src/share/vm/interpreter/bytecodeInterpreter.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2084
13b87063b4d8
child 2324
6a2d73358ff7
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/vmSymbols.hpp"
    27 #include "gc_interface/collectedHeap.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/bytecodeInterpreter.hpp"
    30 #include "interpreter/bytecodeInterpreter.inline.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/objArrayKlass.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "prims/jvmtiExport.hpp"
    38 #include "runtime/frame.inline.hpp"
    39 #include "runtime/handles.inline.hpp"
    40 #include "runtime/interfaceSupport.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/threadCritical.hpp"
    43 #include "utilities/exceptions.hpp"
    44 #ifdef TARGET_OS_ARCH_linux_x86
    45 # include "orderAccess_linux_x86.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_linux_sparc
    48 # include "orderAccess_linux_sparc.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_zero
    51 # include "orderAccess_linux_zero.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_solaris_x86
    54 # include "orderAccess_solaris_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_solaris_sparc
    57 # include "orderAccess_solaris_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_windows_x86
    60 # include "orderAccess_windows_x86.inline.hpp"
    61 #endif
    64 // no precompiled headers
    65 #ifdef CC_INTERP
    67 /*
    68  * USELABELS - If using GCC, then use labels for the opcode dispatching
    69  * rather -then a switch statement. This improves performance because it
    70  * gives us the oportunity to have the instructions that calculate the
    71  * next opcode to jump to be intermixed with the rest of the instructions
    72  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    73  */
    74 #undef USELABELS
    75 #ifdef __GNUC__
    76 /*
    77    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    78    don't use the computed goto approach.
    79 */
    80 #ifndef ASSERT
    81 #define USELABELS
    82 #endif
    83 #endif
    85 #undef CASE
    86 #ifdef USELABELS
    87 #define CASE(opcode) opc ## opcode
    88 #define DEFAULT opc_default
    89 #else
    90 #define CASE(opcode) case Bytecodes:: opcode
    91 #define DEFAULT default
    92 #endif
    94 /*
    95  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
    96  * opcode before going back to the top of the while loop, rather then having
    97  * the top of the while loop handle it. This provides a better opportunity
    98  * for instruction scheduling. Some compilers just do this prefetch
    99  * automatically. Some actually end up with worse performance if you
   100  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
   101  */
   102 #undef PREFETCH_OPCCODE
   103 #define PREFETCH_OPCCODE
   105 /*
   106   Interpreter safepoint: it is expected that the interpreter will have no live
   107   handles of its own creation live at an interpreter safepoint. Therefore we
   108   run a HandleMarkCleaner and trash all handles allocated in the call chain
   109   since the JavaCalls::call_helper invocation that initiated the chain.
   110   There really shouldn't be any handles remaining to trash but this is cheap
   111   in relation to a safepoint.
   112 */
   113 #define SAFEPOINT                                                                 \
   114     if ( SafepointSynchronize::is_synchronizing()) {                              \
   115         {                                                                         \
   116           /* zap freed handles rather than GC'ing them */                         \
   117           HandleMarkCleaner __hmc(THREAD);                                        \
   118         }                                                                         \
   119         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
   120     }
   122 /*
   123  * VM_JAVA_ERROR - Macro for throwing a java exception from
   124  * the interpreter loop. Should really be a CALL_VM but there
   125  * is no entry point to do the transition to vm so we just
   126  * do it by hand here.
   127  */
   128 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
   129     DECACHE_STATE();                                                              \
   130     SET_LAST_JAVA_FRAME();                                                        \
   131     {                                                                             \
   132        ThreadInVMfromJava trans(THREAD);                                          \
   133        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
   134     }                                                                             \
   135     RESET_LAST_JAVA_FRAME();                                                      \
   136     CACHE_STATE();
   138 // Normal throw of a java error
   139 #define VM_JAVA_ERROR(name, msg)                                                  \
   140     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   141     goto handle_exception;
   143 #ifdef PRODUCT
   144 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   145 #else
   146 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   147 {                                                                                                    \
   148     BytecodeCounter::_counter_value++;                                                               \
   149     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   150     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   151     if (TraceBytecodes) {                                                                            \
   152       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   153                                    topOfStack[Interpreter::expr_index_at(1)],   \
   154                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   155                                    handle_exception);                      \
   156     }                                                                      \
   157 }
   158 #endif
   160 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   161 #ifdef VM_JVMTI
   162 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   163    incremented. JvmtiExport::at_single_stepping_point() may cause a
   164    breakpoint opcode to get inserted at the current PC to allow the
   165    debugger to coalesce single-step events.
   167    As a result if we call at_single_stepping_point() we refetch opcode
   168    to get the current opcode. This will override any other prefetching
   169    that might have occurred.
   170 */
   171 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   172 {                                                                                \
   173       if (_jvmti_interp_events) {                                                \
   174         if (JvmtiExport::should_post_single_step()) {                            \
   175           DECACHE_STATE();                                                       \
   176           SET_LAST_JAVA_FRAME();                                                 \
   177           ThreadInVMfromJava trans(THREAD);                                      \
   178           JvmtiExport::at_single_stepping_point(THREAD,                          \
   179                                           istate->method(),                      \
   180                                           pc);                                   \
   181           RESET_LAST_JAVA_FRAME();                                               \
   182           CACHE_STATE();                                                         \
   183           if (THREAD->pop_frame_pending() &&                                     \
   184               !THREAD->pop_frame_in_process()) {                                 \
   185             goto handle_Pop_Frame;                                               \
   186           }                                                                      \
   187           opcode = *pc;                                                          \
   188         }                                                                        \
   189       }                                                                          \
   190 }
   191 #else
   192 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   193 #endif
   195 /*
   196  * CONTINUE - Macro for executing the next opcode.
   197  */
   198 #undef CONTINUE
   199 #ifdef USELABELS
   200 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   201 // initialization (which is is the initialization of the table pointer...)
   202 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   203 #define CONTINUE {                              \
   204         opcode = *pc;                           \
   205         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   206         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   207         DISPATCH(opcode);                       \
   208     }
   209 #else
   210 #ifdef PREFETCH_OPCCODE
   211 #define CONTINUE {                              \
   212         opcode = *pc;                           \
   213         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   214         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   215         continue;                               \
   216     }
   217 #else
   218 #define CONTINUE {                              \
   219         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   220         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   221         continue;                               \
   222     }
   223 #endif
   224 #endif
   226 // JavaStack Implementation
   227 #define MORE_STACK(count)  \
   228     (topOfStack -= ((count) * Interpreter::stackElementWords))
   231 #define UPDATE_PC(opsize) {pc += opsize; }
   232 /*
   233  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   234  */
   235 #undef UPDATE_PC_AND_TOS
   236 #define UPDATE_PC_AND_TOS(opsize, stack) \
   237     {pc += opsize; MORE_STACK(stack); }
   239 /*
   240  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   241  * and executing the next opcode. It's somewhat similar to the combination
   242  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   243  */
   244 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   245 #ifdef USELABELS
   246 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   247         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   248         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   249         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   250         DISPATCH(opcode);                                       \
   251     }
   253 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   254         pc += opsize; opcode = *pc;                             \
   255         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   256         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   257         DISPATCH(opcode);                                       \
   258     }
   259 #else
   260 #ifdef PREFETCH_OPCCODE
   261 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   262         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   263         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   264         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   265         goto do_continue;                                       \
   266     }
   268 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   269         pc += opsize; opcode = *pc;                             \
   270         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   271         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   272         goto do_continue;                                       \
   273     }
   274 #else
   275 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   276         pc += opsize; MORE_STACK(stack);                \
   277         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   278         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   279         goto do_continue;                               \
   280     }
   282 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   283         pc += opsize;                                   \
   284         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   285         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   286         goto do_continue;                               \
   287     }
   288 #endif /* PREFETCH_OPCCODE */
   289 #endif /* USELABELS */
   291 // About to call a new method, update the save the adjusted pc and return to frame manager
   292 #define UPDATE_PC_AND_RETURN(opsize)  \
   293    DECACHE_TOS();                     \
   294    istate->set_bcp(pc+opsize);        \
   295    return;
   298 #define METHOD istate->method()
   299 #define INVOCATION_COUNT METHOD->invocation_counter()
   300 #define BACKEDGE_COUNT METHOD->backedge_counter()
   303 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
   304 #define OSR_REQUEST(res, branch_pc) \
   305             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   306 /*
   307  * For those opcodes that need to have a GC point on a backwards branch
   308  */
   310 // Backedge counting is kind of strange. The asm interpreter will increment
   311 // the backedge counter as a separate counter but it does it's comparisons
   312 // to the sum (scaled) of invocation counter and backedge count to make
   313 // a decision. Seems kind of odd to sum them together like that
   315 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   318 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   319     if ((skip) <= 0) {                                                                              \
   320       if (UseLoopCounter) {                                                                         \
   321         bool do_OSR = UseOnStackReplacement;                                                        \
   322         BACKEDGE_COUNT->increment();                                                                \
   323         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
   324         if (do_OSR) {                                                                               \
   325           nmethod*  osr_nmethod;                                                                    \
   326           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   327           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   328             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
   329             istate->set_msg(do_osr);                                                                \
   330             istate->set_osr_buf((address)buf);                                                      \
   331             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   332             return;                                                                                 \
   333           }                                                                                         \
   334         }                                                                                           \
   335       }  /* UseCompiler ... */                                                                      \
   336       INCR_INVOCATION_COUNT;                                                                        \
   337       SAFEPOINT;                                                                                    \
   338     }
   340 /*
   341  * For those opcodes that need to have a GC point on a backwards branch
   342  */
   344 /*
   345  * Macros for caching and flushing the interpreter state. Some local
   346  * variables need to be flushed out to the frame before we do certain
   347  * things (like pushing frames or becomming gc safe) and some need to
   348  * be recached later (like after popping a frame). We could use one
   349  * macro to cache or decache everything, but this would be less then
   350  * optimal because we don't always need to cache or decache everything
   351  * because some things we know are already cached or decached.
   352  */
   353 #undef DECACHE_TOS
   354 #undef CACHE_TOS
   355 #undef CACHE_PREV_TOS
   356 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   358 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   360 #undef DECACHE_PC
   361 #undef CACHE_PC
   362 #define DECACHE_PC()    istate->set_bcp(pc);
   363 #define CACHE_PC()      pc = istate->bcp();
   364 #define CACHE_CP()      cp = istate->constants();
   365 #define CACHE_LOCALS()  locals = istate->locals();
   366 #undef CACHE_FRAME
   367 #define CACHE_FRAME()
   369 /*
   370  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   371  * passed is a null ref.
