt");
   684       }
   685       VerifyOopClosure verify;
   686       iframe->oops_interpreted_do(&verify, &rm, false);
   687       callee_size_of_parameters = mh->size_of_parameters();
   688       callee_max_locals = mh->max_locals();
   689       is_top_frame = false;
   690     }
   691   }
   692 #endif /* !PRODUCT */
   695   return bt;
   696 JRT_END
   699 int Deoptimization::deoptimize_dependents() {
   700   Threads::deoptimized_wrt_marked_nmethods();
   701   return 0;
   702 }
   705 #ifdef COMPILER2
   706 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   707   Handle pending_exception(thread->pending_exception());
   708   const char* exception_file = thread->exception_file();
   709   int exception_line = thread->exception_line();
   710   thread->clear_pending_exception();
   712   for (int i = 0; i < objects->length(); i++) {
   713     assert(objects->at(i)->is_object(), "invalid debug information");
   714     ObjectValue* sv = (ObjectValue*) objects->at(i);
   716     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   717     oop obj = NULL;
   719     if (k->oop_is_instance()) {
   720       instanceKlass* ik = instanceKlass::cast(k());
   721       obj = ik->allocate_instance(CHECK_(false));
   722     } else if (k->oop_is_typeArray()) {
   723       typeArrayKlass* ak = typeArrayKlass::cast(k());
   724       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   725       int len = sv->field_size() / type2size[ak->element_type()];
   726       obj = ak->allocate(len, CHECK_(false));
   727     } else if (k->oop_is_objArray()) {
   728       objArrayKlass* ak = objArrayKlass::cast(k());
   729       obj = ak->allocate(sv->field_size(), CHECK_(false));
   730     }
   732     assert(obj != NULL, "allocation failed");
   733     assert(sv->value().is_null(), "redundant reallocation");
   734     sv->set_value(obj);
   735   }
   737   if (pending_exception.not_null()) {
   738     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   739   }
   741   return true;
   742 }
   744 // This assumes that the fields are stored in ObjectValue in the same order
   745 // they are yielded by do_nonstatic_fields.
   746 class FieldReassigner: public FieldClosure {
   747   frame* _fr;
   748   RegisterMap* _reg_map;
   749   ObjectValue* _sv;
   750   instanceKlass* _ik;
   751   oop _obj;
   753   int _i;
   754 public:
   755   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   756     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   758   int i() const { return _i; }
   761   void do_field(fieldDescriptor* fd) {
   762     intptr_t val;
   763     StackValue* value =
   764       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   765     int offset = fd->offset();
   766     switch (fd->field_type()) {
   767     case T_OBJECT: case T_ARRAY:
   768       assert(value->type() == T_OBJECT, "Agreement.");
   769       _obj->obj_field_put(offset, value->get_obj()());
   770       break;
   772     case T_LONG: case T_DOUBLE: {
   773       assert(value->type() == T_INT, "Agreement.");
   774       StackValue* low =
   775         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   776 #ifdef _LP64
   777       jlong res = (jlong)low->get_int();
   778 #else
   779 #ifdef SPARC
   780       // For SPARC we have to swap high and low words.
   781       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   782 #else
   783       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   784 #endif //SPARC
   785 #endif
   786       _obj->long_field_put(offset, res);
   787       break;
   788     }
   789     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   790     case T_INT: case T_FLOAT: // 4 bytes.
   791       assert(value->type() == T_INT, "Agreement.");
   792       val = value->get_int();
   793       _obj->int_field_put(offset, (jint)*((jint*)&val));
   794       break;
   796     case T_SHORT: case T_CHAR: // 2 bytes
   797       assert(value->type() == T_INT, "Agreement.");
   798       val = value->get_int();
   799       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   800       break;
   802     case T_BOOLEAN: case T_BYTE: // 1 byte
   803       assert(value->type() == T_INT, "Agreement.");
   804       val = value->get_int();
   805       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   806       break;
   808     default:
   809       ShouldNotReachHere();
   810     }
   811     _i++;
   812   }
   813 };
   815 // restore elements of an eliminated type array
   816 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   817   int index = 0;
   818   intptr_t val;
   820   for (int i = 0; i < sv->field_size(); i++) {
   821     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   822     switch(type) {
   823     case T_LONG: case T_DOUBLE: {
   824       assert(value->type() == T_INT, "Agreement.");
   825       StackValue* low =
   826         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   827 #ifdef _LP64
   828       jlong res = (jlong)low->get_int();
   829 #else
   830 #ifdef SPARC
   831       // For SPARC we have to swap high and low words.
   832       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   833 #else
   834       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   835 #endif //SPARC
   836 #endif
   837       obj->long_at_put(index, res);
   838       break;
   839     }
   841     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   842     case T_INT: case T_FLOAT: // 4 bytes.
