src/share/vm/opto/parse2.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2101
4b29a725c43c
child 2665
9dc311b8473e
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "interpreter/linkResolver.hpp"
    31 #include "memory/universe.inline.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/matcher.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/mulnode.hpp"
    38 #include "opto/parse.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    43 extern int explicit_null_checks_inserted,
    44            explicit_null_checks_elided;
    46 //---------------------------------array_load----------------------------------
    47 void Parse::array_load(BasicType elem_type) {
    48   const Type* elem = Type::TOP;
    49   Node* adr = array_addressing(elem_type, 0, &elem);
    50   if (stopped())  return;     // guaranteed null or range check
    51   _sp -= 2;                   // Pop array and index
    52   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    53   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    54   push(ld);
    55 }
    58 //--------------------------------array_store----------------------------------
    59 void Parse::array_store(BasicType elem_type) {
    60   Node* adr = array_addressing(elem_type, 1);
    61   if (stopped())  return;     // guaranteed null or range check
    62   Node* val = pop();
    63   _sp -= 2;                   // Pop array and index
    64   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    65   store_to_memory(control(), adr, val, elem_type, adr_type);
    66 }
    69 //------------------------------array_addressing-------------------------------
    70 // Pull array and index from the stack.  Compute pointer-to-element.
    71 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    72   Node *idx   = peek(0+vals);   // Get from stack without popping
    73   Node *ary   = peek(1+vals);   // in case of exception
    75   // Null check the array base, with correct stack contents
    76   ary = do_null_check(ary, T_ARRAY);
    77   // Compile-time detect of null-exception?
    78   if (stopped())  return top();
    80   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    81   const TypeInt*    sizetype = arytype->size();
    82   const Type*       elemtype = arytype->elem();
    84   if (UseUniqueSubclasses && result2 != NULL) {
    85     const Type* el = elemtype->make_ptr();
    86     if (el && el->isa_instptr()) {
    87       const TypeInstPtr* toop = el->is_instptr();
    88       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    89         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    90         const Type* subklass = Type::get_const_type(toop->klass());
    91         elemtype = subklass->join(el);
    92       }
    93     }
    94   }
    96   // Check for big class initializers with all constant offsets
    97   // feeding into a known-size array.
    98   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    99   // See if the highest idx value is less than the lowest array bound,
   100   // and if the idx value cannot be negative:
   101   bool need_range_check = true;
   102   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
   103     need_range_check = false;
   104     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
   105   }
   107   if (!arytype->klass()->is_loaded()) {
   108     // Only fails for some -Xcomp runs
   109     // The class is unloaded.  We have to run this bytecode in the interpreter.
   110     uncommon_trap(Deoptimization::Reason_unloaded,
   111                   Deoptimization::Action_reinterpret,
   112                   arytype->klass(), "!loaded array");
   113     return top();
   114   }
   116   // Do the range check
   117   if (GenerateRangeChecks && need_range_check) {
   118     Node* tst;
   119     if (sizetype->_hi <= 0) {
   120       // The greatest array bound is negative, so we can conclude that we're
   121       // compiling unreachable code, but the unsigned compare trick used below
   122       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
   123       // the uncommon_trap path will always be taken.
   124       tst = _gvn.intcon(0);
   125     } else {
   126       // Range is constant in array-oop, so we can use the original state of mem
   127       Node* len = load_array_length(ary);
   129       // Test length vs index (standard trick using unsigned compare)
   130       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   131       BoolTest::mask btest = BoolTest::lt;
   132       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   133     }
   134     // Branch to failure if out of bounds
   135     { BuildCutout unless(this, tst, PROB_MAX);
   136       if (C->allow_range_check_smearing()) {
   137         // Do not use builtin_throw, since range checks are sometimes
   138         // made more stringent by an optimistic transformation.
   139         // This creates "tentative" range checks at this point,
   140         // which are not guaranteed to throw exceptions.
   141         // See IfNode::Ideal, is_range_check, adjust_check.
   142         uncommon_trap(Deoptimization::Reason_range_check,
   143                       Deoptimization::Action_make_not_entrant,
   144                       NULL, "range_check");
   145       } else {
   146         // If we have already recompiled with the range-check-widening
   147         // heroic optimization turned off, then we must really be throwing
   148         // range check exceptions.
   149         builtin_throw(Deoptimization::Reason_range_check, idx);
   150       }
   151     }
   152   }
   153   // Check for always knowing you are throwing a range-check exception
   154   if (stopped())  return top();
   156   Node* ptr = array_element_address(ary, idx, type, sizetype);
   158   if (result2 != NULL)  *result2 = elemtype;
   160   assert(ptr != top(), "top should go hand-in-hand with stopped");
   162   return ptr;
   163 }
   166 // returns IfNode
   167 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   168   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   169   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   170   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   171   return iff;
   172 }
   174 // return Region node
   175 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   176   Node *region  = new (C, 3) RegionNode(3); // 2 results
   177   record_for_igvn(region);
   178   region->init_req(1, iffalse);
   179   region->init_req(2, iftrue );
   180   _gvn.set_type(region, Type::CONTROL);
   181   region = _gvn.transform(region);
   182   set_control (region);
   183   return region;
   184 }
   187 //------------------------------helper for tableswitch-------------------------
   188 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   189   // True branch, use existing map info
   190   { PreserveJVMState pjvms(this);
   191     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   192     set_control( iftrue );
   193     profile_switch_case(prof_table_index);
   194     merge_new_path(dest_bci_if_true);
   195   }
   197   // False branch
   198   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   199   set_control( iffalse );
   200 }
   202 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   203   // True branch, use existing map info
   204   { PreserveJVMState pjvms(this);
   205     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   206     set_control( iffalse );
   207     profile_switch_case(prof_table_index);
   208     merge_new_path(dest_bci_if_true);
   209   }
   211   // False branch
   212   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   213   set_control( iftrue );
   214 }
   216 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   217   // False branch, use existing map and control()
   218   profile_switch_case(prof_table_index);
   219   merge_new_path(dest_bci);
   220 }
   223 extern "C" {
   224   static int jint_cmp(const void *i, const void *j) {
   225     int a = *(jint *)i;
   226     int b = *(jint *)j;
   227     return a > b ? 1 : a < b ? -1 : 0;
   228   }
   229 }
   232 // Default value for methodData switch indexing. Must be a negative value to avoid
   233 // conflict with any legal switch index.