   372  * On some architectures/platforms it should be possible to do this implicitly
   373  */
   374 #undef CHECK_NULL
   375 #define CHECK_NULL(obj_)                                                 \
   376     if ((obj_) == NULL) {                                                \
   377         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   378     }                                                                    \
   379     VERIFY_OOP(obj_)
   381 #define VMdoubleConstZero() 0.0
   382 #define VMdoubleConstOne() 1.0
   383 #define VMlongConstZero() (max_jlong-max_jlong)
   384 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   386 /*
   387  * Alignment
   388  */
   389 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   391 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   392 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   394 // Reload interpreter state after calling the VM or a possible GC
   395 #define CACHE_STATE()   \
   396         CACHE_TOS();    \
   397         CACHE_PC();     \
   398         CACHE_CP();     \
   399         CACHE_LOCALS();
   401 // Call the VM don't check for pending exceptions
   402 #define CALL_VM_NOCHECK(func)                                     \
   403           DECACHE_STATE();                                        \
   404           SET_LAST_JAVA_FRAME();                                  \
   405           func;                                                   \
   406           RESET_LAST_JAVA_FRAME();                                \
   407           CACHE_STATE();                                          \
   408           if (THREAD->pop_frame_pending() &&                      \
   409               !THREAD->pop_frame_in_process()) {                  \
   410             goto handle_Pop_Frame;                                \
   411           }
   413 // Call the VM and check for pending exceptions
   414 #define CALL_VM(func, label) {                                    \
   415           CALL_VM_NOCHECK(func);                                  \
   416           if (THREAD->has_pending_exception()) goto label;        \
   417         }
   419 /*
   420  * BytecodeInterpreter::run(interpreterState istate)
   421  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   422  *
   423  * The real deal. This is where byte codes actually get interpreted.
   424  * Basically it's a big while loop that iterates until we return from
   425  * the method passed in.
   426  *
   427  * The runWithChecks is used if JVMTI is enabled.
   428  *
   429  */
   430 #if defined(VM_JVMTI)
   431 void
   432 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   433 #else
   434 void
   435 BytecodeInterpreter::run(interpreterState istate) {
   436 #endif
   438   // In order to simplify some tests based on switches set at runtime
   439   // we invoke the interpreter a single time after switches are enabled
   440   // and set simpler to to test variables rather than method calls or complex
   441   // boolean expressions.
   443   static int initialized = 0;
   444   static int checkit = 0;
   445   static intptr_t* c_addr = NULL;
   446   static intptr_t  c_value;
   448   if (checkit && *c_addr != c_value) {
   449     os::breakpoint();
   450   }
   451 #ifdef VM_JVMTI
   452   static bool _jvmti_interp_events = 0;
   453 #endif
   455   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   457 #ifdef ASSERT
   458   if (istate->_msg != initialize) {
   459     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   460 #ifndef SHARK
   461     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   462 #endif // !SHARK
   463   }
   464   // Verify linkages.
   465   interpreterState l = istate;
   466   do {
   467     assert(l == l->_self_link, "bad link");
   468     l = l->_prev_link;
   469   } while (l != NULL);
   470   // Screwups with stack management usually cause us to overwrite istate
   471   // save a copy so we can verify it.
   472   interpreterState orig = istate;
   473 #endif
   475   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   477   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   478   register address          pc = istate->bcp();
   479   register jubyte opcode;
   480   register intptr_t*        locals = istate->locals();
   481   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
   482 #ifdef LOTS_OF_REGS
   483   register JavaThread*      THREAD = istate->thread();
   484   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   485 #else
   486 #undef THREAD
   487 #define THREAD istate->thread()
   488 #undef BYTE_MAP_BASE
   489 #define BYTE_MAP_BASE _byte_map_base
   490 #endif
   492 #ifdef USELABELS
   493   const static void* const opclabels_data[256] = {
   494 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   495 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   496 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   497 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   499 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   500 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   501 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   502 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   504 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   505 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   506 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   507 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   509 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   510 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   511 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   512 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   514 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   515 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   516 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   517 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   519 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   520 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   521 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   522 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   524 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   525 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   526 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   527 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   529 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   530 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   531 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   532 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   534 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   535 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   536 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   537 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   539 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   540 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   541 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   542 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   544 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   545 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   546 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   547 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   549 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   550 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   551 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_default,      &&opc_new,
   552 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   554 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   555 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   556 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   557 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   559 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   560 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   561 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   562 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   564 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   565 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
   566 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   567 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   569 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   570 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   571 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   572 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   573   };
   574   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   575 #endif /* USELABELS */
   577 #ifdef ASSERT
   578   // this will trigger a VERIFY_OOP on entry
   579   if (istate->msg() != initialize && ! METHOD->is_static()) {
   580     oop rcvr = LOCALS_OBJECT(0);
   581     VERIFY_OOP(rcvr);
   582   }
   583 #endif
   584 // #define HACK
   585 #ifdef HACK
   586   bool interesting = false;
   587 #endif // HACK
   589   /* QQQ this should be a stack method so we don't know actual direction */
   590   guarantee(istate->msg() == initialize ||
   591          topOfStack >= istate->stack_limit() &&
   592          topOfStack < istate->stack_base(),
   593          "Stack top out of range");
   595   switch (istate->msg()) {
   596     case initialize: {
   597       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   598       _compiling = (UseCompiler || CountCompiledCalls);
   599 #ifdef VM_JVMTI
   600       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   601 #endif
   602       BarrierSet* bs = Universe::heap()->barrier_set();
   603       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   604       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   605       return;
   606     }
   607     break;
   608     case method_entry: {
   609       THREAD->set_do_not_unlock();
   610       // count invocations
   611       assert(initialized, "Interpreter not initialized");
   612       if (_compiling) {
   613         if (ProfileInterpreter) {
   614           METHOD->increment_interpreter_invocation_count();
   615         }
   616         INCR_INVOCATION_COUNT;
   617         if (INVOCATION_COUNT->reached_InvocationLimit()) {
   618             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   620             // We no longer retry on a counter overflow
   622             // istate->set_msg(retry_method);
   623             // THREAD->clr_do_not_unlock();
   624             // return;
   625         }
   626         SAFEPOINT;
   627       }
   629       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   630         // initialize
   631         os::breakpoint();
   632       }
   634 #ifdef HACK
   635       {
   636         ResourceMark rm;
   637         char *method_name = istate->method()->name_and_sig_as_C_string();
   638         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   639           tty->print_cr("entering: depth %d bci: %d",
   640                          (istate->_stack_base - istate->_stack),
   641                          istate->_bcp - istate->_method->code_base());
   642           interesting = true;
   643         }
   644       }
   645 #endif // HACK
   648       // lock method if synchronized
   649       if (METHOD->is_synchronized()) {
   650           // oop rcvr = locals[0].j.r;
   651           oop rcvr;
   652           if (METHOD->is_static()) {
   653             rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
   654           } else {
   655             rcvr = LOCALS_OBJECT(0);
   656             VERIFY_OOP(rcvr);
   657           }
   658           // The initial monitor is ours for the taking
   659           BasicObjectLock* mon = &istate->monitor_base()[-1];
   660           oop monobj = mon->obj();
   661           assert(mon->obj() == rcvr, "method monitor mis-initialized");
   663           bool success = UseBiasedLocking;
   664           if (UseBiasedLocking) {
   665             markOop mark = rcvr->mark();
   666             if (mark->has_bias_pattern()) {
   667               // The bias pattern is present in the object's header. Need to check
   668               // whether the bias owner and the epoch are both still current.
   669               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
   670               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
   671               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
   672               if (yy != 0 ) {
   673                 // At this point we know that the header has the bias pattern and
   674                 // that we are not the bias owner in the current epoch. We need to
   675                 // figure out more details about the state of the header in order to
   676                 // know what operations can be legally performed on the object's
   677                 // header.
   679                 // If the low three bits in the xor result aren't clear, that means
   680                 // the prototype header is no longer biased and we have to revoke
   681                 // the bias on this object.
   683                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
   684                   // Biasing is still enabled for this data type. See whether the
   685                   // epoch of the current bias is still valid, meaning that the epoch
   686                   // bits of the mark word are equal to the epoch bits of the
   687                   // prototype header. (Note that the prototype header's epoch bits
   688                   // only change at a safepoint.) If not, attempt to rebias the object
   689                   // toward the current thread. Note that we must be absolutely sure
   690                   // that the current epoch is invalid in order to do this because
   691                   // otherwise the manipulations it performs on the mark word are
   692                   // illegal.
   693                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
   694                     // The epoch of the current bias is still valid but we know nothing
   695                     // about the owner; it might be set or it might be clear. Try to
   696                     // acquire the bias of the object using an atomic operation. If this
   697                     // fails we will go in to the runtime to revoke the object's bias.
   698                     // Note that we first construct the presumed unbiased header so we
   699                     // don't accidentally blow away another thread's valid bias.
   700                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
   701                                                            markOopDesc::age_mask_in_place |
   702                                                            markOopDesc::epoch_mask_in_place);
   703                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
   704                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   705                     }
   706                   } else {
   707                     try_rebias:
   708                     // At this point we know the epoch has expired, meaning that the
   709                     // current "bias owner", if any, is actually invalid. Under these
   710                     // circumstances _only_, we are allowed to use the current header's
   711                     // value as the comparison value when doing the cas to acquire the
   712                     // bias in the current epoch. In other words, we allow transfer of
   713                     // the bias from one thread to another directly in this situation.
   714                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   715                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
   716                                             (intptr_t*) rcvr->mark_addr(),
   717                                             (intptr_t) mark) != (intptr_t) mark) {
   718                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   719                     }
   720                   }
   721                 } else {
   722                   try_revoke_bias:
   723                   // The prototype mark in the klass doesn't have the bias bit set any
   724                   // more, indicating that objects of this data type are not supposed
   725                   // to be biased any more. We are going to try to reset the mark of
   726                   // this object to the prototype value and fall through to the
   727                   // CAS-based locking scheme. Note that if our CAS fails, it means
   728                   // that another thread raced us for the privilege of revoking the
   729                   // bias of this particular object, so it's okay to continue in the
   730                   // normal locking code.
   731                   //
   732                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   733                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
   734                                           (intptr_t*) rcvr->mark_addr(),
   735                                           mark) == mark) {
   736                     // (*counters->revoked_lock_entry_count_addr())++;
   737                   success = false;
   738                   }
   739                 }
   740               }
   741             } else {
   742               cas_label:
   743               success = false;
   744             }
   745           }
   746           if (!success) {
   747             markOop displaced = rcvr->mark()->set_unlocked();
   748             mon->lock()->set_displaced_header(displaced);
   749             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   750               // Is it simple recursive case?