   843       assert(value->type() == T_INT, "Agreement.");
   844       val = value->get_int();
   845       obj->int_at_put(index, (jint)*((jint*)&val));
   846       break;
   848     case T_SHORT: case T_CHAR: // 2 bytes
   849       assert(value->type() == T_INT, "Agreement.");
   850       val = value->get_int();
   851       obj->short_at_put(index, (jshort)*((jint*)&val));
   852       break;
   854     case T_BOOLEAN: case T_BYTE: // 1 byte
   855       assert(value->type() == T_INT, "Agreement.");
   856       val = value->get_int();
   857       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   858       break;
   860       default:
   861         ShouldNotReachHere();
   862     }
   863     index++;
   864   }
   865 }
   868 // restore fields of an eliminated object array
   869 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   870   for (int i = 0; i < sv->field_size(); i++) {
   871     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   872     assert(value->type() == T_OBJECT, "object element expected");
   873     obj->obj_at_put(i, value->get_obj()());
   874   }
   875 }
   878 // restore fields of all eliminated objects and arrays
   879 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   880   for (int i = 0; i < objects->length(); i++) {
   881     ObjectValue* sv = (ObjectValue*) objects->at(i);
   882     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   883     Handle obj = sv->value();
   884     assert(obj.not_null(), "reallocation was missed");
   886     if (k->oop_is_instance()) {
   887       instanceKlass* ik = instanceKlass::cast(k());
   888       FieldReassigner reassign(fr, reg_map, sv, obj());
   889       ik->do_nonstatic_fields(&reassign);
   890     } else if (k->oop_is_typeArray()) {
   891       typeArrayKlass* ak = typeArrayKlass::cast(k());
   892       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   893     } else if (k->oop_is_objArray()) {
   894       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   895     }
   896   }
   897 }
   900 // relock objects for which synchronization was eliminated
   901 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   902   for (int i = 0; i < monitors->length(); i++) {
   903     MonitorInfo* mon_info = monitors->at(i);
   904     if (mon_info->eliminated()) {
   905       assert(mon_info->owner() != NULL, "reallocation was missed");
   906       Handle obj = Handle(mon_info->owner());
   907       markOop mark = obj->mark();
   908       if (UseBiasedLocking && mark->has_bias_pattern()) {
   909         // New allocated objects may have the mark set to anonymously biased.
   910         // Also the deoptimized method may called methods with synchronization
   911         // where the thread-local object is bias locked to the current thread.
   912         assert(mark->is_biased_anonymously() ||
   913                mark->biased_locker() == thread, "should be locked to current thread");
   914         // Reset mark word to unbiased prototype.
   915         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   916         obj->set_mark(unbiased_prototype);
   917       }
   918       BasicLock* lock = mon_info->lock();
   919       ObjectSynchronizer::slow_enter(obj, lock, thread);
   920     }
   921     assert(mon_info->owner()->is_locked(), "object must be locked now");
   922   }
   923 }
   926 #ifndef PRODUCT
   927 // print information about reallocated objects
   928 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   929   fieldDescriptor fd;
   931   for (int i = 0; i < objects->length(); i++) {
   932     ObjectValue* sv = (ObjectValue*) objects->at(i);
   933     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
   934     Handle obj = sv->value();
   936     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   937     k->as_klassOop()->print_value();
   938     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   939     tty->cr();
   941     if (Verbose) {
   942       k->oop_print_on(obj(), tty);
   943     }
   944   }
   945 }
   946 #endif
   947 #endif // COMPILER2
   949 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   951 #ifndef PRODUCT
   952   if (TraceDeoptimization) {
   953     ttyLocker ttyl;
   954     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   955     fr.print_on(tty);
   956     tty->print_cr("     Virtual frames (innermost first):");
   957     for (int index = 0; index < chunk->length(); index++) {
   958       compiledVFrame* vf = chunk->at(index);
   959       tty->print("       %2d - ", index);
   960       vf->print_value();
   961       int bci = chunk->at(index)->raw_bci();
   962       const char* code_name;
   963       if (bci == SynchronizationEntryBCI) {
   964         code_name = "sync entry";
   965       } else {
   966         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
   967         code_name = Bytecodes::name(code);
   968       }
   969       tty->print(" - %s", code_name);
   970       tty->print_cr(" @ bci %d ", bci);
   971       if (Verbose) {
   972         vf->print();
   973         tty->cr();
   974       }
   975     }
   976   }
   977 #endif
   979   // Register map for next frame (used for stack crawl).  We capture
   980   // the state of the deopt'ing frame's caller.  Thus if we need to
   981   // stuff a C2I adapter we can properly fill in the callee-save
   982   // register locations.
   983   frame caller = fr.sender(reg_map);
   984   int frame_size = caller.sp() - fr.sp();
   986   frame sender = caller;
   988   // Since the Java thread being deoptimized will eventually adjust it's own stack,
   989   // the vframeArray containing the unpacking information is allocated in the C heap.
