src/share/vm/opto/postaloc.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 1907
c18cbe5936b8
child 2350
2f644f85485d
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/chaitin.hpp"
    28 #include "opto/machnode.hpp"
    30 // see if this register kind does not requires two registers
    31 static bool is_single_register(uint x) {
    32 #ifdef _LP64
    33   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
    34 #else
    35   return (x != Op_RegD && x != Op_RegL);
    36 #endif
    37 }
    39 //---------------------------may_be_copy_of_callee-----------------------------
    40 // Check to see if we can possibly be a copy of a callee-save value.
    41 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
    42   // Short circuit if there are no callee save registers
    43   if (_matcher.number_of_saved_registers() == 0) return false;
    45   // Expect only a spill-down and reload on exit for callee-save spills.
    46   // Chains of copies cannot be deep.
    47   // 5008997 - This is wishful thinking. Register allocator seems to
    48   // be splitting live ranges for callee save registers to such
    49   // an extent that in large methods the chains can be very long
    50   // (50+). The conservative answer is to return true if we don't
    51   // know as this prevents optimizations from occurring.
    53   const int limit = 60;
    54   int i;
    55   for( i=0; i < limit; i++ ) {
    56     if( def->is_Proj() && def->in(0)->is_Start() &&
    57         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
    58       return true;              // Direct use of callee-save proj
    59     if( def->is_Copy() )        // Copies carry value through
    60       def = def->in(def->is_Copy());
    61     else if( def->is_Phi() )    // Phis can merge it from any direction
    62       def = def->in(1);
    63     else
    64       break;
    65     guarantee(def != NULL, "must not resurrect dead copy");
    66   }
    67   // If we reached the end and didn't find a callee save proj
    68   // then this may be a callee save proj so we return true
    69   // as the conservative answer. If we didn't reach then end
    70   // we must have discovered that it was not a callee save
    71   // else we would have returned.
    72   return i == limit;
    73 }
    77 //------------------------------yank_if_dead-----------------------------------
    78 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
    79 // iterators in the current block.
    80 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
    81   int blk_adjust=0;
    82   while (old->outcnt() == 0 && old != C->top()) {
    83     Block *oldb = _cfg._bbs[old->_idx];
    84     oldb->find_remove(old);
    85     // Count 1 if deleting an instruction from the current block
    86     if( oldb == current_block ) blk_adjust++;
    87     _cfg._bbs.map(old->_idx,NULL);
    88     OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
    89     if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
    90       value->map(old_reg,NULL);  // Yank from value/regnd maps
    91       regnd->map(old_reg,NULL);  // This register's value is now unknown
    92     }
    93     assert(old->req() <= 2, "can't handle more inputs");
    94     Node *tmp = old->req() > 1 ? old->in(1) : NULL;
    95     old->disconnect_inputs(NULL);
    96     if( !tmp ) break;
    97     old = tmp;
    98   }
    99   return blk_adjust;
   100 }
   102 //------------------------------use_prior_register-----------------------------
   103 // Use the prior value instead of the current value, in an effort to make
   104 // the current value go dead.  Return block iterator adjustment, in case
   105 // we yank some instructions from this block.
   106 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
   107   // No effect?
   108   if( def == n->in(idx) ) return 0;
   109   // Def is currently dead and can be removed?  Do not resurrect
   110   if( def->outcnt() == 0 ) return 0;
   112   // Not every pair of physical registers are assignment compatible,
   113   // e.g. on sparc floating point registers are not assignable to integer
   114   // registers.
   115   const LRG &def_lrg = lrgs(n2lidx(def));
   116   OptoReg::Name def_reg = def_lrg.reg();
   117   const RegMask &use_mask = n->in_RegMask(idx);
   118   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
   119                                                    : (use_mask.is_AllStack() != 0));
   120   // Check for a copy to or from a misaligned pair.
   121   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
   123   if (!can_use)
   124     return 0;
   126   // Capture the old def in case it goes dead...