   751               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   752                 mon->lock()->set_displaced_header(NULL);
   753               } else {
   754                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   755               }
   756             }
   757           }
   758       }
   759       THREAD->clr_do_not_unlock();
   761       // Notify jvmti
   762 #ifdef VM_JVMTI
   763       if (_jvmti_interp_events) {
   764         // Whenever JVMTI puts a thread in interp_only_mode, method
   765         // entry/exit events are sent for that thread to track stack depth.
   766         if (THREAD->is_interp_only_mode()) {
   767           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   768                   handle_exception);
   769         }
   770       }
   771 #endif /* VM_JVMTI */
   773       goto run;
   774     }
   776     case popping_frame: {
   777       // returned from a java call to pop the frame, restart the call
   778       // clear the message so we don't confuse ourselves later
   779       ShouldNotReachHere();  // we don't return this.
   780       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   781       istate->set_msg(no_request);
   782       THREAD->clr_pop_frame_in_process();
   783       goto run;
   784     }
   786     case method_resume: {
   787       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   788         // resume
   789         os::breakpoint();
   790       }
   791 #ifdef HACK
   792       {
   793         ResourceMark rm;
   794         char *method_name = istate->method()->name_and_sig_as_C_string();
   795         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   796           tty->print_cr("resume: depth %d bci: %d",
   797                          (istate->_stack_base - istate->_stack) ,
   798                          istate->_bcp - istate->_method->code_base());
   799           interesting = true;
   800         }
   801       }
   802 #endif // HACK
   803       // returned from a java call, continue executing.
   804       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   805         goto handle_Pop_Frame;
   806       }
   808       if (THREAD->has_pending_exception()) goto handle_exception;
   809       // Update the pc by the saved amount of the invoke bytecode size
   810       UPDATE_PC(istate->bcp_advance());
   811       goto run;
   812     }
   814     case deopt_resume2: {
   815       // Returned from an opcode that will reexecute. Deopt was
   816       // a result of a PopFrame request.
   817       //
   818       goto run;
   819     }
   821     case deopt_resume: {
   822       // Returned from an opcode that has completed. The stack has
   823       // the result all we need to do is skip across the bytecode
   824       // and continue (assuming there is no exception pending)
   825       //
   826       // compute continuation length
   827       //
   828       // Note: it is possible to deopt at a return_register_finalizer opcode
   829       // because this requires entering the vm to do the registering. While the
   830       // opcode is complete we can't advance because there are no more opcodes
   831       // much like trying to deopt at a poll return. In that has we simply
   832       // get out of here
   833       //
   834       if ( Bytecodes::code_at(pc, METHOD) == Bytecodes::_return_register_finalizer) {
   835         // this will do the right thing even if an exception is pending.
   836         goto handle_return;
   837       }
   838       UPDATE_PC(Bytecodes::length_at(pc));
   839       if (THREAD->has_pending_exception()) goto handle_exception;
   840       goto run;
   841     }
   842     case got_monitors: {
   843       // continue locking now that we have a monitor to use
   844       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   845       oop lockee = STACK_OBJECT(-1);
   846       VERIFY_OOP(lockee);
   847       // derefing's lockee ought to provoke implicit null check
   848       // find a free monitor
   849       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   850       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   851       entry->set_obj(lockee);
   853       markOop displaced = lockee->mark()->set_unlocked();
   854       entry->lock()->set_displaced_header(displaced);
   855       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   856         // Is it simple recursive case?
   857         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   858           entry->lock()->set_displaced_header(NULL);
   859         } else {
   860           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   861         }
   862       }
   863       UPDATE_PC_AND_TOS(1, -1);
   864       goto run;
   865     }
   866     default: {
   867       fatal("Unexpected message from frame manager");
   868     }
   869   }
   871 run:
   873   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   874   DEBUGGER_SINGLE_STEP_NOTIFY();
   875 #ifdef PREFETCH_OPCCODE
   876   opcode = *pc;  /* prefetch first opcode */
   877 #endif
   879 #ifndef USELABELS
   880   while (1)
   881 #endif
   882   {
   883 #ifndef PREFETCH_OPCCODE
   884       opcode = *pc;
   885 #endif
   886       // Seems like this happens twice per opcode. At worst this is only
   887       // need at entry to the loop.
   888       // DEBUGGER_SINGLE_STEP_NOTIFY();
   889       /* Using this labels avoids double breakpoints when quickening and
   890        * when returing from transition frames.
   891        */
   892   opcode_switch:
   893       assert(istate == orig, "Corrupted istate");
   894       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   895       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   896       assert(topOfStack < istate->stack_base(), "Stack underrun");
   898 #ifdef USELABELS
   899       DISPATCH(opcode);
   900 #else
   901       switch (opcode)
   902 #endif
   903       {
   904       CASE(_nop):
   905           UPDATE_PC_AND_CONTINUE(1);
   907           /* Push miscellaneous constants onto the stack. */
   909       CASE(_aconst_null):
   910           SET_STACK_OBJECT(NULL, 0);
   911           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   913 #undef  OPC_CONST_n
   914 #define OPC_CONST_n(opcode, const_type, value)                          \
   915       CASE(opcode):                                                     \
   916           SET_STACK_ ## const_type(value, 0);                           \
   917           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   919           OPC_CONST_n(_iconst_m1,   INT,       -1);
   920           OPC_CONST_n(_iconst_0,    INT,        0);
   921           OPC_CONST_n(_iconst_1,    INT,        1);
   922           OPC_CONST_n(_iconst_2,    INT,        2);
   923           OPC_CONST_n(_iconst_3,    INT,        3);
   924           OPC_CONST_n(_iconst_4,    INT,        4);
   925           OPC_CONST_n(_iconst_5,    INT,        5);
   926           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
   927           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
   928           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
   930 #undef  OPC_CONST2_n
   931 #define OPC_CONST2_n(opcname, value, key, kind)                         \
   932       CASE(_##opcname):                                                 \
   933       {                                                                 \
   934           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
   935           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   936       }
   937          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
   938          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
   939          OPC_CONST2_n(lconst_0, Zero, long, LONG);
   940          OPC_CONST2_n(lconst_1, One,  long, LONG);
   942          /* Load constant from constant pool: */
   944           /* Push a 1-byte signed integer value onto the stack. */
   945       CASE(_bipush):
   946           SET_STACK_INT((jbyte)(pc[1]), 0);
   947           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   949           /* Push a 2-byte signed integer constant onto the stack. */
   950       CASE(_sipush):
   951           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
   952           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
   954           /* load from local variable */
   956       CASE(_aload):
   957           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
   958           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
   959           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   961       CASE(_iload):
   962       CASE(_fload):
   963           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
   964           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   966       CASE(_lload):
   967           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
   968           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   970       CASE(_dload):
   971           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
   972           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   974 #undef  OPC_LOAD_n
   975 #define OPC_LOAD_n(num)                                                 \
   976       CASE(_aload_##num):                                               \
   977           VERIFY_OOP(LOCALS_OBJECT(num));                               \
   978           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
   979           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   980                                                                         \
   981       CASE(_iload_##num):                                               \
   982       CASE(_fload_##num):                                               \
   983           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
   984           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   985                                                                         \
   986       CASE(_lload_##num):                                               \
   987           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
   988           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   989       CASE(_dload_##num):                                               \
   990           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
   991           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
   993           OPC_LOAD_n(0);
   994           OPC_LOAD_n(1);
   995           OPC_LOAD_n(2);
   996           OPC_LOAD_n(3);
   998           /* store to a local variable */
  1000       CASE(_astore):
  1001           astore(topOfStack, -1, locals, pc[1]);
  1002           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1004       CASE(_istore):
  1005       CASE(_fstore):
  1006           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
  1007           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1009       CASE(_lstore):
  1010           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
  1011           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1013       CASE(_dstore):
  1014           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
  1015           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1017       CASE(_wide): {
  1018           uint16_t reg = Bytes::get_Java_u2(pc + 2);
  1020           opcode = pc[1];
  1021           switch(opcode) {
  1022               case Bytecodes::_aload:
  1023                   VERIFY_OOP(LOCALS_OBJECT(reg));
  1024                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
  1025                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1027               case Bytecodes::_iload:
  1028               case Bytecodes::_fload:
  1029                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
  1030                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1032               case Bytecodes::_lload:
  1033                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1034                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1036               case Bytecodes::_dload:
  1037                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1038                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1040               case Bytecodes::_astore:
  1041                   astore(topOfStack, -1, locals, reg);
  1042                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1044               case Bytecodes::_istore:
  1045               case Bytecodes::_fstore:
  1046                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1047                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1049               case Bytecodes::_lstore:
  1050                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1051                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1053               case Bytecodes::_dstore:
  1054                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1055                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1057               case Bytecodes::_iinc: {
  1058                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1059                   // Be nice to see what this generates.... QQQ
  1060                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1061                   UPDATE_PC_AND_CONTINUE(6);
  1063               case Bytecodes::_ret:
  1064                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1065                   UPDATE_PC_AND_CONTINUE(0);
  1066               default:
  1067                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1072 #undef  OPC_STORE_n
  1073 #define OPC_STORE_n(num)                                                \
  1074       CASE(_astore_##num):                                              \
  1075           astore(topOfStack, -1, locals, num);                          \
  1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1077       CASE(_istore_##num):                                              \
  1078       CASE(_fstore_##num):                                              \
  1079           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1080           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1082           OPC_STORE_n(0);
  1083           OPC_STORE_n(1);
  1084           OPC_STORE_n(2);
  1085           OPC_STORE_n(3);
  1087 #undef  OPC_DSTORE_n
  1088 #define OPC_DSTORE_n(num)                                               \
  1089       CASE(_dstore_##num):                                              \
  1090           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1091           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1092       CASE(_lstore_##num):                                              \
  1093           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1094           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1096           OPC_DSTORE_n(0);
  1097           OPC_DSTORE_n(1);
  1098           OPC_DSTORE_n(2);
  1099           OPC_DSTORE_n(3);
  1101           /* stack pop, dup, and insert opcodes */
  1104       CASE(_pop):                /* Discard the top item on the stack */
  1105           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1108       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1109           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1112       CASE(_dup):               /* Duplicate the top item on the stack */
  1113           dup(topOfStack);
  1114           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1116       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1117           dup2(topOfStack);
  1118           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1120       CASE(_dup_x1):    /* insert top word two down */
  1121           dup_x1(topOfStack);
  1122           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1124       CASE(_dup_x2):    /* insert top word three down  */
  1125           dup_x2(topOfStack);
  1126           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1128       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1129           dup2_x1(topOfStack);
  1130           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1132       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1133           dup2_x2(topOfStack);