   234 #define NullTableIndex -1
   236 class SwitchRange : public StackObj {
   237   // a range of integers coupled with a bci destination
   238   jint _lo;                     // inclusive lower limit
   239   jint _hi;                     // inclusive upper limit
   240   int _dest;
   241   int _table_index;             // index into method data table
   243 public:
   244   jint lo() const              { return _lo;   }
   245   jint hi() const              { return _hi;   }
   246   int  dest() const            { return _dest; }
   247   int  table_index() const     { return _table_index; }
   248   bool is_singleton() const    { return _lo == _hi; }
   250   void setRange(jint lo, jint hi, int dest, int table_index) {
   251     assert(lo <= hi, "must be a non-empty range");
   252     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   253   }
   254   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   255     assert(lo <= hi, "must be a non-empty range");
   256     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   257       _hi = hi;
   258       return true;
   259     }
   260     return false;
   261   }
   263   void set (jint value, int dest, int table_index) {
   264     setRange(value, value, dest, table_index);
   265   }
   266   bool adjoin(jint value, int dest, int table_index) {
   267     return adjoinRange(value, value, dest, table_index);
   268   }
   270   void print(ciEnv* env) {
   271     if (is_singleton())
   272       tty->print(" {%d}=>%d", lo(), dest());
   273     else if (lo() == min_jint)
   274       tty->print(" {..%d}=>%d", hi(), dest());
   275     else if (hi() == max_jint)
   276       tty->print(" {%d..}=>%d", lo(), dest());
   277     else
   278       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   279   }
   280 };
   283 //-------------------------------do_tableswitch--------------------------------
   284 void Parse::do_tableswitch() {
   285   Node* lookup = pop();
   287   // Get information about tableswitch
   288   int default_dest = iter().get_dest_table(0);
   289   int lo_index     = iter().get_int_table(1);
   290   int hi_index     = iter().get_int_table(2);
   291   int len          = hi_index - lo_index + 1;
   293   if (len < 1) {
   294     // If this is a backward branch, add safepoint
   295     maybe_add_safepoint(default_dest);
   296     if (should_add_predicate(default_dest)){
   297       _sp += 1; // set original stack for use by uncommon_trap
   298       add_predicate();
   299       _sp -= 1;
   300     }
   301     merge(default_dest);
   302     return;
   303   }
   305   // generate decision tree, using trichotomy when possible
   306   int rnum = len+2;
   307   bool makes_backward_branch = false;
   308   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   309   int rp = -1;
   310   if (lo_index != min_jint) {
   311     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   312   }
   313   for (int j = 0; j < len; j++) {
   314     jint match_int = lo_index+j;
   315     int  dest      = iter().get_dest_table(j+3);
   316     makes_backward_branch |= (dest <= bci());
   317     int  table_index = method_data_update() ? j : NullTableIndex;
   318     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   319       ranges[++rp].set(match_int, dest, table_index);
   320     }
   321   }
   322   jint highest = lo_index+(len-1);
   323   assert(ranges[rp].hi() == highest, "");
   324   if (highest != max_jint
   325       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   326     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   327   }
   328   assert(rp < len+2, "not too many ranges");
   330   // Safepoint in case if backward branch observed
   331   if( makes_backward_branch && UseLoopSafepoints )
   332     add_safepoint();
   334   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   335 }
   338 //------------------------------do_lookupswitch--------------------------------
   339 void Parse::do_lookupswitch() {
   340   Node *lookup = pop();         // lookup value
   341   // Get information about lookupswitch
   342   int default_dest = iter().get_dest_table(0);
   343   int len          = iter().get_int_table(1);
   345   if (len < 1) {    // If this is a backward branch, add safepoint
   346     maybe_add_safepoint(default_dest);
   347     if (should_add_predicate(default_dest)){
   348       _sp += 1; // set original stack for use by uncommon_trap
   349       add_predicate();
   350       _sp -= 1;
   351     }
   352     merge(default_dest);
   353     return;
   354   }
   356   // generate decision tree, using trichotomy when possible
   357   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   358   {
   359     for( int j = 0; j < len; j++ ) {
   360       table[j+j+0] = iter().get_int_table(2+j+j);
   361       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   362     }
   363     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   364   }
   366   int rnum = len*2+1;
   367   bool makes_backward_branch = false;
   368   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   369   int rp = -1;
   370   for( int j = 0; j < len; j++ ) {
   371     jint match_int   = table[j+j+0];
   372     int  dest        = table[j+j+1];
   373     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   374     int  table_index = method_data_update() ? j : NullTableIndex;
   375     makes_backward_branch |= (dest <= bci());
   376     if( match_int != next_lo ) {
   377       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   378     }
   379     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   380       ranges[++rp].set(match_int, dest, table_index);
   381     }
   382   }
   383   jint highest = table[2*(len-1)];
   384   assert(ranges[rp].hi() == highest, "");
   385   if( highest != max_jint
   386       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   387     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   388   }
   389   assert(rp < rnum, "not too many ranges");
   391   // Safepoint in case backward branch observed
   392   if( makes_backward_branch && UseLoopSafepoints )
   393     add_safepoint();
   395   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   396 }
   398 //----------------------------create_jump_tables-------------------------------
   399 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   400   // Are jumptables enabled
   401   if (!UseJumpTables)  return false;
   403   // Are jumptables supported
   404   if (!Matcher::has_match_rule(Op_Jump))  return false;
   406   // Don't make jump table if profiling
   407   if (method_data_update())  return false;
   409   // Decide if a guard is needed to lop off big ranges at either (or
   410   // both) end(s) of the input set. We'll call this the default target
   411   // even though we can't be sure that it is the true "default".
   413   bool needs_guard = false;
   414   int default_dest;
   415   int64 total_outlier_size = 0;
   416   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   417   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   419   if (lo->dest() == hi->dest()) {
   420     total_outlier_size = hi_size + lo_size;
   421     default_dest = lo->dest();
   422   } else if (lo_size > hi_size) {
   423     total_outlier_size = lo_size;
   424     default_dest = lo->dest();
   425   } else {
   426     total_outlier_size = hi_size;
   427     default_dest = hi->dest();
   428   }
   430   // If a guard test will eliminate very sparse end ranges, then
   431   // it is worth the cost of an extra jump.
   432   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   433     needs_guard = true;
   434     if (default_dest == lo->dest()) lo++;
   435     if (default_dest == hi->dest()) hi--;
   436   }
   438   // Find the total number of cases and ranges
   439   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   440   int num_range = hi - lo + 1;
   442   // Don't create table if: too large, too small, or too sparse.
   443   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   444     return false;
   445   if (num_cases > (MaxJumpTableSparseness * num_range))
   446     return false;
   448   // Normalize table lookups to zero
   449   int lowval = lo->lo();
   450   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   452   // Generate a guard to protect against input keyvals that aren't
   453   // in the switch domain.
   454   if (needs_guard) {
   455     Node*   size = _gvn.intcon(num_cases);
   456     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   457     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   458     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   459     jump_if_true_fork(iff, default_dest, NullTableIndex);
   460   }
   462   // Create an ideal node JumpTable that has projections
   463   // of all possible ranges for a switch statement
   464   // The key_val input must be converted to a pointer offset and scaled.
   465   // Compare Parse::array_addressing above.
   466 #ifdef _LP64
   467   // Clean the 32-bit int into a real 64-bit offset.
   468   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   469   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   470   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   471 #endif
   472   // Shift the value by wordsize so we have an index into the table, rather
   473   // than a switch value
   474   Node *shiftWord = _gvn.MakeConX(wordSize);
   475   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   477   // Create the JumpNode
   478   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   480   // These are the switch destinations hanging off the jumpnode
   481   int i = 0;
   482   for (SwitchRange* r = lo; r <= hi; r++) {
   483     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   484       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   485       {
   486         PreserveJVMState pjvms(this);
   487         set_control(input);
   488         jump_if_always_fork(r->dest(), r->table_index());
   489       }
   490     }
   491   }
   492   assert(i == num_cases, "miscount of cases");
   493   stop_and_kill_map();  // no more uses for this JVMS
   494   return true;
   495 }
   497 //----------------------------jump_switch_ranges-------------------------------
   498 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   499   Block* switch_block = block();
   501   if (switch_depth == 0) {
   502     // Do special processing for the top-level call.
   503     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   504     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   506     // Decrement pred-numbers for the unique set of nodes.
   507 #ifdef ASSERT
   508     // Ensure that the block's successors are a (duplicate-free) set.
   509     int successors_counted = 0;  // block occurrences in [hi..lo]
   510     int unique_successors = switch_block->num_successors();
   511     for (int i = 0; i < unique_successors; i++) {
   512       Block* target = switch_block->successor_at(i);
   514       // Check that the set of successors is the same in both places.
   515       int successors_found = 0;
   516       for (SwitchRange* p = lo; p <= hi; p++) {
   517         if (p->dest() == target->start())  successors_found++;
   518       }
   519       assert(successors_found > 0, "successor must be known");
   520       successors_counted += successors_found;
   521     }
   522     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   523 #endif
   525     // Maybe prune the inputs, based on the type of key_val.
   526     jint min_val = min_jint;
   527     jint max_val = max_jint;
   528     const TypeInt* ti = key_val->bottom_type()->isa_int();
   529     if (ti != NULL) {
   530       min_val = ti->_lo;
   531       max_val = ti->_hi;
   532       assert(min_val <= max_val, "invalid int type");
   533     }
   534     while (lo->hi() < min_val)  lo++;
   535     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   536     while (hi->lo() > max_val)  hi--;
   537     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   538   }
   540 #ifndef PRODUCT
   541   if (switch_depth == 0) {
   542     _max_switch_depth = 0;
   543     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   544   }
   545 #endif
   547   assert(lo <= hi, "must be a non-empty set of ranges");
   548   if (lo == hi) {
   549     jump_if_always_fork(lo->dest(), lo->table_index());
   550   } else {
   551     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   552     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   554     if (create_jump_tables(key_val, lo, hi)) return;
   556     int nr = hi - lo + 1;
   558     SwitchRange* mid = lo + nr/2;
   559     // if there is an easy choice, pivot at a singleton:
   560     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   562     assert(lo < mid && mid <= hi, "good pivot choice");
   563     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   564     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   566     Node *test_val = _gvn.intcon(mid->lo());
   568     if (mid->is_singleton()) {
   569       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   570       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   572       // Special Case:  If there are exactly three ranges, and the high
   573       // and low range each go to the same place, omit the "gt" test,
   574       // since it will not discriminate anything.
   575       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   576       if (eq_test_only) {
   577         assert(mid == hi-1, "");
   578       }
   580       // if there is a higher range, test for it and process it:
   581       if (mid < hi && !eq_test_only) {
   582         // two comparisons of same values--should enable 1 test for 2 branches
   583         // Use BoolTest::le instead of BoolTest::gt
   584         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   585         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   586         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   587         { PreserveJVMState pjvms(this);
   588           set_control(iffalse);
   589           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   590         }
   591         set_control(iftrue);
   592       }
   594     } else {
   595       // mid is a range, not a singleton, so treat mid..hi as a unit
   596       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   598       // if there is a higher range, test for it and process it:
   599       if (mid == hi) {
   600         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   601       } else {
   602         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   603         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   604         { PreserveJVMState pjvms(this);
   605           set_control(iftrue);
   606           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   607         }
   608         set_control(iffalse);
   609       }
   610     }
   612     // in any case, process the lower range
   613     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   614   }
   616   // Decrease pred_count for each successor after all is done.