   990   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
   991   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
   993   // Compare the vframeArray to the collected vframes
   994   assert(array->structural_compare(thread, chunk), "just checking");
   995   Events::log("# vframes = %d", (intptr_t)chunk->length());
   997 #ifndef PRODUCT
   998   if (TraceDeoptimization) {
   999     ttyLocker ttyl;
  1000     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1002 #endif // PRODUCT
  1004   return array;
  1008 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1009   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1010   for (int i = 0; i < monitors->length(); i++) {
  1011     MonitorInfo* mon_info = monitors->at(i);
  1012     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1013       objects_to_revoke->append(Handle(mon_info->owner()));
  1019 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1020   if (!UseBiasedLocking) {
  1021     return;
  1024   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1026   // Unfortunately we don't have a RegisterMap available in most of
  1027   // the places we want to call this routine so we need to walk the
  1028   // stack again to update the register map.
  1029   if (map == NULL || !map->update_map()) {
  1030     StackFrameStream sfs(thread, true);
  1031     bool found = false;
  1032     while (!found && !sfs.is_done()) {
  1033       frame* cur = sfs.current();
  1034       sfs.next();
  1035       found = cur->id() == fr.id();
  1037     assert(found, "frame to be deoptimized not found on target thread's stack");
  1038     map = sfs.register_map();
  1041   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1042   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1043   // Revoke monitors' biases in all scopes
  1044   while (!cvf->is_top()) {
  1045     collect_monitors(cvf, objects_to_revoke);
  1046     cvf = compiledVFrame::cast(cvf->sender());
  1048   collect_monitors(cvf, objects_to_revoke);
  1050   if (SafepointSynchronize::is_at_safepoint()) {
  1051     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1052   } else {
  1053     BiasedLocking::revoke(objects_to_revoke);
  1058 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1059   if (!UseBiasedLocking) {
  1060     return;
  1063   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1064   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1065   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1066     if (jt->has_last_Java_frame()) {
  1067       StackFrameStream sfs(jt, true);
  1068       while (!sfs.is_done()) {
  1069         frame* cur = sfs.current();
  1070         if (cb->contains(cur->pc())) {
  1071           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1072           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1073           // Revoke monitors' biases in all scopes
  1074           while (!cvf->is_top()) {
  1075             collect_monitors(cvf, objects_to_revoke);
  1076             cvf = compiledVFrame::cast(cvf->sender());
  1078           collect_monitors(cvf, objects_to_revoke);
  1080         sfs.next();
  1084   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1088 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1089   assert(fr.can_be_deoptimized(), "checking frame type");
  1091   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1093   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
  1095   // Patch the nmethod so that when execution returns to it we will
  1096   // deopt the execution state and return to the interpreter.
  1097   fr.deoptimize(thread);
  1100 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1101   // Deoptimize only if the frame comes from compile code.
  1102   // Do not deoptimize the frame which is already patched
  1103   // during the execution of the loops below.
  1104   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1105     return;
  1107   ResourceMark rm;
  1108   DeoptimizationMarker dm;
  1109   if (UseBiasedLocking) {
  1110     revoke_biases_of_monitors(thread, fr, map);
  1112   deoptimize_single_frame(thread, fr);
  1117 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1118   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1119          "can only deoptimize other thread at a safepoint");
  1120   // Compute frame and register map based on thread and sp.
  1121   RegisterMap reg_map(thread, UseBiasedLocking);
  1122   frame fr = thread->last_frame();
  1123   while (fr.id() != id) {
  1124     fr = fr.sender(&reg_map);
  1126   deoptimize(thread, fr, &reg_map);
  1130 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1131   if (thread == Thread::current()) {
  1132     Deoptimization::deoptimize_frame_internal(thread, id);
  1133   } else {
  1134     VM_DeoptimizeFrame deopt(thread, id);
  1135     VMThread::execute(&deopt);
  1140 // JVMTI PopFrame support
  1141 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1143   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1145 JRT_END
  1148 #if defined(COMPILER2) || defined(SHARK)
  1149 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1150   // in case of an unresolved klass entry, load the class.
  1151   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1152     klassOop tk = constant_pool->klass_at(index, CHECK);
  1153     return;
  1156   if (!constant_pool->tag_at(index).is_symbol()) return;
  1158   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
  1159   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
  1161   // class name?
  1162   if (symbol->byte_at(0) != '(') {
  1163     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1164     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1165     return;
  1168   // then it must be a signature!
  1169   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1170     if (ss.is_object()) {
  1171       symbolOop s = ss.as_symbol(CHECK);
  1172       symbolHandle class_name (THREAD, s);
  1173       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
  1174       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1180 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1181   EXCEPTION_MARK;
  1182   load_class_by_index(constant_pool, index, THREAD);
  1183   if (HAS_PENDING_EXCEPTION) {
  1184     // Exception happened during classloading. We ignore the exception here, since it
  1185     // is going to be rethrown since the current activation is going to be deoptimzied and
  1186     // the interpreter will re-execute the bytecode.
  1187     CLEAR_PENDING_EXCEPTION;
  1191 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1192   HandleMark hm;
  1194   // uncommon_trap() is called at the beginning of the uncommon trap
  1195   // handler. Note this fact before we start generating temporary frames
  1196   // that can confuse an asynchronous stack walker. This counter is
  1197   // decremented at the end of unpack_frames().