  1134           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1136       CASE(_swap): {        /* swap top two elements on the stack */
  1137           swap(topOfStack);
  1138           UPDATE_PC_AND_CONTINUE(1);
  1141           /* Perform various binary integer operations */
  1143 #undef  OPC_INT_BINARY
  1144 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1145       CASE(_i##opcname):                                                \
  1146           if (test && (STACK_INT(-1) == 0)) {                           \
  1147               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1148                             "/ by zero");                               \
  1149           }                                                             \
  1150           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1151                                       STACK_INT(-1)),                   \
  1152                                       -2);                              \
  1153           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1154       CASE(_l##opcname):                                                \
  1155       {                                                                 \
  1156           if (test) {                                                   \
  1157             jlong l1 = STACK_LONG(-1);                                  \
  1158             if (VMlongEqz(l1)) {                                        \
  1159               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1160                             "/ by long zero");                          \
  1161             }                                                           \
  1162           }                                                             \
  1163           /* First long at (-1,-2) next long at (-3,-4) */              \
  1164           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1165                                         STACK_LONG(-1)),                \
  1166                                         -3);                            \
  1167           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1170       OPC_INT_BINARY(add, Add, 0);
  1171       OPC_INT_BINARY(sub, Sub, 0);
  1172       OPC_INT_BINARY(mul, Mul, 0);
  1173       OPC_INT_BINARY(and, And, 0);
  1174       OPC_INT_BINARY(or,  Or,  0);
  1175       OPC_INT_BINARY(xor, Xor, 0);
  1176       OPC_INT_BINARY(div, Div, 1);
  1177       OPC_INT_BINARY(rem, Rem, 1);
  1180       /* Perform various binary floating number operations */
  1181       /* On some machine/platforms/compilers div zero check can be implicit */
  1183 #undef  OPC_FLOAT_BINARY
  1184 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1185       CASE(_d##opcname): {                                                 \
  1186           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1187                                             STACK_DOUBLE(-1)),             \
  1188                                             -3);                           \
  1189           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1190       }                                                                    \
  1191       CASE(_f##opcname):                                                   \
  1192           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1193                                           STACK_FLOAT(-1)),                \
  1194                                           -2);                             \
  1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1198      OPC_FLOAT_BINARY(add, Add);
  1199      OPC_FLOAT_BINARY(sub, Sub);
  1200      OPC_FLOAT_BINARY(mul, Mul);
  1201      OPC_FLOAT_BINARY(div, Div);
  1202      OPC_FLOAT_BINARY(rem, Rem);
  1204       /* Shift operations
  1205        * Shift left int and long: ishl, lshl
  1206        * Logical shift right int and long w/zero extension: iushr, lushr
  1207        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1208        */
  1210 #undef  OPC_SHIFT_BINARY
  1211 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1212       CASE(_i##opcname):                                                \
  1213          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1214                                      STACK_INT(-1)),                    \
  1215                                      -2);                               \
  1216          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1217       CASE(_l##opcname):                                                \
  1218       {                                                                 \
  1219          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1220                                        STACK_INT(-1)),                  \
  1221                                        -2);                             \
  1222          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1225       OPC_SHIFT_BINARY(shl, Shl);
  1226       OPC_SHIFT_BINARY(shr, Shr);
  1227       OPC_SHIFT_BINARY(ushr, Ushr);
  1229      /* Increment local variable by constant */
  1230       CASE(_iinc):
  1232           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1233           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1234           UPDATE_PC_AND_CONTINUE(3);
  1237      /* negate the value on the top of the stack */
  1239       CASE(_ineg):
  1240          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1241          UPDATE_PC_AND_CONTINUE(1);
  1243       CASE(_fneg):
  1244          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1245          UPDATE_PC_AND_CONTINUE(1);
  1247       CASE(_lneg):
  1249          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1250          UPDATE_PC_AND_CONTINUE(1);
  1253       CASE(_dneg):
  1255          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1256          UPDATE_PC_AND_CONTINUE(1);
  1259       /* Conversion operations */
  1261       CASE(_i2f):       /* convert top of stack int to float */
  1262          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1263          UPDATE_PC_AND_CONTINUE(1);
  1265       CASE(_i2l):       /* convert top of stack int to long */
  1267           // this is ugly QQQ
  1268           jlong r = VMint2Long(STACK_INT(-1));
  1269           MORE_STACK(-1); // Pop
  1270           SET_STACK_LONG(r, 1);
  1272           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1275       CASE(_i2d):       /* convert top of stack int to double */
  1277           // this is ugly QQQ (why cast to jlong?? )
  1278           jdouble r = (jlong)STACK_INT(-1);
  1279           MORE_STACK(-1); // Pop
  1280           SET_STACK_DOUBLE(r, 1);
  1282           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1285       CASE(_l2i):       /* convert top of stack long to int */
  1287           jint r = VMlong2Int(STACK_LONG(-1));
  1288           MORE_STACK(-2); // Pop
  1289           SET_STACK_INT(r, 0);
  1290           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1293       CASE(_l2f):   /* convert top of stack long to float */
  1295           jlong r = STACK_LONG(-1);
  1296           MORE_STACK(-2); // Pop
  1297           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1298           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1301       CASE(_l2d):       /* convert top of stack long to double */
  1303           jlong r = STACK_LONG(-1);
  1304           MORE_STACK(-2); // Pop
  1305           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1306           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1309       CASE(_f2i):  /* Convert top of stack float to int */
  1310           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1311           UPDATE_PC_AND_CONTINUE(1);
  1313       CASE(_f2l):  /* convert top of stack float to long */
  1315           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1316           MORE_STACK(-1); // POP
  1317           SET_STACK_LONG(r, 1);
  1318           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1321       CASE(_f2d):  /* convert top of stack float to double */
  1323           jfloat f;
  1324           jdouble r;
  1325           f = STACK_FLOAT(-1);
  1326 #ifdef IA64
  1327           // IA64 gcc bug
  1328           r = ( f == 0.0f ) ? (jdouble) f : (jdouble) f + ia64_double_zero;
  1329 #else
  1330           r = (jdouble) f;
  1331 #endif
  1332           MORE_STACK(-1); // POP
  1333           SET_STACK_DOUBLE(r, 1);
  1334           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1337       CASE(_d2i): /* convert top of stack double to int */
  1339           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1340           MORE_STACK(-2);
  1341           SET_STACK_INT(r1, 0);
  1342           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1345       CASE(_d2f): /* convert top of stack double to float */
  1347           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1348           MORE_STACK(-2);
  1349           SET_STACK_FLOAT(r1, 0);
  1350           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1353       CASE(_d2l): /* convert top of stack double to long */
  1355           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1356           MORE_STACK(-2);
  1357           SET_STACK_LONG(r1, 1);
  1358           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1361       CASE(_i2b):
  1362           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1363           UPDATE_PC_AND_CONTINUE(1);
  1365       CASE(_i2c):
  1366           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1367           UPDATE_PC_AND_CONTINUE(1);
  1369       CASE(_i2s):
  1370           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1371           UPDATE_PC_AND_CONTINUE(1);
  1373       /* comparison operators */
  1376 #define COMPARISON_OP(name, comparison)                                      \
  1377       CASE(_if_icmp##name): {                                                \
  1378           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1379                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1380           address branch_pc = pc;                                            \
  1381           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1382           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1383           CONTINUE;                                                          \
  1384       }                                                                      \
  1385       CASE(_if##name): {                                                     \
  1386           int skip = (STACK_INT(-1) comparison 0)                            \
  1387                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1388           address branch_pc = pc;                                            \
  1389           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1390           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1391           CONTINUE;                                                          \
  1394 #define COMPARISON_OP2(name, comparison)                                     \
  1395       COMPARISON_OP(name, comparison)                                        \
  1396       CASE(_if_acmp##name): {                                                \
  1397           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1398                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1399           address branch_pc = pc;                                            \
  1400           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1401           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1402           CONTINUE;                                                          \
  1405 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1406       CASE(_if##name): {                                                     \
  1407           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1408                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1409           address branch_pc = pc;                                            \
  1410           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1411           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1412           CONTINUE;                                                          \
  1415 #define NULL_COMPARISON_OP(name)                                             \
  1416       CASE(_if##name): {                                                     \
  1417           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1418                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1419           address branch_pc = pc;                                            \
  1420           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1421           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1422           CONTINUE;                                                          \
  1424       COMPARISON_OP(lt, <);
  1425       COMPARISON_OP(gt, >);
  1426       COMPARISON_OP(le, <=);
  1427       COMPARISON_OP(ge, >=);
  1428       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1429       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1430       NULL_COMPARISON_OP(null);
  1431       NULL_COMPARISON_NOT_OP(nonnull);
  1433       /* Goto pc at specified offset in switch table. */
  1435       CASE(_tableswitch): {
  1436           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1437           int32_t  key  = STACK_INT(-1);
  1438           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1439           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1440           int32_t  skip;
  1441           key -= low;
  1442           skip = ((uint32_t) key > (uint32_t)(high - low))
  1443                       ? Bytes::get_Java_u4((address)&lpc[0])
  1444                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1445           // Does this really need a full backedge check (osr?)
  1446           address branch_pc = pc;
  1447           UPDATE_PC_AND_TOS(skip, -1);
  1448           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1449           CONTINUE;
  1452       /* Goto pc whose table entry matches specified key */
  1454       CASE(_lookupswitch): {
  1455           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1456           int32_t  key  = STACK_INT(-1);
  1457           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1458           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1459           while (--npairs >= 0) {
  1460               lpc += 2;
  1461               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1462                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1463                   break;
  1466           address branch_pc = pc;
  1467           UPDATE_PC_AND_TOS(skip, -1);
  1468           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1469           CONTINUE;
  1472       CASE(_fcmpl):
  1473       CASE(_fcmpg):
  1475           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1476                                         STACK_FLOAT(-1),
  1477                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1478                         -2);
  1479           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1482       CASE(_dcmpl):
  1483       CASE(_dcmpg):
  1485           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1486                                   STACK_DOUBLE(-1),
  1487                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1488           MORE_STACK(-4); // Pop
  1489           SET_STACK_INT(r, 0);
  1490           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1493       CASE(_lcmp):
  1495           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1496           MORE_STACK(-4);
  1497           SET_STACK_INT(r, 0);
  1498           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1502       /* Return from a method */
  1504       CASE(_areturn):
  1505       CASE(_ireturn):
  1506       CASE(_freturn):
  1508           // Allow a safepoint before returning to frame manager.
  1509           SAFEPOINT;
  1511           goto handle_return;
  1514       CASE(_lreturn):
  1515       CASE(_dreturn):
  1517           // Allow a safepoint before returning to frame manager.
