src/share/vm/gc_implementation/g1/heapRegion.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2241
72a161e62cc4
child 2453
2250ee17e258
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    54 // A dirty card to oop closure for heap regions. It
    55 // knows how to get the G1 heap and how to use the bitmap
    56 // in the concurrent marker used by G1 to filter remembered
    57 // sets.
    59 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    60 public:
    61   // Specification of possible DirtyCardToOopClosure filtering.
    62   enum FilterKind {
    63     NoFilterKind,
    64     IntoCSFilterKind,
    65     OutOfRegionFilterKind
    66   };
    68 protected:
    69   HeapRegion* _hr;
    70   FilterKind _fk;
    71   G1CollectedHeap* _g1;
    73   void walk_mem_region_with_cl(MemRegion mr,
    74                                HeapWord* bottom, HeapWord* top,
    75                                OopClosure* cl);
    77   // We don't specialize this for FilteringClosure; filtering is handled by
    78   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    79   // warning.
    80   void walk_mem_region_with_cl(MemRegion mr,
    81                                HeapWord* bottom, HeapWord* top,
    82                                FilteringClosure* cl) {
    83     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    84                                                        (OopClosure*)cl);
    85   }
    87   // Get the actual top of the area on which the closure will
    88   // operate, given where the top is assumed to be (the end of the
    89   // memory region passed to do_MemRegion) and where the object
    90   // at the top is assumed to start. For example, an object may
    91   // start at the top but actually extend past the assumed top,
    92   // in which case the top becomes the end of the object.
    93   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    94     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
    95   }
    97   // Walk the given memory region from bottom to (actual) top
    98   // looking for objects and applying the oop closure (_cl) to
    99   // them. The base implementation of this treats the area as
   100   // blocks, where a block may or may not be an object. Sub-
   101   // classes should override this to provide more accurate
   102   // or possibly more efficient walking.
   103   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   104     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   105   }
   107 public:
   108   HeapRegionDCTOC(G1CollectedHeap* g1,
   109                   HeapRegion* hr, OopClosure* cl,
   110                   CardTableModRefBS::PrecisionStyle precision,
   111                   FilterKind fk);
   112 };
   115 // The complicating factor is that BlockOffsetTable diverged
   116 // significantly, and we need functionality that is only in the G1 version.
   117 // So I copied that code, which led to an alternate G1 version of
   118 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   119 // be reconciled, then G1OffsetTableContigSpace could go away.
   121 // The idea behind time stamps is the following. Doing a save_marks on
   122 // all regions at every GC pause is time consuming (if I remember
   123 // well, 10ms or so). So, we would like to do that only for regions
   124 // that are GC alloc regions. To achieve this, we use time
   125 // stamps. For every evacuation pause, G1CollectedHeap generates a
   126 // unique time stamp (essentially a counter that gets
   127 // incremented). Every time we want to call save_marks on a region,
   128 // we set the saved_mark_word to top and also copy the current GC
   129 // time stamp to the time stamp field of the space. Reading the
   130 // saved_mark_word involves checking the time stamp of the
   131 // region. If it is the same as the current GC time stamp, then we
   132 // can safely read the saved_mark_word field, as it is valid. If the
   133 // time stamp of the region is not the same as the current GC time
   134 // stamp, then we instead read top, as the saved_mark_word field is
   135 // invalid. Time stamps (on the regions and also on the
   136 // G1CollectedHeap) are reset at every cleanup (we iterate over
   137 // the regions anyway) and at the end of a Full GC. The current scheme
   138 // that uses sequential unsigned ints will fail only if we have 4b
   139 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   141 class G1OffsetTableContigSpace: public ContiguousSpace {
   142   friend class VMStructs;
   143  protected:
   144   G1BlockOffsetArrayContigSpace _offsets;
   145   Mutex _par_alloc_lock;
   146   volatile unsigned _gc_time_stamp;
   148  public:
   149   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   150   // assumed to contain zeros.
   151   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   152                            MemRegion mr, bool is_zeroed = false);
   154   void set_bottom(HeapWord* value);
   155   void set_end(HeapWord* value);
   157   virtual HeapWord* saved_mark_word() const;
   158   virtual void set_saved_mark();
   159   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   161   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   162   virtual void clear(bool mangle_space);
   164   HeapWord* block_start(const void* p);
   165   HeapWord* block_start_const(const void* p) const;
   167   // Add offset table update.
