src/share/vm/opto/connode.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 1934
e9ff18c4ace7
child 3202
436b4a3231bf
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/compile.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/phaseX.hpp"
    34 #include "opto/subnode.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    37 // Optimization - Graph Style
    39 //=============================================================================
    40 //------------------------------hash-------------------------------------------
    41 uint ConNode::hash() const {
    42   return (uintptr_t)in(TypeFunc::Control) + _type->hash();
    43 }
    45 //------------------------------make-------------------------------------------
    46 ConNode *ConNode::make( Compile* C, const Type *t ) {
    47   switch( t->basic_type() ) {
    48   case T_INT:       return new (C, 1) ConINode( t->is_int() );
    49   case T_LONG:      return new (C, 1) ConLNode( t->is_long() );
    50   case T_FLOAT:     return new (C, 1) ConFNode( t->is_float_constant() );
    51   case T_DOUBLE:    return new (C, 1) ConDNode( t->is_double_constant() );
    52   case T_VOID:      return new (C, 1) ConNode ( Type::TOP );
    53   case T_OBJECT:    return new (C, 1) ConPNode( t->is_oopptr() );
    54   case T_ARRAY:     return new (C, 1) ConPNode( t->is_aryptr() );
    55   case T_ADDRESS:   return new (C, 1) ConPNode( t->is_ptr() );
    56   case T_NARROWOOP: return new (C, 1) ConNNode( t->is_narrowoop() );
    57     // Expected cases:  TypePtr::NULL_PTR, any is_rawptr()
    58     // Also seen: AnyPtr(TopPTR *+top); from command line:
    59     //   r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
    60     // %%%% Stop using TypePtr::NULL_PTR to represent nulls:  use either TypeRawPtr::NULL_PTR
    61     // or else TypeOopPtr::NULL_PTR.  Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
    62   }
    63   ShouldNotReachHere();
    64   return NULL;
    65 }
    67 //=============================================================================
    68 /*
    69 The major change is for CMoveP and StrComp.  They have related but slightly
    70 different problems.  They both take in TWO oops which are both null-checked
    71 independently before the using Node.  After CCP removes the CastPP's they need
    72 to pick up the guarding test edge - in this case TWO control edges.  I tried
    73 various solutions, all have problems:
    75 (1) Do nothing.  This leads to a bug where we hoist a Load from a CMoveP or a
    76 StrComp above a guarding null check.  I've seen both cases in normal -Xcomp
    77 testing.
    79 (2) Plug the control edge from 1 of the 2 oops in.  Apparent problem here is
    80 to figure out which test post-dominates.  The real problem is that it doesn't
    81 matter which one you pick.  After you pick up, the dominating-test elider in
    82 IGVN can remove the test and allow you to hoist up to the dominating test on
    83 the chosen oop bypassing the test on the not-chosen oop.  Seen in testing.
    84 Oops.
    86 (3) Leave the CastPP's in.  This makes the graph more accurate in some sense;
    87 we get to keep around the knowledge that an oop is not-null after some test.
    88 Alas, the CastPP's interfere with GVN (some values are the regular oop, some
    89 are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
    90 This cost us 10% on SpecJVM, even when I removed some of the more trivial
    91 cases in the optimizer.  Removing more useless Phi's started allowing Loads to
    92 illegally float above null checks.  I gave up on this approach.
    94 (4) Add BOTH control edges to both tests.  Alas, too much code knows that
    95 control edges are in slot-zero ONLY.  Many quick asserts fail; no way to do
    96 this one.  Note that I really want to allow the CMoveP to float and add both
    97 control edges to the dependent Load op - meaning I can select early but I
    98 cannot Load until I pass both tests.
   100 (5) Do not hoist CMoveP and StrComp.  To this end I added the v-call
   101 depends_only_on_test().  No obvious performance loss on Spec, but we are
   102 clearly conservative on CMoveP (also so on StrComp but that's unlikely to
   103 matter ever).
   105 */
   108 //------------------------------Ideal------------------------------------------
   109 // Return a node which is more "ideal" than the current node.
   110 // Move constants to the right.
   111 Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   112   if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
   113   // Don't bother trying to transform a dead node
   114   if( in(0) && in(0)->is_top() )  return NULL;
   115   assert( !phase->eqv(in(Condition), this) &&
   116           !phase->eqv(in(IfFalse), this) &&
   117           !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
   118   if( phase->type(in(Condition)) == Type::TOP )
   119     return NULL; // return NULL when Condition is dead
   121   if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
   122     if( in(Condition)->is_Bool() ) {
   123       BoolNode* b  = in(Condition)->as_Bool();
   124       BoolNode* b2 = b->negate(phase);
   125       return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
   126     }
   127   }
   128   return NULL;
   129 }
   131 //------------------------------is_cmove_id------------------------------------
   132 // Helper function to check for CMOVE identity.  Shared with PhiNode::Identity
   133 Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
   134   // Check for Cmp'ing and CMove'ing same values
   135   if( (phase->eqv(cmp->in(1),f) &&
   136        phase->eqv(cmp->in(2),t)) ||
   137       // Swapped Cmp is OK
   138       (phase->eqv(cmp->in(2),f) &&
   139        phase->eqv(cmp->in(1),t)) ) {
   140     // Give up this identity check for floating points because it may choose incorrect
   141     // value around 0.0 and -0.0
   142     if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
   143       return NULL;
   144     // Check for "(t==f)?t:f;" and replace with "f"
   145     if( b->_test._test == BoolTest::eq )
   146       return f;
   147     // Allow the inverted case as well
   148     // Check for "(t!=f)?t:f;" and replace with "t"
   149     if( b->_test._test == BoolTest::ne )
   150       return t;
   151   }
   152   return NULL;
   153 }
   155 //------------------------------Identity---------------------------------------
   156 // Conditional-move is an identity if both inputs are the same, or the test
   157 // true or false.
   158 Node *CMoveNode::Identity( PhaseTransform *phase ) {
   159   if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
   160     return in(IfFalse);         // Then it doesn't matter
   161   if( phase->type(in(Condition)) == TypeInt::ZERO )
   162     return in(IfFalse);         // Always pick left(false) input
   163   if( phase->type(in(Condition)) == TypeInt::ONE )
   164     return in(IfTrue);          // Always pick right(true) input
   166   // Check for CMove'ing a constant after comparing against the constant.