  1198   thread->inc_in_deopt_handler();
  1200   // We need to update the map if we have biased locking.
  1201   RegisterMap reg_map(thread, UseBiasedLocking);
  1202   frame stub_frame = thread->last_frame();
  1203   frame fr = stub_frame.sender(&reg_map);
  1204   // Make sure the calling nmethod is not getting deoptimized and removed
  1205   // before we are done with it.
  1206   nmethodLocker nl(fr.pc());
  1209     ResourceMark rm;
  1211     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1212     revoke_biases_of_monitors(thread, fr, &reg_map);
  1214     DeoptReason reason = trap_request_reason(trap_request);
  1215     DeoptAction action = trap_request_action(trap_request);
  1216     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1218     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
  1219     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1220     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1222     nmethod* nm = cvf->code();
  1224     ScopeDesc*      trap_scope  = cvf->scope();
  1225     methodHandle    trap_method = trap_scope->method();
  1226     int             trap_bci    = trap_scope->bci();
  1227     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
  1229     // Record this event in the histogram.
  1230     gather_statistics(reason, action, trap_bc);
  1232     // Ensure that we can record deopt. history:
  1233     bool create_if_missing = ProfileTraps;
  1235     methodDataHandle trap_mdo
  1236       (THREAD, get_method_data(thread, trap_method, create_if_missing));
  1238     // Print a bunch of diagnostics, if requested.
  1239     if (TraceDeoptimization || LogCompilation) {
  1240       ResourceMark rm;
  1241       ttyLocker ttyl;
  1242       char buf[100];
  1243       if (xtty != NULL) {
  1244         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1245                          os::current_thread_id(),
  1246                          format_trap_request(buf, sizeof(buf), trap_request));
  1247         nm->log_identity(xtty);
  1249       symbolHandle class_name;
  1250       bool unresolved = false;
  1251       if (unloaded_class_index >= 0) {
  1252         constantPoolHandle constants (THREAD, trap_method->constants());
  1253         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1254           class_name = symbolHandle(THREAD,
  1255             constants->klass_name_at(unloaded_class_index));
  1256           unresolved = true;
  1257           if (xtty != NULL)
  1258             xtty->print(" unresolved='1'");
  1259         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1260           class_name = symbolHandle(THREAD,
  1261             constants->symbol_at(unloaded_class_index));
  1263         if (xtty != NULL)
  1264           xtty->name(class_name);
  1266       if (xtty != NULL && trap_mdo.not_null()) {
  1267         // Dump the relevant MDO state.
  1268         // This is the deopt count for the current reason, any previous
  1269         // reasons or recompiles seen at this point.
  1270         int dcnt = trap_mdo->trap_count(reason);
  1271         if (dcnt != 0)
  1272           xtty->print(" count='%d'", dcnt);
  1273         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1274         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1275         if (dos != 0) {
  1276           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1277           if (trap_state_is_recompiled(dos)) {
  1278             int recnt2 = trap_mdo->overflow_recompile_count();
  1279             if (recnt2 != 0)
  1280               xtty->print(" recompiles2='%d'", recnt2);
  1284       if (xtty != NULL) {
  1285         xtty->stamp();
  1286         xtty->end_head();
  1288       if (TraceDeoptimization) {  // make noise on the tty
  1289         tty->print("Uncommon trap occurred in");
  1290         nm->method()->print_short_name(tty);
  1291         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
  1292                    fr.pc(),
  1293                    (int) os::current_thread_id(),
  1294                    trap_reason_name(reason),
  1295                    trap_action_name(action),
  1296                    unloaded_class_index);
  1297         if (class_name.not_null()) {
  1298           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1299           class_name->print_symbol_on(tty);
  1301         tty->cr();
  1303       if (xtty != NULL) {
  1304         // Log the precise location of the trap.
  1305         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1306           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1307           xtty->method(sd->method());
  1308           xtty->end_elem();
  1309           if (sd->is_top())  break;
  1311         xtty->tail("uncommon_trap");
  1314     // (End diagnostic printout.)
  1316     // Load class if necessary
  1317     if (unloaded_class_index >= 0) {
  1318       constantPoolHandle constants(THREAD, trap_method->constants());
  1319       load_class_by_index(constants, unloaded_class_index);
  1322     // Flush the nmethod if necessary and desirable.
  1323     //
  1324     // We need to avoid situations where we are re-flushing the nmethod
  1325     // because of a hot deoptimization site.  Repeated flushes at the same
  1326     // point need to be detected by the compiler and avoided.  If the compiler
  1327     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1328     // module must take measures to avoid an infinite cycle of recompilation
  1329     // and deoptimization.  There are several such measures:
  1330     //
  1331     //   1. If a recompilation is ordered a second time at some site X
  1332     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1333     //   to give the interpreter time to exercise the method more thoroughly.