   617   if (switch_depth == 0) {
   618     int unique_successors = switch_block->num_successors();
   619     for (int i = 0; i < unique_successors; i++) {
   620       Block* target = switch_block->successor_at(i);
   621       // Throw away the pre-allocated path for each unique successor.
   622       target->next_path_num();
   623     }
   624   }
   626 #ifndef PRODUCT
   627   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   628   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   629     SwitchRange* r;
   630     int nsing = 0;
   631     for( r = lo; r <= hi; r++ ) {
   632       if( r->is_singleton() )  nsing++;
   633     }
   634     tty->print(">>> ");
   635     _method->print_short_name();
   636     tty->print_cr(" switch decision tree");
   637     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   638                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   639     if (_max_switch_depth > _est_switch_depth) {
   640       tty->print_cr("******** BAD SWITCH DEPTH ********");
   641     }
   642     tty->print("   ");
   643     for( r = lo; r <= hi; r++ ) {
   644       r->print(env());
   645     }
   646     tty->print_cr("");
   647   }
   648 #endif
   649 }
   651 void Parse::modf() {
   652   Node *f2 = pop();
   653   Node *f1 = pop();
   654   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   655                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   656                               "frem", NULL, //no memory effects
   657                               f1, f2);
   658   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   660   push(res);
   661 }
   663 void Parse::modd() {
   664   Node *d2 = pop_pair();
   665   Node *d1 = pop_pair();
   666   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   667                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   668                               "drem", NULL, //no memory effects
   669                               d1, top(), d2, top());
   670   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   672 #ifdef ASSERT
   673   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   674   assert(res_top == top(), "second value must be top");
   675 #endif
   677   push_pair(res_d);
   678 }
   680 void Parse::l2f() {
   681   Node* f2 = pop();
   682   Node* f1 = pop();
   683   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   684                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   685                               "l2f", NULL, //no memory effects
   686                               f1, f2);
   687   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   689   push(res);
   690 }
   692 void Parse::do_irem() {
   693   // Must keep both values on the expression-stack during null-check
   694   do_null_check(peek(), T_INT);
   695   // Compile-time detect of null-exception?
   696   if (stopped())  return;
   698   Node* b = pop();
   699   Node* a = pop();
   701   const Type *t = _gvn.type(b);
   702   if (t != Type::TOP) {
   703     const TypeInt *ti = t->is_int();
   704     if (ti->is_con()) {
   705       int divisor = ti->get_con();
   706       // check for positive power of 2
   707       if (divisor > 0 &&
   708           (divisor & ~(divisor-1)) == divisor) {
   709         // yes !
   710         Node *mask = _gvn.intcon((divisor - 1));
   711         // Sigh, must handle negative dividends
   712         Node *zero = _gvn.intcon(0);
   713         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   714         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   715         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   716         Node *reg = jump_if_join(ift, iff);
   717         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   718         // Negative path; negate/and/negate
   719         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   720         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   721         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   722         phi->init_req(1, negn);
   723         // Fast positive case
   724         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   725         phi->init_req(2, andx);
   726         // Push the merge
   727         push( _gvn.transform(phi) );
   728         return;
   729       }
   730     }
   731   }
   732   // Default case
   733   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   734 }
   736 // Handle jsr and jsr_w bytecode
   737 void Parse::do_jsr() {
   738   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   740   // Store information about current state, tagged with new _jsr_bci
   741   int return_bci = iter().next_bci();
   742   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   744   // Update method data
   745   profile_taken_branch(jsr_bci);
   747   // The way we do things now, there is only one successor block
   748   // for the jsr, because the target code is cloned by ciTypeFlow.
   749   Block* target = successor_for_bci(jsr_bci);
   751   // What got pushed?
   752   const Type* ret_addr = target->peek();
   753   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   755   // Effect on jsr on stack
   756   push(_gvn.makecon(ret_addr));
   758   // Flow to the jsr.
   759   if (should_add_predicate(jsr_bci)){
   760     add_predicate();
   761   }
   762   merge(jsr_bci);
   763 }
   765 // Handle ret bytecode
   766 void Parse::do_ret() {
   767   // Find to whom we return.
   768 #if 0 // %%%% MAKE THIS WORK
   769   Node* con = local();
   770   const TypePtr* tp = con->bottom_type()->isa_ptr();
   771   assert(tp && tp->singleton(), "");
   772   int return_bci = (int) tp->get_con();
   773   merge(return_bci);
   774 #else
   775   assert(block()->num_successors() == 1, "a ret can only go one place now");
   776   Block* target = block()->successor_at(0);
   777   assert(!target->is_ready(), "our arrival must be expected");
   778   profile_ret(target->flow()->start());
   779   int pnum = target->next_path_num();
   780   merge_common(target, pnum);
   781 #endif
   782 }
   784 //--------------------------dynamic_branch_prediction--------------------------
   785 // Try to gather dynamic branch prediction behavior.  Return a probability
   786 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   787 // if we need to use static prediction for some reason.
   788 float Parse::dynamic_branch_prediction(float &cnt) {
   789   ResourceMark rm;
   791   cnt  = COUNT_UNKNOWN;
   793   // Use MethodData information if it is available
   794   // FIXME: free the ProfileData structure
   795   ciMethodData* methodData = method()->method_data();
   796   if (!methodData->is_mature())  return PROB_UNKNOWN;
   797   ciProfileData* data = methodData->bci_to_data(bci());
   798   if (!data->is_JumpData())  return PROB_UNKNOWN;
   800   // get taken and not taken values
   801   int     taken = data->as_JumpData()->taken();
   802   int not_taken = 0;
   803   if (data->is_BranchData()) {
   804     not_taken = data->as_BranchData()->not_taken();
   805   }
   807   // scale the counts to be commensurate with invocation counts:
   808   taken = method()->scale_count(taken);
   809   not_taken = method()->scale_count(not_taken);
   811   // Give up if too few counts to be meaningful
   812   if (taken + not_taken < 40) {
   813     if (C->log() != NULL) {
   814       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   815     }
   816     return PROB_UNKNOWN;
   817   }
   819   // Compute frequency that we arrive here
   820   int sum = taken + not_taken;
   821   // Adjust, if this block is a cloned private block but the
   822   // Jump counts are shared.  Taken the private counts for
   823   // just this path instead of the shared counts.
   824   if( block()->count() > 0 )
   825     sum = block()->count();
   826   cnt = (float)sum / (float)FreqCountInvocations;
   828   // Pin probability to sane limits
   829   float prob;
   830   if( !taken )
   831     prob = (0+PROB_MIN) / 2;
   832   else if( !not_taken )
   833     prob = (1+PROB_MAX) / 2;
   834   else {                         // Compute probability of true path
   835     prob = (float)taken / (float)(taken + not_taken);
   836     if (prob > PROB_MAX)  prob = PROB_MAX;
   837     if (prob < PROB_MIN)   prob = PROB_MIN;
   838   }
   840   assert((cnt > 0.0f) && (prob > 0.0f),
   841          "Bad frequency assignment in if");
   843   if (C->log() != NULL) {
   844     const char* prob_str = NULL;
   845     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   846     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   847     char prob_str_buf[30];
   848     if (prob_str == NULL) {
   849       sprintf(prob_str_buf, "%g", prob);
   850       prob_str = prob_str_buf;
   851     }
   852     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   853                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   854   }
   855   return prob;
   856 }
   858 //-----------------------------branch_prediction-------------------------------
   859 float Parse::branch_prediction(float& cnt,
   860                                BoolTest::mask btest,
   861                                int target_bci) {
   862   float prob = dynamic_branch_prediction(cnt);
   863   // If prob is unknown, switch to static prediction
   864   if (prob != PROB_UNKNOWN)  return prob;
   866   prob = PROB_FAIR;                   // Set default value
   867   if (btest == BoolTest::eq)          // Exactly equal test?
   868     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   869   else if (btest == BoolTest::ne)
   870     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   872   // If this is a conditional test guarding a backwards branch,
   873   // assume its a loop-back edge.  Make it a likely taken branch.
   874   if (target_bci < bci()) {
   875     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   876       // Since it's an OSR, we probably have profile data, but since
   877       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   878       // Let's make a special check here for completely zero counts.
   879       ciMethodData* methodData = method()->method_data();
   880       if (!methodData->is_empty()) {
   881         ciProfileData* data = methodData->bci_to_data(bci());
   882         // Only stop for truly zero counts, which mean an unknown part
   883         // of the OSR-ed method, and we want to deopt to gather more stats.
   884         // If you have ANY counts, then this loop is simply 'cold' relative
   885         // to the OSR loop.