   167   // Happens all the time now, since if we compare equality vs a constant in
   168   // the parser, we "know" the variable is constant on one path and we force
   169   // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
   170   // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
   171   // general in that we don't need constants.
   172   if( in(Condition)->is_Bool() ) {
   173     BoolNode *b = in(Condition)->as_Bool();
   174     Node *cmp = b->in(1);
   175     if( cmp->is_Cmp() ) {
   176       Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
   177       if( id ) return id;
   178     }
   179   }
   181   return this;
   182 }
   184 //------------------------------Value------------------------------------------
   185 // Result is the meet of inputs
   186 const Type *CMoveNode::Value( PhaseTransform *phase ) const {
   187   if( phase->type(in(Condition)) == Type::TOP )
   188     return Type::TOP;
   189   return phase->type(in(IfFalse))->meet(phase->type(in(IfTrue)));
   190 }
   192 //------------------------------make-------------------------------------------
   193 // Make a correctly-flavored CMove.  Since _type is directly determined
   194 // from the inputs we do not need to specify it here.
   195 CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
   196   switch( t->basic_type() ) {
   197   case T_INT:     return new (C, 4) CMoveINode( bol, left, right, t->is_int() );
   198   case T_FLOAT:   return new (C, 4) CMoveFNode( bol, left, right, t );
   199   case T_DOUBLE:  return new (C, 4) CMoveDNode( bol, left, right, t );
   200   case T_LONG:    return new (C, 4) CMoveLNode( bol, left, right, t->is_long() );
   201   case T_OBJECT:  return new (C, 4) CMovePNode( c, bol, left, right, t->is_oopptr() );
   202   case T_ADDRESS: return new (C, 4) CMovePNode( c, bol, left, right, t->is_ptr() );
   203   case T_NARROWOOP: return new (C, 4) CMoveNNode( c, bol, left, right, t );
   204   default:
   205     ShouldNotReachHere();
   206     return NULL;
   207   }
   208 }
   210 //=============================================================================
   211 //------------------------------Ideal------------------------------------------
   212 // Return a node which is more "ideal" than the current node.
   213 // Check for conversions to boolean
   214 Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   215   // Try generic ideal's first
   216   Node *x = CMoveNode::Ideal(phase, can_reshape);
   217   if( x ) return x;
   219   // If zero is on the left (false-case, no-move-case) it must mean another
   220   // constant is on the right (otherwise the shared CMove::Ideal code would
   221   // have moved the constant to the right).  This situation is bad for Intel
   222   // and a don't-care for Sparc.  It's bad for Intel because the zero has to
   223   // be manifested in a register with a XOR which kills flags, which are live
   224   // on input to the CMoveI, leading to a situation which causes excessive
   225   // spilling on Intel.  For Sparc, if the zero in on the left the Sparc will
   226   // zero a register via G0 and conditionally-move the other constant.  If the
   227   // zero is on the right, the Sparc will load the first constant with a
   228   // 13-bit set-lo and conditionally move G0.  See bug 4677505.
   229   if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
   230     if( in(Condition)->is_Bool() ) {
   231       BoolNode* b  = in(Condition)->as_Bool();
   232       BoolNode* b2 = b->negate(phase);
   233       return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
   234     }
   235   }
   237   // Now check for booleans
   238   int flip = 0;
   240   // Check for picking from zero/one
   241   if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
   242     flip = 1 - flip;
   243   } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
   244   } else return NULL;
   246   // Check for eq/ne test
   247   if( !in(1)->is_Bool() ) return NULL;
   248   BoolNode *bol = in(1)->as_Bool();
   249   if( bol->_test._test == BoolTest::eq ) {
   250   } else if( bol->_test._test == BoolTest::ne ) {
   251     flip = 1-flip;
   252   } else return NULL;
   254   // Check for vs 0 or 1
   255   if( !bol->in(1)->is_Cmp() ) return NULL;
   256   const CmpNode *cmp = bol->in(1)->as_Cmp();
   257   if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
   258   } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
   259     // Allow cmp-vs-1 if the other input is bounded by 0-1
   260     if( phase->type(cmp->in(1)) != TypeInt::BOOL )
   261       return NULL;
   262     flip = 1 - flip;
   263   } else return NULL;
   265   // Convert to a bool (flipped)
   266   // Build int->bool conversion
   267 #ifndef PRODUCT
   268   if( PrintOpto ) tty->print_cr("CMOV to I2B");
   269 #endif
   270   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
   271   if( flip )
   272     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
   274   return n;
   275 }
   277 //=============================================================================
   278 //------------------------------Ideal------------------------------------------
   279 // Return a node which is more "ideal" than the current node.
   280 // Check for absolute value
   281 Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   282   // Try generic ideal's first
   283   Node *x = CMoveNode::Ideal(phase, can_reshape);
   284   if( x ) return x;
   286   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
   287   int  phi_x_idx = 0;           // Index of phi input where to find naked x
   289   // Find the Bool
   290   if( !in(1)->is_Bool() ) return NULL;
   291   BoolNode *bol = in(1)->as_Bool();
   292   // Check bool sense
   293   switch( bol->_test._test ) {
   294   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
   295   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
   296   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
   297   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
   298   default:           return NULL;                           break;
   299   }
   301   // Find zero input of CmpF; the other input is being abs'd
   302   Node *cmpf = bol->in(1);
   303   if( cmpf->Opcode() != Op_CmpF ) return NULL;
   304   Node *X = NULL;
   305   bool flip = false;
   306   if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
   307     X = cmpf->in(3 - cmp_zero_idx);
   308   } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
   309     // The test is inverted, we should invert the result...
   310     X = cmpf->in(cmp_zero_idx);
   311     flip = true;
   312   } else {
   313     return NULL;
   314   }
   316   // If X is found on the appropriate phi input, find the subtract on the other
   317   if( X != in(phi_x_idx) ) return NULL;
   318   int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
   319   Node *sub = in(phi_sub_idx);
   321   // Allow only SubF(0,X) and fail out for all others; NegF is not OK
   322   if( sub->Opcode() != Op_SubF ||
   323       sub->in(2) != X ||
   324       phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
   326   Node *abs = new (phase->C, 2) AbsFNode( X );
   327   if( flip )
   328     abs = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(abs));
   330   return abs;
   331 }
   333 //=============================================================================
   334 //------------------------------Ideal------------------------------------------
   335 // Return a node which is more "ideal" than the current node.
