src/share/vm/opto/cfgnode.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 1976
6027dddc26c6
child 2727
08eb13460b3a
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "oops/objArrayKlass.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/connode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/mulnode.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/regmask.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    40 // Portions of code courtesy of Clifford Click
    42 // Optimization - Graph Style
    44 //=============================================================================
    45 //------------------------------Value------------------------------------------
    46 // Compute the type of the RegionNode.
    47 const Type *RegionNode::Value( PhaseTransform *phase ) const {
    48   for( uint i=1; i<req(); ++i ) {       // For all paths in
    49     Node *n = in(i);            // Get Control source
    50     if( !n ) continue;          // Missing inputs are TOP
    51     if( phase->type(n) == Type::CONTROL )
    52       return Type::CONTROL;
    53   }
    54   return Type::TOP;             // All paths dead?  Then so are we
    55 }
    57 //------------------------------Identity---------------------------------------
    58 // Check for Region being Identity.
    59 Node *RegionNode::Identity( PhaseTransform *phase ) {
    60   // Cannot have Region be an identity, even if it has only 1 input.
    61   // Phi users cannot have their Region input folded away for them,
    62   // since they need to select the proper data input
    63   return this;
    64 }
    66 //------------------------------merge_region-----------------------------------
    67 // If a Region flows into a Region, merge into one big happy merge.  This is
    68 // hard to do if there is stuff that has to happen
    69 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
    70   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
    71     return NULL;
    72   Node *progress = NULL;        // Progress flag
    73   PhaseIterGVN *igvn = phase->is_IterGVN();
    75   uint rreq = region->req();
    76   for( uint i = 1; i < rreq; i++ ) {
    77     Node *r = region->in(i);
    78     if( r && r->Opcode() == Op_Region && // Found a region?
    79         r->in(0) == r &&        // Not already collapsed?
    80         r != region &&          // Avoid stupid situations
    81         r->outcnt() == 2 ) {    // Self user and 'region' user only?
    82       assert(!r->as_Region()->has_phi(), "no phi users");
    83       if( !progress ) {         // No progress
    84         if (region->has_phi()) {
    85           return NULL;        // Only flatten if no Phi users
    86           // igvn->hash_delete( phi );
    87         }
    88         igvn->hash_delete( region );
    89         progress = region;      // Making progress
    90       }
    91       igvn->hash_delete( r );
    93       // Append inputs to 'r' onto 'region'
    94       for( uint j = 1; j < r->req(); j++ ) {
    95         // Move an input from 'r' to 'region'
    96         region->add_req(r->in(j));
    97         r->set_req(j, phase->C->top());
    98         // Update phis of 'region'
    99         //for( uint k = 0; k < max; k++ ) {
   100         //  Node *phi = region->out(k);
   101         //  if( phi->is_Phi() ) {
   102         //    phi->add_req(phi->in(i));
   103         //  }
   104         //}
   106         rreq++;                 // One more input to Region
   107       } // Found a region to merge into Region
   108       // Clobber pointer to the now dead 'r'
   109       region->set_req(i, phase->C->top());
   110     }
   111   }
   113   return progress;
   114 }
   118 //--------------------------------has_phi--------------------------------------
   119 // Helper function: Return any PhiNode that uses this region or NULL
   120 PhiNode* RegionNode::has_phi() const {
   121   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   122     Node* phi = fast_out(i);
   123     if (phi->is_Phi()) {   // Check for Phi users
   124       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
   125       return phi->as_Phi();  // this one is good enough
   126     }
   127   }
   129   return NULL;
   130 }
   133 //-----------------------------has_unique_phi----------------------------------
   134 // Helper function: Return the only PhiNode that uses this region or NULL
   135 PhiNode* RegionNode::has_unique_phi() const {
   136   // Check that only one use is a Phi
   137   PhiNode* only_phi = NULL;
   138   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   139     Node* phi = fast_out(i);
   140     if (phi->is_Phi()) {   // Check for Phi users
   141       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
   142       if (only_phi == NULL) {
   143         only_phi = phi->as_Phi();
   144       } else {
   145         return NULL;  // multiple phis
   146       }
   147     }
   148   }
   150   return only_phi;
   151 }
   154 //------------------------------check_phi_clipping-----------------------------
   155 // Helper function for RegionNode's identification of FP clipping
   156 // Check inputs to the Phi
   157 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
   158   min     = NULL;
   159   max     = NULL;
   160   val     = NULL;
   161   min_idx = 0;
   162   max_idx = 0;
   163   val_idx = 0;
   164   uint  phi_max = phi->req();
   165   if( phi_max == 4 ) {
   166     for( uint j = 1; j < phi_max; ++j ) {
   167       Node *n = phi->in(j);
   168       int opcode = n->Opcode();
   169       switch( opcode ) {
   170       case Op_ConI:
   171         {
   172           if( min == NULL ) {
   173             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
   174             min_idx = j;
   175           } else {
   176             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
   177             max_idx = j;
   178             if( min->get_int() > max->get_int() ) {
   179               // Swap min and max
   180               ConNode *temp;
   181               uint     temp_idx;
   182               temp     = min;     min     = max;     max     = temp;
   183               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
   184             }
   185           }
   186         }
   187         break;
   188       default:
   189         {
   190           val = n;
   191           val_idx = j;
   192         }
   193         break;
   194       }
   195     }
   196   }
   197   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
   198 }
   201 //------------------------------check_if_clipping------------------------------
   202 // Helper function for RegionNode's identification of FP clipping
   203 // Check that inputs to Region come from two IfNodes,
   204 //
   205 //            If
   206 //      False    True
   207 //       If        |
   208 //  False  True    |
   209 //    |      |     |
   210 //  RegionNode_inputs
   211 //
   212 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
   213   top_if = NULL;
   214   bot_if = NULL;
   216   // Check control structure above RegionNode for (if  ( if  ) )
   217   Node *in1 = region->in(1);
   218   Node *in2 = region->in(2);
   219   Node *in3 = region->in(3);
   220   // Check that all inputs are projections
   221   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
   222     Node *in10 = in1->in(0);
   223     Node *in20 = in2->in(0);
   224     Node *in30 = in3->in(0);
   225     // Check that #1 and #2 are ifTrue and ifFalse from same If
   226     if( in10 != NULL && in10->is_If() &&
   227         in20 != NULL && in20->is_If() &&
   228         in30 != NULL && in30->is_If() && in10 == in20 &&
   229         (in1->Opcode() != in2->Opcode()) ) {
   230       Node  *in100 = in10->in(0);
   231       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
   232       // Check that control for in10 comes from other branch of IF from in3
   233       if( in1000 != NULL && in1000->is_If() &&
   234           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
   235         // Control pattern checks
   236         top_if = (IfNode*)in1000;
   237         bot_if = (IfNode*)in10;
   238       }
   239     }
   240   }
   242   return (top_if != NULL);
   243 }
   246 //------------------------------check_convf2i_clipping-------------------------
   247 // Helper function for RegionNode's identification of FP clipping
   248 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
   249 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
   250   convf2i = NULL;
   252   // Check for the RShiftNode
   253   Node *rshift = phi->in(idx);
   254   assert( rshift, "Previous checks ensure phi input is present");
   255   if( rshift->Opcode() != Op_RShiftI )  { return false; }
   257   // Check for the LShiftNode
   258   Node *lshift = rshift->in(1);
   259   assert( lshift, "Previous checks ensure phi input is present");
   260   if( lshift->Opcode() != Op_LShiftI )  { return false; }
   262   // Check for the ConvF2INode
   263   Node *conv = lshift->in(1);
   264   if( conv->Opcode() != Op_ConvF2I ) { return false; }
   266   // Check that shift amounts are only to get sign bits set after F2I
   267   jint max_cutoff     = max->get_int();
   268   jint min_cutoff     = min->get_int();
   269   jint left_shift     = lshift->in(2)->get_int();
   270   jint right_shift    = rshift->in(2)->get_int();
   271   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
   272   if( left_shift != right_shift ||
   273       0 > left_shift || left_shift >= BitsPerJavaInteger ||
   274       max_post_shift < max_cutoff ||
   275       max_post_shift < -min_cutoff ) {
   276     // Shifts are necessary but current transformation eliminates them
   277     return false;
   278   }
   280   // OK to return the result of ConvF2I without shifting
   281   convf2i = (ConvF2INode*)conv;
   282   return true;
   283 }
   286 //------------------------------check_compare_clipping-------------------------
   287 // Helper function for RegionNode's identification of FP clipping
   288 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
   289   Node *i1 = iff->in(1);
   290   if ( !i1->is_Bool() ) { return false; }
   291   BoolNode *bool1 = i1->as_Bool();
   292   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
   293   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
   294   const Node *cmpF = bool1->in(1);
   295   if( cmpF->Opcode() != Op_CmpF )      { return false; }
   296   // Test that the float value being compared against
   297   // is equivalent to the int value used as a limit
   298   Node *nodef = cmpF->in(2);
   299   if( nodef->Opcode() != Op_ConF ) { return false; }
   300   jfloat conf = nodef->getf();
   301   jint   coni = limit->get_int();
   302   if( ((int)conf) != coni )        { return false; }
   303   input = cmpF->in(1);
   304   return true;
   305 }
   307 //------------------------------is_unreachable_region--------------------------
   308 // Find if the Region node is reachable from the root.
   309 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
   310   assert(req() == 2, "");
   312   // First, cut the simple case of fallthrough region when NONE of
   313   // region's phis references itself directly or through a data node.