   886         if (data->as_BranchData()->taken() +
   887             data->as_BranchData()->not_taken() == 0 ) {
   888           // This is the only way to return PROB_UNKNOWN:
   889           return PROB_UNKNOWN;
   890         }
   891       }
   892     }
   893     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   894   }
   896   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   897   return prob;
   898 }
   900 // The magic constants are chosen so as to match the output of
   901 // branch_prediction() when the profile reports a zero taken count.
   902 // It is important to distinguish zero counts unambiguously, because
   903 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   904 // very small but nonzero probabilities, which if confused with zero
   905 // counts would keep the program recompiling indefinitely.
   906 bool Parse::seems_never_taken(float prob) {
   907   return prob < PROB_MIN;
   908 }
   910 // True if the comparison seems to be the kind that will not change its
   911 // statistics from true to false.  See comments in adjust_map_after_if.
   912 // This question is only asked along paths which are already
   913 // classifed as untaken (by seems_never_taken), so really,
   914 // if a path is never taken, its controlling comparison is
   915 // already acting in a stable fashion.  If the comparison
   916 // seems stable, we will put an expensive uncommon trap
   917 // on the untaken path.  To be conservative, and to allow
   918 // partially executed counted loops to be compiled fully,
   919 // we will plant uncommon traps only after pointer comparisons.
   920 bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
   921   for (int depth = 4; depth > 0; depth--) {
   922     // The following switch can find CmpP here over half the time for
   923     // dynamic language code rich with type tests.
   924     // Code using counted loops or array manipulations (typical
   925     // of benchmarks) will have many (>80%) CmpI instructions.
   926     switch (cmp->Opcode()) {
   927     case Op_CmpP:
   928       // A never-taken null check looks like CmpP/BoolTest::eq.
   929       // These certainly should be closed off as uncommon traps.
   930       if (btest == BoolTest::eq)
   931         return true;
   932       // A never-failed type check looks like CmpP/BoolTest::ne.
   933       // Let's put traps on those, too, so that we don't have to compile
   934       // unused paths with indeterminate dynamic type information.
   935       if (ProfileDynamicTypes)
   936         return true;
   937       return false;
   939     case Op_CmpI:
   940       // A small minority (< 10%) of CmpP are masked as CmpI,
   941       // as if by boolean conversion ((p == q? 1: 0) != 0).
   942       // Detect that here, even if it hasn't optimized away yet.
   943       // Specifically, this covers the 'instanceof' operator.
   944       if (btest == BoolTest::ne || btest == BoolTest::eq) {
   945         if (_gvn.type(cmp->in(2))->singleton() &&
   946             cmp->in(1)->is_Phi()) {
   947           PhiNode* phi = cmp->in(1)->as_Phi();
   948           int true_path = phi->is_diamond_phi();
   949           if (true_path > 0 &&
   950               _gvn.type(phi->in(1))->singleton() &&
   951               _gvn.type(phi->in(2))->singleton()) {
   952             // phi->region->if_proj->ifnode->bool->cmp
   953             BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
   954             btest = bol->_test._test;
   955             cmp = bol->in(1);
   956             continue;
   957           }
   958         }
   959       }
   960       return false;
   961     }
   962   }
   963   return false;
   964 }
   966 //-------------------------------repush_if_args--------------------------------
   967 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
   968 inline int Parse::repush_if_args() {
   969 #ifndef PRODUCT
   970   if (PrintOpto && WizardMode) {
   971     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   972                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   973     method()->print_name(); tty->cr();
   974   }
   975 #endif
   976   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   977   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   978   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   979   assert(argument(0) != NULL, "must exist");
   980   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   981   _sp += bc_depth;
   982   return bc_depth;
   983 }
   985 //----------------------------------do_ifnull----------------------------------
   986 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
   987   int target_bci = iter().get_dest();
   989   Block* branch_block = successor_for_bci(target_bci);
   990   Block* next_block   = successor_for_bci(iter().next_bci());
   992   float cnt;
   993   float prob = branch_prediction(cnt, btest, target_bci);
   994   if (prob == PROB_UNKNOWN) {
   995     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   996 #ifndef PRODUCT
   997     if (PrintOpto && Verbose)
   998       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
   999 #endif
  1000     repush_if_args(); // to gather stats on loop
  1001     // We need to mark this branch as taken so that if we recompile we will
  1002     // see that it is possible. In the tiered system the interpreter doesn't
  1003     // do profiling and by the time we get to the lower tier from the interpreter
  1004     // the path may be cold again. Make sure it doesn't look untaken
  1005     profile_taken_branch(target_bci, !ProfileInterpreter);
  1006     uncommon_trap(Deoptimization::Reason_unreached,
  1007                   Deoptimization::Action_reinterpret,
  1008                   NULL, "cold");
  1009     if (EliminateAutoBox) {
  1010       // Mark the successor blocks as parsed
  1011       branch_block->next_path_num();
  1012       next_block->next_path_num();
  1014     return;
  1017   explicit_null_checks_inserted++;
  1019   // Generate real control flow
  1020   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
  1022   // Sanity check the probability value
  1023   assert(prob > 0.0f,"Bad probability in Parser");
  1024  // Need xform to put node in hash table
  1025   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
  1026   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1027   // True branch
  1028   { PreserveJVMState pjvms(this);
  1029     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
  1030     set_control(iftrue);
  1032     if (stopped()) {            // Path is dead?
  1033       explicit_null_checks_elided++;
  1034       if (EliminateAutoBox) {
  1035         // Mark the successor block as parsed
  1036         branch_block->next_path_num();
  1038     } else {                    // Path is live.
  1039       // Update method data
  1040       profile_taken_branch(target_bci);
  1041       adjust_map_after_if(btest, c, prob, branch_block, next_block);
  1042       if (!stopped()) {
  1043         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
  1044           int nargs = repush_if_args(); // set original stack for uncommon_trap
  1045           add_predicate();
  1046           _sp -= nargs;
  1048         merge(target_bci);
  1053   // False branch
  1054   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
  1055   set_control(iffalse);
  1057   if (stopped()) {              // Path is dead?
  1058     explicit_null_checks_elided++;
  1059     if (EliminateAutoBox) {
  1060       // Mark the successor block as parsed
  1061       next_block->next_path_num();
  1063   } else  {                     // Path is live.
  1064     // Update method data
  1065     profile_not_taken_branch();
  1066     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
  1067                         next_block, branch_block);
  1071 //------------------------------------do_if------------------------------------
  1072 void Parse::do_if(BoolTest::mask btest, Node* c) {
  1073   int target_bci = iter().get_dest();
  1075   Block* branch_block = successor_for_bci(target_bci);
  1076   Block* next_block   = successor_for_bci(iter().next_bci());
  1078   float cnt;
  1079   float prob = branch_prediction(cnt, btest, target_bci);
  1080   float untaken_prob = 1.0 - prob;
  1082   if (prob == PROB_UNKNOWN) {
  1083 #ifndef PRODUCT
  1084     if (PrintOpto && Verbose)
  1085       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
  1086 #endif
  1087     repush_if_args(); // to gather stats on loop
  1088     // We need to mark this branch as taken so that if we recompile we will
  1089     // see that it is possible. In the tiered system the interpreter doesn't
  1090     // do profiling and by the time we get to the lower tier from the interpreter
  1091     // the path may be cold again. Make sure it doesn't look untaken
  1092     profile_taken_branch(target_bci, !ProfileInterpreter);
  1093     uncommon_trap(Deoptimization::Reason_unreached,
  1094                   Deoptimization::Action_reinterpret,
  1095                   NULL, "cold");
  1096     if (EliminateAutoBox) {
  1097       // Mark the successor blocks as parsed
  1098       branch_block->next_path_num();
  1099       next_block->next_path_num();
  1101     return;
  1104   // Sanity check the probability value
  1105   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1107   bool taken_if_true = true;
  1108   // Convert BoolTest to canonical form:
  1109   if (!BoolTest(btest).is_canonical()) {
  1110     btest         = BoolTest(btest).negate();
  1111     taken_if_true = false;
  1112     // prob is NOT updated here; it remains the probability of the taken
  1113     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1115   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1117   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1118   Node* tst = _gvn.transform(tst0);
  1119   BoolTest::mask taken_btest   = BoolTest::illegal;
  1120   BoolTest::mask untaken_btest = BoolTest::illegal;
  1122   if (tst->is_Bool()) {
  1123     // Refresh c from the transformed bool node, since it may be
  1124     // simpler than the original c.  Also re-canonicalize btest.
  1125     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1126     // That can arise from statements like: if (x instanceof C) ...
  1127     if (tst != tst0) {
  1128       // Canonicalize one more time since transform can change it.
  1129       btest = tst->as_Bool()->_test._test;
  1130       if (!BoolTest(btest).is_canonical()) {
  1131         // Reverse edges one more time...