   336 // Check for absolute value
   337 Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   338   // Try generic ideal's first
   339   Node *x = CMoveNode::Ideal(phase, can_reshape);
   340   if( x ) return x;
   342   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
   343   int  phi_x_idx = 0;           // Index of phi input where to find naked x
   345   // Find the Bool
   346   if( !in(1)->is_Bool() ) return NULL;
   347   BoolNode *bol = in(1)->as_Bool();
   348   // Check bool sense
   349   switch( bol->_test._test ) {
   350   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
   351   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
   352   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
   353   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
   354   default:           return NULL;                           break;
   355   }
   357   // Find zero input of CmpD; the other input is being abs'd
   358   Node *cmpd = bol->in(1);
   359   if( cmpd->Opcode() != Op_CmpD ) return NULL;
   360   Node *X = NULL;
   361   bool flip = false;
   362   if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
   363     X = cmpd->in(3 - cmp_zero_idx);
   364   } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
   365     // The test is inverted, we should invert the result...
   366     X = cmpd->in(cmp_zero_idx);
   367     flip = true;
   368   } else {
   369     return NULL;
   370   }
   372   // If X is found on the appropriate phi input, find the subtract on the other
   373   if( X != in(phi_x_idx) ) return NULL;
   374   int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
   375   Node *sub = in(phi_sub_idx);
   377   // Allow only SubD(0,X) and fail out for all others; NegD is not OK
   378   if( sub->Opcode() != Op_SubD ||
   379       sub->in(2) != X ||
   380       phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
   382   Node *abs = new (phase->C, 2) AbsDNode( X );
   383   if( flip )
   384     abs = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(abs));
   386   return abs;
   387 }
   390 //=============================================================================
   391 // If input is already higher or equal to cast type, then this is an identity.
   392 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
   393   return phase->type(in(1))->higher_equal(_type) ? in(1) : this;
   394 }
   396 //------------------------------Value------------------------------------------
   397 // Take 'join' of input and cast-up type
   398 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
   399   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
   400   const Type* ft = phase->type(in(1))->filter(_type);
   402 #ifdef ASSERT
   403   // Previous versions of this function had some special case logic,
   404   // which is no longer necessary.  Make sure of the required effects.
   405   switch (Opcode()) {
   406   case Op_CastII:
   407     {
   408       const Type* t1 = phase->type(in(1));
   409       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
   410       const Type* rt = t1->join(_type);
   411       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
   412       break;
   413     }
   414   case Op_CastPP:
   415     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
   416         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
   417       assert(ft == Type::TOP, "special case #3");
   418     break;
   419   }
   420 #endif //ASSERT
   422   return ft;
   423 }
   425 //------------------------------Ideal------------------------------------------
   426 // Return a node which is more "ideal" than the current node.  Strip out
   427 // control copies
   428 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
   429   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
   430 }
   432 //------------------------------Ideal_DU_postCCP-------------------------------
   433 // Throw away cast after constant propagation
   434 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   435   const Type *t = ccp->type(in(1));
   436   ccp->hash_delete(this);
   437   set_type(t);                   // Turn into ID function
   438   ccp->hash_insert(this);
   439   return this;
   440 }
   443 //=============================================================================
   445 //------------------------------Ideal_DU_postCCP-------------------------------
   446 // If not converting int->oop, throw away cast after constant propagation
   447 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   448   const Type *t = ccp->type(in(1));
   449   if (!t->isa_oop_ptr() || (in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks())) {
   450     return NULL; // do not transform raw pointers or narrow oops
   451   }
   452   return ConstraintCastNode::Ideal_DU_postCCP(ccp);
   453 }
   457 //=============================================================================
   458 //------------------------------Identity---------------------------------------
   459 // If input is already higher or equal to cast type, then this is an identity.
   460 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
   461   // Toned down to rescue meeting at a Phi 3 different oops all implementing
   462   // the same interface.  CompileTheWorld starting at 502, kd12rc1.zip.
   463   return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
   464 }
   466 // Determine whether "n" is a node which can cause an alias of one of its inputs.  Node types
   467 // which can create aliases are: CheckCastPP, Phi, and any store (if there is also a load from
   468 // the location.)
   469 // Note:  this checks for aliases created in this compilation, not ones which may
   470 //        be potentially created at call sites.
   471 static bool can_cause_alias(Node *n, PhaseTransform *phase) {
   472   bool possible_alias = false;
   474   if (n->is_Store()) {
   475     possible_alias = !n->as_Store()->value_never_loaded(phase);
   476   } else {
   477     int opc = n->Opcode();
   478     possible_alias = n->is_Phi() ||
   479         opc == Op_CheckCastPP ||
   480         opc == Op_StorePConditional ||
   481         opc == Op_CompareAndSwapP ||
   482         opc == Op_CompareAndSwapN;
   483   }
   484   return possible_alias;
   485 }
   487 //------------------------------Value------------------------------------------
   488 // Take 'join' of input and cast-up type, unless working with an Interface
   489 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
   490   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
   492   const Type *inn = phase->type(in(1));
   493   if( inn == Type::TOP ) return Type::TOP;  // No information yet
   495   const TypePtr *in_type   = inn->isa_ptr();
   496   const TypePtr *my_type   = _type->isa_ptr();
   497   const Type *result = _type;
   498   if( in_type != NULL && my_type != NULL ) {
   499     TypePtr::PTR   in_ptr    = in_type->ptr();
   500     if( in_ptr == TypePtr::Null ) {
   501       result = in_type;
   502     } else if( in_ptr == TypePtr::Constant ) {
   503       // Casting a constant oop to an interface?
   504       // (i.e., a String to a Comparable?)
   505       // Then return the interface.