   314   uint max = outcnt();
   315   uint i;
   316   for (i = 0; i < max; i++) {
   317     Node* phi = raw_out(i);
   318     if (phi != NULL && phi->is_Phi()) {
   319       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
   320       if (phi->outcnt() == 0)
   321         continue; // Safe case - no loops
   322       if (phi->outcnt() == 1) {
   323         Node* u = phi->raw_out(0);
   324         // Skip if only one use is an other Phi or Call or Uncommon trap.
   325         // It is safe to consider this case as fallthrough.
   326         if (u != NULL && (u->is_Phi() || u->is_CFG()))
   327           continue;
   328       }
   329       // Check when phi references itself directly or through an other node.
   330       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
   331         break; // Found possible unsafe data loop.
   332     }
   333   }
   334   if (i >= max)
   335     return false; // An unsafe case was NOT found - don't need graph walk.
   337   // Unsafe case - check if the Region node is reachable from root.
   338   ResourceMark rm;
   340   Arena *a = Thread::current()->resource_area();
   341   Node_List nstack(a);
   342   VectorSet visited(a);
   344   // Mark all control nodes reachable from root outputs
   345   Node *n = (Node*)phase->C->root();
   346   nstack.push(n);
   347   visited.set(n->_idx);
   348   while (nstack.size() != 0) {
   349     n = nstack.pop();
   350     uint max = n->outcnt();
   351     for (uint i = 0; i < max; i++) {
   352       Node* m = n->raw_out(i);
   353       if (m != NULL && m->is_CFG()) {
   354         if (phase->eqv(m, this)) {
   355           return false; // We reached the Region node - it is not dead.
   356         }
   357         if (!visited.test_set(m->_idx))
   358           nstack.push(m);
   359       }
   360     }
   361   }
   363   return true; // The Region node is unreachable - it is dead.
   364 }
   366 //------------------------------Ideal------------------------------------------
   367 // Return a node which is more "ideal" than the current node.  Must preserve
   368 // the CFG, but we can still strip out dead paths.
   369 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   370   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
   371   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
   373   // Check for RegionNode with no Phi users and both inputs come from either
   374   // arm of the same IF.  If found, then the control-flow split is useless.
   375   bool has_phis = false;
   376   if (can_reshape) {            // Need DU info to check for Phi users
   377     has_phis = (has_phi() != NULL);       // Cache result
   378     if (!has_phis) {            // No Phi users?  Nothing merging?
   379       for (uint i = 1; i < req()-1; i++) {
   380         Node *if1 = in(i);
   381         if( !if1 ) continue;
   382         Node *iff = if1->in(0);
   383         if( !iff || !iff->is_If() ) continue;
   384         for( uint j=i+1; j<req(); j++ ) {
   385           if( in(j) && in(j)->in(0) == iff &&
   386               if1->Opcode() != in(j)->Opcode() ) {
   387             // Add the IF Projections to the worklist. They (and the IF itself)
   388             // will be eliminated if dead.
   389             phase->is_IterGVN()->add_users_to_worklist(iff);
   390             set_req(i, iff->in(0));// Skip around the useless IF diamond
   391             set_req(j, NULL);
   392             return this;      // Record progress
   393           }
   394         }
   395       }
   396     }
   397   }
   399   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
   400   // degrades to a copy.
   401   bool add_to_worklist = false;
   402   int cnt = 0;                  // Count of values merging
   403   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
   404   int del_it = 0;               // The last input path we delete
   405   // For all inputs...
   406   for( uint i=1; i<req(); ++i ){// For all paths in
   407     Node *n = in(i);            // Get the input
   408     if( n != NULL ) {
   409       // Remove useless control copy inputs
   410       if( n->is_Region() && n->as_Region()->is_copy() ) {
   411         set_req(i, n->nonnull_req());
   412         i--;
   413         continue;
   414       }
   415       if( n->is_Proj() ) {      // Remove useless rethrows
   416         Node *call = n->in(0);
   417         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
   418           set_req(i, call->in(0));
   419           i--;
   420           continue;
   421         }
   422       }
   423       if( phase->type(n) == Type::TOP ) {
   424         set_req(i, NULL);       // Ignore TOP inputs
   425         i--;
   426         continue;
   427       }
   428       cnt++;                    // One more value merging
   430     } else if (can_reshape) {   // Else found dead path with DU info
   431       PhaseIterGVN *igvn = phase->is_IterGVN();
   432       del_req(i);               // Yank path from self
   433       del_it = i;
   434       uint max = outcnt();
   435       DUIterator j;
   436       bool progress = true;
   437       while(progress) {         // Need to establish property over all users
   438         progress = false;
   439         for (j = outs(); has_out(j); j++) {
   440           Node *n = out(j);
   441           if( n->req() != req() && n->is_Phi() ) {
   442             assert( n->in(0) == this, "" );
   443             igvn->hash_delete(n); // Yank from hash before hacking edges
   444             n->set_req_X(i,NULL,igvn);// Correct DU info
   445             n->del_req(i);        // Yank path from Phis
   446             if( max != outcnt() ) {
   447               progress = true;
   448               j = refresh_out_pos(j);
   449               max = outcnt();
   450             }
   451           }
   452         }
   453       }
   454       add_to_worklist = true;
   455       i--;
   456     }
   457   }
   459   if (can_reshape && cnt == 1) {
   460     // Is it dead loop?
   461     // If it is LoopNopde it had 2 (+1 itself) inputs and
   462     // one of them was cut. The loop is dead if it was EntryContol.
   463     assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
   464     if (this->is_Loop() && del_it == LoopNode::EntryControl ||
   465        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
   466       // Yes,  the region will be removed during the next step below.
   467       // Cut the backedge input and remove phis since no data paths left.
   468       // We don't cut outputs to other nodes here since we need to put them
   469       // on the worklist.
   470       del_req(1);
   471       cnt = 0;
   472       assert( req() == 1, "no more inputs expected" );
   473       uint max = outcnt();
   474       bool progress = true;
   475       Node *top = phase->C->top();
   476       PhaseIterGVN *igvn = phase->is_IterGVN();
   477       DUIterator j;
   478       while(progress) {
   479         progress = false;
   480         for (j = outs(); has_out(j); j++) {
   481           Node *n = out(j);
   482           if( n->is_Phi() ) {
   483             assert( igvn->eqv(n->in(0), this), "" );
   484             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
   485             // Break dead loop data path.
   486             // Eagerly replace phis with top to avoid phis copies generation.
   487             igvn->replace_node(n, top);
   488             if( max != outcnt() ) {
   489               progress = true;
   490               j = refresh_out_pos(j);
   491               max = outcnt();
   492             }
   493           }
   494         }
   495       }
   496       add_to_worklist = true;
   497     }
   498   }
   499   if (add_to_worklist) {
   500     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
   501   }
   503   if( cnt <= 1 ) {              // Only 1 path in?
   504     set_req(0, NULL);           // Null control input for region copy
   505     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
   506       // No inputs or all inputs are NULL.
   507       return NULL;
   508     } else if (can_reshape) {   // Optimization phase - remove the node
   509       PhaseIterGVN *igvn = phase->is_IterGVN();
   510       Node *parent_ctrl;
   511       if( cnt == 0 ) {
   512         assert( req() == 1, "no inputs expected" );
   513         // During IGVN phase such region will be subsumed by TOP node
   514         // so region's phis will have TOP as control node.
   515         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
   516         // Also set other user's input to top.
   517         parent_ctrl = phase->C->top();
   518       } else {
   519         // The fallthrough case since we already checked dead loops above.
   520         parent_ctrl = in(1);
   521         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
   522         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
   523       }
   524       if (!add_to_worklist)
   525         igvn->add_users_to_worklist(this); // Check for further allowed opts
   526       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
   527         Node* n = last_out(i);
   528         igvn->hash_delete(n); // Remove from worklist before modifying edges
   529         if( n->is_Phi() ) {   // Collapse all Phis
   530           // Eagerly replace phis to avoid copies generation.
   531           Node* in;
   532           if( cnt == 0 ) {
   533             assert( n->req() == 1, "No data inputs expected" );
   534             in = parent_ctrl; // replaced by top
   535           } else {
   536             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
   537             in = n->in(1);               // replaced by unique input
   538             if( n->as_Phi()->is_unsafe_data_reference(in) )
   539               in = phase->C->top();      // replaced by top
   540           }
   541           igvn->replace_node(n, in);
   542         }
   543         else if( n->is_Region() ) { // Update all incoming edges
   544           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
   545           uint uses_found = 0;
   546           for( uint k=1; k < n->req(); k++ ) {
   547             if( n->in(k) == this ) {
   548               n->set_req(k, parent_ctrl);
   549               uses_found++;
   550             }
   551           }
   552           if( uses_found > 1 ) { // (--i) done at the end of the loop.
   553             i -= (uses_found - 1);
   554           }
   555         }
   556         else {
   557           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
   558           n->set_req(0, parent_ctrl);
   559         }
   560 #ifdef ASSERT
   561         for( uint k=0; k < n->req(); k++ ) {
   562           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
   563         }
   564 #endif
   565       }
   566       // Remove the RegionNode itself from DefUse info
   567       igvn->remove_dead_node(this);
   568       return NULL;
   569     }
   570     return this;                // Record progress
   571   }
   574   // If a Region flows into a Region, merge into one big happy merge.