  1132         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1133         btest = tst->as_Bool()->_test._test;
  1134         assert(BoolTest(btest).is_canonical(), "sanity");
  1135         taken_if_true = !taken_if_true;
  1137       c = tst->in(1);
  1139     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1140     taken_btest   = taken_if_true ?     btest : neg_btest;
  1141     untaken_btest = taken_if_true ? neg_btest :     btest;
  1144   // Generate real control flow
  1145   float true_prob = (taken_if_true ? prob : untaken_prob);
  1146   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1147   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1148   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1149   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1150   if (!taken_if_true) {  // Finish conversion to canonical form
  1151     Node* tmp      = taken_branch;
  1152     taken_branch   = untaken_branch;
  1153     untaken_branch = tmp;
  1156   // Branch is taken:
  1157   { PreserveJVMState pjvms(this);
  1158     taken_branch = _gvn.transform(taken_branch);
  1159     set_control(taken_branch);
  1161     if (stopped()) {
  1162       if (EliminateAutoBox) {
  1163         // Mark the successor block as parsed
  1164         branch_block->next_path_num();
  1166     } else {
  1167       // Update method data
  1168       profile_taken_branch(target_bci);
  1169       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1170       if (!stopped()) {
  1171         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
  1172           int nargs = repush_if_args(); // set original stack for the uncommon_trap
  1173           add_predicate();
  1174           _sp -= nargs;
  1176         merge(target_bci);
  1181   untaken_branch = _gvn.transform(untaken_branch);
  1182   set_control(untaken_branch);
  1184   // Branch not taken.
  1185   if (stopped()) {
  1186     if (EliminateAutoBox) {
  1187       // Mark the successor block as parsed
  1188       next_block->next_path_num();
  1190   } else {
  1191     // Update method data
  1192     profile_not_taken_branch();
  1193     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1194                         next_block, branch_block);
  1198 //----------------------------adjust_map_after_if------------------------------
  1199 // Adjust the JVM state to reflect the result of taking this path.
  1200 // Basically, it means inspecting the CmpNode controlling this
  1201 // branch, seeing how it constrains a tested value, and then
  1202 // deciding if it's worth our while to encode this constraint
  1203 // as graph nodes in the current abstract interpretation map.
  1204 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1205                                 Block* path, Block* other_path) {
  1206   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1207     return;                             // nothing to do
  1209   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1211   if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
  1212     // If this might possibly turn into an implicit null check,
  1213     // and the null has never yet been seen, we need to generate
  1214     // an uncommon trap, so as to recompile instead of suffering
  1215     // with very slow branches.  (We'll get the slow branches if
  1216     // the program ever changes phase and starts seeing nulls here.)
  1217     //
  1218     // We do not inspect for a null constant, since a node may
  1219     // optimize to 'null' later on.
  1220     //
  1221     // Null checks, and other tests which expect inequality,
  1222     // show btest == BoolTest::eq along the non-taken branch.
  1223     // On the other hand, type tests, must-be-null tests,
  1224     // and other tests which expect pointer equality,
  1225     // show btest == BoolTest::ne along the non-taken branch.
  1226     // We prune both types of branches if they look unused.
  1227     repush_if_args();
  1228     // We need to mark this branch as taken so that if we recompile we will
  1229     // see that it is possible. In the tiered system the interpreter doesn't
  1230     // do profiling and by the time we get to the lower tier from the interpreter
  1231     // the path may be cold again. Make sure it doesn't look untaken
  1232     if (is_fallthrough) {
  1233       profile_not_taken_branch(!ProfileInterpreter);
  1234     } else {
  1235       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1237     uncommon_trap(Deoptimization::Reason_unreached,
  1238                   Deoptimization::Action_reinterpret,
  1239                   NULL,
  1240                   (is_fallthrough ? "taken always" : "taken never"));
  1241     return;
  1244   Node* val = c->in(1);
  1245   Node* con = c->in(2);
  1246   const Type* tcon = _gvn.type(con);
  1247   const Type* tval = _gvn.type(val);
  1248   bool have_con = tcon->singleton();
  1249   if (tval->singleton()) {
  1250     if (!have_con) {
  1251       // Swap, so constant is in con.
  1252       con  = val;
  1253       tcon = tval;
  1254       val  = c->in(2);
  1255       tval = _gvn.type(val);
  1256       btest = BoolTest(btest).commute();
  1257       have_con = true;
  1258     } else {
  1259       // Do we have two constants?  Then leave well enough alone.
  1260       have_con = false;
  1263   if (!have_con)                        // remaining adjustments need a con
  1264     return;
  1267   int val_in_map = map()->find_edge(val);
  1268   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1270     JVMState* jvms = this->jvms();
  1271     if (!(jvms->is_loc(val_in_map) ||
  1272           jvms->is_stk(val_in_map)))
  1273       return;                           // again, it would be useless
  1276   // Check for a comparison to a constant, and "know" that the compared
  1277   // value is constrained on this path.
  1278   assert(tcon->singleton(), "");
  1279   ConstraintCastNode* ccast = NULL;
  1280   Node* cast = NULL;
  1282   switch (btest) {
  1283   case BoolTest::eq:                    // Constant test?
  1285       const Type* tboth = tcon->join(tval);
  1286       if (tboth == tval)  break;        // Nothing to gain.
  1287       if (tcon->isa_int()) {
  1288         ccast = new (C, 2) CastIINode(val, tboth);
  1289       } else if (tcon == TypePtr::NULL_PTR) {
  1290         // Cast to null, but keep the pointer identity temporarily live.
  1291         ccast = new (C, 2) CastPPNode(val, tboth);
  1292       } else {
  1293         const TypeF* tf = tcon->isa_float_constant();
  1294         const TypeD* td = tcon->isa_double_constant();
  1295         // Exclude tests vs float/double 0 as these could be
  1296         // either +0 or -0.  Just because you are equal to +0
  1297         // doesn't mean you ARE +0!
  1298         if ((!tf || tf->_f != 0.0) &&
  1299             (!td || td->_d != 0.0))
  1300           cast = con;                   // Replace non-constant val by con.
  1303     break;
  1305   case BoolTest::ne:
  1306     if (tcon == TypePtr::NULL_PTR) {
  1307       cast = cast_not_null(val, false);
  1309     break;
  1311   default:
  1312     // (At this point we could record int range types with CastII.)
  1313     break;
  1316   if (ccast != NULL) {
  1317     const Type* tcc = ccast->as_Type()->type();
  1318     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1319     // Delay transform() call to allow recovery of pre-cast value
  1320     // at the control merge.
  1321     ccast->set_req(0, control());
  1322     _gvn.set_type_bottom(ccast);
  1323     record_for_igvn(ccast);
  1324     cast = ccast;
  1327   if (cast != NULL) {                   // Here's the payoff.
  1328     replace_in_map(val, cast);
  1333 //------------------------------do_one_bytecode--------------------------------
  1334 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1335 void Parse::do_one_bytecode() {
  1336   Node *a, *b, *c, *d;          // Handy temps
  1337   BoolTest::mask btest;
  1338   int i;
  1340   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1342   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1343                           "out of nodes parsing method")) {
  1344     return;
  1347 #ifdef ASSERT
  1348   // for setting breakpoints
  1349   if (TraceOptoParse) {
  1350     tty->print(" @");
  1351     dump_bci(bci());
  1353 #endif
  1355   switch (bc()) {
  1356   case Bytecodes::_nop:
  1357     // do nothing
  1358     break;
  1359   case Bytecodes::_lconst_0:
  1360     push_pair(longcon(0));
  1361     break;
  1363   case Bytecodes::_lconst_1:
  1364     push_pair(longcon(1));
  1365     break;
  1367   case Bytecodes::_fconst_0:
  1368     push(zerocon(T_FLOAT));
  1369     break;
  1371   case Bytecodes::_fconst_1:
  1372     push(makecon(TypeF::ONE));
  1373     break;
  1375   case Bytecodes::_fconst_2:
  1376     push(makecon(TypeF::make(2.0f)));
  1377     break;
  1379   case Bytecodes::_dconst_0:
  1380     push_pair(zerocon(T_DOUBLE));
  1381     break;
  1383   case Bytecodes::_dconst_1:
  1384     push_pair(makecon(TypeD::ONE));
  1385     break;
  1387   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1388   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1389   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1390   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1391   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1392   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1393   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1394   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
  1395   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
  1396   case Bytecodes::_aconst_null: push(null());  break;
  1397   case Bytecodes::_ldc:
  1398   case Bytecodes::_ldc_w:
  1399   case Bytecodes::_ldc2_w:
  1400     // If the constant is unresolved, run this BC once in the interpreter.