  1518           SAFEPOINT;
  1519           goto handle_return;
  1522       CASE(_return_register_finalizer): {
  1524           oop rcvr = LOCALS_OBJECT(0);
  1525           VERIFY_OOP(rcvr);
  1526           if (rcvr->klass()->klass_part()->has_finalizer()) {
  1527             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1529           goto handle_return;
  1531       CASE(_return): {
  1533           // Allow a safepoint before returning to frame manager.
  1534           SAFEPOINT;
  1535           goto handle_return;
  1538       /* Array access byte-codes */
  1540       /* Every array access byte-code starts out like this */
  1541 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1542 #define ARRAY_INTRO(arrayOff)                                                  \
  1543       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1544       jint     index  = STACK_INT(arrayOff + 1);                               \
  1545       char message[jintAsStringSize];                                          \
  1546       CHECK_NULL(arrObj);                                                      \
  1547       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1548           sprintf(message, "%d", index);                                       \
  1549           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1550                         message);                                              \
  1553       /* 32-bit loads. These handle conversion from < 32-bit types */
  1554 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1555       {                                                                               \
  1556           ARRAY_INTRO(-2);                                                            \
  1557           extra;                                                                      \
  1558           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1559                            -2);                                                       \
  1560           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1563       /* 64-bit loads */
  1564 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1565       {                                                                                    \
  1566           ARRAY_INTRO(-2);                                                                 \
  1567           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1568           extra;                                                                           \
  1569           UPDATE_PC_AND_CONTINUE(1);                                            \
  1572       CASE(_iaload):
  1573           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1574       CASE(_faload):
  1575           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1576       CASE(_aaload):
  1577           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1578       CASE(_baload):
  1579           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1580       CASE(_caload):
  1581           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1582       CASE(_saload):
  1583           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1584       CASE(_laload):
  1585           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1586       CASE(_daload):
  1587           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1589       /* 32-bit stores. These handle conversion to < 32-bit types */
  1590 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1591       {                                                                              \
  1592           ARRAY_INTRO(-3);                                                           \
  1593           extra;                                                                     \
  1594           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1595           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1598       /* 64-bit stores */
  1599 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1600       {                                                                              \
  1601           ARRAY_INTRO(-4);                                                           \
  1602           extra;                                                                     \
  1603           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1604           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1607       CASE(_iastore):
  1608           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1609       CASE(_fastore):
  1610           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1611       /*
  1612        * This one looks different because of the assignability check
  1613        */
  1614       CASE(_aastore): {
  1615           oop rhsObject = STACK_OBJECT(-1);
  1616           VERIFY_OOP(rhsObject);
  1617           ARRAY_INTRO( -3);
  1618           // arrObj, index are set
  1619           if (rhsObject != NULL) {
  1620             /* Check assignability of rhsObject into arrObj */
  1621             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1622             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
  1623             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
  1624             //
  1625             // Check for compatibilty. This check must not GC!!
  1626             // Seems way more expensive now that we must dispatch
  1627             //
  1628             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
  1629               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1632           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1633           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1634           *elem_loc = rhsObject;
  1635           // Mark the card
  1636           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1637           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1639       CASE(_bastore):
  1640           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1641       CASE(_castore):
  1642           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1643       CASE(_sastore):
  1644           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1645       CASE(_lastore):
  1646           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1647       CASE(_dastore):
  1648           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1650       CASE(_arraylength):
  1652           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1653           CHECK_NULL(ary);
  1654           SET_STACK_INT(ary->length(), -1);
  1655           UPDATE_PC_AND_CONTINUE(1);
  1658       /* monitorenter and monitorexit for locking/unlocking an object */
  1660       CASE(_monitorenter): {
  1661         oop lockee = STACK_OBJECT(-1);
  1662         // derefing's lockee ought to provoke implicit null check
  1663         CHECK_NULL(lockee);
  1664         // find a free monitor or one already allocated for this object
  1665         // if we find a matching object then we need a new monitor
  1666         // since this is recursive enter
  1667         BasicObjectLock* limit = istate->monitor_base();
  1668         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1669         BasicObjectLock* entry = NULL;
  1670         while (most_recent != limit ) {
  1671           if (most_recent->obj() == NULL) entry = most_recent;
  1672           else if (most_recent->obj() == lockee) break;
  1673           most_recent++;
  1675         if (entry != NULL) {
  1676           entry->set_obj(lockee);
  1677           markOop displaced = lockee->mark()->set_unlocked();
  1678           entry->lock()->set_displaced_header(displaced);
  1679           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1680             // Is it simple recursive case?
  1681             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1682               entry->lock()->set_displaced_header(NULL);
  1683             } else {
  1684               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1687           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1688         } else {
  1689           istate->set_msg(more_monitors);
  1690           UPDATE_PC_AND_RETURN(0); // Re-execute
  1694       CASE(_monitorexit): {
  1695         oop lockee = STACK_OBJECT(-1);
  1696         CHECK_NULL(lockee);
  1697         // derefing's lockee ought to provoke implicit null check
  1698         // find our monitor slot
  1699         BasicObjectLock* limit = istate->monitor_base();
  1700         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1701         while (most_recent != limit ) {
  1702           if ((most_recent)->obj() == lockee) {
  1703             BasicLock* lock = most_recent->lock();
  1704             markOop header = lock->displaced_header();
  1705             most_recent->set_obj(NULL);
  1706             // If it isn't recursive we either must swap old header or call the runtime
  1707             if (header != NULL) {
  1708               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1709                 // restore object for the slow case
  1710                 most_recent->set_obj(lockee);
  1711                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1714             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1716           most_recent++;
  1718         // Need to throw illegal monitor state exception
  1719         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1720         // Should never reach here...
  1721         assert(false, "Should have thrown illegal monitor exception");
  1724       /* All of the non-quick opcodes. */
  1726       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1727        *  constant pool index in the instruction.
  1728        */
  1729       CASE(_getfield):
  1730       CASE(_getstatic):
  1732           u2 index;
  1733           ConstantPoolCacheEntry* cache;
  1734           index = Bytes::get_native_u2(pc+1);
  1736           // QQQ Need to make this as inlined as possible. Probably need to
  1737           // split all the bytecode cases out so c++ compiler has a chance
  1738           // for constant prop to fold everything possible away.
  1740           cache = cp->entry_at(index);
  1741           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1742             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1743                     handle_exception);
  1744             cache = cp->entry_at(index);
  1747 #ifdef VM_JVMTI
  1748           if (_jvmti_interp_events) {
  1749             int *count_addr;
  1750             oop obj;
  1751             // Check to see if a field modification watch has been set
  1752             // before we take the time to call into the VM.
  1753             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1754             if ( *count_addr > 0 ) {
  1755               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1756                 obj = (oop)NULL;
  1757               } else {
  1758                 obj = (oop) STACK_OBJECT(-1);
  1759                 VERIFY_OOP(obj);
  1761               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1762                                           obj,
  1763                                           cache),
  1764                                           handle_exception);
  1767 #endif /* VM_JVMTI */
  1769           oop obj;
  1770           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1771             obj = (oop) cache->f1();
  1772             MORE_STACK(1);  // Assume single slot push
  1773           } else {
  1774             obj = (oop) STACK_OBJECT(-1);
  1775             CHECK_NULL(obj);
  1778           //
  1779           // Now store the result on the stack
  1780           //
  1781           TosState tos_type = cache->flag_state();
  1782           int field_offset = cache->f2();
  1783           if (cache->is_volatile()) {
  1784             if (tos_type == atos) {
  1785               VERIFY_OOP(obj->obj_field_acquire(field_offset));
  1786               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1787             } else if (tos_type == itos) {
  1788               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1789             } else if (tos_type == ltos) {
  1790               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1791               MORE_STACK(1);
  1792             } else if (tos_type == btos) {
  1793               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1794             } else if (tos_type == ctos) {
  1795               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1796             } else if (tos_type == stos) {
  1797               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1798             } else if (tos_type == ftos) {
  1799               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1800             } else {
  1801               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1802               MORE_STACK(1);
  1804           } else {
  1805             if (tos_type == atos) {
  1806               VERIFY_OOP(obj->obj_field(field_offset));
  1807               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1808             } else if (tos_type == itos) {
  1809               SET_STACK_INT(obj->int_field(field_offset), -1);
  1810             } else if (tos_type == ltos) {
  1811               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1812               MORE_STACK(1);
  1813             } else if (tos_type == btos) {
  1814               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1815             } else if (tos_type == ctos) {
  1816               SET_STACK_INT(obj->char_field(field_offset), -1);
  1817             } else if (tos_type == stos) {
  1818               SET_STACK_INT(obj->short_field(field_offset), -1);
  1819             } else if (tos_type == ftos) {
  1820               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1821             } else {
  1822               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1823               MORE_STACK(1);
  1827           UPDATE_PC_AND_CONTINUE(3);
  1830       CASE(_putfield):
  1831       CASE(_putstatic):
  1833           u2 index = Bytes::get_native_u2(pc+1);
  1834           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1835           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1836             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1837                     handle_exception);
  1838             cache = cp->entry_at(index);
  1841 #ifdef VM_JVMTI
  1842           if (_jvmti_interp_events) {
  1843             int *count_addr;
  1844             oop obj;
  1845             // Check to see if a field modification watch has been set
  1846             // before we take the time to call into the VM.