   506       const TypeOopPtr *jptr = my_type->isa_oopptr();
   507       assert( jptr, "" );
   508       result =  (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
   509         ? my_type->cast_to_ptr_type( TypePtr::NotNull )
   510         : in_type;
   511     } else {
   512       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
   513     }
   514   }
   515   return result;
   517   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
   518   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
   520   //
   521   // Remove this code after overnight run indicates no performance
   522   // loss from not performing JOIN at CheckCastPPNode
   523   //
   524   // const TypeInstPtr *in_oop = in->isa_instptr();
   525   // const TypeInstPtr *my_oop = _type->isa_instptr();
   526   // // If either input is an 'interface', return destination type
   527   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
   528   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
   529   // if( (in_oop && in_oop->klass()->klass_part()->is_interface())
   530   //   ||(my_oop && my_oop->klass()->klass_part()->is_interface()) ) {
   531   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
   532   //   // Preserve cast away nullness for interfaces
   533   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
   534   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
   535   //   }
   536   //   return _type;
   537   // }
   538   //
   539   // // Neither the input nor the destination type is an interface,
   540   //
   541   // // history: JOIN used to cause weird corner case bugs
   542   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
   543   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
   544   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
   545   // const Type *join = in->join(_type);
   546   // // Check if join preserved NotNull'ness for pointers
   547   // if( join->isa_ptr() && _type->isa_ptr() ) {
   548   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
   549   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
   550   //   // If there isn't any NotNull'ness to preserve
   551   //   // OR if join preserved NotNull'ness then return it
   552   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
   553   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
   554   //     return join;
   555   //   }
   556   //   // ELSE return same old type as before
   557   //   return _type;
   558   // }
   559   // // Not joining two pointers
   560   // return join;
   561 }
   563 //------------------------------Ideal------------------------------------------
   564 // Return a node which is more "ideal" than the current node.  Strip out
   565 // control copies
   566 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
   567   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
   568 }
   571 Node* DecodeNNode::Identity(PhaseTransform* phase) {
   572   const Type *t = phase->type( in(1) );
   573   if( t == Type::TOP ) return in(1);
   575   if (in(1)->is_EncodeP()) {
   576     // (DecodeN (EncodeP p)) -> p
   577     return in(1)->in(1);
   578   }
   579   return this;
   580 }
   582 const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
   583   const Type *t = phase->type( in(1) );
   584   if (t == Type::TOP) return Type::TOP;
   585   if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
   587   assert(t->isa_narrowoop(), "only  narrowoop here");
   588   return t->make_ptr();
   589 }
   591 Node* EncodePNode::Identity(PhaseTransform* phase) {
   592   const Type *t = phase->type( in(1) );
   593   if( t == Type::TOP ) return in(1);
   595   if (in(1)->is_DecodeN()) {
   596     // (EncodeP (DecodeN p)) -> p
   597     return in(1)->in(1);
   598   }
   599   return this;
   600 }
   602 const Type *EncodePNode::Value( PhaseTransform *phase ) const {
   603   const Type *t = phase->type( in(1) );
   604   if (t == Type::TOP) return Type::TOP;
   605   if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
   607   assert(t->isa_oopptr(), "only oopptr here");
   608   return t->make_narrowoop();
   609 }
   612 Node *EncodePNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   613   return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
   614 }
   616 //=============================================================================
   617 //------------------------------Identity---------------------------------------
   618 Node *Conv2BNode::Identity( PhaseTransform *phase ) {
   619   const Type *t = phase->type( in(1) );
   620   if( t == Type::TOP ) return in(1);
   621   if( t == TypeInt::ZERO ) return in(1);
   622   if( t == TypeInt::ONE ) return in(1);
   623   if( t == TypeInt::BOOL ) return in(1);
   624   return this;
   625 }
   627 //------------------------------Value------------------------------------------
   628 const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
   629   const Type *t = phase->type( in(1) );
   630   if( t == Type::TOP ) return Type::TOP;
   631   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
   632   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
   633   const TypePtr *tp = t->isa_ptr();
   634   if( tp != NULL ) {
   635     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
   636     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
   637     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
   638     return TypeInt::BOOL;
   639   }
   640   if (t->base() != Type::Int) return TypeInt::BOOL;
   641   const TypeInt *ti = t->is_int();
   642   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
   643   return TypeInt::BOOL;
   644 }
   647 // The conversions operations are all Alpha sorted.  Please keep it that way!
   648 //=============================================================================
   649 //------------------------------Value------------------------------------------
   650 const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
   651   const Type *t = phase->type( in(1) );
   652   if( t == Type::TOP ) return Type::TOP;
   653   if( t == Type::DOUBLE ) return Type::FLOAT;
   654   const TypeD *td = t->is_double_constant();
   655   return TypeF::make( (float)td->getd() );
   656 }
   658 //------------------------------Identity---------------------------------------
   659 // Float's can be converted to doubles with no loss of bits.  Hence
   660 // converting a float to a double and back to a float is a NOP.
   661 Node *ConvD2FNode::Identity(PhaseTransform *phase) {
   662   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
   663 }
   665 //=============================================================================
   666 //------------------------------Value------------------------------------------
   667 const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
   668   const Type *t = phase->type( in(1) );
   669   if( t == Type::TOP ) return Type::TOP;
   670   if( t == Type::DOUBLE ) return TypeInt::INT;
   671   const TypeD *td = t->is_double_constant();
   672   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
   673 }
   675 //------------------------------Ideal------------------------------------------
   676 // If converting to an int type, skip any rounding nodes
   677 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
   678   if( in(1)->Opcode() == Op_RoundDouble )
   679     set_req(1,in(1)->in(1));
   680   return NULL;
   681 }
   683 //------------------------------Identity---------------------------------------
   684 // Int's can be converted to doubles with no loss of bits.  Hence
   685 // converting an integer to a double and back to an integer is a NOP.