   575   if (can_reshape) {
   576     Node *m = merge_region(this, phase);
   577     if (m != NULL)  return m;
   578   }
   580   // Check if this region is the root of a clipping idiom on floats
   581   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
   582     // Check that only one use is a Phi and that it simplifies to two constants +
   583     PhiNode* phi = has_unique_phi();
   584     if (phi != NULL) {          // One Phi user
   585       // Check inputs to the Phi
   586       ConNode *min;
   587       ConNode *max;
   588       Node    *val;
   589       uint     min_idx;
   590       uint     max_idx;
   591       uint     val_idx;
   592       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
   593         IfNode *top_if;
   594         IfNode *bot_if;
   595         if( check_if_clipping( this, bot_if, top_if ) ) {
   596           // Control pattern checks, now verify compares
   597           Node   *top_in = NULL;   // value being compared against
   598           Node   *bot_in = NULL;
   599           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
   600               check_compare_clipping( false, top_if, max, top_in ) ) {
   601             if( bot_in == top_in ) {
   602               PhaseIterGVN *gvn = phase->is_IterGVN();
   603               assert( gvn != NULL, "Only had DefUse info in IterGVN");
   604               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
   606               // Check for the ConvF2INode
   607               ConvF2INode *convf2i;
   608               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
   609                 convf2i->in(1) == bot_in ) {
   610                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
   611                 // max test
   612                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
   613                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
   614                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
   615                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
   616                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
   617                 // min test
   618                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
   619                 boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
   620                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
   621                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
   622                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
   623                 // update input edges to region node
   624                 set_req_X( min_idx, if_min, gvn );
   625                 set_req_X( max_idx, if_max, gvn );
   626                 set_req_X( val_idx, ifF,    gvn );
   627                 // remove unnecessary 'LShiftI; RShiftI' idiom
   628                 gvn->hash_delete(phi);
   629                 phi->set_req_X( val_idx, convf2i, gvn );
   630                 gvn->hash_find_insert(phi);
   631                 // Return transformed region node
   632                 return this;
   633               }
   634             }
   635           }
   636         }
   637       }
   638     }
   639   }
   641   return NULL;
   642 }
   646 const RegMask &RegionNode::out_RegMask() const {
   647   return RegMask::Empty;
   648 }
   650 // Find the one non-null required input.  RegionNode only
   651 Node *Node::nonnull_req() const {
   652   assert( is_Region(), "" );
   653   for( uint i = 1; i < _cnt; i++ )
   654     if( in(i) )
   655       return in(i);
   656   ShouldNotReachHere();
   657   return NULL;
   658 }
   661 //=============================================================================
   662 // note that these functions assume that the _adr_type field is flattened
   663 uint PhiNode::hash() const {
   664   const Type* at = _adr_type;
   665   return TypeNode::hash() + (at ? at->hash() : 0);
   666 }
   667 uint PhiNode::cmp( const Node &n ) const {
   668   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
   669 }
   670 static inline
   671 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
   672   if (at == NULL || at == TypePtr::BOTTOM)  return at;
   673   return Compile::current()->alias_type(at)->adr_type();
   674 }
   676 //----------------------------make---------------------------------------------
   677 // create a new phi with edges matching r and set (initially) to x
   678 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
   679   uint preds = r->req();   // Number of predecessor paths
   680   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
   681   PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
   682   for (uint j = 1; j < preds; j++) {
   683     // Fill in all inputs, except those which the region does not yet have
   684     if (r->in(j) != NULL)
   685       p->init_req(j, x);
   686   }
   687   return p;
   688 }
   689 PhiNode* PhiNode::make(Node* r, Node* x) {
   690   const Type*    t  = x->bottom_type();
   691   const TypePtr* at = NULL;
   692   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
   693   return make(r, x, t, at);
   694 }
   695 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
   696   const Type*    t  = x->bottom_type();
   697   const TypePtr* at = NULL;
   698   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
   699   return new (Compile::current(), r->req()) PhiNode(r, t, at);
   700 }
   703 //------------------------slice_memory-----------------------------------------
   704 // create a new phi with narrowed memory type
   705 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
   706   PhiNode* mem = (PhiNode*) clone();
   707   *(const TypePtr**)&mem->_adr_type = adr_type;
   708   // convert self-loops, or else we get a bad graph
   709   for (uint i = 1; i < req(); i++) {
   710     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
   711   }
   712   mem->verify_adr_type();
   713   return mem;
   714 }
   716 //------------------------split_out_instance-----------------------------------
   717 // Split out an instance type from a bottom phi.
   718 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
   719   const TypeOopPtr *t_oop = at->isa_oopptr();
   720   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
   721   const TypePtr *t = adr_type();
   722   assert(type() == Type::MEMORY &&
   723          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   724           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   725           t->is_oopptr()->cast_to_exactness(true)
   726            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   727            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
   728          "bottom or raw memory required");
   730   // Check if an appropriate node already exists.
   731   Node *region = in(0);
   732   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   733     Node* use = region->fast_out(k);
   734     if( use->is_Phi()) {
   735       PhiNode *phi2 = use->as_Phi();
   736       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
   737         return phi2;
   738       }
   739     }
   740   }
   741   Compile *C = igvn->C;
   742   Arena *a = Thread::current()->resource_area();
   743   Node_Array node_map = new Node_Array(a);
   744   Node_Stack stack(a, C->unique() >> 4);
   745   PhiNode *nphi = slice_memory(at);
   746   igvn->register_new_node_with_optimizer( nphi );
   747   node_map.map(_idx, nphi);
   748   stack.push((Node *)this, 1);
   749   while(!stack.is_empty()) {
   750     PhiNode *ophi = stack.node()->as_Phi();
   751     uint i = stack.index();
   752     assert(i >= 1, "not control edge");
   753     stack.pop();
   754     nphi = node_map[ophi->_idx]->as_Phi();
   755     for (; i < ophi->req(); i++) {
   756       Node *in = ophi->in(i);
   757       if (in == NULL || igvn->type(in) == Type::TOP)
   758         continue;
   759       Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
   760       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
   761       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
   762         opt = node_map[optphi->_idx];
   763         if (opt == NULL) {
   764           stack.push(ophi, i);
   765           nphi = optphi->slice_memory(at);
   766           igvn->register_new_node_with_optimizer( nphi );
   767           node_map.map(optphi->_idx, nphi);
   768           ophi = optphi;
   769           i = 0; // will get incremented at top of loop
   770           continue;
   771         }
   772       }
   773       nphi->set_req(i, opt);
   774     }
   775   }
   776   return nphi;
   777 }
   779 //------------------------verify_adr_type--------------------------------------
   780 #ifdef ASSERT
   781 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
   782   if (visited.test_set(_idx))  return;  //already visited
   784   // recheck constructor invariants:
   785   verify_adr_type(false);
   787   // recheck local phi/phi consistency:
   788   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
   789          "adr_type must be consistent across phi nest");
   791   // walk around
   792   for (uint i = 1; i < req(); i++) {
   793     Node* n = in(i);
   794     if (n == NULL)  continue;
   795     const Node* np = in(i);
   796     if (np->is_Phi()) {
   797       np->as_Phi()->verify_adr_type(visited, at);
   798     } else if (n->bottom_type() == Type::TOP
   799                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
   800       // ignore top inputs
   801     } else {
   802       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
   803       // recheck phi/non-phi consistency at leaves:
   804       assert((nat != NULL) == (at != NULL), "");
   805       assert(nat == at || nat == TypePtr::BOTTOM,
   806              "adr_type must be consistent at leaves of phi nest");
   807     }
   808   }
   809 }
   811 // Verify a whole nest of phis rooted at this one.
   812 void PhiNode::verify_adr_type(bool recursive) const {
   813   if (is_error_reported())  return;  // muzzle asserts when debugging an error
   814   if (Node::in_dump())      return;  // muzzle asserts when printing
   816   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
   818   if (!VerifyAliases)       return;  // verify thoroughly only if requested
   820   assert(_adr_type == flatten_phi_adr_type(_adr_type),
   821          "Phi::adr_type must be pre-normalized");
   823   if (recursive) {
   824     VectorSet visited(Thread::current()->resource_area());
   825     verify_adr_type(visited, _adr_type);
   826   }
   827 }
   828 #endif
   831 //------------------------------Value------------------------------------------
   832 // Compute the type of the PhiNode
   833 const Type *PhiNode::Value( PhaseTransform *phase ) const {
   834   Node *r = in(0);              // RegionNode
   835   if( !r )                      // Copy or dead
   836     return in(1) ? phase->type(in(1)) : Type::TOP;
   838   // Note: During parsing, phis are often transformed before their regions.
   839   // This means we have to use type_or_null to defend against untyped regions.
   840   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
   841     return Type::TOP;
   843   // Check for trip-counted loop.  If so, be smarter.
   844   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
   845   if( l && l->can_be_counted_loop(phase) &&
   846       ((const Node*)l->phi() == this) ) { // Trip counted loop!
   847     // protect against init_trip() or limit() returning NULL
   848     const Node *init   = l->init_trip();
   849     const Node *limit  = l->limit();
   850     if( init != NULL && limit != NULL && l->stride_is_con() ) {
   851       const TypeInt *lo = init ->bottom_type()->isa_int();
   852       const TypeInt *hi = limit->bottom_type()->isa_int();
   853       if( lo && hi ) {            // Dying loops might have TOP here
   854         int stride = l->stride_con();
   855         if( stride < 0 ) {          // Down-counter loop
   856           const TypeInt *tmp = lo; lo = hi; hi = tmp;
   857           stride = -stride;
   858         }
   859         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
   860           return TypeInt::make(lo->_lo,hi->_hi,3);
   861       }
   862     }
   863   }
   865   // Until we have harmony between classes and interfaces in the type
   866   // lattice, we must tread carefully around phis which implicitly
   867   // convert the one to the other.