  1847             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  1848             if ( *count_addr > 0 ) {
  1849               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1850                 obj = (oop)NULL;
  1852               else {
  1853                 if (cache->is_long() || cache->is_double()) {
  1854                   obj = (oop) STACK_OBJECT(-3);
  1855                 } else {
  1856                   obj = (oop) STACK_OBJECT(-2);
  1858                 VERIFY_OOP(obj);
  1861               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  1862                                           obj,
  1863                                           cache,
  1864                                           (jvalue *)STACK_SLOT(-1)),
  1865                                           handle_exception);
  1868 #endif /* VM_JVMTI */
  1870           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  1871           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  1873           oop obj;
  1874           int count;
  1875           TosState tos_type = cache->flag_state();
  1877           count = -1;
  1878           if (tos_type == ltos || tos_type == dtos) {
  1879             --count;
  1881           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1882             obj = (oop) cache->f1();
  1883           } else {
  1884             --count;
  1885             obj = (oop) STACK_OBJECT(count);
  1886             CHECK_NULL(obj);
  1889           //
  1890           // Now store the result
  1891           //
  1892           int field_offset = cache->f2();
  1893           if (cache->is_volatile()) {
  1894             if (tos_type == itos) {
  1895               obj->release_int_field_put(field_offset, STACK_INT(-1));
  1896             } else if (tos_type == atos) {
  1897               VERIFY_OOP(STACK_OBJECT(-1));
  1898               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  1899               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1900             } else if (tos_type == btos) {
  1901               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  1902             } else if (tos_type == ltos) {
  1903               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  1904             } else if (tos_type == ctos) {
  1905               obj->release_char_field_put(field_offset, STACK_INT(-1));
  1906             } else if (tos_type == stos) {
  1907               obj->release_short_field_put(field_offset, STACK_INT(-1));
  1908             } else if (tos_type == ftos) {
  1909               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  1910             } else {
  1911               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  1913             OrderAccess::storeload();
  1914           } else {
  1915             if (tos_type == itos) {
  1916               obj->int_field_put(field_offset, STACK_INT(-1));
  1917             } else if (tos_type == atos) {
  1918               VERIFY_OOP(STACK_OBJECT(-1));
  1919               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  1920               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1921             } else if (tos_type == btos) {
  1922               obj->byte_field_put(field_offset, STACK_INT(-1));
  1923             } else if (tos_type == ltos) {
  1924               obj->long_field_put(field_offset, STACK_LONG(-1));
  1925             } else if (tos_type == ctos) {
  1926               obj->char_field_put(field_offset, STACK_INT(-1));
  1927             } else if (tos_type == stos) {
  1928               obj->short_field_put(field_offset, STACK_INT(-1));
  1929             } else if (tos_type == ftos) {
  1930               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  1931             } else {
  1932               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  1936           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  1939       CASE(_new): {
  1940         u2 index = Bytes::get_Java_u2(pc+1);
  1941         constantPoolOop constants = istate->method()->constants();
  1942         if (!constants->tag_at(index).is_unresolved_klass()) {
  1943           // Make sure klass is initialized and doesn't have a finalizer
  1944           oop entry = (klassOop) *constants->obj_at_addr(index);
  1945           assert(entry->is_klass(), "Should be resolved klass");
  1946           klassOop k_entry = (klassOop) entry;
  1947           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
  1948           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
  1949           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  1950             size_t obj_size = ik->size_helper();
  1951             oop result = NULL;
  1952             // If the TLAB isn't pre-zeroed then we'll have to do it
  1953             bool need_zero = !ZeroTLAB;
  1954             if (UseTLAB) {
  1955               result = (oop) THREAD->tlab().allocate(obj_size);
  1957             if (result == NULL) {
  1958               need_zero = true;
  1959               // Try allocate in shared eden
  1960         retry:
  1961               HeapWord* compare_to = *Universe::heap()->top_addr();
  1962               HeapWord* new_top = compare_to + obj_size;
  1963               if (new_top <= *Universe::heap()->end_addr()) {
  1964                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  1965                   goto retry;
  1967                 result = (oop) compare_to;
  1970             if (result != NULL) {
  1971               // Initialize object (if nonzero size and need) and then the header
  1972               if (need_zero ) {
  1973                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  1974                 obj_size -= sizeof(oopDesc) / oopSize;
  1975                 if (obj_size > 0 ) {
  1976                   memset(to_zero, 0, obj_size * HeapWordSize);
  1979               if (UseBiasedLocking) {
  1980                 result->set_mark(ik->prototype_header());
  1981               } else {
  1982                 result->set_mark(markOopDesc::prototype());
  1984               result->set_klass_gap(0);
  1985               result->set_klass(k_entry);
  1986               SET_STACK_OBJECT(result, 0);
  1987               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1991         // Slow case allocation
  1992         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  1993                 handle_exception);
  1994         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  1995         THREAD->set_vm_result(NULL);
  1996         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1998       CASE(_anewarray): {
  1999         u2 index = Bytes::get_Java_u2(pc+1);
  2000         jint size = STACK_INT(-1);
  2001         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  2002                 handle_exception);
  2003         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2004         THREAD->set_vm_result(NULL);
  2005         UPDATE_PC_AND_CONTINUE(3);
  2007       CASE(_multianewarray): {
  2008         jint dims = *(pc+3);
  2009         jint size = STACK_INT(-1);
  2010         // stack grows down, dimensions are up!
  2011         jint *dimarray =
  2012                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
  2013                                       Interpreter::stackElementWords-1];
  2014         //adjust pointer to start of stack element
  2015         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  2016                 handle_exception);
  2017         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  2018         THREAD->set_vm_result(NULL);
  2019         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  2021       CASE(_checkcast):
  2022           if (STACK_OBJECT(-1) != NULL) {
  2023             VERIFY_OOP(STACK_OBJECT(-1));
  2024             u2 index = Bytes::get_Java_u2(pc+1);
  2025             if (ProfileInterpreter) {
  2026               // needs Profile_checkcast QQQ
  2027               ShouldNotReachHere();
  2029             // Constant pool may have actual klass or unresolved klass. If it is
  2030             // unresolved we must resolve it
  2031             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2032               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2034             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
  2035             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  2036             //
  2037             // Check for compatibilty. This check must not GC!!
  2038             // Seems way more expensive now that we must dispatch
  2039             //
  2040             if (objKlassOop != klassOf &&
  2041                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2042               ResourceMark rm(THREAD);
  2043               const char* objName = Klass::cast(objKlassOop)->external_name();
  2044               const char* klassName = Klass::cast(klassOf)->external_name();
  2045               char* message = SharedRuntime::generate_class_cast_message(
  2046                 objName, klassName);
  2047               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  2049           } else {
  2050             if (UncommonNullCast) {
  2051 //              istate->method()->set_null_cast_seen();
  2052 // [RGV] Not sure what to do here!
  2056           UPDATE_PC_AND_CONTINUE(3);
  2058       CASE(_instanceof):
  2059           if (STACK_OBJECT(-1) == NULL) {
  2060             SET_STACK_INT(0, -1);
  2061           } else {
  2062             VERIFY_OOP(STACK_OBJECT(-1));
  2063             u2 index = Bytes::get_Java_u2(pc+1);
  2064             // Constant pool may have actual klass or unresolved klass. If it is
  2065             // unresolved we must resolve it
  2066             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2067               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2069             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
  2070             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
  2071             //
  2072             // Check for compatibilty. This check must not GC!!
  2073             // Seems way more expensive now that we must dispatch
  2074             //
  2075             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2076               SET_STACK_INT(1, -1);
  2077             } else {
  2078               SET_STACK_INT(0, -1);
  2081           UPDATE_PC_AND_CONTINUE(3);
  2083       CASE(_ldc_w):
  2084       CASE(_ldc):
  2086           u2 index;
  2087           bool wide = false;
  2088           int incr = 2; // frequent case
  2089           if (opcode == Bytecodes::_ldc) {
  2090             index = pc[1];
  2091           } else {
  2092             index = Bytes::get_Java_u2(pc+1);
  2093             incr = 3;
  2094             wide = true;
  2097           constantPoolOop constants = METHOD->constants();
  2098           switch (constants->tag_at(index).value()) {
  2099           case JVM_CONSTANT_Integer:
  2100             SET_STACK_INT(constants->int_at(index), 0);
  2101             break;
  2103           case JVM_CONSTANT_Float:
  2104             SET_STACK_FLOAT(constants->float_at(index), 0);
  2105             break;
  2107           case JVM_CONSTANT_String:
  2108             VERIFY_OOP(constants->resolved_string_at(index));
  2109             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
  2110             break;
  2112           case JVM_CONSTANT_Class:
  2113             VERIFY_OOP(constants->resolved_klass_at(index)->klass_part()->java_mirror());
  2114             SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
  2115             break;
  2117           case JVM_CONSTANT_UnresolvedString:
  2118           case JVM_CONSTANT_UnresolvedClass:
  2119           case JVM_CONSTANT_UnresolvedClassInError:
  2120             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2121             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2122             THREAD->set_vm_result(NULL);
  2123             break;
  2125           default:  ShouldNotReachHere();
  2127           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2130       CASE(_ldc2_w):
  2132           u2 index = Bytes::get_Java_u2(pc+1);
  2134           constantPoolOop constants = METHOD->constants();
  2135           switch (constants->tag_at(index).value()) {
  2137           case JVM_CONSTANT_Long:
  2138              SET_STACK_LONG(constants->long_at(index), 1);
  2139             break;
  2141           case JVM_CONSTANT_Double:
  2142              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2143             break;
  2144           default:  ShouldNotReachHere();
  2146           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2149       CASE(_invokeinterface): {
  2150         u2 index = Bytes::get_native_u2(pc+1);
  2152         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2153         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2155         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2156         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2157           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2158                   handle_exception);
  2159           cache = cp->entry_at(index);
  2162         istate->set_msg(call_method);
  2164         // Special case of invokeinterface called for virtual method of
  2165         // java.lang.Object.  See cpCacheOop.cpp for details.
  2166         // This code isn't produced by javac, but could be produced by
  2167         // another compliant java compiler.
  2168         if (cache->is_methodInterface()) {
  2169           methodOop callee;
  2170           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2171           if (cache->is_vfinal()) {
  2172             callee = (methodOop) cache->f2();
  2173           } else {
  2174             // get receiver
  2175             int parms = cache->parameter_size();
  2176             // Same comments as invokevirtual apply here
  2177             VERIFY_OOP(STACK_OBJECT(-parms));
  2178             instanceKlass* rcvrKlass = (instanceKlass*)
  2179                                  STACK_OBJECT(-parms)->klass()->klass_part();
  2180             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2182           istate->set_callee(callee);
  2183           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2184 #ifdef VM_JVMTI
  2185           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2186             istate->set_callee_entry_point(callee->interpreter_entry());
  2188 #endif /* VM_JVMTI */
  2189           istate->set_bcp_advance(5);
  2190           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2193         // this could definitely be cleaned up QQQ
  2194         methodOop callee;
  2195         klassOop iclass = (klassOop)cache->f1();
  2196         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
  2197         // get receiver
  2198         int parms = cache->parameter_size();
  2199         oop rcvr = STACK_OBJECT(-parms);
  2200         CHECK_NULL(rcvr);
  2201         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
  2202         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2203         int i;
  2204         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2205           if (ki->interface_klass() == iclass) break;
  2207         // If the interface isn't found, this class doesn't implement this
  2208         // interface.  The link resolver checks this but only for the first
  2209         // time this interface is called.