  1402       ciConstant constant = iter().get_constant();
  1403       if (constant.basic_type() == T_OBJECT &&
  1404           !constant.as_object()->is_loaded()) {
  1405         int index = iter().get_constant_pool_index();
  1406         constantTag tag = iter().get_constant_pool_tag(index);
  1407         uncommon_trap(Deoptimization::make_trap_request
  1408                       (Deoptimization::Reason_unloaded,
  1409                        Deoptimization::Action_reinterpret,
  1410                        index),
  1411                       NULL, tag.internal_name());
  1412         break;
  1414       assert(constant.basic_type() != T_OBJECT || !constant.as_object()->is_klass(),
  1415              "must be java_mirror of klass");
  1416       bool pushed = push_constant(constant, true);
  1417       guarantee(pushed, "must be possible to push this constant");
  1420     break;
  1422   case Bytecodes::_aload_0:
  1423     push( local(0) );
  1424     break;
  1425   case Bytecodes::_aload_1:
  1426     push( local(1) );
  1427     break;
  1428   case Bytecodes::_aload_2:
  1429     push( local(2) );
  1430     break;
  1431   case Bytecodes::_aload_3:
  1432     push( local(3) );
  1433     break;
  1434   case Bytecodes::_aload:
  1435     push( local(iter().get_index()) );
  1436     break;
  1438   case Bytecodes::_fload_0:
  1439   case Bytecodes::_iload_0:
  1440     push( local(0) );
  1441     break;
  1442   case Bytecodes::_fload_1:
  1443   case Bytecodes::_iload_1:
  1444     push( local(1) );
  1445     break;
  1446   case Bytecodes::_fload_2:
  1447   case Bytecodes::_iload_2:
  1448     push( local(2) );
  1449     break;
  1450   case Bytecodes::_fload_3:
  1451   case Bytecodes::_iload_3:
  1452     push( local(3) );
  1453     break;
  1454   case Bytecodes::_fload:
  1455   case Bytecodes::_iload:
  1456     push( local(iter().get_index()) );
  1457     break;
  1458   case Bytecodes::_lload_0:
  1459     push_pair_local( 0 );
  1460     break;
  1461   case Bytecodes::_lload_1:
  1462     push_pair_local( 1 );
  1463     break;
  1464   case Bytecodes::_lload_2:
  1465     push_pair_local( 2 );
  1466     break;
  1467   case Bytecodes::_lload_3:
  1468     push_pair_local( 3 );
  1469     break;
  1470   case Bytecodes::_lload:
  1471     push_pair_local( iter().get_index() );
  1472     break;
  1474   case Bytecodes::_dload_0:
  1475     push_pair_local(0);
  1476     break;
  1477   case Bytecodes::_dload_1:
  1478     push_pair_local(1);
  1479     break;
  1480   case Bytecodes::_dload_2:
  1481     push_pair_local(2);
  1482     break;
  1483   case Bytecodes::_dload_3:
  1484     push_pair_local(3);
  1485     break;
  1486   case Bytecodes::_dload:
  1487     push_pair_local(iter().get_index());
  1488     break;
  1489   case Bytecodes::_fstore_0:
  1490   case Bytecodes::_istore_0:
  1491   case Bytecodes::_astore_0:
  1492     set_local( 0, pop() );
  1493     break;
  1494   case Bytecodes::_fstore_1:
  1495   case Bytecodes::_istore_1:
  1496   case Bytecodes::_astore_1:
  1497     set_local( 1, pop() );
  1498     break;
  1499   case Bytecodes::_fstore_2:
  1500   case Bytecodes::_istore_2:
  1501   case Bytecodes::_astore_2:
  1502     set_local( 2, pop() );
  1503     break;
  1504   case Bytecodes::_fstore_3:
  1505   case Bytecodes::_istore_3:
  1506   case Bytecodes::_astore_3:
  1507     set_local( 3, pop() );
  1508     break;
  1509   case Bytecodes::_fstore:
  1510   case Bytecodes::_istore:
  1511   case Bytecodes::_astore:
  1512     set_local( iter().get_index(), pop() );
  1513     break;
  1514   // long stores
  1515   case Bytecodes::_lstore_0:
  1516     set_pair_local( 0, pop_pair() );
  1517     break;
  1518   case Bytecodes::_lstore_1:
  1519     set_pair_local( 1, pop_pair() );
  1520     break;
  1521   case Bytecodes::_lstore_2:
  1522     set_pair_local( 2, pop_pair() );
  1523     break;
  1524   case Bytecodes::_lstore_3:
  1525     set_pair_local( 3, pop_pair() );
  1526     break;
  1527   case Bytecodes::_lstore:
  1528     set_pair_local( iter().get_index(), pop_pair() );
  1529     break;
  1531   // double stores
  1532   case Bytecodes::_dstore_0:
  1533     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1534     break;
  1535   case Bytecodes::_dstore_1:
  1536     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1537     break;
  1538   case Bytecodes::_dstore_2:
  1539     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1540     break;
  1541   case Bytecodes::_dstore_3:
  1542     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1543     break;
  1544   case Bytecodes::_dstore:
  1545     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1546     break;
  1548   case Bytecodes::_pop:  _sp -= 1;   break;
  1549   case Bytecodes::_pop2: _sp -= 2;   break;
  1550   case Bytecodes::_swap:
  1551     a = pop();
  1552     b = pop();
  1553     push(a);
  1554     push(b);
  1555     break;
  1556   case Bytecodes::_dup:
  1557     a = pop();
  1558     push(a);
  1559     push(a);
  1560     break;
  1561   case Bytecodes::_dup_x1:
  1562     a = pop();
  1563     b = pop();
  1564     push( a );
  1565     push( b );
  1566     push( a );
  1567     break;
  1568   case Bytecodes::_dup_x2:
  1569     a = pop();
  1570     b = pop();
  1571     c = pop();
  1572     push( a );
  1573     push( c );
  1574     push( b );
  1575     push( a );
  1576     break;
  1577   case Bytecodes::_dup2:
  1578     a = pop();
  1579     b = pop();
  1580     push( b );
  1581     push( a );
  1582     push( b );
  1583     push( a );
  1584     break;
  1586   case Bytecodes::_dup2_x1:
  1587     // before: .. c, b, a
  1588     // after:  .. b, a, c, b, a
  1589     // not tested
  1590     a = pop();
  1591     b = pop();
  1592     c = pop();
  1593     push( b );
  1594     push( a );
  1595     push( c );
  1596     push( b );
  1597     push( a );
  1598     break;
  1599   case Bytecodes::_dup2_x2:
  1600     // before: .. d, c, b, a
  1601     // after:  .. b, a, d, c, b, a
  1602     // not tested
  1603     a = pop();
  1604     b = pop();
  1605     c = pop();
  1606     d = pop();
  1607     push( b );
  1608     push( a );
  1609     push( d );
  1610     push( c );
  1611     push( b );
  1612     push( a );
  1613     break;
  1615   case Bytecodes::_arraylength: {
  1616     // Must do null-check with value on expression stack
  1617     Node *ary = do_null_check(peek(), T_ARRAY);
  1618     // Compile-time detect of null-exception?
  1619     if (stopped())  return;
  1620     a = pop();
  1621     push(load_array_length(a));
  1622     break;
  1625   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1626   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1627   case Bytecodes::_iaload: array_load(T_INT);    break;
  1628   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1629   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1630   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1631   case Bytecodes::_laload: {
  1632     a = array_addressing(T_LONG, 0);
  1633     if (stopped())  return;     // guaranteed null or range check
  1634     _sp -= 2;                   // Pop array and index
  1635     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1636     break;
  1638   case Bytecodes::_daload: {
  1639     a = array_addressing(T_DOUBLE, 0);
  1640     if (stopped())  return;     // guaranteed null or range check
  1641     _sp -= 2;                   // Pop array and index
  1642     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1643     break;
  1645   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1646   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1647   case Bytecodes::_iastore: array_store(T_INT);   break;
  1648   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1649   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1650   case Bytecodes::_aastore: {
  1651     d = array_addressing(T_OBJECT, 1);
  1652     if (stopped())  return;     // guaranteed null or range check
  1653     array_store_check();
  1654     c = pop();                  // Oop to store
  1655     b = pop();                  // index (already used)
  1656     a = pop();                  // the array itself
  1657     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
  1658     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1659     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1660     break;
  1662   case Bytecodes::_lastore: {
  1663     a = array_addressing(T_LONG, 2);
  1664     if (stopped())  return;     // guaranteed null or range check
  1665     c = pop_pair();
  1666     _sp -= 2;                   // Pop array and index
  1667     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1668     break;
  1670   case Bytecodes::_dastore: {
  1671     a = array_addressing(T_DOUBLE, 2);
  1672     if (stopped())  return;     // guaranteed null or range check
  1673     c = pop_pair();
  1674     _sp -= 2;                   // Pop array and index
  1675     c = dstore_rounding(c);
  1676     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1677     break;
  1679   case Bytecodes::_getfield:
  1680     do_getfield();
  1681     break;
  1683   case Bytecodes::_getstatic:
  1684     do_getstatic();
  1685     break;
  1687   case Bytecodes::_putfield:
  1688     do_putfield();
  1689     break;
  1691   case Bytecodes::_putstatic:
  1692     do_putstatic();
  1693     break;
  1695   case Bytecodes::_irem:
  1696     do_irem();
  1697     break;
  1698   case Bytecodes::_idiv:
  1699     // Must keep both values on the expression-stack during null-check
  1700     do_null_check(peek(), T_INT);
  1701     // Compile-time detect of null-exception?