   868   const TypePtr* ttp = _type->make_ptr();
   869   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
   870   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
   871   bool is_intf = false;
   872   if (ttip != NULL) {
   873     ciKlass* k = ttip->klass();
   874     if (k->is_loaded() && k->is_interface())
   875       is_intf = true;
   876   }
   877   if (ttkp != NULL) {
   878     ciKlass* k = ttkp->klass();
   879     if (k->is_loaded() && k->is_interface())
   880       is_intf = true;
   881   }
   883   // Default case: merge all inputs
   884   const Type *t = Type::TOP;        // Merged type starting value
   885   for (uint i = 1; i < req(); ++i) {// For all paths in
   886     // Reachable control path?
   887     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
   888       const Type* ti = phase->type(in(i));
   889       // We assume that each input of an interface-valued Phi is a true
   890       // subtype of that interface.  This might not be true of the meet
   891       // of all the input types.  The lattice is not distributive in
   892       // such cases.  Ward off asserts in type.cpp by refusing to do
   893       // meets between interfaces and proper classes.
   894       const TypePtr* tip = ti->make_ptr();
   895       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
   896       if (tiip) {
   897         bool ti_is_intf = false;
   898         ciKlass* k = tiip->klass();
   899         if (k->is_loaded() && k->is_interface())
   900           ti_is_intf = true;
   901         if (is_intf != ti_is_intf)
   902           { t = _type; break; }
   903       }
   904       t = t->meet(ti);
   905     }
   906   }
   908   // The worst-case type (from ciTypeFlow) should be consistent with "t".
   909   // That is, we expect that "t->higher_equal(_type)" holds true.
   910   // There are various exceptions:
   911   // - Inputs which are phis might in fact be widened unnecessarily.
   912   //   For example, an input might be a widened int while the phi is a short.
   913   // - Inputs might be BotPtrs but this phi is dependent on a null check,
   914   //   and postCCP has removed the cast which encodes the result of the check.
   915   // - The type of this phi is an interface, and the inputs are classes.
   916   // - Value calls on inputs might produce fuzzy results.
   917   //   (Occurrences of this case suggest improvements to Value methods.)
   918   //
   919   // It is not possible to see Type::BOTTOM values as phi inputs,
   920   // because the ciTypeFlow pre-pass produces verifier-quality types.
   921   const Type* ft = t->filter(_type);  // Worst case type
   923 #ifdef ASSERT
   924   // The following logic has been moved into TypeOopPtr::filter.
   925   const Type* jt = t->join(_type);
   926   if( jt->empty() ) {           // Emptied out???
   928     // Check for evil case of 't' being a class and '_type' expecting an
   929     // interface.  This can happen because the bytecodes do not contain
   930     // enough type info to distinguish a Java-level interface variable
   931     // from a Java-level object variable.  If we meet 2 classes which
   932     // both implement interface I, but their meet is at 'j/l/O' which
   933     // doesn't implement I, we have no way to tell if the result should
   934     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
   935     // into a Phi which "knows" it's an Interface type we'll have to
   936     // uplift the type.
   937     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
   938       { assert(ft == _type, ""); } // Uplift to interface
   939     else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
   940       { assert(ft == _type, ""); } // Uplift to interface
   941     // Otherwise it's something stupid like non-overlapping int ranges
   942     // found on dying counted loops.
   943     else
   944       { assert(ft == Type::TOP, ""); } // Canonical empty value
   945   }
   947   else {
   949     // If we have an interface-typed Phi and we narrow to a class type, the join
   950     // should report back the class.  However, if we have a J/L/Object
   951     // class-typed Phi and an interface flows in, it's possible that the meet &
   952     // join report an interface back out.  This isn't possible but happens
   953     // because the type system doesn't interact well with interfaces.
   954     const TypePtr *jtp = jt->make_ptr();
   955     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
   956     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
   957     if( jtip && ttip ) {
   958       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
   959           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
   960         // Happens in a CTW of rt.jar, 320-341, no extra flags
   961         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
   962                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
   963         jt = ft;
   964       }
   965     }
   966     if( jtkp && ttkp ) {
   967       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
   968           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
   969           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
   970         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
   971                ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
   972         jt = ft;
   973       }
   974     }
   975     if (jt != ft && jt->base() == ft->base()) {
   976       if (jt->isa_int() &&
   977           jt->is_int()->_lo == ft->is_int()->_lo &&
   978           jt->is_int()->_hi == ft->is_int()->_hi)
   979         jt = ft;
   980       if (jt->isa_long() &&
   981           jt->is_long()->_lo == ft->is_long()->_lo &&
   982           jt->is_long()->_hi == ft->is_long()->_hi)
   983         jt = ft;
   984     }
   985     if (jt != ft) {
   986       tty->print("merge type:  "); t->dump(); tty->cr();
   987       tty->print("kill type:   "); _type->dump(); tty->cr();
   988       tty->print("join type:   "); jt->dump(); tty->cr();
   989       tty->print("filter type: "); ft->dump(); tty->cr();
   990     }
   991     assert(jt == ft, "");
   992   }
   993 #endif //ASSERT
   995   // Deal with conversion problems found in data loops.
   996   ft = phase->saturate(ft, phase->type_or_null(this), _type);
   998   return ft;
   999 }
  1002 //------------------------------is_diamond_phi---------------------------------
  1003 // Does this Phi represent a simple well-shaped diamond merge?  Return the
  1004 // index of the true path or 0 otherwise.
  1005 int PhiNode::is_diamond_phi() const {
  1006   // Check for a 2-path merge
  1007   Node *region = in(0);
  1008   if( !region ) return 0;
  1009   if( region->req() != 3 ) return 0;
  1010   if(         req() != 3 ) return 0;
  1011   // Check that both paths come from the same If
  1012   Node *ifp1 = region->in(1);
  1013   Node *ifp2 = region->in(2);
  1014   if( !ifp1 || !ifp2 ) return 0;
  1015   Node *iff = ifp1->in(0);
  1016   if( !iff || !iff->is_If() ) return 0;
  1017   if( iff != ifp2->in(0) ) return 0;
  1018   // Check for a proper bool/cmp
  1019   const Node *b = iff->in(1);
  1020   if( !b->is_Bool() ) return 0;
  1021   const Node *cmp = b->in(1);
  1022   if( !cmp->is_Cmp() ) return 0;
  1024   // Check for branching opposite expected
  1025   if( ifp2->Opcode() == Op_IfTrue ) {
  1026     assert( ifp1->Opcode() == Op_IfFalse, "" );
  1027     return 2;
  1028   } else {
  1029     assert( ifp1->Opcode() == Op_IfTrue, "" );
  1030     return 1;
  1034 //----------------------------check_cmove_id-----------------------------------
  1035 // Check for CMove'ing a constant after comparing against the constant.
  1036 // Happens all the time now, since if we compare equality vs a constant in
  1037 // the parser, we "know" the variable is constant on one path and we force
  1038 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
  1039 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
  1040 // general in that we don't need constants.  Since CMove's are only inserted
  1041 // in very special circumstances, we do it here on generic Phi's.
  1042 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
  1043   assert(true_path !=0, "only diamond shape graph expected");
  1045   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1046   // phi->region->if_proj->ifnode->bool->cmp
  1047   Node*     region = in(0);
  1048   Node*     iff    = region->in(1)->in(0);
  1049   BoolNode* b      = iff->in(1)->as_Bool();
  1050   Node*     cmp    = b->in(1);
  1051   Node*     tval   = in(true_path);
  1052   Node*     fval   = in(3-true_path);
  1053   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
  1054   if (id == NULL)
  1055     return NULL;
  1057   // Either value might be a cast that depends on a branch of 'iff'.
  1058   // Since the 'id' value will float free of the diamond, either
  1059   // decast or return failure.
  1060   Node* ctl = id->in(0);
  1061   if (ctl != NULL && ctl->in(0) == iff) {
  1062     if (id->is_ConstraintCast()) {
  1063       return id->in(1);
  1064     } else {
  1065       // Don't know how to disentangle this value.
  1066       return NULL;
  1070   return id;
  1073 //------------------------------Identity---------------------------------------
  1074 // Check for Region being Identity.
  1075 Node *PhiNode::Identity( PhaseTransform *phase ) {
  1076   // Check for no merging going on
  1077   // (There used to be special-case code here when this->region->is_Loop.
  1078   // It would check for a tributary phi on the backedge that the main phi
  1079   // trivially, perhaps with a single cast.  The unique_input method
  1080   // does all this and more, by reducing such tributaries to 'this'.)
  1081   Node* uin = unique_input(phase);
  1082   if (uin != NULL) {
  1083     return uin;
  1086   int true_path = is_diamond_phi();
  1087   if (true_path != 0) {
  1088     Node* id = is_cmove_id(phase, true_path);
  1089     if (id != NULL)  return id;
  1092   return this;                     // No identity
  1095 //-----------------------------unique_input------------------------------------
  1096 // Find the unique value, discounting top, self-loops, and casts.
  1097 // Return top if there are no inputs, and self if there are multiple.