   127   Node *old = n->in(idx);
   129   // Save-on-call copies can only be elided if the entire copy chain can go
   130   // away, lest we get the same callee-save value alive in 2 locations at
   131   // once.  We check for the obvious trivial case here.  Although it can
   132   // sometimes be elided with cooperation outside our scope, here we will just
   133   // miss the opportunity.  :-(
   134   if( may_be_copy_of_callee(def) ) {
   135     if( old->outcnt() > 1 ) return 0; // We're the not last user
   136     int idx = old->is_Copy();
   137     assert( idx, "chain of copies being removed" );
   138     Node *old2 = old->in(idx);  // Chain of copies
   139     if( old2->outcnt() > 1 ) return 0; // old is not the last user
   140     int idx2 = old2->is_Copy();
   141     if( !idx2 ) return 0;       // Not a chain of 2 copies
   142     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
   143   }
   145   // Use the new def
   146   n->set_req(idx,def);
   147   _post_alloc++;
   149   // Is old def now dead?  We successfully yanked a copy?
   150   return yank_if_dead(old,current_block,&value,&regnd);
   151 }
   154 //------------------------------skip_copies------------------------------------
   155 // Skip through any number of copies (that don't mod oop-i-ness)
   156 Node *PhaseChaitin::skip_copies( Node *c ) {
   157   int idx = c->is_Copy();
   158   uint is_oop = lrgs(n2lidx(c))._is_oop;
   159   while (idx != 0) {
   160     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
   161     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
   162       break;  // casting copy, not the same value
   163     c = c->in(idx);
   164     idx = c->is_Copy();
   165   }
   166   return c;
   167 }
   169 //------------------------------elide_copy-------------------------------------
   170 // Remove (bypass) copies along Node n, edge k.
   171 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
   172   int blk_adjust = 0;
   174   uint nk_idx = n2lidx(n->in(k));
   175   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
   177   // Remove obvious same-register copies
   178   Node *x = n->in(k);
   179   int idx;
   180   while( (idx=x->is_Copy()) != 0 ) {
   181     Node *copy = x->in(idx);
   182     guarantee(copy != NULL, "must not resurrect dead copy");
   183     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
   184     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
   185     if( n->in(k) != copy ) break; // Failed for some cutout?
   186     x = copy;                   // Progress, try again
   187   }
   189   // Phis and 2-address instructions cannot change registers so easily - their
   190   // outputs must match their input.
   191   if( !can_change_regs )
   192     return blk_adjust;          // Only check stupid copies!
   194   // Loop backedges won't have a value-mapping yet
   195   if( &value == NULL ) return blk_adjust;
   197   // Skip through all copies to the _value_ being used.  Do not change from
   198   // int to pointer.  This attempts to jump through a chain of copies, where
   199   // intermediate copies might be illegal, i.e., value is stored down to stack
   200   // then reloaded BUT survives in a register the whole way.
   201   Node *val = skip_copies(n->in(k));
   203   if( val == x ) return blk_adjust; // No progress?
   205   bool single = is_single_register(val->ideal_reg());
   206   uint val_idx = n2lidx(val);
   207   OptoReg::Name val_reg = lrgs(val_idx).reg();
   209   // See if it happens to already be in the correct register!
   210   // (either Phi's direct register, or the common case of the name
   211   // never-clobbered original-def register)
   212   if( value[val_reg] == val &&
   213       // Doubles check both halves
   214       ( single || value[val_reg-1] == val ) ) {
   215     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
   216     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
   217       return blk_adjust;
   218   }
   220   // See if we can skip the copy by changing registers.  Don't change from
   221   // using a register to using the stack unless we know we can remove a
   222   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
   223   // ops reading from memory instead of just loading once and using the
   224   // register.
   226   // Also handle duplicate copies here.
   227   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
   229   // Scan all registers to see if this value is around already
   230   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
   231     if (reg == (uint)nk_reg) {
   232       // Found ourselves so check if there is only one user of this
   233       // copy and keep on searching for a better copy if so.
   234       bool ignore_self = true;
   235       x = n->in(k);
   236       DUIterator_Fast imax, i = x->fast_outs(imax);
   237       Node* first = x->fast_out(i); i++;
   238       while (i < imax && ignore_self) {
   239         Node* use = x->fast_out(i); i++;
   240         if (use != first) ignore_self = false;
   241       }
   242       if (ignore_self) continue;
   243     }
   245     Node *vv = value[reg];
   246     if( !single ) {             // Doubles check for aligned-adjacent pair
   247       if( (reg&1)==0 ) continue;  // Wrong half of a pair
   248       if( vv != value[reg-1] ) continue; // Not a complete pair
   249     }
   250     if( vv == val ||            // Got a direct hit?