  1702     if (stopped())  return;
  1703     b = pop();
  1704     a = pop();
  1705     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1706     break;
  1707   case Bytecodes::_imul:
  1708     b = pop(); a = pop();
  1709     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1710     break;
  1711   case Bytecodes::_iadd:
  1712     b = pop(); a = pop();
  1713     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1714     break;
  1715   case Bytecodes::_ineg:
  1716     a = pop();
  1717     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1718     break;
  1719   case Bytecodes::_isub:
  1720     b = pop(); a = pop();
  1721     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1722     break;
  1723   case Bytecodes::_iand:
  1724     b = pop(); a = pop();
  1725     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1726     break;
  1727   case Bytecodes::_ior:
  1728     b = pop(); a = pop();
  1729     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1730     break;
  1731   case Bytecodes::_ixor:
  1732     b = pop(); a = pop();
  1733     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1734     break;
  1735   case Bytecodes::_ishl:
  1736     b = pop(); a = pop();
  1737     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1738     break;
  1739   case Bytecodes::_ishr:
  1740     b = pop(); a = pop();
  1741     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1742     break;
  1743   case Bytecodes::_iushr:
  1744     b = pop(); a = pop();
  1745     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1746     break;
  1748   case Bytecodes::_fneg:
  1749     a = pop();
  1750     b = _gvn.transform(new (C, 2) NegFNode (a));
  1751     push(b);
  1752     break;
  1754   case Bytecodes::_fsub:
  1755     b = pop();
  1756     a = pop();
  1757     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1758     d = precision_rounding(c);
  1759     push( d );
  1760     break;
  1762   case Bytecodes::_fadd:
  1763     b = pop();
  1764     a = pop();
  1765     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1766     d = precision_rounding(c);
  1767     push( d );
  1768     break;
  1770   case Bytecodes::_fmul:
  1771     b = pop();
  1772     a = pop();
  1773     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1774     d = precision_rounding(c);
  1775     push( d );
  1776     break;
  1778   case Bytecodes::_fdiv:
  1779     b = pop();
  1780     a = pop();
  1781     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1782     d = precision_rounding(c);
  1783     push( d );
  1784     break;
  1786   case Bytecodes::_frem:
  1787     if (Matcher::has_match_rule(Op_ModF)) {
  1788       // Generate a ModF node.
  1789       b = pop();
  1790       a = pop();
  1791       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1792       d = precision_rounding(c);
  1793       push( d );
  1795     else {
  1796       // Generate a call.
  1797       modf();
  1799     break;
  1801   case Bytecodes::_fcmpl:
  1802     b = pop();
  1803     a = pop();
  1804     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1805     push(c);
  1806     break;
  1807   case Bytecodes::_fcmpg:
  1808     b = pop();
  1809     a = pop();
  1811     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1812     // which negates the result sign except for unordered.  Flip the unordered
  1813     // as well by using CmpF3 which implements unordered-lesser instead of
  1814     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1815     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1816     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1817     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1818     push(c);
  1819     break;
  1821   case Bytecodes::_f2i:
  1822     a = pop();
  1823     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1824     break;
  1826   case Bytecodes::_d2i:
  1827     a = pop_pair();
  1828     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1829     push( b );
  1830     break;
  1832   case Bytecodes::_f2d:
  1833     a = pop();
  1834     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1835     push_pair( b );
  1836     break;
  1838   case Bytecodes::_d2f:
  1839     a = pop_pair();
  1840     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1841     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1842     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1843     push( b );
  1844     break;
  1846   case Bytecodes::_l2f:
  1847     if (Matcher::convL2FSupported()) {
  1848       a = pop_pair();
  1849       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1850       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1851       // Rather than storing the result into an FP register then pushing
  1852       // out to memory to round, the machine instruction that implements
  1853       // ConvL2D is responsible for rounding.
  1854       // c = precision_rounding(b);
  1855       c = _gvn.transform(b);
  1856       push(c);
  1857     } else {
  1858       l2f();
  1860     break;
  1862   case Bytecodes::_l2d:
  1863     a = pop_pair();
  1864     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1865     // For i486.ad, rounding is always necessary (see _l2f above).
  1866     // c = dprecision_rounding(b);
  1867     c = _gvn.transform(b);
  1868     push_pair(c);
  1869     break;
  1871   case Bytecodes::_f2l:
  1872     a = pop();
  1873     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1874     push_pair(b);
  1875     break;
  1877   case Bytecodes::_d2l:
  1878     a = pop_pair();
  1879     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1880     push_pair(b);
  1881     break;
  1883   case Bytecodes::_dsub:
  1884     b = pop_pair();
  1885     a = pop_pair();
  1886     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1887     d = dprecision_rounding(c);
  1888     push_pair( d );
  1889     break;
  1891   case Bytecodes::_dadd:
  1892     b = pop_pair();
  1893     a = pop_pair();
  1894     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1895     d = dprecision_rounding(c);
  1896     push_pair( d );
  1897     break;
  1899   case Bytecodes::_dmul:
  1900     b = pop_pair();
  1901     a = pop_pair();
  1902     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1903     d = dprecision_rounding(c);
  1904     push_pair( d );
  1905     break;
  1907   case Bytecodes::_ddiv:
  1908     b = pop_pair();
  1909     a = pop_pair();
  1910     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1911     d = dprecision_rounding(c);
  1912     push_pair( d );
  1913     break;
  1915   case Bytecodes::_dneg:
  1916     a = pop_pair();
  1917     b = _gvn.transform(new (C, 2) NegDNode (a));
  1918     push_pair(b);
  1919     break;
  1921   case Bytecodes::_drem:
  1922     if (Matcher::has_match_rule(Op_ModD)) {
  1923       // Generate a ModD node.
  1924       b = pop_pair();
  1925       a = pop_pair();
  1926       // a % b
  1928       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1929       d = dprecision_rounding(c);
  1930       push_pair( d );
  1932     else {
  1933       // Generate a call.
  1934       modd();
  1936     break;
  1938   case Bytecodes::_dcmpl:
  1939     b = pop_pair();
  1940     a = pop_pair();
  1941     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1942     push(c);
  1943     break;
  1945   case Bytecodes::_dcmpg:
  1946     b = pop_pair();
  1947     a = pop_pair();
  1948     // Same as dcmpl but need to flip the unordered case.
  1949     // Commute the inputs, which negates the result sign except for unordered.
  1950     // Flip the unordered as well by using CmpD3 which implements
  1951     // unordered-lesser instead of unordered-greater semantics.
  1952     // Finally, negate the result bits.  Result is same as using a
  1953     // CmpD3Greater except we did it with CmpD3 alone.
  1954     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1955     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1956     push(c);
  1957     break;
  1960     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1961   case Bytecodes::_land:
  1962     b = pop_pair();
  1963     a = pop_pair();
  1964     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1965     push_pair(c);
  1966     break;
  1967   case Bytecodes::_lor:
  1968     b = pop_pair();
  1969     a = pop_pair();
  1970     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1971     push_pair(c);
  1972     break;
  1973   case Bytecodes::_lxor:
  1974     b = pop_pair();
  1975     a = pop_pair();
  1976     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1977     push_pair(c);
  1978     break;
  1980   case Bytecodes::_lshl:
  1981     b = pop();                  // the shift count
  1982     a = pop_pair();             // value to be shifted
  1983     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1984     push_pair(c);
  1985     break;
  1986   case Bytecodes::_lshr:
  1987     b = pop();                  // the shift count
  1988     a = pop_pair();             // value to be shifted
  1989     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1990     push_pair(c);
  1991     break;
  1992   case Bytecodes::_lushr:
  1993     b = pop();                  // the shift count
  1994     a = pop_pair();             // value to be shifted
  1995     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1996     push_pair(c);
  1997     break;
  1998   case Bytecodes::_lmul:
  1999     b = pop_pair();
  2000     a = pop_pair();
  2001     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  2002     push_pair(c);
  2003     break;
  2005   case Bytecodes::_lrem:
  2006     // Must keep both values on the expression-stack during null-check
  2007     assert(peek(0) == top(), "long word order");
  2008     do_null_check(peek(1), T_LONG);
  2009     // Compile-time detect of null-exception?
  2010     if (stopped())  return;
  2011     b = pop_pair();
  2012     a = pop_pair();
  2013     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  2014     push_pair(c);
  2015     break;
  2017   case Bytecodes::_ldiv:
  2018     // Must keep both values on the expression-stack during null-check
  2019     assert(peek(0) == top(), "long word order");
  2020     do_null_check(peek(1), T_LONG);
  2021     // Compile-time detect of null-exception?