  1098 Node* PhiNode::unique_input(PhaseTransform* phase) {
  1099   //  1) One unique direct input, or
  1100   //  2) some of the inputs have an intervening ConstraintCast and
  1101   //     the type of input is the same or sharper (more specific)
  1102   //     than the phi's type.
  1103   //  3) an input is a self loop
  1104   //
  1105   //  1) input   or   2) input     or   3) input __
  1106   //     /   \           /   \               \  /  \
  1107   //     \   /          |    cast             phi  cast
  1108   //      phi            \   /               /  \  /
  1109   //                      phi               /    --
  1111   Node* r = in(0);                      // RegionNode
  1112   if (r == NULL)  return in(1);         // Already degraded to a Copy
  1113   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
  1114   Node* direct_input   = NULL; // The unique direct input
  1116   for (uint i = 1, cnt = req(); i < cnt; ++i) {
  1117     Node* rc = r->in(i);
  1118     if (rc == NULL || phase->type(rc) == Type::TOP)
  1119       continue;                 // ignore unreachable control path
  1120     Node* n = in(i);
  1121     if (n == NULL)
  1122       continue;
  1123     Node* un = n->uncast();
  1124     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
  1125       continue; // ignore if top, or in(i) and "this" are in a data cycle
  1127     // Check for a unique uncasted input
  1128     if (uncasted_input == NULL) {
  1129       uncasted_input = un;
  1130     } else if (uncasted_input != un) {
  1131       uncasted_input = NodeSentinel; // no unique uncasted input
  1133     // Check for a unique direct input
  1134     if (direct_input == NULL) {
  1135       direct_input = n;
  1136     } else if (direct_input != n) {
  1137       direct_input = NodeSentinel; // no unique direct input
  1140   if (direct_input == NULL) {
  1141     return phase->C->top();        // no inputs
  1143   assert(uncasted_input != NULL,"");
  1145   if (direct_input != NodeSentinel) {
  1146     return direct_input;           // one unique direct input
  1148   if (uncasted_input != NodeSentinel &&
  1149       phase->type(uncasted_input)->higher_equal(type())) {
  1150     return uncasted_input;         // one unique uncasted input
  1153   // Nothing.
  1154   return NULL;
  1157 //------------------------------is_x2logic-------------------------------------
  1158 // Check for simple convert-to-boolean pattern
  1159 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
  1160 // Convert Phi to an ConvIB.
  1161 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
  1162   assert(true_path !=0, "only diamond shape graph expected");
  1163   // Convert the true/false index into an expected 0/1 return.
  1164   // Map 2->0 and 1->1.
  1165   int flipped = 2-true_path;
  1167   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1168   // phi->region->if_proj->ifnode->bool->cmp
  1169   Node *region = phi->in(0);
  1170   Node *iff = region->in(1)->in(0);
  1171   BoolNode *b = (BoolNode*)iff->in(1);
  1172   const CmpNode *cmp = (CmpNode*)b->in(1);
  1174   Node *zero = phi->in(1);
  1175   Node *one  = phi->in(2);
  1176   const Type *tzero = phase->type( zero );
  1177   const Type *tone  = phase->type( one  );
  1179   // Check for compare vs 0
  1180   const Type *tcmp = phase->type(cmp->in(2));
  1181   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
  1182     // Allow cmp-vs-1 if the other input is bounded by 0-1
  1183     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
  1184       return NULL;
  1185     flipped = 1-flipped;        // Test is vs 1 instead of 0!
  1188   // Check for setting zero/one opposite expected
  1189   if( tzero == TypeInt::ZERO ) {
  1190     if( tone == TypeInt::ONE ) {
  1191     } else return NULL;
  1192   } else if( tzero == TypeInt::ONE ) {
  1193     if( tone == TypeInt::ZERO ) {
  1194       flipped = 1-flipped;
  1195     } else return NULL;
  1196   } else return NULL;
  1198   // Check for boolean test backwards
  1199   if( b->_test._test == BoolTest::ne ) {
  1200   } else if( b->_test._test == BoolTest::eq ) {
  1201     flipped = 1-flipped;
  1202   } else return NULL;
  1204   // Build int->bool conversion
  1205   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
  1206   if( flipped )
  1207     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
  1209   return n;
  1212 //------------------------------is_cond_add------------------------------------
  1213 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
  1214 // To be profitable the control flow has to disappear; there can be no other
  1215 // values merging here.  We replace the test-and-branch with:
  1216 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
  1217 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
  1218 // Then convert Y to 0-or-Y and finally add.
  1219 // This is a key transform for SpecJava _201_compress.
  1220 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
  1221   assert(true_path !=0, "only diamond shape graph expected");
  1223   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1224   // phi->region->if_proj->ifnode->bool->cmp
  1225   RegionNode *region = (RegionNode*)phi->in(0);
  1226   Node *iff = region->in(1)->in(0);
  1227   BoolNode* b = iff->in(1)->as_Bool();
  1228   const CmpNode *cmp = (CmpNode*)b->in(1);
  1230   // Make sure only merging this one phi here
  1231   if (region->has_unique_phi() != phi)  return NULL;
  1233   // Make sure each arm of the diamond has exactly one output, which we assume
  1234   // is the region.  Otherwise, the control flow won't disappear.
  1235   if (region->in(1)->outcnt() != 1) return NULL;
  1236   if (region->in(2)->outcnt() != 1) return NULL;
  1238   // Check for "(P < Q)" of type signed int
  1239   if (b->_test._test != BoolTest::lt)  return NULL;
  1240   if (cmp->Opcode() != Op_CmpI)        return NULL;
  1242   Node *p = cmp->in(1);
  1243   Node *q = cmp->in(2);
  1244   Node *n1 = phi->in(  true_path);
  1245   Node *n2 = phi->in(3-true_path);
  1247   int op = n1->Opcode();
  1248   if( op != Op_AddI           // Need zero as additive identity
  1249       /*&&op != Op_SubI &&
  1250       op != Op_AddP &&
  1251       op != Op_XorI &&
  1252       op != Op_OrI*/ )
  1253     return NULL;
  1255   Node *x = n2;
  1256   Node *y = n1->in(1);
  1257   if( n2 == n1->in(1) ) {
  1258     y = n1->in(2);
  1259   } else if( n2 == n1->in(1) ) {
  1260   } else return NULL;
  1262   // Not so profitable if compare and add are constants
  1263   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
  1264     return NULL;
  1266   Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
  1267   Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
  1268   return new (phase->C, 3) AddINode(j_and,x);
  1271 //------------------------------is_absolute------------------------------------
  1272 // Check for absolute value.
  1273 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
  1274   assert(true_path !=0, "only diamond shape graph expected");
  1276   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
  1277   int  phi_x_idx = 0;           // Index of phi input where to find naked x
  1279   // ABS ends with the merge of 2 control flow paths.
  1280   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
  1281   int false_path = 3 - true_path;
  1283   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1284   // phi->region->if_proj->ifnode->bool->cmp
  1285   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
  1287   // Check bool sense
  1288   switch( bol->_test._test ) {
  1289   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
  1290   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
  1291   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
  1292   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
  1293   default:           return NULL;                              break;
  1296   // Test is next
  1297   Node *cmp = bol->in(1);
  1298   const Type *tzero = NULL;
  1299   switch( cmp->Opcode() ) {
  1300   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
  1301   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
  1302   default: return NULL;
  1305   // Find zero input of compare; the other input is being abs'd
  1306   Node *x = NULL;
  1307   bool flip = false;
  1308   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
  1309     x = cmp->in(3 - cmp_zero_idx);
  1310   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
  1311     // The test is inverted, we should invert the result...
  1312     x = cmp->in(cmp_zero_idx);
  1313     flip = true;
  1314   } else {
  1315     return NULL;
  1318   // Next get the 2 pieces being selected, one is the original value
  1319   // and the other is the negated value.
  1320   if( phi_root->in(phi_x_idx) != x ) return NULL;
  1322   // Check other phi input for subtract node
  1323   Node *sub = phi_root->in(3 - phi_x_idx);
  1325   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
  1326   if( tzero == TypeF::ZERO ) {
  1327     if( sub->Opcode() != Op_SubF ||
  1328         sub->in(2) != x ||
  1329         phase->type(sub->in(1)) != tzero ) return NULL;
  1330     x = new (phase->C, 2) AbsFNode(x);
  1331     if (flip) {
  1332       x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
  1334   } else {
  1335     if( sub->Opcode() != Op_SubD ||
  1336         sub->in(2) != x ||
  1337         phase->type(sub->in(1)) != tzero ) return NULL;
  1338     x = new (phase->C, 2) AbsDNode(x);
  1339     if (flip) {
  1340       x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
  1344   return x;
  1347 //------------------------------split_once-------------------------------------
  1348 // Helper for split_flow_path
  1349 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
  1350   igvn->hash_delete(n);         // Remove from hash before hacking edges
  1352   uint j = 1;
  1353   for( uint i = phi->req()-1; i > 0; i-- ) {
  1354     if( phi->in(i) == val ) {   // Found a path with val?
  1355       // Add to NEW Region/Phi, no DU info
  1356       newn->set_req( j++, n->in(i) );
  1357       // Remove from OLD Region/Phi
  1358       n->del_req(i);
  1362   // Register the new node but do not transform it.  Cannot transform until the
  1363   // entire Region/Phi conglomerate has been hacked as a single huge transform.
  1364   igvn->register_new_node_with_optimizer( newn );
  1365   // Now I can point to the new node.
