src/share/vm/gc_implementation/shared/adaptiveSizePolicy.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 1907
c18cbe5936b8
child 3294
bca17e38de00
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
    28 #include "gc_implementation/shared/gcUtil.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "gc_interface/gcCause.hpp"
    31 #include "memory/allocation.hpp"
    32 #include "memory/universe.hpp"
    34 // This class keeps statistical information and computes the
    35 // size of the heap.
    37 // Forward decls
    38 class elapsedTimer;
    39 class CollectorPolicy;
    41 class AdaptiveSizePolicy : public CHeapObj {
    42  friend class GCAdaptivePolicyCounters;
    43  friend class PSGCAdaptivePolicyCounters;
    44  friend class CMSGCAdaptivePolicyCounters;
    45  protected:
    47   enum GCPolicyKind {
    48     _gc_adaptive_size_policy,
    49     _gc_ps_adaptive_size_policy,
    50     _gc_cms_adaptive_size_policy
    51   };
    52   virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
    54   enum SizePolicyTrueValues {
    55     decrease_old_gen_for_throughput_true = -7,
    56     decrease_young_gen_for_througput_true = -6,
    58     increase_old_gen_for_min_pauses_true = -5,
    59     decrease_old_gen_for_min_pauses_true = -4,
    60     decrease_young_gen_for_maj_pauses_true = -3,
    61     increase_young_gen_for_min_pauses_true = -2,
    62     increase_old_gen_for_maj_pauses_true = -1,
    64     decrease_young_gen_for_min_pauses_true = 1,
    65     decrease_old_gen_for_maj_pauses_true = 2,
    66     increase_young_gen_for_maj_pauses_true = 3,
    68     increase_old_gen_for_throughput_true = 4,
    69     increase_young_gen_for_througput_true = 5,
    71     decrease_young_gen_for_footprint_true = 6,
    72     decrease_old_gen_for_footprint_true = 7,
    73     decide_at_full_gc_true = 8
    74   };
    76   // Goal for the fraction of the total time during which application
    77   // threads run.
    78   const double _throughput_goal;
    80   // Last calculated sizes, in bytes, and aligned
    81   size_t _eden_size;        // calculated eden free space in bytes
    82   size_t _promo_size;       // calculated cms gen free space in bytes
    84   size_t _survivor_size;    // calculated survivor size in bytes
    86   // This is a hint for the heap:  we've detected that gc times
    87   // are taking longer than GCTimeLimit allows.
    88   bool _gc_overhead_limit_exceeded;
    89   // Use for diagnostics only.  If UseGCOverheadLimit is false,
    90   // this variable is still set.
    91   bool _print_gc_overhead_limit_would_be_exceeded;
    92   // Count of consecutive GC that have exceeded the
    93   // GC time limit criterion.
    94   uint _gc_overhead_limit_count;
    95   // This flag signals that GCTimeLimit is being exceeded
    96   // but may not have done so for the required number of consequetive
    97   // collections.
    99   // Minor collection timers used to determine both
   100   // pause and interval times for collections.
   101   static elapsedTimer _minor_timer;
   103   // Major collection timers, used to determine both
   104   // pause and interval times for collections
   105   static elapsedTimer _major_timer;
   107   // Time statistics
   108   AdaptivePaddedAverage*   _avg_minor_pause;
   109   AdaptiveWeightedAverage* _avg_minor_interval;
   110   AdaptiveWeightedAverage* _avg_minor_gc_cost;
   112   AdaptiveWeightedAverage* _avg_major_interval;
   113   AdaptiveWeightedAverage* _avg_major_gc_cost;
   115   // Footprint statistics
   116   AdaptiveWeightedAverage* _avg_young_live;
   117   AdaptiveWeightedAverage* _avg_eden_live;
   118   AdaptiveWeightedAverage* _avg_old_live;
   120   // Statistics for survivor space calculation for young generation
   121   AdaptivePaddedAverage*   _avg_survived;
   123   // Objects that have been directly allocated in the old generation.
   124   AdaptivePaddedNoZeroDevAverage*   _avg_pretenured;
   126   // Variable for estimating the major and minor pause times.
   127   // These variables represent linear least-squares fits of
   128   // the data.
   129   //   minor pause time vs. old gen size
   130   LinearLeastSquareFit* _minor_pause_old_estimator;
   131   //   minor pause time vs. young gen size
   132   LinearLeastSquareFit* _minor_pause_young_estimator;
   134   // Variables for estimating the major and minor collection costs
   135   //   minor collection time vs. young gen size
   136   LinearLeastSquareFit* _minor_collection_estimator;
   137   //   major collection time vs. cms gen size
   138   LinearLeastSquareFit* _major_collection_estimator;
   140   // These record the most recent collection times.  They
   141   // are available as an alternative to using the averages
   142   // for making ergonomic decisions.