   686 Node *ConvD2INode::Identity(PhaseTransform *phase) {
   687   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
   688 }
   690 //=============================================================================
   691 //------------------------------Value------------------------------------------
   692 const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
   693   const Type *t = phase->type( in(1) );
   694   if( t == Type::TOP ) return Type::TOP;
   695   if( t == Type::DOUBLE ) return TypeLong::LONG;
   696   const TypeD *td = t->is_double_constant();
   697   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
   698 }
   700 //------------------------------Identity---------------------------------------
   701 Node *ConvD2LNode::Identity(PhaseTransform *phase) {
   702   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
   703   if( in(1)       ->Opcode() == Op_ConvL2D &&
   704       in(1)->in(1)->Opcode() == Op_ConvD2L )
   705     return in(1)->in(1);
   706   return this;
   707 }
   709 //------------------------------Ideal------------------------------------------
   710 // If converting to an int type, skip any rounding nodes
   711 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   712   if( in(1)->Opcode() == Op_RoundDouble )
   713     set_req(1,in(1)->in(1));
   714   return NULL;
   715 }
   717 //=============================================================================
   718 //------------------------------Value------------------------------------------
   719 const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
   720   const Type *t = phase->type( in(1) );
   721   if( t == Type::TOP ) return Type::TOP;
   722   if( t == Type::FLOAT ) return Type::DOUBLE;
   723   const TypeF *tf = t->is_float_constant();
   724 #ifndef IA64
   725   return TypeD::make( (double)tf->getf() );
   726 #else
   727   float x = tf->getf();
   728   return TypeD::make( (x == 0.0f) ? (double)x : (double)x + ia64_double_zero );
   729 #endif
   730 }
   732 //=============================================================================
   733 //------------------------------Value------------------------------------------
   734 const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
   735   const Type *t = phase->type( in(1) );
   736   if( t == Type::TOP )       return Type::TOP;
   737   if( t == Type::FLOAT ) return TypeInt::INT;
   738   const TypeF *tf = t->is_float_constant();
   739   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
   740 }
   742 //------------------------------Identity---------------------------------------
   743 Node *ConvF2INode::Identity(PhaseTransform *phase) {
   744   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
   745   if( in(1)       ->Opcode() == Op_ConvI2F &&
   746       in(1)->in(1)->Opcode() == Op_ConvF2I )
   747     return in(1)->in(1);
   748   return this;
   749 }
   751 //------------------------------Ideal------------------------------------------
   752 // If converting to an int type, skip any rounding nodes
   753 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
   754   if( in(1)->Opcode() == Op_RoundFloat )
   755     set_req(1,in(1)->in(1));
   756   return NULL;
   757 }
   759 //=============================================================================
   760 //------------------------------Value------------------------------------------
   761 const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
   762   const Type *t = phase->type( in(1) );
   763   if( t == Type::TOP )       return Type::TOP;
   764   if( t == Type::FLOAT ) return TypeLong::LONG;
   765   const TypeF *tf = t->is_float_constant();
   766   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
   767 }
   769 //------------------------------Identity---------------------------------------
   770 Node *ConvF2LNode::Identity(PhaseTransform *phase) {
   771   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
   772   if( in(1)       ->Opcode() == Op_ConvL2F &&
   773       in(1)->in(1)->Opcode() == Op_ConvF2L )
   774     return in(1)->in(1);
   775   return this;
   776 }
   778 //------------------------------Ideal------------------------------------------
   779 // If converting to an int type, skip any rounding nodes
   780 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   781   if( in(1)->Opcode() == Op_RoundFloat )
   782     set_req(1,in(1)->in(1));
   783   return NULL;
   784 }
   786 //=============================================================================
   787 //------------------------------Value------------------------------------------
   788 const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
   789   const Type *t = phase->type( in(1) );
   790   if( t == Type::TOP ) return Type::TOP;
   791   const TypeInt *ti = t->is_int();
   792   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
   793   return bottom_type();
   794 }
   796 //=============================================================================
   797 //------------------------------Value------------------------------------------
   798 const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
   799   const Type *t = phase->type( in(1) );
   800   if( t == Type::TOP ) return Type::TOP;
   801   const TypeInt *ti = t->is_int();
   802   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
   803   return bottom_type();
   804 }
   806 //------------------------------Identity---------------------------------------
   807 Node *ConvI2FNode::Identity(PhaseTransform *phase) {
   808   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
   809   if( in(1)       ->Opcode() == Op_ConvF2I &&
   810       in(1)->in(1)->Opcode() == Op_ConvI2F )
   811     return in(1)->in(1);
   812   return this;
   813 }
   815 //=============================================================================
   816 //------------------------------Value------------------------------------------
   817 const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
   818   const Type *t = phase->type( in(1) );
   819   if( t == Type::TOP ) return Type::TOP;
   820   const TypeInt *ti = t->is_int();
   821   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
   822   // Join my declared type against my incoming type.
   823   tl = tl->filter(_type);
   824   return tl;
   825 }
   827 #ifdef _LP64
   828 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
   829                                        jlong lo2, jlong hi2) {
   830   // Two ranges overlap iff one range's low point falls in the other range.
   831   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
   832 }
   833 #endif
   835 //------------------------------Ideal------------------------------------------
   836 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   837   const TypeLong* this_type = this->type()->is_long();
   838   Node* this_changed = NULL;
   840   // If _major_progress, then more loop optimizations follow.  Do NOT
   841   // remove this node's type assertion until no more loop ops can happen.
   842   // The progress bit is set in the major loop optimizations THEN comes the
   843   // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
   844   if (can_reshape && !phase->C->major_progress()) {
   845     const TypeInt* in_type = phase->type(in(1))->isa_int();
   846     if (in_type != NULL && this_type != NULL &&
   847         (in_type->_lo != this_type->_lo ||
   848          in_type->_hi != this_type->_hi)) {
   849       // Although this WORSENS the type, it increases GVN opportunities,
   850       // because I2L nodes with the same input will common up, regardless
   851       // of slightly differing type assertions.  Such slight differences
   852       // arise routinely as a result of loop unrolling, so this is a
   853       // post-unrolling graph cleanup.  Choose a type which depends only
   854       // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
   855       jlong lo1 = this_type->_lo;
   856       jlong hi1 = this_type->_hi;
   857       int   w1  = this_type->_widen;
   858       if (lo1 != (jint)lo1 ||
   859           hi1 != (jint)hi1 ||
   860           lo1 > hi1) {
   861         // Overflow leads to wraparound, wraparound leads to range saturation.
   862         lo1 = min_jint; hi1 = max_jint;
   863       } else if (lo1 >= 0) {
   864         // Keep a range assertion of >=0.
   865         lo1 = 0;        hi1 = max_jint;
   866       } else if (hi1 < 0) {
   867         // Keep a range assertion of <0.
   868         lo1 = min_jint; hi1 = -1;
   869       } else {
   870         lo1 = min_jint; hi1 = max_jint;
   871       }
   872       const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
   873                                              MIN2((jlong)in_type->_hi, hi1),
   874                                              MAX2((int)in_type->_widen, w1));
   875       if (wtype != type()) {
   876         set_type(wtype);
   877         // Note: this_type still has old type value, for the logic below.