  1366   n->add_req(newn);
  1367   igvn->_worklist.push(n);
  1370 //------------------------------split_flow_path--------------------------------
  1371 // Check for merging identical values and split flow paths
  1372 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
  1373   BasicType bt = phi->type()->basic_type();
  1374   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
  1375     return NULL;                // Bail out on funny non-value stuff
  1376   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
  1377     return NULL;                // third unequal input to be worth doing
  1379   // Scan for a constant
  1380   uint i;
  1381   for( i = 1; i < phi->req()-1; i++ ) {
  1382     Node *n = phi->in(i);
  1383     if( !n ) return NULL;
  1384     if( phase->type(n) == Type::TOP ) return NULL;
  1385     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
  1386       break;
  1388   if( i >= phi->req() )         // Only split for constants
  1389     return NULL;
  1391   Node *val = phi->in(i);       // Constant to split for
  1392   uint hit = 0;                 // Number of times it occurs
  1394   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
  1395     Node *n = phi->in(i);
  1396     if( !n ) return NULL;
  1397     if( phase->type(n) == Type::TOP ) return NULL;
  1398     if( phi->in(i) == val )
  1399       hit++;
  1402   if( hit <= 1 ||               // Make sure we find 2 or more
  1403       hit == phi->req()-1 )     // and not ALL the same value
  1404     return NULL;
  1406   // Now start splitting out the flow paths that merge the same value.
  1407   // Split first the RegionNode.
  1408   PhaseIterGVN *igvn = phase->is_IterGVN();
  1409   Node *r = phi->region();
  1410   RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
  1411   split_once(igvn, phi, val, r, newr);
  1413   // Now split all other Phis than this one
  1414   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
  1415     Node* phi2 = r->fast_out(k);
  1416     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
  1417       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
  1418       split_once(igvn, phi, val, phi2, newphi);
  1422   // Clean up this guy
  1423   igvn->hash_delete(phi);
  1424   for( i = phi->req()-1; i > 0; i-- ) {
  1425     if( phi->in(i) == val ) {
  1426       phi->del_req(i);
  1429   phi->add_req(val);
  1431   return phi;
  1434 //=============================================================================
  1435 //------------------------------simple_data_loop_check-------------------------
  1436 //  Try to determining if the phi node in a simple safe/unsafe data loop.
  1437 //  Returns:
  1438 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
  1439 // Safe       - safe case when the phi and it's inputs reference only safe data
  1440 //              nodes;
  1441 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
  1442 //              is no reference back to the phi - need a graph walk
  1443 //              to determine if it is in a loop;
  1444 // UnsafeLoop - unsafe case when the phi references itself directly or through
  1445 //              unsafe data node.
  1446 //  Note: a safe data node is a node which could/never reference itself during
  1447 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
  1448 //  I mark Phi nodes as safe node not only because they can reference itself
  1449 //  but also to prevent mistaking the fallthrough case inside an outer loop
  1450 //  as dead loop when the phi references itselfs through an other phi.
  1451 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
  1452   // It is unsafe loop if the phi node references itself directly.
  1453   if (in == (Node*)this)
  1454     return UnsafeLoop; // Unsafe loop
  1455   // Unsafe loop if the phi node references itself through an unsafe data node.
  1456   // Exclude cases with null inputs or data nodes which could reference
  1457   // itself (safe for dead loops).
  1458   if (in != NULL && !in->is_dead_loop_safe()) {
  1459     // Check inputs of phi's inputs also.
  1460     // It is much less expensive then full graph walk.
  1461     uint cnt = in->req();
  1462     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
  1463     for (; i < cnt; ++i) {
  1464       Node* m = in->in(i);
  1465       if (m == (Node*)this)
  1466         return UnsafeLoop; // Unsafe loop
  1467       if (m != NULL && !m->is_dead_loop_safe()) {
  1468         // Check the most common case (about 30% of all cases):
  1469         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
  1470         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
  1471         if (m1 == (Node*)this)
  1472           return UnsafeLoop; // Unsafe loop
  1473         if (m1 != NULL && m1 == m->in(2) &&
  1474             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
  1475           continue; // Safe case
  1477         // The phi references an unsafe node - need full analysis.
  1478         return Unsafe;
  1482   return Safe; // Safe case - we can optimize the phi node.
  1485 //------------------------------is_unsafe_data_reference-----------------------
  1486 // If phi can be reached through the data input - it is data loop.
  1487 bool PhiNode::is_unsafe_data_reference(Node *in) const {
  1488   assert(req() > 1, "");
  1489   // First, check simple cases when phi references itself directly or
  1490   // through an other node.
  1491   LoopSafety safety = simple_data_loop_check(in);
  1492   if (safety == UnsafeLoop)
  1493     return true;  // phi references itself - unsafe loop
  1494   else if (safety == Safe)
  1495     return false; // Safe case - phi could be replaced with the unique input.
  1497   // Unsafe case when we should go through data graph to determine
  1498   // if the phi references itself.
  1500   ResourceMark rm;
  1502   Arena *a = Thread::current()->resource_area();
  1503   Node_List nstack(a);
  1504   VectorSet visited(a);
  1506   nstack.push(in); // Start with unique input.
  1507   visited.set(in->_idx);
  1508   while (nstack.size() != 0) {
  1509     Node* n = nstack.pop();
  1510     uint cnt = n->req();
  1511     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
  1512     for (; i < cnt; i++) {
  1513       Node* m = n->in(i);
  1514       if (m == (Node*)this) {
  1515         return true;    // Data loop
  1517       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
  1518         if (!visited.test_set(m->_idx))
  1519           nstack.push(m);
  1523   return false; // The phi is not reachable from its inputs
  1527 //------------------------------Ideal------------------------------------------
  1528 // Return a node which is more "ideal" than the current node.  Must preserve
  1529 // the CFG, but we can still strip out dead paths.
  1530 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1531   // The next should never happen after 6297035 fix.
  1532   if( is_copy() )               // Already degraded to a Copy ?
  1533     return NULL;                // No change
  1535   Node *r = in(0);              // RegionNode
  1536   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
  1538   // Note: During parsing, phis are often transformed before their regions.
  1539   // This means we have to use type_or_null to defend against untyped regions.
  1540   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
  1541     return NULL;                // No change
  1543   Node *top = phase->C->top();
  1544   bool new_phi = (outcnt() == 0); // transforming new Phi
  1545   assert(!can_reshape || !new_phi, "for igvn new phi should be hooked");
  1547   // The are 2 situations when only one valid phi's input is left
  1548   // (in addition to Region input).
  1549   // One: region is not loop - replace phi with this input.
  1550   // Two: region is loop - replace phi with top since this data path is dead
  1551   //                       and we need to break the dead data loop.
  1552   Node* progress = NULL;        // Record if any progress made
  1553   for( uint j = 1; j < req(); ++j ){ // For all paths in
  1554     // Check unreachable control paths
  1555     Node* rc = r->in(j);
  1556     Node* n = in(j);            // Get the input
  1557     if (rc == NULL || phase->type(rc) == Type::TOP) {
  1558       if (n != top) {           // Not already top?
  1559         set_req(j, top);        // Nuke it down
  1560         progress = this;        // Record progress
  1565   if (can_reshape && outcnt() == 0) {
  1566     // set_req() above may kill outputs if Phi is referenced
  1567     // only by itself on the dead (top) control path.
  1568     return top;
  1571   Node* uin = unique_input(phase);
  1572   if (uin == top) {             // Simplest case: no alive inputs.
  1573     if (can_reshape)            // IGVN transformation
  1574       return top;
  1575     else
  1576       return NULL;              // Identity will return TOP
  1577   } else if (uin != NULL) {
  1578     // Only one not-NULL unique input path is left.
  1579     // Determine if this input is backedge of a loop.
  1580     // (Skip new phis which have no uses and dead regions).
  1581     if( outcnt() > 0 && r->in(0) != NULL ) {
  1582       // First, take the short cut when we know it is a loop and
  1583       // the EntryControl data path is dead.
  1584       assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
  1585       // Then, check if there is a data loop when phi references itself directly
  1586       // or through other data nodes.
  1587       if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
  1588          !r->is_Loop() && is_unsafe_data_reference(uin) ) {
  1589         // Break this data loop to avoid creation of a dead loop.
  1590         if (can_reshape) {
  1591           return top;
  1592         } else {
  1593           // We can't return top if we are in Parse phase - cut inputs only
  1594           // let Identity to handle the case.
  1595           replace_edge(uin, top);
  1596           return NULL;
  1601     // One unique input.
  1602     debug_only(Node* ident = Identity(phase));
  1603     // The unique input must eventually be detected by the Identity call.
  1604 #ifdef ASSERT
  1605     if (ident != uin && !ident->is_top()) {
  1606       // print this output before failing assert
  1607       r->dump(3);
  1608       this->dump(3);
  1609       ident->dump();
  1610       uin->dump();
  1612 #endif
  1613     assert(ident == uin || ident->is_top(), "Identity must clean this up");
  1614     return NULL;
  1618   Node* opt = NULL;
  1619   int true_path = is_diamond_phi();
  1620   if( true_path != 0 ) {
  1621     // Check for CMove'ing identity. If it would be unsafe,
  1622     // handle it here. In the safe case, let Identity handle it.