   143   double _latest_minor_mutator_interval_seconds;
   145   // Allowed difference between major and minor gc times, used
   146   // for computing tenuring_threshold.
   147   const double _threshold_tolerance_percent;
   149   const double _gc_pause_goal_sec; // goal for maximum gc pause
   151   // Flag indicating that the adaptive policy is ready to use
   152   bool _young_gen_policy_is_ready;
   154   // decrease/increase the young generation for minor pause time
   155   int _change_young_gen_for_min_pauses;
   157   // decrease/increase the old generation for major pause time
   158   int _change_old_gen_for_maj_pauses;
   160   //   change old geneneration for throughput
   161   int _change_old_gen_for_throughput;
   163   //   change young generation for throughput
   164   int _change_young_gen_for_throughput;
   166   // Flag indicating that the policy would
   167   //   increase the tenuring threshold because of the total major gc cost
   168   //   is greater than the total minor gc cost
   169   bool _increment_tenuring_threshold_for_gc_cost;
   170   //   decrease the tenuring threshold because of the the total minor gc
   171   //   cost is greater than the total major gc cost
   172   bool _decrement_tenuring_threshold_for_gc_cost;
   173   //   decrease due to survivor size limit
   174   bool _decrement_tenuring_threshold_for_survivor_limit;
   176   //   decrease generation sizes for footprint
   177   int _decrease_for_footprint;
   179   // Set if the ergonomic decisions were made at a full GC.
   180   int _decide_at_full_gc;
   182   // Changing the generation sizing depends on the data that is
   183   // gathered about the effects of changes on the pause times and
   184   // throughput.  These variable count the number of data points
   185   // gathered.  The policy may use these counters as a threshhold
   186   // for reliable data.
   187   julong _young_gen_change_for_minor_throughput;
   188   julong _old_gen_change_for_major_throughput;
   190   // Accessors
   192   double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
   193   // The value returned is unitless:  it's the proportion of time
   194   // spent in a particular collection type.
   195   // An interval time will be 0.0 if a collection type hasn't occurred yet.
   196   // The 1.4.2 implementation put a floor on the values of major_gc_cost
   197   // and minor_gc_cost.  This was useful because of the way major_gc_cost
   198   // and minor_gc_cost was used in calculating the sizes of the generations.
   199   // Do not use a floor in this implementation because any finite value
   200   // will put a limit on the throughput that can be achieved and any
   201   // throughput goal above that limit will drive the generations sizes
   202   // to extremes.
   203   double major_gc_cost() const {
   204     return MAX2(0.0F, _avg_major_gc_cost->average());
   205   }
   207   // The value returned is unitless:  it's the proportion of time
   208   // spent in a particular collection type.
   209   // An interval time will be 0.0 if a collection type hasn't occurred yet.
   210   // The 1.4.2 implementation put a floor on the values of major_gc_cost
   211   // and minor_gc_cost.  This was useful because of the way major_gc_cost
   212   // and minor_gc_cost was used in calculating the sizes of the generations.
   213   // Do not use a floor in this implementation because any finite value
   214   // will put a limit on the throughput that can be achieved and any
   215   // throughput goal above that limit will drive the generations sizes
   216   // to extremes.
   218   double minor_gc_cost() const {
   219     return MAX2(0.0F, _avg_minor_gc_cost->average());
   220   }
   222   // Because we're dealing with averages, gc_cost() can be
   223   // larger than 1.0 if just the sum of the minor cost the
   224   // the major cost is used.  Worse than that is the
   225   // fact that the minor cost and the major cost each
   226   // tend toward 1.0 in the extreme of high gc costs.
   227   // Limit the value of gc_cost to 1.0 so that the mutator
   228   // cost stays non-negative.
   229   virtual double gc_cost() const {
   230     double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
   231     assert(result >= 0.0, "Both minor and major costs are non-negative");
   232     return result;
   233   }
   235   // Elapsed time since the last major collection.
   236   virtual double time_since_major_gc() const;
   238   // Average interval between major collections to be used
   239   // in calculating the decaying major gc cost.  An overestimate
   240   // of this time would be a conservative estimate because
   241   // this time is used to decide if the major GC cost
   242   // should be decayed (i.e., if the time since the last
   243   // major gc is long compared to the time returned here,
   244   // then the major GC cost will be decayed).  See the
   245   // implementations for the specifics.
   246   virtual double major_gc_interval_average_for_decay() const {
   247     return _avg_major_interval->average();
   248   }
   250   // Return the cost of the GC where the major gc cost
   251   // has been decayed based on the time since the last
   252   // major collection.
   253   double decaying_gc_cost() const;
   255   // Decay the major gc cost.  Use this only for decisions on
   256   // whether to adjust, not to determine by how much to adjust.