   878         this_changed = this;
   879       }
   880     }
   881   }
   883 #ifdef _LP64
   884   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
   885   // but only if x and y have subranges that cannot cause 32-bit overflow,
   886   // under the assumption that x+y is in my own subrange this->type().
   888   // This assumption is based on a constraint (i.e., type assertion)
   889   // established in Parse::array_addressing or perhaps elsewhere.
   890   // This constraint has been adjoined to the "natural" type of
   891   // the incoming argument in(0).  We know (because of runtime
   892   // checks) - that the result value I2L(x+y) is in the joined range.
   893   // Hence we can restrict the incoming terms (x, y) to values such
   894   // that their sum also lands in that range.
   896   // This optimization is useful only on 64-bit systems, where we hope
   897   // the addition will end up subsumed in an addressing mode.
   898   // It is necessary to do this when optimizing an unrolled array
   899   // copy loop such as x[i++] = y[i++].
   901   // On 32-bit systems, it's better to perform as much 32-bit math as
   902   // possible before the I2L conversion, because 32-bit math is cheaper.
   903   // There's no common reason to "leak" a constant offset through the I2L.
   904   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
   906   Node* z = in(1);
   907   int op = z->Opcode();
   908   if (op == Op_AddI || op == Op_SubI) {
   909     Node* x = z->in(1);
   910     Node* y = z->in(2);
   911     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
   912     if (phase->type(x) == Type::TOP)  return this_changed;
   913     if (phase->type(y) == Type::TOP)  return this_changed;
   914     const TypeInt*  tx = phase->type(x)->is_int();
   915     const TypeInt*  ty = phase->type(y)->is_int();
   916     const TypeLong* tz = this_type;
   917     jlong xlo = tx->_lo;
   918     jlong xhi = tx->_hi;
   919     jlong ylo = ty->_lo;
   920     jlong yhi = ty->_hi;
   921     jlong zlo = tz->_lo;
   922     jlong zhi = tz->_hi;
   923     jlong vbit = CONST64(1) << BitsPerInt;
   924     int widen =  MAX2(tx->_widen, ty->_widen);
   925     if (op == Op_SubI) {
   926       jlong ylo0 = ylo;
   927       ylo = -yhi;
   928       yhi = -ylo0;
   929     }
   930     // See if x+y can cause positive overflow into z+2**32
   931     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
   932       return this_changed;
   933     }
   934     // See if x+y can cause negative overflow into z-2**32
   935     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
   936       return this_changed;
   937     }
   938     // Now it's always safe to assume x+y does not overflow.
   939     // This is true even if some pairs x,y might cause overflow, as long
   940     // as that overflow value cannot fall into [zlo,zhi].
   942     // Confident that the arithmetic is "as if infinite precision",
   943     // we can now use z's range to put constraints on those of x and y.
   944     // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
   945     // more "restricted" range by intersecting [xlo,xhi] with the
   946     // range obtained by subtracting y's range from the asserted range
   947     // of the I2L conversion.  Here's the interval arithmetic algebra:
   948     //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
   949     //    => x in [zlo-yhi, zhi-ylo]
   950     //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
   951     //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
   952     jlong rxlo = MAX2(xlo, zlo - yhi);
   953     jlong rxhi = MIN2(xhi, zhi - ylo);
   954     // And similarly, x changing place with y:
   955     jlong rylo = MAX2(ylo, zlo - xhi);
   956     jlong ryhi = MIN2(yhi, zhi - xlo);
   957     if (rxlo > rxhi || rylo > ryhi) {
   958       return this_changed;  // x or y is dying; don't mess w/ it
   959     }
   960     if (op == Op_SubI) {
   961       jlong rylo0 = rylo;
   962       rylo = -ryhi;
   963       ryhi = -rylo0;
   964     }
   966     Node* cx = phase->transform( new (phase->C, 2) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
   967     Node* cy = phase->transform( new (phase->C, 2) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
   968     switch (op) {
   969     case Op_AddI:  return new (phase->C, 3) AddLNode(cx, cy);
   970     case Op_SubI:  return new (phase->C, 3) SubLNode(cx, cy);
   971     default:       ShouldNotReachHere();
   972     }
   973   }
   974 #endif //_LP64
   976   return this_changed;
   977 }
   979 //=============================================================================
   980 //------------------------------Value------------------------------------------
   981 const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
   982   const Type *t = phase->type( in(1) );
   983   if( t == Type::TOP ) return Type::TOP;
   984   const TypeLong *tl = t->is_long();
   985   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
   986   return bottom_type();
   987 }
   989 //=============================================================================
   990 //------------------------------Value------------------------------------------
   991 const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
   992   const Type *t = phase->type( in(1) );
   993   if( t == Type::TOP ) return Type::TOP;
   994   const TypeLong *tl = t->is_long();
   995   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
   996   return bottom_type();
   997 }
   999 //=============================================================================
  1000 //----------------------------Identity-----------------------------------------
  1001 Node *ConvL2INode::Identity( PhaseTransform *phase ) {
  1002   // Convert L2I(I2L(x)) => x
  1003   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
  1004   return this;
  1007 //------------------------------Value------------------------------------------
  1008 const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
  1009   const Type *t = phase->type( in(1) );
  1010   if( t == Type::TOP ) return Type::TOP;
  1011   const TypeLong *tl = t->is_long();
  1012   if (tl->is_con())
  1013     // Easy case.
  1014     return TypeInt::make((jint)tl->get_con());
  1015   return bottom_type();
  1018 //------------------------------Ideal------------------------------------------
  1019 // Return a node which is more "ideal" than the current node.
  1020 // Blow off prior masking to int
  1021 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1022   Node *andl = in(1);
  1023   uint andl_op = andl->Opcode();
  1024   if( andl_op == Op_AndL ) {
  1025     // Blow off prior masking to int
  1026     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
  1027       set_req(1,andl->in(1));
  1028       return this;
  1032   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1033   // This replaces an 'AddL' with an 'AddI'.
  1034   if( andl_op == Op_AddL ) {
  1035     // Don't do this for nodes which have more than one user since
  1036     // we'll end up computing the long add anyway.