  1334     //   If this happens, the method's overflow_recompile_count is incremented.
  1335     //
  1336     //   2. If the compiler fails to reduce the deoptimization rate, then
  1337     //   the method's overflow_recompile_count will begin to exceed the set
  1338     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1339     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1340     //   to the interpreter.  This is a performance hit for hot methods,
  1341     //   but is better than a disastrous infinite cycle of recompilations.
  1342     //   (Actually, only the method containing the site X is abandoned.)
  1343     //
  1344     //   3. In parallel with the previous measures, if the total number of
  1345     //   recompilations of a method exceeds the much larger set limit
  1346     //   PerMethodRecompilationCutoff, the method is abandoned.
  1347     //   This should only happen if the method is very large and has
  1348     //   many "lukewarm" deoptimizations.  The code which enforces this
  1349     //   limit is elsewhere (class nmethod, class methodOopDesc).
  1350     //
  1351     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1352     // to recompile at each bytecode independently of the per-BCI cutoff.
  1353     //
  1354     // The decision to update code is up to the compiler, and is encoded
  1355     // in the Action_xxx code.  If the compiler requests Action_none
  1356     // no trap state is changed, no compiled code is changed, and the
  1357     // computation suffers along in the interpreter.
  1358     //
  1359     // The other action codes specify various tactics for decompilation
  1360     // and recompilation.  Action_maybe_recompile is the loosest, and
  1361     // allows the compiled code to stay around until enough traps are seen,
  1362     // and until the compiler gets around to recompiling the trapping method.
  1363     //
  1364     // The other actions cause immediate removal of the present code.
  1366     bool update_trap_state = true;
  1367     bool make_not_entrant = false;
  1368     bool make_not_compilable = false;
  1369     bool reprofile = false;
  1370     switch (action) {
  1371     case Action_none:
  1372       // Keep the old code.
  1373       update_trap_state = false;
  1374       break;
  1375     case Action_maybe_recompile:
  1376       // Do not need to invalidate the present code, but we can
  1377       // initiate another
  1378       // Start compiler without (necessarily) invalidating the nmethod.
  1379       // The system will tolerate the old code, but new code should be
  1380       // generated when possible.
  1381       break;
  1382     case Action_reinterpret:
  1383       // Go back into the interpreter for a while, and then consider
  1384       // recompiling form scratch.
  1385       make_not_entrant = true;
  1386       // Reset invocation counter for outer most method.
  1387       // This will allow the interpreter to exercise the bytecodes
  1388       // for a while before recompiling.
  1389       // By contrast, Action_make_not_entrant is immediate.
  1390       //
  1391       // Note that the compiler will track null_check, null_assert,
  1392       // range_check, and class_check events and log them as if they
  1393       // had been traps taken from compiled code.  This will update
  1394       // the MDO trap history so that the next compilation will
  1395       // properly detect hot trap sites.
  1396       reprofile = true;
  1397       break;
  1398     case Action_make_not_entrant:
  1399       // Request immediate recompilation, and get rid of the old code.
  1400       // Make them not entrant, so next time they are called they get
  1401       // recompiled.  Unloaded classes are loaded now so recompile before next
  1402       // time they are called.  Same for uninitialized.  The interpreter will
  1403       // link the missing class, if any.
  1404       make_not_entrant = true;
  1405       break;
  1406     case Action_make_not_compilable:
  1407       // Give up on compiling this method at all.
  1408       make_not_entrant = true;
  1409       make_not_compilable = true;
  1410       break;
  1411     default:
  1412       ShouldNotReachHere();
  1415     // Setting +ProfileTraps fixes the following, on all platforms:
  1416     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1417     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1418     // recompile relies on a methodDataOop to record heroic opt failures.
  1420     // Whether the interpreter is producing MDO data or not, we also need
  1421     // to use the MDO to detect hot deoptimization points and control
  1422     // aggressive optimization.
  1423     bool inc_recompile_count = false;
  1424     ProfileData* pdata = NULL;
  1425     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
  1426       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
  1427       uint this_trap_count = 0;
  1428       bool maybe_prior_trap = false;
  1429       bool maybe_prior_recompile = false;
  1430       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1431                                    //outputs:
  1432                                    this_trap_count,
  1433                                    maybe_prior_trap,
  1434                                    maybe_prior_recompile);
  1435       // Because the interpreter also counts null, div0, range, and class
  1436       // checks, these traps from compiled code are double-counted.
  1437       // This is harmless; it just means that the PerXTrapLimit values
  1438       // are in effect a little smaller than they look.
  1440       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1441       if (per_bc_reason != Reason_none) {
  1442         // Now take action based on the partially known per-BCI history.
  1443         if (maybe_prior_trap
  1444             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1445           // If there are too many traps at this BCI, force a recompile.
  1446           // This will allow the compiler to see the limit overflow, and
  1447           // take corrective action, if possible.  The compiler generally
  1448           // does not use the exact PerBytecodeTrapLimit value, but instead
  1449           // changes its tactics if it sees any traps at all.  This provides
  1450           // a little hysteresis, delaying a recompile until a trap happens
  1451           // several times.