  1623     Node* unsafe_id = is_cmove_id(phase, true_path);
  1624     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
  1625       opt = unsafe_id;
  1627     // Check for simple convert-to-boolean pattern
  1628     if( opt == NULL )
  1629       opt = is_x2logic(phase, this, true_path);
  1631     // Check for absolute value
  1632     if( opt == NULL )
  1633       opt = is_absolute(phase, this, true_path);
  1635     // Check for conditional add
  1636     if( opt == NULL && can_reshape )
  1637       opt = is_cond_add(phase, this, true_path);
  1639     // These 4 optimizations could subsume the phi:
  1640     // have to check for a dead data loop creation.
  1641     if( opt != NULL ) {
  1642       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
  1643         // Found dead loop.
  1644         if( can_reshape )
  1645           return top;
  1646         // We can't return top if we are in Parse phase - cut inputs only
  1647         // to stop further optimizations for this phi. Identity will return TOP.
  1648         assert(req() == 3, "only diamond merge phi here");
  1649         set_req(1, top);
  1650         set_req(2, top);
  1651         return NULL;
  1652       } else {
  1653         return opt;
  1658   // Check for merging identical values and split flow paths
  1659   if (can_reshape) {
  1660     opt = split_flow_path(phase, this);
  1661     // This optimization only modifies phi - don't need to check for dead loop.
  1662     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
  1663     if (opt != NULL)  return opt;
  1666   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
  1667     // Try to undo Phi of AddP:
  1668     // (Phi (AddP base base y) (AddP base2 base2 y))
  1669     // becomes:
  1670     // newbase := (Phi base base2)
  1671     // (AddP newbase newbase y)
  1672     //
  1673     // This occurs as a result of unsuccessful split_thru_phi and
  1674     // interferes with taking advantage of addressing modes. See the
  1675     // clone_shift_expressions code in matcher.cpp
  1676     Node* addp = in(1);
  1677     const Type* type = addp->in(AddPNode::Base)->bottom_type();
  1678     Node* y = addp->in(AddPNode::Offset);
  1679     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
  1680       // make sure that all the inputs are similar to the first one,
  1681       // i.e. AddP with base == address and same offset as first AddP
  1682       bool doit = true;
  1683       for (uint i = 2; i < req(); i++) {
  1684         if (in(i) == NULL ||
  1685             in(i)->Opcode() != Op_AddP ||
  1686             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
  1687             in(i)->in(AddPNode::Offset) != y) {
  1688           doit = false;
  1689           break;
  1691         // Accumulate type for resulting Phi
  1692         type = type->meet(in(i)->in(AddPNode::Base)->bottom_type());
  1694       Node* base = NULL;
  1695       if (doit) {
  1696         // Check for neighboring AddP nodes in a tree.
  1697         // If they have a base, use that it.
  1698         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
  1699           Node* u = this->fast_out(k);
  1700           if (u->is_AddP()) {
  1701             Node* base2 = u->in(AddPNode::Base);
  1702             if (base2 != NULL && !base2->is_top()) {
  1703               if (base == NULL)
  1704                 base = base2;
  1705               else if (base != base2)
  1706                 { doit = false; break; }
  1711       if (doit) {
  1712         if (base == NULL) {
  1713           base = new (phase->C, in(0)->req()) PhiNode(in(0), type, NULL);
  1714           for (uint i = 1; i < req(); i++) {
  1715             base->init_req(i, in(i)->in(AddPNode::Base));
  1717           phase->is_IterGVN()->register_new_node_with_optimizer(base);
  1719         return new (phase->C, 4) AddPNode(base, base, y);
  1724   // Split phis through memory merges, so that the memory merges will go away.
  1725   // Piggy-back this transformation on the search for a unique input....
  1726   // It will be as if the merged memory is the unique value of the phi.
  1727   // (Do not attempt this optimization unless parsing is complete.
  1728   // It would make the parser's memory-merge logic sick.)
  1729   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
  1730   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
  1731     // see if this phi should be sliced
  1732     uint merge_width = 0;
  1733     bool saw_self = false;
  1734     for( uint i=1; i<req(); ++i ) {// For all paths in
  1735       Node *ii = in(i);
  1736       if (ii->is_MergeMem()) {
  1737         MergeMemNode* n = ii->as_MergeMem();
  1738         merge_width = MAX2(merge_width, n->req());
  1739         saw_self = saw_self || phase->eqv(n->base_memory(), this);
  1743     // This restriction is temporarily necessary to ensure termination:
  1744     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
  1746     if (merge_width > Compile::AliasIdxRaw) {
  1747       // found at least one non-empty MergeMem
  1748       const TypePtr* at = adr_type();
  1749       if (at != TypePtr::BOTTOM) {
  1750         // Patch the existing phi to select an input from the merge:
  1751         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
  1752         //     Phi:AT1(...m1...)
  1753         int alias_idx = phase->C->get_alias_index(at);
  1754         for (uint i=1; i<req(); ++i) {
  1755           Node *ii = in(i);
  1756           if (ii->is_MergeMem()) {
  1757             MergeMemNode* n = ii->as_MergeMem();
  1758             // compress paths and change unreachable cycles to TOP
  1759             // If not, we can update the input infinitely along a MergeMem cycle
  1760             // Equivalent code is in MemNode::Ideal_common
  1761             Node *m  = phase->transform(n);
  1762             if (outcnt() == 0) {  // Above transform() may kill us!
  1763               return top;
  1765             // If transformed to a MergeMem, get the desired slice
  1766             // Otherwise the returned node represents memory for every slice
  1767             Node *new_mem = (m->is_MergeMem()) ?
  1768                              m->as_MergeMem()->memory_at(alias_idx) : m;
  1769             // Update input if it is progress over what we have now
  1770             if (new_mem != ii) {
  1771               set_req(i, new_mem);
  1772               progress = this;
  1776       } else {
  1777         // We know that at least one MergeMem->base_memory() == this
  1778         // (saw_self == true). If all other inputs also references this phi
  1779         // (directly or through data nodes) - it is dead loop.
  1780         bool saw_safe_input = false;
  1781         for (uint j = 1; j < req(); ++j) {
  1782           Node *n = in(j);
  1783           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
  1784             continue;              // skip known cases
  1785           if (!is_unsafe_data_reference(n)) {
  1786             saw_safe_input = true; // found safe input
  1787             break;
  1790         if (!saw_safe_input)
  1791           return top; // all inputs reference back to this phi - dead loop
  1793         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
  1794         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
  1795         PhaseIterGVN *igvn = phase->is_IterGVN();
  1796         Node* hook = new (phase->C, 1) Node(1);
  1797         PhiNode* new_base = (PhiNode*) clone();
  1798         // Must eagerly register phis, since they participate in loops.
  1799         if (igvn) {
  1800           igvn->register_new_node_with_optimizer(new_base);
  1801           hook->add_req(new_base);
  1803         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
  1804         for (uint i = 1; i < req(); ++i) {
  1805           Node *ii = in(i);
  1806           if (ii->is_MergeMem()) {
  1807             MergeMemNode* n = ii->as_MergeMem();
  1808             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
  1809               // If we have not seen this slice yet, make a phi for it.
  1810               bool made_new_phi = false;
  1811               if (mms.is_empty()) {
  1812                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
  1813                 made_new_phi = true;
  1814                 if (igvn) {
  1815                   igvn->register_new_node_with_optimizer(new_phi);
  1816                   hook->add_req(new_phi);
  1818                 mms.set_memory(new_phi);
  1820               Node* phi = mms.memory();
  1821               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
  1822               phi->set_req(i, mms.memory2());
  1826         // Distribute all self-loops.
  1827         { // (Extra braces to hide mms.)
  1828           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
  1829             Node* phi = mms.memory();
  1830             for (uint i = 1; i < req(); ++i) {
  1831               if (phi->in(i) == this)  phi->set_req(i, phi);
  1835         // now transform the new nodes, and return the mergemem
  1836         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
  1837           Node* phi = mms.memory();
  1838           mms.set_memory(phase->transform(phi));
  1840         if (igvn) { // Unhook.
  1841           igvn->hash_delete(hook);
  1842           for (uint i = 1; i < hook->req(); i++) {
  1843             hook->set_req(i, NULL);
  1846         // Replace self with the result.
  1847         return result;
  1850     //
  1851     // Other optimizations on the memory chain
  1852     //
  1853     const TypePtr* at = adr_type();
  1854     for( uint i=1; i<req(); ++i ) {// For all paths in
  1855       Node *ii = in(i);
  1856       Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
  1857       if (ii != new_in ) {
  1858         set_req(i, new_in);
  1859         progress = this;
  1864 #ifdef _LP64
  1865   // Push DecodeN down through phi.
  1866   // The rest of phi graph will transform by split EncodeP node though phis up.
  1867   if (UseCompressedOops && can_reshape && progress == NULL) {
  1868     bool may_push = true;
  1869     bool has_decodeN = false;
  1870     for (uint i=1; i<req(); ++i) {// For all paths in
  1871       Node *ii = in(i);
  1872       if (ii->is_DecodeN() && ii->bottom_type() == bottom_type()) {
  1873         // Do optimization if a non dead path exist.
  1874         if (ii->in(1)->bottom_type() != Type::TOP) {
  1875           has_decodeN = true;
  1877       } else if (!ii->is_Phi()) {
  1878         may_push = false;
  1882     if (has_decodeN && may_push) {
  1883       PhaseIterGVN *igvn = phase->is_IterGVN();
  1884       // Make narrow type for new phi.