   251         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
   252          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
   253       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
   254       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
   255           OptoReg::is_reg(reg) || // turning into a register use OR
   256           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
   257         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
   258         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
   259           return blk_adjust;
   260       } // End of if not degrading to a stack
   261     } // End of if found value in another register
   262   } // End of scan all machine registers
   263   return blk_adjust;
   264 }
   267 //
   268 // Check if nreg already contains the constant value val.  Normal copy
   269 // elimination doesn't doesn't work on constants because multiple
   270 // nodes can represent the same constant so the type and rule of the
   271 // MachNode must be checked to ensure equivalence.
   272 //
   273 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
   274                                               Block *current_block,
   275                                               Node_List& value, Node_List& regnd,
   276                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
   277   if (value[nreg] != val && val->is_Con() &&
   278       value[nreg] != NULL && value[nreg]->is_Con() &&
   279       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
   280       value[nreg]->bottom_type() == val->bottom_type() &&
   281       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
   282     // This code assumes that two MachNodes representing constants
   283     // which have the same rule and the same bottom type will produce
   284     // identical effects into a register.  This seems like it must be
   285     // objectively true unless there are hidden inputs to the nodes
   286     // but if that were to change this code would need to updated.
   287     // Since they are equivalent the second one if redundant and can
   288     // be removed.
   289     //
   290     // n will be replaced with the old value but n might have
   291     // kills projections associated with it so remove them now so that
   292     // yank_if_dead will be able to eliminate the copy once the uses
   293     // have been transferred to the old[value].
   294     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   295       Node* use = n->fast_out(i);
   296       if (use->is_Proj() && use->outcnt() == 0) {
   297         // Kill projections have no users and one input
   298         use->set_req(0, C->top());
   299         yank_if_dead(use, current_block, &value, &regnd);
   300         --i; --imax;
   301       }
   302     }
   303     _post_alloc++;
   304     return true;
   305   }
   306   return false;
   307 }
   310 //------------------------------post_allocate_copy_removal---------------------
   311 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
   312 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
   313 // Nodes indexed by machine register or stack slot number).  NULL means that a
   314 // register is not mapped to any Node.  We can (want to have!) have several
   315 // registers map to the same Node.  We walk forward over the instructions
   316 // updating the mapping as we go.  At merge points we force a NULL if we have
   317 // to merge 2 different Nodes into the same register.  Phi functions will give
   318 // us a new Node if there is a proper value merging.  Since the blocks are
   319 // arranged in some RPO, we will visit all parent blocks before visiting any
   320 // successor blocks (except at loops).
   321 //
   322 // If we find a Copy we look to see if the Copy's source register is a stack
   323 // slot and that value has already been loaded into some machine register; if
   324 // so we use machine register directly.  This turns a Load into a reg-reg
   325 // Move.  We also look for reloads of identical constants.
   326 //
   327 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
   328 // source directly and make the copy go dead.
   329 void PhaseChaitin::post_allocate_copy_removal() {
   330   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
   331   ResourceMark rm;
   333   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   334   // map from register number to value-producing Node.
   335   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   336   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   337   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   338   // map from register number to register-defining Node.
   339   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   340   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   342   // We keep unused Node_Lists on a free_list to avoid wasting
   343   // memory.
   344   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
   346   // For all blocks
   347   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   348     uint j;
   349     Block *b = _cfg._blocks[i];
   351     // Count of Phis in block
   352     uint phi_dex;
   353     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
   354       Node *phi = b->_nodes[phi_dex];
   355       if( !phi->is_Phi() )
   356         break;
   357     }
   359     // If any predecessor has not been visited, we do not know the state
   360     // of registers at the start.  Check for this, while updating copies
   361     // along Phi input edges
   362     bool missing_some_inputs = false;
   363     Block *freed = NULL;
   364     for( j = 1; j < b->num_preds(); j++ ) {
   365       Block *pb = _cfg._bbs[b->pred(j)->_idx];
   366       // Remove copies along phi edges
   367       for( uint k=1; k<phi_dex; k++ )
   368         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
   369       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
   370         // See if this predecessor's mappings have been used by everybody
   371         // who wants them.  If so, free 'em.