   257   // This approximation is crude and may not be good enough for the
   258   // latter.
   259   double decaying_major_gc_cost() const;
   261   // Return the mutator cost using the decayed
   262   // GC cost.
   263   double adjusted_mutator_cost() const {
   264     double result = 1.0 - decaying_gc_cost();
   265     assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
   266     return result;
   267   }
   269   virtual double mutator_cost() const {
   270     double result = 1.0 - gc_cost();
   271     assert(result >= 0.0, "mutator cost calculation is incorrect");
   272     return result;
   273   }
   276   bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
   278   void update_minor_pause_young_estimator(double minor_pause_in_ms);
   279   virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
   280     // This is not meaningful for all policies but needs to be present
   281     // to use minor_collection_end() in its current form.
   282   }
   284   virtual size_t eden_increment(size_t cur_eden);
   285   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   286   virtual size_t eden_decrement(size_t cur_eden);
   287   virtual size_t promo_increment(size_t cur_eden);
   288   virtual size_t promo_increment(size_t cur_eden, uint percent_change);
   289   virtual size_t promo_decrement(size_t cur_eden);
   291   virtual void clear_generation_free_space_flags();
   293   int change_old_gen_for_throughput() const {
   294     return _change_old_gen_for_throughput;
   295   }
   296   void set_change_old_gen_for_throughput(int v) {
   297     _change_old_gen_for_throughput = v;
   298   }
   299   int change_young_gen_for_throughput() const {
   300     return _change_young_gen_for_throughput;
   301   }
   302   void set_change_young_gen_for_throughput(int v) {
   303     _change_young_gen_for_throughput = v;
   304   }
   306   int change_old_gen_for_maj_pauses() const {
   307     return _change_old_gen_for_maj_pauses;
   308   }
   309   void set_change_old_gen_for_maj_pauses(int v) {
   310     _change_old_gen_for_maj_pauses = v;
   311   }
   313   bool decrement_tenuring_threshold_for_gc_cost() const {
   314     return _decrement_tenuring_threshold_for_gc_cost;
   315   }
   316   void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
   317     _decrement_tenuring_threshold_for_gc_cost = v;
   318   }
   319   bool increment_tenuring_threshold_for_gc_cost() const {
   320     return _increment_tenuring_threshold_for_gc_cost;
   321   }
   322   void set_increment_tenuring_threshold_for_gc_cost(bool v) {
   323     _increment_tenuring_threshold_for_gc_cost = v;
   324   }
   325   bool decrement_tenuring_threshold_for_survivor_limit() const {
   326     return _decrement_tenuring_threshold_for_survivor_limit;
   327   }
   328   void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
   329     _decrement_tenuring_threshold_for_survivor_limit = v;
   330   }
   331   // Return true if the policy suggested a change.
   332   bool tenuring_threshold_change() const;
   334  public:
   335   AdaptiveSizePolicy(size_t init_eden_size,
   336                      size_t init_promo_size,
   337                      size_t init_survivor_size,
   338                      double gc_pause_goal_sec,
   339                      uint gc_cost_ratio);
   341   bool is_gc_cms_adaptive_size_policy() {
   342     return kind() == _gc_cms_adaptive_size_policy;
   343   }
   344   bool is_gc_ps_adaptive_size_policy() {
   345     return kind() == _gc_ps_adaptive_size_policy;
   346   }
   348   AdaptivePaddedAverage*   avg_minor_pause() const { return _avg_minor_pause; }
   349   AdaptiveWeightedAverage* avg_minor_interval() const {
   350     return _avg_minor_interval;
   351   }
   352   AdaptiveWeightedAverage* avg_minor_gc_cost() const {
   353     return _avg_minor_gc_cost;
   354   }
   356   AdaptiveWeightedAverage* avg_major_gc_cost() const {
   357     return _avg_major_gc_cost;
   358   }
   360   AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
   361   AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
   362   AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
   364   AdaptivePaddedAverage*  avg_survived() const { return _avg_survived; }
   365   AdaptivePaddedNoZeroDevAverage*  avg_pretenured() { return _avg_pretenured; }
   367   // Methods indicating events of interest to the adaptive size policy,
   368   // called by GC algorithms. It is the responsibility of users of this
   369   // policy to call these methods at the correct times!