  1037     if (andl->outcnt() > 1) return NULL;
  1039     Node* x = andl->in(1);
  1040     Node* y = andl->in(2);
  1041     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
  1042     if (phase->type(x) == Type::TOP)  return NULL;
  1043     if (phase->type(y) == Type::TOP)  return NULL;
  1044     Node *add1 = phase->transform(new (phase->C, 2) ConvL2INode(x));
  1045     Node *add2 = phase->transform(new (phase->C, 2) ConvL2INode(y));
  1046     return new (phase->C, 3) AddINode(add1,add2);
  1049   // Disable optimization: LoadL->ConvL2I ==> LoadI.
  1050   // It causes problems (sizes of Load and Store nodes do not match)
  1051   // in objects initialization code and Escape Analysis.
  1052   return NULL;
  1055 //=============================================================================
  1056 //------------------------------Value------------------------------------------
  1057 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
  1058   const Type* t = phase->type(in(1));
  1059   if (t->base() == Type_X && t->singleton()) {
  1060     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
  1061     if (bits == 0)   return TypePtr::NULL_PTR;
  1062     return TypeRawPtr::make((address) bits);
  1064   return CastX2PNode::bottom_type();
  1067 //------------------------------Idealize---------------------------------------
  1068 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
  1069   if (t == Type::TOP)  return false;
  1070   const TypeX* tl = t->is_intptr_t();
  1071   jint lo = min_jint;
  1072   jint hi = max_jint;
  1073   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
  1074   return (tl->_lo >= lo) && (tl->_hi <= hi);
  1077 static inline Node* addP_of_X2P(PhaseGVN *phase,
  1078                                 Node* base,
  1079                                 Node* dispX,
  1080                                 bool negate = false) {
  1081   if (negate) {
  1082     dispX = new (phase->C, 3) SubXNode(phase->MakeConX(0), phase->transform(dispX));
  1084   return new (phase->C, 4) AddPNode(phase->C->top(),
  1085                           phase->transform(new (phase->C, 2) CastX2PNode(base)),
  1086                           phase->transform(dispX));
  1089 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1090   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
  1091   int op = in(1)->Opcode();
  1092   Node* x;
  1093   Node* y;
  1094   switch (op) {
  1095   case Op_SubX:
  1096     x = in(1)->in(1);
  1097     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
  1098     if (phase->find_intptr_t_con(x, -1) == 0)
  1099       break;
  1100     y = in(1)->in(2);
  1101     if (fits_in_int(phase->type(y), true)) {
  1102       return addP_of_X2P(phase, x, y, true);
  1104     break;
  1105   case Op_AddX:
  1106     x = in(1)->in(1);
  1107     y = in(1)->in(2);
  1108     if (fits_in_int(phase->type(y))) {
  1109       return addP_of_X2P(phase, x, y);
  1111     if (fits_in_int(phase->type(x))) {
  1112       return addP_of_X2P(phase, y, x);
  1114     break;
  1116   return NULL;
  1119 //------------------------------Identity---------------------------------------
  1120 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
  1121   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
  1122   return this;
  1125 //=============================================================================
  1126 //------------------------------Value------------------------------------------
  1127 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
  1128   const Type* t = phase->type(in(1));
  1129   if (t->base() == Type::RawPtr && t->singleton()) {
  1130     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
  1131     return TypeX::make(bits);
  1133   return CastP2XNode::bottom_type();
  1136 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1137   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  1140 //------------------------------Identity---------------------------------------
  1141 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
  1142   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
  1143   return this;
  1147 //=============================================================================
  1148 //------------------------------Identity---------------------------------------
  1149 // Remove redundant roundings
  1150 Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
  1151   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  1152   // Do not round constants
  1153   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
  1154   int op = in(1)->Opcode();
  1155   // Redundant rounding
  1156   if( op == Op_RoundFloat ) return in(1);
  1157   // Already rounded
  1158   if( op == Op_Parm ) return in(1);
  1159   if( op == Op_LoadF ) return in(1);
  1160   return this;
  1163 //------------------------------Value------------------------------------------
  1164 const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
  1165   return phase->type( in(1) );
  1168 //=============================================================================
  1169 //------------------------------Identity---------------------------------------
  1170 // Remove redundant roundings.  Incoming arguments are already rounded.
  1171 Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
  1172   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  1173   // Do not round constants
  1174   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
  1175   int op = in(1)->Opcode();
  1176   // Redundant rounding
  1177   if( op == Op_RoundDouble ) return in(1);
  1178   // Already rounded
  1179   if( op == Op_Parm ) return in(1);
  1180   if( op == Op_LoadD ) return in(1);
  1181   if( op == Op_ConvF2D ) return in(1);
  1182   if( op == Op_ConvI2D ) return in(1);
  1183   return this;
  1186 //------------------------------Value------------------------------------------
  1187 const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
  1188   return phase->type( in(1) );
  1192 //=============================================================================
  1193 // Do not allow value-numbering
  1194 uint Opaque1Node::hash() const { return NO_HASH; }
  1195 uint Opaque1Node::cmp( const Node &n ) const {
  1196   return (&n == this);          // Always fail except on self
  1199 //------------------------------Identity---------------------------------------
  1200 // If _major_progress, then more loop optimizations follow.  Do NOT remove
  1201 // the opaque Node until no more loop ops can happen.  Note the timing of
  1202 // _major_progress; it's set in the major loop optimizations THEN comes the
  1203 // call to IterGVN and any chance of hitting this code.  Hence there's no
  1204 // phase-ordering problem with stripping Opaque1 in IGVN followed by some
  1205 // more loop optimizations that require it.
  1206 Node *Opaque1Node::Identity( PhaseTransform *phase ) {
  1207   return phase->C->major_progress() ? this : in(1);
  1210 //=============================================================================
  1211 // A node to prevent unwanted optimizations.  Allows constant folding.  Stops
  1212 // value-numbering, most Ideal calls or Identity functions.  This Node is
  1213 // specifically designed to prevent the pre-increment value of a loop trip
  1214 // counter from being live out of the bottom of the loop (hence causing the
  1215 // pre- and post-increment values both being live and thus requiring an extra
  1216 // temp register and an extra move).  If we "accidentally" optimize through
  1217 // this kind of a Node, we'll get slightly pessimal, but correct, code.  Thus
  1218 // it's OK to be slightly sloppy on optimizations here.