   372         uint k;
   373         for( k=0; k<pb->_num_succs; k++ ) {
   374           Block *pbsucc = pb->_succs[k];
   375           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
   376             break;              // Found a future user
   377         }
   378         if( k >= pb->_num_succs ) { // No more uses, free!
   379           freed = pb;           // Record last block freed
   380           free_list.push(blk2value[pb->_pre_order]);
   381           free_list.push(blk2regnd[pb->_pre_order]);
   382         }
   383       } else {                  // This block has unvisited (loopback) inputs
   384         missing_some_inputs = true;
   385       }
   386     }
   389     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
   390     // 'freed's blocks off the list
   391     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   392     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   393     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
   394     value.map(_max_reg,NULL);
   395     regnd.map(_max_reg,NULL);
   396     // Set mappings as OUR mappings
   397     blk2value[b->_pre_order] = &value;
   398     blk2regnd[b->_pre_order] = &regnd;
   400     // Initialize value & regnd for this block
   401     if( missing_some_inputs ) {
   402       // Some predecessor has not yet been visited; zap map to empty
   403       for( uint k = 0; k < (uint)_max_reg; k++ ) {
   404         value.map(k,NULL);
   405         regnd.map(k,NULL);
   406       }
   407     } else {
   408       if( !freed ) {            // Didn't get a freebie prior block
   409         // Must clone some data
   410         freed = _cfg._bbs[b->pred(1)->_idx];
   411         Node_List &f_value = *blk2value[freed->_pre_order];
   412         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
   413         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   414           value.map(k,f_value[k]);
   415           regnd.map(k,f_regnd[k]);
   416         }
   417       }
   418       // Merge all inputs together, setting to NULL any conflicts.
   419       for( j = 1; j < b->num_preds(); j++ ) {
   420         Block *pb = _cfg._bbs[b->pred(j)->_idx];
   421         if( pb == freed ) continue; // Did self already via freelist
   422         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
   423         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   424           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
   425             value.map(k,NULL); // Then no value handy
   426             regnd.map(k,NULL);
   427           }
   428         }
   429       }
   430     }
   432     // For all Phi's
   433     for( j = 1; j < phi_dex; j++ ) {
   434       uint k;
   435       Node *phi = b->_nodes[j];
   436       uint pidx = n2lidx(phi);
   437       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
   439       // Remove copies remaining on edges.  Check for junk phi.
   440       Node *u = NULL;
   441       for( k=1; k<phi->req(); k++ ) {
   442         Node *x = phi->in(k);
   443         if( phi != x && u != x ) // Found a different input
   444           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
   445       }
   446       if( u != NodeSentinel ) {    // Junk Phi.  Remove
   447         b->_nodes.remove(j--); phi_dex--;
   448         _cfg._bbs.map(phi->_idx,NULL);
   449         phi->replace_by(u);
   450         phi->disconnect_inputs(NULL);
   451         continue;
   452       }
   453       // Note that if value[pidx] exists, then we merged no new values here
   454       // and the phi is useless.  This can happen even with the above phi
   455       // removal for complex flows.  I cannot keep the better known value here
   456       // because locally the phi appears to define a new merged value.  If I
   457       // keep the better value then a copy of the phi, being unable to use the
   458       // global flow analysis, can't "peek through" the phi to the original
   459       // reaching value and so will act like it's defining a new value.  This
   460       // can lead to situations where some uses are from the old and some from
   461       // the new values.  Not illegal by itself but throws the over-strong
   462       // assert in scheduling.
   463       if( pidx ) {
   464         value.map(preg,phi);
   465         regnd.map(preg,phi);
   466         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
   467         if( !is_single_register(phi->ideal_reg()) ) {
   468           value.map(preg_lo,phi);
   469           regnd.map(preg_lo,phi);
   470         }
   471       }
   472     }
   474     // For all remaining instructions
   475     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
   476       Node *n = b->_nodes[j];
   478       if( n->outcnt() == 0 &&   // Dead?
   479           n != C->top() &&      // (ignore TOP, it has no du info)
   480           !n->is_Proj() ) {     // fat-proj kills
   481         j -= yank_if_dead(n,b,&value,&regnd);
   482         continue;
   483       }
   485       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
   486       // up (at loop backedges, because we aren't doing a full flow pass).