  1885       const Type* narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
  1886       PhiNode* new_phi = new (phase->C, r->req()) PhiNode(r, narrow_t);
  1887       uint orig_cnt = req();
  1888       for (uint i=1; i<req(); ++i) {// For all paths in
  1889         Node *ii = in(i);
  1890         Node* new_ii = NULL;
  1891         if (ii->is_DecodeN()) {
  1892           assert(ii->bottom_type() == bottom_type(), "sanity");
  1893           new_ii = ii->in(1);
  1894         } else {
  1895           assert(ii->is_Phi(), "sanity");
  1896           if (ii->as_Phi() == this) {
  1897             new_ii = new_phi;
  1898           } else {
  1899             new_ii = new (phase->C, 2) EncodePNode(ii, narrow_t);
  1900             igvn->register_new_node_with_optimizer(new_ii);
  1903         new_phi->set_req(i, new_ii);
  1905       igvn->register_new_node_with_optimizer(new_phi, this);
  1906       progress = new (phase->C, 2) DecodeNNode(new_phi, bottom_type());
  1909 #endif
  1911   return progress;              // Return any progress
  1914 //------------------------------is_tripcount-----------------------------------
  1915 bool PhiNode::is_tripcount() const {
  1916   return (in(0) != NULL && in(0)->is_CountedLoop() &&
  1917           in(0)->as_CountedLoop()->phi() == this);
  1920 //------------------------------out_RegMask------------------------------------
  1921 const RegMask &PhiNode::in_RegMask(uint i) const {
  1922   return i ? out_RegMask() : RegMask::Empty;
  1925 const RegMask &PhiNode::out_RegMask() const {
  1926   uint ideal_reg = Matcher::base2reg[_type->base()];
  1927   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
  1928   if( ideal_reg == 0 ) return RegMask::Empty;
  1929   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
  1932 #ifndef PRODUCT
  1933 void PhiNode::dump_spec(outputStream *st) const {
  1934   TypeNode::dump_spec(st);
  1935   if (is_tripcount()) {
  1936     st->print(" #tripcount");
  1939 #endif
  1942 //=============================================================================
  1943 const Type *GotoNode::Value( PhaseTransform *phase ) const {
  1944   // If the input is reachable, then we are executed.
  1945   // If the input is not reachable, then we are not executed.
  1946   return phase->type(in(0));
  1949 Node *GotoNode::Identity( PhaseTransform *phase ) {
  1950   return in(0);                // Simple copy of incoming control
  1953 const RegMask &GotoNode::out_RegMask() const {
  1954   return RegMask::Empty;
  1957 //=============================================================================
  1958 const RegMask &JumpNode::out_RegMask() const {
  1959   return RegMask::Empty;
  1962 //=============================================================================
  1963 const RegMask &JProjNode::out_RegMask() const {
  1964   return RegMask::Empty;
  1967 //=============================================================================
  1968 const RegMask &CProjNode::out_RegMask() const {
  1969   return RegMask::Empty;
  1974 //=============================================================================
  1976 uint PCTableNode::hash() const { return Node::hash() + _size; }
  1977 uint PCTableNode::cmp( const Node &n ) const
  1978 { return _size == ((PCTableNode&)n)._size; }
  1980 const Type *PCTableNode::bottom_type() const {
  1981   const Type** f = TypeTuple::fields(_size);
  1982   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
  1983   return TypeTuple::make(_size, f);
  1986 //------------------------------Value------------------------------------------
  1987 // Compute the type of the PCTableNode.  If reachable it is a tuple of
  1988 // Control, otherwise the table targets are not reachable
  1989 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
  1990   if( phase->type(in(0)) == Type::CONTROL )
  1991     return bottom_type();
  1992   return Type::TOP;             // All paths dead?  Then so are we
  1995 //------------------------------Ideal------------------------------------------
  1996 // Return a node which is more "ideal" than the current node.  Strip out
  1997 // control copies
  1998 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1999   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2002 //=============================================================================
  2003 uint JumpProjNode::hash() const {
  2004   return Node::hash() + _dest_bci;
  2007 uint JumpProjNode::cmp( const Node &n ) const {
  2008   return ProjNode::cmp(n) &&
  2009     _dest_bci == ((JumpProjNode&)n)._dest_bci;
  2012 #ifndef PRODUCT
  2013 void JumpProjNode::dump_spec(outputStream *st) const {
  2014   ProjNode::dump_spec(st);
  2015    st->print("@bci %d ",_dest_bci);
  2017 #endif
  2019 //=============================================================================
  2020 //------------------------------Value------------------------------------------
  2021 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
  2022 // have the default "fall_through_index" path.
  2023 const Type *CatchNode::Value( PhaseTransform *phase ) const {
  2024   // Unreachable?  Then so are all paths from here.
  2025   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
  2026   // First assume all paths are reachable
  2027   const Type** f = TypeTuple::fields(_size);
  2028   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
  2029   // Identify cases that will always throw an exception
  2030   // () rethrow call
  2031   // () virtual or interface call with NULL receiver
  2032   // () call is a check cast with incompatible arguments
  2033   if( in(1)->is_Proj() ) {
  2034     Node *i10 = in(1)->in(0);
  2035     if( i10->is_Call() ) {
  2036       CallNode *call = i10->as_Call();
  2037       // Rethrows always throw exceptions, never return
  2038       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2039         f[CatchProjNode::fall_through_index] = Type::TOP;
  2040       } else if( call->req() > TypeFunc::Parms ) {
  2041         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
  2042         // Check for null receiver to virtual or interface calls
  2043         if( call->is_CallDynamicJava() &&
  2044             arg0->higher_equal(TypePtr::NULL_PTR) ) {
  2045           f[CatchProjNode::fall_through_index] = Type::TOP;
  2047       } // End of if not a runtime stub
  2048     } // End of if have call above me
  2049   } // End of slot 1 is not a projection
  2050   return TypeTuple::make(_size, f);
  2053 //=============================================================================
  2054 uint CatchProjNode::hash() const {
  2055   return Node::hash() + _handler_bci;
  2059 uint CatchProjNode::cmp( const Node &n ) const {
  2060   return ProjNode::cmp(n) &&
  2061     _handler_bci == ((CatchProjNode&)n)._handler_bci;
  2065 //------------------------------Identity---------------------------------------
  2066 // If only 1 target is possible, choose it if it is the main control
  2067 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
  2068   // If my value is control and no other value is, then treat as ID
  2069   const TypeTuple *t = phase->type(in(0))->is_tuple();
  2070   if (t->field_at(_con) != Type::CONTROL)  return this;
  2071   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
  2072   // also remove any exception table entry.  Thus we must know the call
  2073   // feeding the Catch will not really throw an exception.  This is ok for
  2074   // the main fall-thru control (happens when we know a call can never throw
  2075   // an exception) or for "rethrow", because a further optimization will
  2076   // yank the rethrow (happens when we inline a function that can throw an
  2077   // exception and the caller has no handler).  Not legal, e.g., for passing
  2078   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
  2079   // These cases MUST throw an exception via the runtime system, so the VM
  2080   // will be looking for a table entry.
  2081   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
  2082   CallNode *call;
  2083   if (_con != TypeFunc::Control && // Bail out if not the main control.
  2084       !(proj->is_Proj() &&      // AND NOT a rethrow
  2085         proj->in(0)->is_Call() &&
  2086         (call = proj->in(0)->as_Call()) &&
  2087         call->entry_point() == OptoRuntime::rethrow_stub()))
  2088     return this;
  2090   // Search for any other path being control
  2091   for (uint i = 0; i < t->cnt(); i++) {
  2092     if (i != _con && t->field_at(i) == Type::CONTROL)
  2093       return this;
  2095   // Only my path is possible; I am identity on control to the jump
  2096   return in(0)->in(0);
  2100 #ifndef PRODUCT
  2101 void CatchProjNode::dump_spec(outputStream *st) const {
  2102   ProjNode::dump_spec(st);
  2103   st->print("@bci %d ",_handler_bci);
  2105 #endif
  2107 //=============================================================================
  2108 //------------------------------Identity---------------------------------------
  2109 // Check for CreateEx being Identity.
  2110 Node *CreateExNode::Identity( PhaseTransform *phase ) {
  2111   if( phase->type(in(1)) == Type::TOP ) return in(1);
  2112   if( phase->type(in(0)) == Type::TOP ) return in(0);
  2113   // We only come from CatchProj, unless the CatchProj goes away.
  2114   // If the CatchProj is optimized away, then we just carry the
  2115   // exception oop through.
  2116   CallNode *call = in(1)->in(0)->as_Call();
  2118   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
  2119     ? this
  2120     : call->in(TypeFunc::Parms);
  2123 //=============================================================================
  2124 //------------------------------Value------------------------------------------
  2125 // Check for being unreachable.
  2126 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
  2127   if (!in(0) || in(0)->is_top()) return Type::TOP;
  2128   return bottom_type();
  2131 //------------------------------Ideal------------------------------------------
  2132 // Check for no longer being part of a loop
  2133 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2134   if (can_reshape && !in(0)->is_Loop()) {
  2135     // Dead code elimination can sometimes delete this projection so
  2136     // if it's not there, there's nothing to do.
  2137     Node* fallthru = proj_out(0);
  2138     if (fallthru != NULL) {
  2139       phase->is_IterGVN()->replace_node(fallthru, in(0));
  2141     return phase->C->top();
  2143   return NULL;
  2146 #ifndef PRODUCT
  2147 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
  2148   st->print("%s", Name());
  2150 #endif

mercurial