  2210         if (i == int2->itable_length()) {
  2211           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2213         int mindex = cache->f2();
  2214         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2215         callee = im[mindex].method();
  2216         if (callee == NULL) {
  2217           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2220         istate->set_callee(callee);
  2221         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2222 #ifdef VM_JVMTI
  2223         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2224           istate->set_callee_entry_point(callee->interpreter_entry());
  2226 #endif /* VM_JVMTI */
  2227         istate->set_bcp_advance(5);
  2228         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2231       CASE(_invokevirtual):
  2232       CASE(_invokespecial):
  2233       CASE(_invokestatic): {
  2234         u2 index = Bytes::get_native_u2(pc+1);
  2236         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2237         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2238         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2240         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2241           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2242                   handle_exception);
  2243           cache = cp->entry_at(index);
  2246         istate->set_msg(call_method);
  2248           methodOop callee;
  2249           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2250             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2251             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
  2252             else {
  2253               // get receiver
  2254               int parms = cache->parameter_size();
  2255               // this works but needs a resourcemark and seems to create a vtable on every call:
  2256               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
  2257               //
  2258               // this fails with an assert
  2259               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2260               // but this works
  2261               VERIFY_OOP(STACK_OBJECT(-parms));
  2262               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
  2263               /*
  2264                 Executing this code in java.lang.String:
  2265                     public String(char value[]) {
  2266                           this.count = value.length;
  2267                           this.value = (char[])value.clone();
  2270                  a find on rcvr->klass()->klass_part() reports:
  2271                  {type array char}{type array class}
  2272                   - klass: {other class}
  2274                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2275                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
  2276                   However it seems to have a vtable in the right location. Huh?
  2278               */
  2279               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2281           } else {
  2282             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2283               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2285             callee = (methodOop) cache->f1();
  2288           istate->set_callee(callee);
  2289           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2290 #ifdef VM_JVMTI
  2291           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2292             istate->set_callee_entry_point(callee->interpreter_entry());
  2294 #endif /* VM_JVMTI */
  2295           istate->set_bcp_advance(3);
  2296           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2300       /* Allocate memory for a new java object. */
  2302       CASE(_newarray): {
  2303         BasicType atype = (BasicType) *(pc+1);
  2304         jint size = STACK_INT(-1);
  2305         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2306                 handle_exception);
  2307         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2308         THREAD->set_vm_result(NULL);
  2310         UPDATE_PC_AND_CONTINUE(2);
  2313       /* Throw an exception. */
  2315       CASE(_athrow): {
  2316           oop except_oop = STACK_OBJECT(-1);
  2317           CHECK_NULL(except_oop);
  2318           // set pending_exception so we use common code
  2319           THREAD->set_pending_exception(except_oop, NULL, 0);
  2320           goto handle_exception;
  2323       /* goto and jsr. They are exactly the same except jsr pushes
  2324        * the address of the next instruction first.
  2325        */
  2327       CASE(_jsr): {
  2328           /* push bytecode index on stack */
  2329           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2330           MORE_STACK(1);
  2331           /* FALL THROUGH */
  2334       CASE(_goto):
  2336           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2337           address branch_pc = pc;
  2338           UPDATE_PC(offset);
  2339           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2340           CONTINUE;
  2343       CASE(_jsr_w): {
  2344           /* push return address on the stack */
  2345           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2346           MORE_STACK(1);
  2347           /* FALL THROUGH */
  2350       CASE(_goto_w):
  2352           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2353           address branch_pc = pc;
  2354           UPDATE_PC(offset);
  2355           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2356           CONTINUE;
  2359       /* return from a jsr or jsr_w */
  2361       CASE(_ret): {
  2362           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2363           UPDATE_PC_AND_CONTINUE(0);
  2366       /* debugger breakpoint */
  2368       CASE(_breakpoint): {
  2369           Bytecodes::Code original_bytecode;
  2370           DECACHE_STATE();
  2371           SET_LAST_JAVA_FRAME();
  2372           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2373                               METHOD, pc);
  2374           RESET_LAST_JAVA_FRAME();
  2375           CACHE_STATE();
  2376           if (THREAD->has_pending_exception()) goto handle_exception;
  2377             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2378                                                     handle_exception);
  2380           opcode = (jubyte)original_bytecode;
  2381           goto opcode_switch;
  2384       DEFAULT:
  2385 #ifdef ZERO
  2386           // Some zero configurations use the C++ interpreter as a
  2387           // fallback interpreter and have support for platform
  2388           // specific fast bytecodes which aren't supported here, so
  2389           // redispatch to the equivalent non-fast bytecode when they
  2390           // are encountered.
  2391           if (Bytecodes::is_defined((Bytecodes::Code)opcode)) {
  2392               opcode = (jubyte)Bytecodes::java_code((Bytecodes::Code)opcode);
  2393               goto opcode_switch;
  2395 #endif
  2396           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
  2397                         Bytecodes::name((Bytecodes::Code)opcode)));
  2398           goto finish;
  2400       } /* switch(opc) */
  2403 #ifdef USELABELS
  2404     check_for_exception:
  2405 #endif
  2407       if (!THREAD->has_pending_exception()) {
  2408         CONTINUE;
  2410       /* We will be gcsafe soon, so flush our state. */
  2411       DECACHE_PC();
  2412       goto handle_exception;
  2414   do_continue: ;
  2416   } /* while (1) interpreter loop */
  2419   // An exception exists in the thread state see whether this activation can handle it
  2420   handle_exception: {
  2422     HandleMarkCleaner __hmc(THREAD);
  2423     Handle except_oop(THREAD, THREAD->pending_exception());
  2424     // Prevent any subsequent HandleMarkCleaner in the VM
  2425     // from freeing the except_oop handle.
  2426     HandleMark __hm(THREAD);
  2428     THREAD->clear_pending_exception();
  2429     assert(except_oop(), "No exception to process");
  2430     intptr_t continuation_bci;
  2431     // expression stack is emptied
  2432     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
  2433     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2434             handle_exception);
  2436     except_oop = (oop) THREAD->vm_result();
  2437     THREAD->set_vm_result(NULL);
  2438     if (continuation_bci >= 0) {
  2439       // Place exception on top of stack
  2440       SET_STACK_OBJECT(except_oop(), 0);
  2441       MORE_STACK(1);
  2442       pc = METHOD->code_base() + continuation_bci;
  2443       if (TraceExceptions) {
  2444         ttyLocker ttyl;
  2445         ResourceMark rm;
  2446         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2447         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2448         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2449                       pc - (intptr_t)METHOD->code_base(),
  2450                       continuation_bci, THREAD);
  2452       // for AbortVMOnException flag
  2453       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2454       goto run;
  2456     if (TraceExceptions) {
  2457       ttyLocker ttyl;
  2458       ResourceMark rm;
  2459       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2460       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2461       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2462                     pc  - (intptr_t) METHOD->code_base(),
  2463                     THREAD);
  2465     // for AbortVMOnException flag
  2466     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2467     // No handler in this activation, unwind and try again
  2468     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2469     goto handle_return;
  2470   }  /* handle_exception: */
  2474   // Return from an interpreter invocation with the result of the interpretation
  2475   // on the top of the Java Stack (or a pending exception)
  2477 handle_Pop_Frame:
  2479   // We don't really do anything special here except we must be aware
  2480   // that we can get here without ever locking the method (if sync).
  2481   // Also we skip the notification of the exit.
  2483   istate->set_msg(popping_frame);
  2484   // Clear pending so while the pop is in process
  2485   // we don't start another one if a call_vm is done.
  2486   THREAD->clr_pop_frame_pending();
  2487   // Let interpreter (only) see the we're in the process of popping a frame
  2488   THREAD->set_pop_frame_in_process();
  2490 handle_return:
  2492     DECACHE_STATE();
  2494     bool suppress_error = istate->msg() == popping_frame;
  2495     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2496     Handle original_exception(THREAD, THREAD->pending_exception());
  2497     Handle illegal_state_oop(THREAD, NULL);
  2499     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2500     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2501     // isn't really allocated yet and so doesn't become live until later and
  2502     // in unpredicatable places. Instead we must protect the places where we enter the
  2503     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2504     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2505     // unfortunately isn't possible.
  2507     THREAD->clear_pending_exception();
  2509     //
  2510     // As far as we are concerned we have returned. If we have a pending exception
  2511     // that will be returned as this invocation's result. However if we get any
  2512     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2513     // will be our final result (i.e. monitor exception trumps a pending exception).
  2514     //
  2516     // If we never locked the method (or really passed the point where we would have),
  2517     // there is no need to unlock it (or look for other monitors), since that
  2518     // could not have happened.
  2520     if (THREAD->do_not_unlock()) {
  2522       // Never locked, reset the flag now because obviously any caller must
  2523       // have passed their point of locking for us to have gotten here.
  2525       THREAD->clr_do_not_unlock();
  2526     } else {
  2527       // At this point we consider that we have returned. We now check that the
  2528       // locks were properly block structured. If we find that they were not
  2529       // used properly we will return with an illegal monitor exception.
  2530       // The exception is checked by the caller not the callee since this
  2531       // checking is considered to be part of the invocation and therefore
  2532       // in the callers scope (JVM spec 8.13).
  2533       //
  2534       // Another weird thing to watch for is if the method was locked
  2535       // recursively and then not exited properly. This means we must
  2536       // examine all the entries in reverse time(and stack) order and
  2537       // unlock as we find them. If we find the method monitor before
  2538       // we are at the initial entry then we should throw an exception.
  2539       // It is not clear the template based interpreter does this
  2540       // correctly
  2542       BasicObjectLock* base = istate->monitor_base();
  2543       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2544       bool method_unlock_needed = METHOD->is_synchronized();
  2545       // We know the initial monitor was used for the method don't check that
  2546       // slot in the loop
  2547       if (method_unlock_needed) base--;
  2549       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2550       while (end < base) {
  2551         oop lockee = end->obj();
  2552         if (lockee != NULL) {
  2553           BasicLock* lock = end->lock();
  2554           markOop header = lock->displaced_header();
  2555           end->set_obj(NULL);
  2556           // If it isn't recursive we either must swap old header or call the runtime
  2557           if (header != NULL) {
  2558             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2559               // restore object for the slow case
  2560               end->set_obj(lockee);
  2562                 // Prevent any HandleMarkCleaner from freeing our live handles
  2563                 HandleMark __hm(THREAD);
  2564                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2568           // One error is plenty
  2569           if (illegal_state_oop() == NULL && !suppress_error) {
  2571               // Prevent any HandleMarkCleaner from freeing our live handles
  2572               HandleMark __hm(THREAD);
  2573               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2575             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2576             illegal_state_oop = THREAD->pending_exception();
  2577             THREAD->clear_pending_exception();
  2580         end++;
  2582       // Unlock the method if needed
  2583       if (method_unlock_needed) {
  2584         if (base->obj() == NULL) {
  2585           // The method is already unlocked this is not good.
  2586           if (illegal_state_oop() == NULL && !suppress_error) {
  2588               // Prevent any HandleMarkCleaner from freeing our live handles
  2589               HandleMark __hm(THREAD);
  2590               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2592             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2593             illegal_state_oop = THREAD->pending_exception();
  2594             THREAD->clear_pending_exception();
  2596         } else {
  2597           //
  2598           // The initial monitor is always used for the method
  2599           // However if that slot is no longer the oop for the method it was unlocked
  2600           // and reused by something that wasn't unlocked!