  2022     if (stopped())  return;
  2023     b = pop_pair();
  2024     a = pop_pair();
  2025     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  2026     push_pair(c);
  2027     break;
  2029   case Bytecodes::_ladd:
  2030     b = pop_pair();
  2031     a = pop_pair();
  2032     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  2033     push_pair(c);
  2034     break;
  2035   case Bytecodes::_lsub:
  2036     b = pop_pair();
  2037     a = pop_pair();
  2038     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  2039     push_pair(c);
  2040     break;
  2041   case Bytecodes::_lcmp:
  2042     // Safepoints are now inserted _before_ branches.  The long-compare
  2043     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  2044     // slew of control flow.  These are usually followed by a CmpI vs zero and
  2045     // a branch; this pattern then optimizes to the obvious long-compare and
  2046     // branch.  However, if the branch is backwards there's a Safepoint
  2047     // inserted.  The inserted Safepoint captures the JVM state at the
  2048     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  2049     // long-compare is used to control a loop the debug info will force
  2050     // computation of the 3-way value, even though the generated code uses a
  2051     // long-compare and branch.  We try to rectify the situation by inserting
  2052     // a SafePoint here and have it dominate and kill the safepoint added at a
  2053     // following backwards branch.  At this point the JVM state merely holds 2
  2054     // longs but not the 3-way value.
  2055     if( UseLoopSafepoints ) {
  2056       switch( iter().next_bc() ) {
  2057       case Bytecodes::_ifgt:
  2058       case Bytecodes::_iflt:
  2059       case Bytecodes::_ifge:
  2060       case Bytecodes::_ifle:
  2061       case Bytecodes::_ifne:
  2062       case Bytecodes::_ifeq:
  2063         // If this is a backwards branch in the bytecodes, add Safepoint
  2064         maybe_add_safepoint(iter().next_get_dest());
  2067     b = pop_pair();
  2068     a = pop_pair();
  2069     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  2070     push(c);
  2071     break;
  2073   case Bytecodes::_lneg:
  2074     a = pop_pair();
  2075     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  2076     push_pair(b);
  2077     break;
  2078   case Bytecodes::_l2i:
  2079     a = pop_pair();
  2080     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  2081     break;
  2082   case Bytecodes::_i2l:
  2083     a = pop();
  2084     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  2085     push_pair(b);
  2086     break;
  2087   case Bytecodes::_i2b:
  2088     // Sign extend
  2089     a = pop();
  2090     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  2091     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  2092     push( a );
  2093     break;
  2094   case Bytecodes::_i2s:
  2095     a = pop();
  2096     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2097     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2098     push( a );
  2099     break;
  2100   case Bytecodes::_i2c:
  2101     a = pop();
  2102     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2103     break;
  2105   case Bytecodes::_i2f:
  2106     a = pop();
  2107     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2108     c = precision_rounding(b);
  2109     push (b);
  2110     break;
  2112   case Bytecodes::_i2d:
  2113     a = pop();
  2114     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2115     push_pair(b);
  2116     break;
  2118   case Bytecodes::_iinc:        // Increment local
  2119     i = iter().get_index();     // Get local index
  2120     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2121     break;
  2123   // Exit points of synchronized methods must have an unlock node
  2124   case Bytecodes::_return:
  2125     return_current(NULL);
  2126     break;
  2128   case Bytecodes::_ireturn:
  2129   case Bytecodes::_areturn:
  2130   case Bytecodes::_freturn:
  2131     return_current(pop());
  2132     break;
  2133   case Bytecodes::_lreturn:
  2134     return_current(pop_pair());
  2135     break;
  2136   case Bytecodes::_dreturn:
  2137     return_current(pop_pair());
  2138     break;
  2140   case Bytecodes::_athrow:
  2141     // null exception oop throws NULL pointer exception
  2142     do_null_check(peek(), T_OBJECT);
  2143     if (stopped())  return;
  2144     // Hook the thrown exception directly to subsequent handlers.
  2145     if (BailoutToInterpreterForThrows) {
  2146       // Keep method interpreted from now on.
  2147       uncommon_trap(Deoptimization::Reason_unhandled,
  2148                     Deoptimization::Action_make_not_compilable);
  2149       return;
  2151     if (env()->jvmti_can_post_on_exceptions()) {
  2152       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
  2153       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
  2155     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
  2156     add_exception_state(make_exception_state(peek()));
  2157     break;
  2159   case Bytecodes::_goto:   // fall through
  2160   case Bytecodes::_goto_w: {
  2161     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2163     // If this is a backwards branch in the bytecodes, add Safepoint
  2164     maybe_add_safepoint(target_bci);
  2166     // Update method data
  2167     profile_taken_branch(target_bci);
  2169     // Add loop predicate if it goes to a loop
  2170     if (should_add_predicate(target_bci)){
  2171       add_predicate();
  2173     // Merge the current control into the target basic block
  2174     merge(target_bci);
  2176     // See if we can get some profile data and hand it off to the next block
  2177     Block *target_block = block()->successor_for_bci(target_bci);
  2178     if (target_block->pred_count() != 1)  break;
  2179     ciMethodData* methodData = method()->method_data();
  2180     if (!methodData->is_mature())  break;
  2181     ciProfileData* data = methodData->bci_to_data(bci());
  2182     assert( data->is_JumpData(), "" );
  2183     int taken = ((ciJumpData*)data)->taken();
  2184     taken = method()->scale_count(taken);
  2185     target_block->set_count(taken);
  2186     break;
  2189   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
  2190   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
  2191   handle_if_null:
  2192     // If this is a backwards branch in the bytecodes, add Safepoint
  2193     maybe_add_safepoint(iter().get_dest());
  2194     a = null();
  2195     b = pop();
  2196     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2197     do_ifnull(btest, c);
  2198     break;
  2200   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2201   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2202   handle_if_acmp:
  2203     // If this is a backwards branch in the bytecodes, add Safepoint
  2204     maybe_add_safepoint(iter().get_dest());
  2205     a = pop();
  2206     b = pop();
  2207     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2208     do_if(btest, c);
  2209     break;
  2211   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2212   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2213   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2214   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2215   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2216   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2217   handle_ifxx:
  2218     // If this is a backwards branch in the bytecodes, add Safepoint
  2219     maybe_add_safepoint(iter().get_dest());
  2220     a = _gvn.intcon(0);
  2221     b = pop();
  2222     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2223     do_if(btest, c);
  2224     break;
  2226   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2227   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2228   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2229   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2230   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2231   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2232   handle_if_icmp:
  2233     // If this is a backwards branch in the bytecodes, add Safepoint
  2234     maybe_add_safepoint(iter().get_dest());
  2235     a = pop();
  2236     b = pop();
  2237     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2238     do_if(btest, c);
  2239     break;
  2241   case Bytecodes::_tableswitch:
  2242     do_tableswitch();
  2243     break;
  2245   case Bytecodes::_lookupswitch:
  2246     do_lookupswitch();
  2247     break;
  2249   case Bytecodes::_invokestatic:
  2250   case Bytecodes::_invokedynamic:
  2251   case Bytecodes::_invokespecial:
  2252   case Bytecodes::_invokevirtual:
  2253   case Bytecodes::_invokeinterface:
  2254     do_call();
  2255     break;
  2256   case Bytecodes::_checkcast:
  2257     do_checkcast();
  2258     break;
  2259   case Bytecodes::_instanceof:
  2260     do_instanceof();
  2261     break;
  2262   case Bytecodes::_anewarray:
  2263     do_anewarray();
  2264     break;
  2265   case Bytecodes::_newarray:
  2266     do_newarray((BasicType)iter().get_index());
  2267     break;
  2268   case Bytecodes::_multianewarray:
  2269     do_multianewarray();
  2270     break;
  2271   case Bytecodes::_new:
  2272     do_new();
  2273     break;
  2275   case Bytecodes::_jsr:
  2276   case Bytecodes::_jsr_w:
  2277     do_jsr();
  2278     break;
  2280   case Bytecodes::_ret:
  2281     do_ret();
  2282     break;
  2285   case Bytecodes::_monitorenter:
  2286     do_monitor_enter();
  2287     break;
  2289   case Bytecodes::_monitorexit:
  2290     do_monitor_exit();
  2291     break;
  2293   case Bytecodes::_breakpoint:
  2294     // Breakpoint set concurrently to compile
  2295     // %%% use an uncommon trap?
  2296     C->record_failure("breakpoint in method");
  2297     return;
  2299   default:
  2300 #ifndef PRODUCT
  2301     map()->dump(99);
  2302 #endif
  2303     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2304     ShouldNotReachHere();
  2307 #ifndef PRODUCT
  2308   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2309   if(printer) {
  2310     char buffer[256];
  2311     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2312     bool old = printer->traverse_outs();
  2313     printer->set_traverse_outs(true);
  2314     printer->print_method(C, buffer, 4);
  2315     printer->set_traverse_outs(old);
  2317 #endif

mercurial