   370   virtual void minor_collection_begin();
   371   virtual void minor_collection_end(GCCause::Cause gc_cause);
   372   virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
   373     return _minor_pause_old_estimator;
   374   }
   376   LinearLeastSquareFit* minor_pause_young_estimator() {
   377     return _minor_pause_young_estimator;
   378   }
   379   LinearLeastSquareFit* minor_collection_estimator() {
   380     return _minor_collection_estimator;
   381   }
   383   LinearLeastSquareFit* major_collection_estimator() {
   384     return _major_collection_estimator;
   385   }
   387   float minor_pause_young_slope() {
   388     return _minor_pause_young_estimator->slope();
   389   }
   391   float minor_collection_slope() { return _minor_collection_estimator->slope();}
   392   float major_collection_slope() { return _major_collection_estimator->slope();}
   394   float minor_pause_old_slope() {
   395     return _minor_pause_old_estimator->slope();
   396   }
   398   void set_eden_size(size_t new_size) {
   399     _eden_size = new_size;
   400   }
   401   void set_survivor_size(size_t new_size) {
   402     _survivor_size = new_size;
   403   }
   405   size_t calculated_eden_size_in_bytes() const {
   406     return _eden_size;
   407   }
   409   size_t calculated_promo_size_in_bytes() const {
   410     return _promo_size;
   411   }
   413   size_t calculated_survivor_size_in_bytes() const {
   414     return _survivor_size;
   415   }
   417   // This is a hint for the heap:  we've detected that gc times
   418   // are taking longer than GCTimeLimit allows.
   419   // Most heaps will choose to throw an OutOfMemoryError when
   420   // this occurs but it is up to the heap to request this information
   421   // of the policy
   422   bool gc_overhead_limit_exceeded() {
   423     return _gc_overhead_limit_exceeded;
   424   }
   425   void set_gc_overhead_limit_exceeded(bool v) {
   426     _gc_overhead_limit_exceeded = v;
   427   }
   429   // Tests conditions indicate the GC overhead limit is being approached.
   430   bool gc_overhead_limit_near() {
   431     return gc_overhead_limit_count() >=
   432         (AdaptiveSizePolicyGCTimeLimitThreshold - 1);
   433   }
   434   uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
   435   void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
   436   void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
   437   // accessors for flags recording the decisions to resize the
   438   // generations to meet the pause goal.
   440   int change_young_gen_for_min_pauses() const {
   441     return _change_young_gen_for_min_pauses;
   442   }
   443   void set_change_young_gen_for_min_pauses(int v) {
   444     _change_young_gen_for_min_pauses = v;
   445   }
   446   void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
   447   int decrease_for_footprint() const { return _decrease_for_footprint; }
   448   int decide_at_full_gc() { return _decide_at_full_gc; }
   449   void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
   451   // Check the conditions for an out-of-memory due to excessive GC time.
   452   // Set _gc_overhead_limit_exceeded if all the conditions have been met.
   453   void check_gc_overhead_limit(size_t young_live,
   454                                size_t eden_live,
   455                                size_t max_old_gen_size,
   456                                size_t max_eden_size,
   457                                bool   is_full_gc,
   458                                GCCause::Cause gc_cause,
   459                                CollectorPolicy* collector_policy);
   461   // Printing support
   462   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   463   bool print_adaptive_size_policy_on(outputStream* st, int
   464                                   tenuring_threshold) const;
   465 };
   467 // Class that can be used to print information about the
   468 // adaptive size policy at intervals specified by
   469 // AdaptiveSizePolicyOutputInterval.  Only print information
   470 // if an adaptive size policy is in use.
   471 class AdaptiveSizePolicyOutput : StackObj {
   472   AdaptiveSizePolicy* _size_policy;
   473   bool _do_print;
   474   bool print_test(uint count) {
   475     // A count of zero is a special value that indicates that the
   476     // interval test should be ignored.  An interval is of zero is
   477     // a special value that indicates that the interval test should
   478     // always fail (never do the print based on the interval test).
   479     return PrintGCDetails &&
   480            UseAdaptiveSizePolicy &&
   481            (UseParallelGC || UseConcMarkSweepGC) &&
   482            (AdaptiveSizePolicyOutputInterval > 0) &&
   483            ((count == 0) ||
   484              ((count % AdaptiveSizePolicyOutputInterval) == 0));
   485   }
   486  public:
   487   // The special value of a zero count can be used to ignore
   488   // the count test.
   489   AdaptiveSizePolicyOutput(uint count) {
   490     if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
   491       CollectedHeap* heap = Universe::heap();
   492       _size_policy = heap->size_policy();
   493       _do_print = print_test(count);
   494     } else {
   495       _size_policy = NULL;
   496       _do_print = false;
   497     }
   498   }
   499   AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
   500                            uint count) :
   501     _size_policy(size_policy) {
   502     if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
   503       _do_print = print_test(count);
   504     } else {
   505       _do_print = false;
   506     }
   507   }
   508   ~AdaptiveSizePolicyOutput() {
   509     if (_do_print) {
   510       assert(UseAdaptiveSizePolicy, "Should not be in use");
   511       _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
   512     }
   513   }
   514 };
   516 #endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP

mercurial