  2601           //
  2602           // deopt can come in with rcvr dead because c2 knows
  2603           // its value is preserved in the monitor. So we can't use locals[0] at all
  2604           // and must use first monitor slot.
  2605           //
  2606           oop rcvr = base->obj();
  2607           if (rcvr == NULL) {
  2608             if (!suppress_error) {
  2609               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2610               illegal_state_oop = THREAD->pending_exception();
  2611               THREAD->clear_pending_exception();
  2613           } else {
  2614             BasicLock* lock = base->lock();
  2615             markOop header = lock->displaced_header();
  2616             base->set_obj(NULL);
  2617             // If it isn't recursive we either must swap old header or call the runtime
  2618             if (header != NULL) {
  2619               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2620                 // restore object for the slow case
  2621                 base->set_obj(rcvr);
  2623                   // Prevent any HandleMarkCleaner from freeing our live handles
  2624                   HandleMark __hm(THREAD);
  2625                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2627                 if (THREAD->has_pending_exception()) {
  2628                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2629                   THREAD->clear_pending_exception();
  2638     //
  2639     // Notify jvmti/jvmdi
  2640     //
  2641     // NOTE: we do not notify a method_exit if we have a pending exception,
  2642     // including an exception we generate for unlocking checks.  In the former
  2643     // case, JVMDI has already been notified by our call for the exception handler
  2644     // and in both cases as far as JVMDI is concerned we have already returned.
  2645     // If we notify it again JVMDI will be all confused about how many frames
  2646     // are still on the stack (4340444).
  2647     //
  2648     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2649     // method_exit events whenever we leave an activation unless it was done
  2650     // for popframe. This is nothing like jvmdi. However we are passing the
  2651     // tests at the moment (apparently because they are jvmdi based) so rather
  2652     // than change this code and possibly fail tests we will leave it alone
  2653     // (with this note) in anticipation of changing the vm and the tests
  2654     // simultaneously.
  2657     //
  2658     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2662 #ifdef VM_JVMTI
  2663       if (_jvmti_interp_events) {
  2664         // Whenever JVMTI puts a thread in interp_only_mode, method
  2665         // entry/exit events are sent for that thread to track stack depth.
  2666         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2668             // Prevent any HandleMarkCleaner from freeing our live handles
  2669             HandleMark __hm(THREAD);
  2670             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2674 #endif /* VM_JVMTI */
  2676     //
  2677     // See if we are returning any exception
  2678     // A pending exception that was pending prior to a possible popping frame
  2679     // overrides the popping frame.
  2680     //
  2681     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2682     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2683       // inform the frame manager we have no result
  2684       istate->set_msg(throwing_exception);
  2685       if (illegal_state_oop() != NULL)
  2686         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2687       else
  2688         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2689       istate->set_return_kind((Bytecodes::Code)opcode);
  2690       UPDATE_PC_AND_RETURN(0);
  2693     if (istate->msg() == popping_frame) {
  2694       // Make it simpler on the assembly code and set the message for the frame pop.
  2695       // returns
  2696       if (istate->prev() == NULL) {
  2697         // We must be returning to a deoptimized frame (because popframe only happens between
  2698         // two interpreted frames). We need to save the current arguments in C heap so that
  2699         // the deoptimized frame when it restarts can copy the arguments to its expression
  2700         // stack and re-execute the call. We also have to notify deoptimization that this
  2701         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2702         // java expression stack. Yuck.
  2703         //
  2704         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2705                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2706         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2708       THREAD->clr_pop_frame_in_process();
  2711     // Normal return
  2712     // Advance the pc and return to frame manager
  2713     istate->set_msg(return_from_method);
  2714     istate->set_return_kind((Bytecodes::Code)opcode);
  2715     UPDATE_PC_AND_RETURN(1);
  2716   } /* handle_return: */
  2718 // This is really a fatal error return
  2720 finish:
  2721   DECACHE_TOS();
  2722   DECACHE_PC();
  2724   return;
  2727 /*
  2728  * All the code following this point is only produced once and is not present
  2729  * in the JVMTI version of the interpreter
  2730 */
  2732 #ifndef VM_JVMTI
  2734 // This constructor should only be used to contruct the object to signal
  2735 // interpreter initialization. All other instances should be created by
  2736 // the frame manager.
  2737 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  2738   if (msg != initialize) ShouldNotReachHere();
  2739   _msg = msg;
  2740   _self_link = this;
  2741   _prev_link = NULL;
  2744 // Inline static functions for Java Stack and Local manipulation
  2746 // The implementations are platform dependent. We have to worry about alignment
  2747 // issues on some machines which can change on the same platform depending on
  2748 // whether it is an LP64 machine also.
  2749 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  2750   return (address) tos[Interpreter::expr_index_at(-offset)];
  2753 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  2754   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  2757 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  2758   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  2761 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  2762   return (oop)tos [Interpreter::expr_index_at(-offset)];
  2765 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  2766   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  2769 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  2770   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  2773 // only used for value types
  2774 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  2775                                                         int offset) {
  2776   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2779 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  2780                                                        int offset) {
  2781   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2784 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  2785                                                          int offset) {
  2786   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2789 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  2790                                                           int offset) {
  2791   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2794 // needs to be platform dep for the 32 bit platforms.
  2795 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  2796                                                           int offset) {
  2797   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  2800 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  2801                                               address addr, int offset) {
  2802   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  2803                         ((VMJavaVal64*)addr)->d);
  2806 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  2807                                                         int offset) {
  2808   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2809   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  2812 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  2813                                             address addr, int offset) {
  2814   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2815   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  2816                         ((VMJavaVal64*)addr)->l;
  2819 // Locals
  2821 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  2822   return (address)locals[Interpreter::local_index_at(-offset)];
  2824 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  2825   return (jint)locals[Interpreter::local_index_at(-offset)];
  2827 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  2828   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  2830 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  2831   return (oop)locals[Interpreter::local_index_at(-offset)];
  2833 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  2834   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  2836 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  2837   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  2840 // Returns the address of locals value.
  2841 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  2842   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2844 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  2845   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2848 // Used for local value or returnAddress
  2849 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  2850                                    address value, int offset) {
  2851   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  2853 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  2854                                    jint value, int offset) {
  2855   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2857 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  2858                                    jfloat value, int offset) {
  2859   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2861 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  2862                                    oop value, int offset) {
  2863   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2865 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  2866                                    jdouble value, int offset) {
  2867   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  2869 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  2870                                    jlong value, int offset) {
  2871   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  2873 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  2874                                    address addr, int offset) {
  2875   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  2877 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  2878                                    address addr, int offset) {
  2879   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  2882 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  2883                           intptr_t* locals, int locals_offset) {
  2884   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  2885   locals[Interpreter::local_index_at(-locals_offset)] = value;
  2889 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  2890                                    int to_offset) {
  2891   tos[Interpreter::expr_index_at(-to_offset)] =
  2892                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  2895 void BytecodeInterpreter::dup(intptr_t *tos) {
  2896   copy_stack_slot(tos, -1, 0);
  2898 void BytecodeInterpreter::dup2(intptr_t *tos) {
  2899   copy_stack_slot(tos, -2, 0);
  2900   copy_stack_slot(tos, -1, 1);
  2903 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  2904   /* insert top word two down */
  2905   copy_stack_slot(tos, -1, 0);
  2906   copy_stack_slot(tos, -2, -1);
  2907   copy_stack_slot(tos, 0, -2);
  2910 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  2911   /* insert top word three down  */
  2912   copy_stack_slot(tos, -1, 0);
  2913   copy_stack_slot(tos, -2, -1);
  2914   copy_stack_slot(tos, -3, -2);
  2915   copy_stack_slot(tos, 0, -3);
  2917 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  2918   /* insert top 2 slots three down */
  2919   copy_stack_slot(tos, -1, 1);
  2920   copy_stack_slot(tos, -2, 0);
  2921   copy_stack_slot(tos, -3, -1);
  2922   copy_stack_slot(tos, 1, -2);
  2923   copy_stack_slot(tos, 0, -3);
  2925 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  2926   /* insert top 2 slots four down */
  2927   copy_stack_slot(tos, -1, 1);
  2928   copy_stack_slot(tos, -2, 0);
  2929   copy_stack_slot(tos, -3, -1);
  2930   copy_stack_slot(tos, -4, -2);
  2931   copy_stack_slot(tos, 1, -3);
  2932   copy_stack_slot(tos, 0, -4);
  2936 void BytecodeInterpreter::swap(intptr_t *tos) {
  2937   // swap top two elements
  2938   intptr_t val = tos[Interpreter::expr_index_at(1)];
  2939   // Copy -2 entry to -1
  2940   copy_stack_slot(tos, -2, -1);
  2941   // Store saved -1 entry into -2
  2942   tos[Interpreter::expr_index_at(2)] = val;
  2944 // --------------------------------------------------------------------------------
  2945 // Non-product code
  2946 #ifndef PRODUCT
  2948 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  2949   switch (msg) {
  2950      case BytecodeInterpreter::no_request:  return("no_request");
  2951      case BytecodeInterpreter::initialize:  return("initialize");
  2952      // status message to C++ interpreter
  2953      case BytecodeInterpreter::method_entry:  return("method_entry");
  2954      case BytecodeInterpreter::method_resume:  return("method_resume");
  2955      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  2956      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  2957      // requests to frame manager from C++ interpreter
  2958      case BytecodeInterpreter::call_method:  return("call_method");
  2959      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  2960      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  2961      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  2962      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  2963      case BytecodeInterpreter::do_osr:  return("do_osr");
  2964      // deopt
  2965      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  2966      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  2967      default: return("BAD MSG");
  2970 void
  2971 BytecodeInterpreter::print() {
  2972   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  2973   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  2974   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  2975   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  2977     ResourceMark rm;
  2978     char *method_name = _method->name_and_sig_as_C_string();
  2979     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  2981   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  2982   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  2983   tty->print_cr("msg: %s", C_msg(this->_msg));
  2984   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  2985   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  2986   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  2987   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  2988   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  2989   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  2990   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  2991   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  2992   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  2993   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  2994   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  2995 #ifdef SPARC
  2996   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  2997   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  2998   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  2999   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  3000 #endif
  3001 #if defined(IA64) && !defined(ZERO)
  3002   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  3003 #endif // IA64 && !ZERO
  3004   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  3007 extern "C" {
  3008     void PI(uintptr_t arg) {
  3009         ((BytecodeInterpreter*)arg)->print();
  3012 #endif // PRODUCT
  3014 #endif // JVMTI
  3015 #endif // CC_INTERP

mercurial