  1452           //
  1453           // Actually, since there is only one bit of counter per BCI,
  1454           // the possible per-BCI counts are {0,1,(per-method count)}.
  1455           // This produces accurate results if in fact there is only
  1456           // one hot trap site, but begins to get fuzzy if there are
  1457           // many sites.  For example, if there are ten sites each
  1458           // trapping two or more times, they each get the blame for
  1459           // all of their traps.
  1460           make_not_entrant = true;
  1463         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1464         if (make_not_entrant && maybe_prior_recompile) {
  1465           // More than one recompile at this point.
  1466           inc_recompile_count = maybe_prior_trap;
  1468       } else {
  1469         // For reasons which are not recorded per-bytecode, we simply
  1470         // force recompiles unconditionally.
  1471         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1472         make_not_entrant = true;
  1475       // Go back to the compiler if there are too many traps in this method.
  1476       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1477         // If there are too many traps in this method, force a recompile.
  1478         // This will allow the compiler to see the limit overflow, and
  1479         // take corrective action, if possible.
  1480         // (This condition is an unlikely backstop only, because the
  1481         // PerBytecodeTrapLimit is more likely to take effect first,
  1482         // if it is applicable.)
  1483         make_not_entrant = true;
  1486       // Here's more hysteresis:  If there has been a recompile at
  1487       // this trap point already, run the method in the interpreter
  1488       // for a while to exercise it more thoroughly.
  1489       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1490         reprofile = true;
  1495     // Take requested actions on the method:
  1497     // Recompile
  1498     if (make_not_entrant) {
  1499       if (!nm->make_not_entrant()) {
  1500         return; // the call did not change nmethod's state
  1503       if (pdata != NULL) {
  1504         // Record the recompilation event, if any.
  1505         int tstate0 = pdata->trap_state();
  1506         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1507         if (tstate1 != tstate0)
  1508           pdata->set_trap_state(tstate1);
  1512     if (inc_recompile_count) {
  1513       trap_mdo->inc_overflow_recompile_count();
  1514       if ((uint)trap_mdo->overflow_recompile_count() >
  1515           (uint)PerBytecodeRecompilationCutoff) {
  1516         // Give up on the method containing the bad BCI.
  1517         if (trap_method() == nm->method()) {
  1518           make_not_compilable = true;
  1519         } else {
  1520           trap_method->set_not_compilable(CompLevel_full_optimization);
  1521           // But give grace to the enclosing nm->method().
  1526     // Reprofile
  1527     if (reprofile) {
  1528       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1531     // Give up compiling
  1532     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1533       assert(make_not_entrant, "consistent");
  1534       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1537   } // Free marked resources
  1540 JRT_END
  1542 methodDataOop
  1543 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1544                                 bool create_if_missing) {
  1545   Thread* THREAD = thread;
  1546   methodDataOop mdo = m()->method_data();
  1547   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1548     // Build an MDO.  Ignore errors like OutOfMemory;
  1549     // that simply means we won't have an MDO to update.
  1550     methodOopDesc::build_interpreter_method_data(m, THREAD);
  1551     if (HAS_PENDING_EXCEPTION) {
  1552       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1553       CLEAR_PENDING_EXCEPTION;
  1555     mdo = m()->method_data();
  1557   return mdo;
  1560 ProfileData*
  1561 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
  1562                                          int trap_bci,
  1563                                          Deoptimization::DeoptReason reason,
  1564                                          //outputs:
  1565                                          uint& ret_this_trap_count,
  1566                                          bool& ret_maybe_prior_trap,
  1567                                          bool& ret_maybe_prior_recompile) {
  1568   uint prior_trap_count = trap_mdo->trap_count(reason);
  1569   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1571   // If the runtime cannot find a place to store trap history,
  1572   // it is estimated based on the general condition of the method.
  1573   // If the method has ever been recompiled, or has ever incurred
  1574   // a trap with the present reason , then this BCI is assumed
  1575   // (pessimistically) to be the culprit.
  1576   bool maybe_prior_trap      = (prior_trap_count != 0);
  1577   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1578   ProfileData* pdata = NULL;
  1581   // For reasons which are recorded per bytecode, we check per-BCI data.
  1582   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1583   if (per_bc_reason != Reason_none) {
  1584     // Find the profile data for this BCI.  If there isn't one,
  1585     // try to allocate one from the MDO's set of spares.
  1586     // This will let us detect a repeated trap at this point.
  1587     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1589     if (pdata != NULL) {
  1590       // Query the trap state of this profile datum.
  1591       int tstate0 = pdata->trap_state();
  1592       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1593         maybe_prior_trap = false;
  1594       if (!trap_state_is_recompiled(tstate0))
  1595         maybe_prior_recompile = false;
  1597       // Update the trap state of this profile datum.
  1598       int tstate1 = tstate0;
  1599       // Record the reason.