   487       // The presence of a live use essentially asserts that the use's def is
   488       // alive and well at the use (or else the allocator fubar'd).  Take
   489       // advantage of this info to set a reaching def for the use-reg.
   490       uint k;
   491       for( k = 1; k < n->req(); k++ ) {
   492         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
   493         guarantee(def != NULL, "no disconnected nodes at this point");
   494         uint useidx = n2lidx(def); // useidx is the live range index for this USE
   496         if( useidx ) {
   497           OptoReg::Name ureg = lrgs(useidx).reg();
   498           if( !value[ureg] ) {
   499             int idx;            // Skip occasional useless copy
   500             while( (idx=def->is_Copy()) != 0 &&
   501                    def->in(idx) != NULL &&  // NULL should not happen
   502                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
   503               def = def->in(idx);
   504             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
   505             value.map(ureg,valdef); // record improved reaching-def info
   506             regnd.map(ureg,   def);
   507             // Record other half of doubles
   508             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
   509             if( !is_single_register(def->ideal_reg()) &&
   510                 ( !RegMask::can_represent(ureg_lo) ||
   511                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
   512                 !value[ureg_lo] ) {
   513               value.map(ureg_lo,valdef); // record improved reaching-def info
   514               regnd.map(ureg_lo,   def);
   515             }
   516           }
   517         }
   518       }
   520       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
   522       // Remove copies along input edges
   523       for( k = 1; k < n->req(); k++ )
   524         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
   526       // Unallocated Nodes define no registers
   527       uint lidx = n2lidx(n);
   528       if( !lidx ) continue;
   530       // Update the register defined by this instruction
   531       OptoReg::Name nreg = lrgs(lidx).reg();
   532       // Skip through all copies to the _value_ being defined.
   533       // Do not change from int to pointer
   534       Node *val = skip_copies(n);
   536       // Clear out a dead definition before starting so that the
   537       // elimination code doesn't have to guard against it.  The
   538       // definition could in fact be a kill projection with a count of
   539       // 0 which is safe but since those are uninteresting for copy
   540       // elimination just delete them as well.
   541       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
   542         regnd.map(nreg, NULL);
   543         value.map(nreg, NULL);
   544       }
   546       uint n_ideal_reg = n->ideal_reg();
   547       if( is_single_register(n_ideal_reg) ) {
   548         // If Node 'n' does not change the value mapped by the register,
   549         // then 'n' is a useless copy.  Do not update the register->node
   550         // mapping so 'n' will go dead.
   551         if( value[nreg] != val ) {
   552           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
   553             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   554           } else {
   555             // Update the mapping: record new Node defined by the register
   556             regnd.map(nreg,n);
   557             // Update mapping for defined *value*, which is the defined
   558             // Node after skipping all copies.
   559             value.map(nreg,val);
   560           }
   561         } else if( !may_be_copy_of_callee(n) ) {
   562           assert( n->is_Copy(), "" );
   563           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   564         }
   565       } else {
   566         // If the value occupies a register pair, record same info
   567         // in both registers.
   568         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
   569         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
   570             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
   571           // Sparc occasionally has non-adjacent pairs.
   572           // Find the actual other value
   573           RegMask tmp = lrgs(lidx).mask();
   574           tmp.Remove(nreg);
   575           nreg_lo = tmp.find_first_elem();
   576         }
   577         if( value[nreg] != val || value[nreg_lo] != val ) {
   578           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
   579             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   580           } else {
   581             regnd.map(nreg   , n );
   582             regnd.map(nreg_lo, n );
   583             value.map(nreg   ,val);
   584             value.map(nreg_lo,val);
   585           }
   586         } else if( !may_be_copy_of_callee(n) ) {
   587           assert( n->is_Copy(), "" );
   588           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   589         }
   590       }
   592       // Fat projections kill many registers
   593       if( n_ideal_reg == MachProjNode::fat_proj ) {
   594         RegMask rm = n->out_RegMask();
   595         // wow, what an expensive iterator...
   596         nreg = rm.find_first_elem();
   597         while( OptoReg::is_valid(nreg)) {
   598           rm.Remove(nreg);
   599           value.map(nreg,n);
   600           regnd.map(nreg,n);
   601           nreg = rm.find_first_elem();
   602         }
   603       }
   605     } // End of for all instructions in the block
   607   } // End for all blocks
   608 }

mercurial