  1220 // Do not allow value-numbering
  1221 uint Opaque2Node::hash() const { return NO_HASH; }
  1222 uint Opaque2Node::cmp( const Node &n ) const {
  1223   return (&n == this);          // Always fail except on self
  1227 //------------------------------Value------------------------------------------
  1228 const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
  1229   const Type *t = phase->type( in(1) );
  1230   if( t == Type::TOP ) return Type::TOP;
  1231   const TypeLong *tl = t->is_long();
  1232   if( !tl->is_con() ) return bottom_type();
  1233   JavaValue v;
  1234   v.set_jlong(tl->get_con());
  1235   return TypeD::make( v.get_jdouble() );
  1238 //------------------------------Value------------------------------------------
  1239 const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
  1240   const Type *t = phase->type( in(1) );
  1241   if( t == Type::TOP ) return Type::TOP;
  1242   const TypeInt *ti = t->is_int();
  1243   if( !ti->is_con() )   return bottom_type();
  1244   JavaValue v;
  1245   v.set_jint(ti->get_con());
  1246   return TypeF::make( v.get_jfloat() );
  1249 //------------------------------Value------------------------------------------
  1250 const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
  1251   const Type *t = phase->type( in(1) );
  1252   if( t == Type::TOP )       return Type::TOP;
  1253   if( t == Type::FLOAT ) return TypeInt::INT;
  1254   const TypeF *tf = t->is_float_constant();
  1255   JavaValue v;
  1256   v.set_jfloat(tf->getf());
  1257   return TypeInt::make( v.get_jint() );
  1260 //------------------------------Value------------------------------------------
  1261 const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
  1262   const Type *t = phase->type( in(1) );
  1263   if( t == Type::TOP ) return Type::TOP;
  1264   if( t == Type::DOUBLE ) return TypeLong::LONG;
  1265   const TypeD *td = t->is_double_constant();
  1266   JavaValue v;
  1267   v.set_jdouble(td->getd());
  1268   return TypeLong::make( v.get_jlong() );
  1271 //------------------------------Value------------------------------------------
  1272 const Type* CountLeadingZerosINode::Value(PhaseTransform* phase) const {
  1273   const Type* t = phase->type(in(1));
  1274   if (t == Type::TOP) return Type::TOP;
  1275   const TypeInt* ti = t->isa_int();
  1276   if (ti && ti->is_con()) {
  1277     jint i = ti->get_con();
  1278     // HD, Figure 5-6
  1279     if (i == 0)
  1280       return TypeInt::make(BitsPerInt);
  1281     int n = 1;
  1282     unsigned int x = i;
  1283     if (x >> 16 == 0) { n += 16; x <<= 16; }
  1284     if (x >> 24 == 0) { n +=  8; x <<=  8; }
  1285     if (x >> 28 == 0) { n +=  4; x <<=  4; }
  1286     if (x >> 30 == 0) { n +=  2; x <<=  2; }
  1287     n -= x >> 31;
  1288     return TypeInt::make(n);
  1290   return TypeInt::INT;
  1293 //------------------------------Value------------------------------------------
  1294 const Type* CountLeadingZerosLNode::Value(PhaseTransform* phase) const {
  1295   const Type* t = phase->type(in(1));
  1296   if (t == Type::TOP) return Type::TOP;
  1297   const TypeLong* tl = t->isa_long();
  1298   if (tl && tl->is_con()) {
  1299     jlong l = tl->get_con();
  1300     // HD, Figure 5-6
  1301     if (l == 0)
  1302       return TypeInt::make(BitsPerLong);
  1303     int n = 1;
  1304     unsigned int x = (((julong) l) >> 32);
  1305     if (x == 0) { n += 32; x = (int) l; }
  1306     if (x >> 16 == 0) { n += 16; x <<= 16; }
  1307     if (x >> 24 == 0) { n +=  8; x <<=  8; }
  1308     if (x >> 28 == 0) { n +=  4; x <<=  4; }
  1309     if (x >> 30 == 0) { n +=  2; x <<=  2; }
  1310     n -= x >> 31;
  1311     return TypeInt::make(n);
  1313   return TypeInt::INT;
  1316 //------------------------------Value------------------------------------------
  1317 const Type* CountTrailingZerosINode::Value(PhaseTransform* phase) const {
  1318   const Type* t = phase->type(in(1));
  1319   if (t == Type::TOP) return Type::TOP;
  1320   const TypeInt* ti = t->isa_int();
  1321   if (ti && ti->is_con()) {
  1322     jint i = ti->get_con();
  1323     // HD, Figure 5-14
  1324     int y;
  1325     if (i == 0)
  1326       return TypeInt::make(BitsPerInt);
  1327     int n = 31;
  1328     y = i << 16; if (y != 0) { n = n - 16; i = y; }
  1329     y = i <<  8; if (y != 0) { n = n -  8; i = y; }
  1330     y = i <<  4; if (y != 0) { n = n -  4; i = y; }
  1331     y = i <<  2; if (y != 0) { n = n -  2; i = y; }
  1332     y = i <<  1; if (y != 0) { n = n -  1; }
  1333     return TypeInt::make(n);
  1335   return TypeInt::INT;
  1338 //------------------------------Value------------------------------------------
  1339 const Type* CountTrailingZerosLNode::Value(PhaseTransform* phase) const {
  1340   const Type* t = phase->type(in(1));
  1341   if (t == Type::TOP) return Type::TOP;
  1342   const TypeLong* tl = t->isa_long();
  1343   if (tl && tl->is_con()) {
  1344     jlong l = tl->get_con();
  1345     // HD, Figure 5-14
  1346     int x, y;
  1347     if (l == 0)
  1348       return TypeInt::make(BitsPerLong);
  1349     int n = 63;
  1350     y = (int) l; if (y != 0) { n = n - 32; x = y; } else x = (((julong) l) >> 32);
  1351     y = x << 16; if (y != 0) { n = n - 16; x = y; }
  1352     y = x <<  8; if (y != 0) { n = n -  8; x = y; }
  1353     y = x <<  4; if (y != 0) { n = n -  4; x = y; }
  1354     y = x <<  2; if (y != 0) { n = n -  2; x = y; }
  1355     y = x <<  1; if (y != 0) { n = n -  1; }
  1356     return TypeInt::make(n);
  1358   return TypeInt::INT;

mercurial