  1600       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1601       // Store the updated state on the MDO, for next time.
  1602       if (tstate1 != tstate0)
  1603         pdata->set_trap_state(tstate1);
  1604     } else {
  1605       if (LogCompilation && xtty != NULL) {
  1606         ttyLocker ttyl;
  1607         // Missing MDP?  Leave a small complaint in the log.
  1608         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1613   // Return results:
  1614   ret_this_trap_count = this_trap_count;
  1615   ret_maybe_prior_trap = maybe_prior_trap;
  1616   ret_maybe_prior_recompile = maybe_prior_recompile;
  1617   return pdata;
  1620 void
  1621 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1622   ResourceMark rm;
  1623   // Ignored outputs:
  1624   uint ignore_this_trap_count;
  1625   bool ignore_maybe_prior_trap;
  1626   bool ignore_maybe_prior_recompile;
  1627   query_update_method_data(trap_mdo, trap_bci,
  1628                            (DeoptReason)reason,
  1629                            ignore_this_trap_count,
  1630                            ignore_maybe_prior_trap,
  1631                            ignore_maybe_prior_recompile);
  1634 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1636   // Still in Java no safepoints
  1638     // This enters VM and may safepoint
  1639     uncommon_trap_inner(thread, trap_request);
  1641   return fetch_unroll_info_helper(thread);
  1644 // Local derived constants.
  1645 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1646 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1647 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1649 //---------------------------trap_state_reason---------------------------------
  1650 Deoptimization::DeoptReason
  1651 Deoptimization::trap_state_reason(int trap_state) {
  1652   // This assert provides the link between the width of DataLayout::trap_bits
  1653   // and the encoding of "recorded" reasons.  It ensures there are enough
  1654   // bits to store all needed reasons in the per-BCI MDO profile.
  1655   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1656   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1657   trap_state -= recompile_bit;
  1658   if (trap_state == DS_REASON_MASK) {
  1659     return Reason_many;
  1660   } else {
  1661     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1662     return (DeoptReason)trap_state;
  1665 //-------------------------trap_state_has_reason-------------------------------
  1666 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1667   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1668   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1669   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1670   trap_state -= recompile_bit;
  1671   if (trap_state == DS_REASON_MASK) {
  1672     return -1;  // true, unspecifically (bottom of state lattice)
  1673   } else if (trap_state == reason) {
  1674     return 1;   // true, definitely
  1675   } else if (trap_state == 0) {
  1676     return 0;   // false, definitely (top of state lattice)
  1677   } else {
  1678     return 0;   // false, definitely
  1681 //-------------------------trap_state_add_reason-------------------------------
  1682 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1683   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1684   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1685   trap_state -= recompile_bit;
  1686   if (trap_state == DS_REASON_MASK) {
  1687     return trap_state + recompile_bit;     // already at state lattice bottom
  1688   } else if (trap_state == reason) {
  1689     return trap_state + recompile_bit;     // the condition is already true
  1690   } else if (trap_state == 0) {
  1691     return reason + recompile_bit;          // no condition has yet been true
  1692   } else {
  1693     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1696 //-----------------------trap_state_is_recompiled------------------------------
  1697 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1698   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1700 //-----------------------trap_state_set_recompiled-----------------------------
  1701 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1702   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1703   else    return trap_state & ~DS_RECOMPILE_BIT;
  1705 //---------------------------format_trap_state---------------------------------
  1706 // This is used for debugging and diagnostics, including hotspot.log output.
  1707 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1708                                               int trap_state) {
  1709   DeoptReason reason      = trap_state_reason(trap_state);
  1710   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1711   // Re-encode the state from its decoded components.
  1712   int decoded_state = 0;
  1713   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1714     decoded_state = trap_state_add_reason(decoded_state, reason);
  1715   if (recomp_flag)
  1716     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1717   // If the state re-encodes properly, format it symbolically.
  1718   // Because this routine is used for debugging and diagnostics,
  1719   // be robust even if the state is a strange value.
  1720   size_t len;
  1721   if (decoded_state != trap_state) {
  1722     // Random buggy state that doesn't decode??
  1723     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1724   } else {
  1725     len = jio_snprintf(buf, buflen, "%s%s",
  1726                        trap_reason_name(reason),
  1727                        recomp_flag ? " recompiled" : "");
  1729   if (len >= buflen)
  1730     buf[buflen-1] = '\0';
  1731   return buf;
  1735 //--------------------------------statics--------------------------------------
  1736 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1737   = Deoptimization::Action_reinterpret;
  1738 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1739   // Note:  Keep this in sync. with enum DeoptReason.
  1740   "none",
  1741   "null_check",
  1742   "null_assert",
  1743   "range_check",
  1744   "class_check",
  1745   "array_check",
  1746   "intrinsic",
  1747   "bimorphic",
  1748   "unloaded",
  1749   "uninitialized",
  1750   "unreached",
  1751   "unhandled",
  1752   "constraint",
  1753   "div0_check",
  1754   "age",
  1755   "predicate"
  1756 };
  1757 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1758   // Note:  Keep this in sync. with enum DeoptAction.
  1759   "none",
  1760   "maybe_recompile",
  1761   "reinterpret",
  1762   "make_not_entrant",
  1763   "make_not_compilable"
  1764 };
  1766 const char* Deoptimization::trap_reason_name(int reason) {
  1767   if (reason == Reason_many)  return "many";
  1768   if ((uint)reason < Reason_LIMIT)
  1769     return _trap_reason_name[reason];
  1770   static char buf[20];
  1771   sprintf(buf, "reason%d", reason);
  1772   return buf;
  1774 const char* Deoptimization::trap_action_name(int action) {
  1775   if ((uint)action < Action_LIMIT)
  1776     return _trap_action_name[action];
  1777   static char buf[20];
  1778   sprintf(buf, "action%d", action);
  1779   return buf;
  1782 // This is used for debugging and diagnostics, including hotspot.log output.
  1783 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1784                                                 int trap_request) {
  1785   jint unloaded_class_index = trap_request_index(trap_request);
  1786   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1787   const char* action = trap_action_name(trap_request_action(trap_request));
  1788   size_t len;
  1789   if (unloaded_class_index < 0) {
  1790     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1791                        reason, action);
  1792   } else {
  1793     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1794                        reason, action, unloaded_class_index);
  1796   if (len >= buflen)
  1797     buf[buflen-1] = '\0';
  1798   return buf;
  1801 juint Deoptimization::_deoptimization_hist
  1802         [Deoptimization::Reason_LIMIT]
  1803     [1 + Deoptimization::Action_LIMIT]
  1804         [Deoptimization::BC_CASE_LIMIT]
  1805   = {0};
  1807 enum {
  1808   LSB_BITS = 8,
  1809   LSB_MASK = right_n_bits(LSB_BITS)
  1810 };
  1812 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1813                                        Bytecodes::Code bc) {
  1814   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1815   assert(action >= 0 && action < Action_LIMIT, "oob");
  1816   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1817   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1818   juint* cases = _deoptimization_hist[reason][1+action];
  1819   juint* bc_counter_addr = NULL;
  1820   juint  bc_counter      = 0;
  1821   // Look for an unused counter, or an exact match to this BC.
  1822   if (bc != Bytecodes::_illegal) {
  1823     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1824       juint* counter_addr = &cases[bc_case];
  1825       juint  counter = *counter_addr;
  1826       if ((counter == 0 && bc_counter_addr == NULL)
  1827           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1828         // this counter is either free or is already devoted to this BC
  1829         bc_counter_addr = counter_addr;
  1830         bc_counter = counter | bc;
  1834   if (bc_counter_addr == NULL) {
  1835     // Overflow, or no given bytecode.
  1836     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1837     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1839   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1842 jint Deoptimization::total_deoptimization_count() {
  1843   return _deoptimization_hist[Reason_none][0][0];
  1846 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1847   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1848   return _deoptimization_hist[reason][0][0];
  1851 void Deoptimization::print_statistics() {
  1852   juint total = total_deoptimization_count();
  1853   juint account = total;
  1854   if (total != 0) {
  1855     ttyLocker ttyl;
  1856     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1857     tty->print_cr("Deoptimization traps recorded:");
  1858     #define PRINT_STAT_LINE(name, r) \
  1859       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1860     PRINT_STAT_LINE("total", total);
  1861     // For each non-zero entry in the histogram, print the reason,
  1862     // the action, and (if specifically known) the type of bytecode.
  1863     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1864       for (int action = 0; action < Action_LIMIT; action++) {
  1865         juint* cases = _deoptimization_hist[reason][1+action];
  1866         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1867           juint counter = cases[bc_case];
  1868           if (counter != 0) {
  1869             char name[1*K];
  1870             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1871             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1872               bc = Bytecodes::_illegal;
  1873             sprintf(name, "%s/%s/%s",
  1874                     trap_reason_name(reason),
  1875                     trap_action_name(action),
  1876                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1877             juint r = counter >> LSB_BITS;
  1878             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1879             account -= r;
  1884     if (account != 0) {
  1885       PRINT_STAT_LINE("unaccounted", account);
  1887     #undef PRINT_STAT_LINE
  1888     if (xtty != NULL)  xtty->tail("statistics");
  1891 #else // COMPILER2 || SHARK
  1894 // Stubs for C1 only system.
  1895 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1896   return false;
  1899 const char* Deoptimization::trap_reason_name(int reason) {
  1900   return "unknown";
  1903 void Deoptimization::print_statistics() {
  1904   // no output
  1907 void
  1908 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
  1909   // no udpate
  1912 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1913   return 0;
  1916 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1917                                        Bytecodes::Code bc) {
  1918   // no update
  1921 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1922                                               int trap_state) {
  1923   jio_snprintf(buf, buflen, "#%d", trap_state);
  1924   return buf;
  1927 #endif // COMPILER2 || SHARK

mercurial