   168   virtual HeapWord* allocate(size_t word_size);
   169   HeapWord* par_allocate(size_t word_size);
   171   // MarkSweep support phase3
   172   virtual HeapWord* initialize_threshold();
   173   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   175   virtual void print() const;
   176 };
   178 class HeapRegion: public G1OffsetTableContigSpace {
   179   friend class VMStructs;
   180  private:
   182   enum HumongousType {
   183     NotHumongous = 0,
   184     StartsHumongous,
   185     ContinuesHumongous
   186   };
   188   // The next filter kind that should be used for a "new_dcto_cl" call with
   189   // the "traditional" signature.
   190   HeapRegionDCTOC::FilterKind _next_fk;
   192   // Requires that the region "mr" be dense with objects, and begin and end
   193   // with an object.
   194   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   196   // The remembered set for this region.
   197   // (Might want to make this "inline" later, to avoid some alloc failure
   198   // issues.)
   199   HeapRegionRemSet* _rem_set;
   201   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   203  protected:
   204   // If this region is a member of a HeapRegionSeq, the index in that
   205   // sequence, otherwise -1.
   206   int  _hrs_index;
   208   HumongousType _humongous_type;
   209   // For a humongous region, region in which it starts.
   210   HeapRegion* _humongous_start_region;
   211   // For the start region of a humongous sequence, it's original end().
   212   HeapWord* _orig_end;
   214   // True iff the region is in current collection_set.
   215   bool _in_collection_set;
   217     // True iff the region is on the unclean list, waiting to be zero filled.
   218   bool _is_on_unclean_list;
   220   // True iff the region is on the free list, ready for allocation.
   221   bool _is_on_free_list;
   223   // Is this or has it been an allocation region in the current collection
   224   // pause.
   225   bool _is_gc_alloc_region;
   227   // True iff an attempt to evacuate an object in the region failed.
   228   bool _evacuation_failed;
   230   // A heap region may be a member one of a number of special subsets, each
   231   // represented as linked lists through the field below.  Currently, these
   232   // sets include:
   233   //   The collection set.
   234   //   The set of allocation regions used in a collection pause.
   235   //   Spaces that may contain gray objects.
   236   HeapRegion* _next_in_special_set;
   238   // next region in the young "generation" region set
   239   HeapRegion* _next_young_region;
   241   // Next region whose cards need cleaning
   242   HeapRegion* _next_dirty_cards_region;
   244   // For parallel heapRegion traversal.
   245   jint _claimed;
   247   // We use concurrent marking to determine the amount of live data
   248   // in each heap region.
   249   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   250   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   252   // See "sort_index" method.  -1 means is not in the array.
   253   int _sort_index;
   255   // <PREDICTION>
   256   double _gc_efficiency;
   257   // </PREDICTION>
   259   enum YoungType {
   260     NotYoung,                   // a region is not young
   261     Young,                      // a region is young
   262     Survivor                    // a region is young and it contains
   263                                 // survivor
   264   };
   266   volatile YoungType _young_type;
   267   int  _young_index_in_cset;
   268   SurvRateGroup* _surv_rate_group;
   269   int  _age_index;
   271   // The start of the unmarked area. The unmarked area extends from this
   272   // word until the top and/or end of the region, and is the part
   273   // of the region for which no marking was done, i.e. objects may
   274   // have been allocated in this part since the last mark phase.
   275   // "prev" is the top at the start of the last completed marking.
   276   // "next" is the top at the start of the in-progress marking (if any.)
   277   HeapWord* _prev_top_at_mark_start;
   278   HeapWord* _next_top_at_mark_start;
   279   // If a collection pause is in progress, this is the top at the start
   280   // of that pause.
   282   // We've counted the marked bytes of objects below here.
   283   HeapWord* _top_at_conc_mark_count;
   285   void init_top_at_mark_start() {
   286     assert(_prev_marked_bytes == 0 &&
   287            _next_marked_bytes == 0,
   288            "Must be called after zero_marked_bytes.");
   289     HeapWord* bot = bottom();
   290     _prev_top_at_mark_start = bot;
   291     _next_top_at_mark_start = bot;
   292     _top_at_conc_mark_count = bot;
   293   }
   295   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
   296   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
   297                         // made it so.
   299   void set_young_type(YoungType new_type) {
   300     //assert(_young_type != new_type, "setting the same type" );
   301     // TODO: add more assertions here
   302     _young_type = new_type;
   303   }
   305   // Cached attributes used in the collection set policy information
   307   // The RSet length that was added to the total value
   308   // for the collection set.
   309   size_t _recorded_rs_length;
   311   // The predicted elapsed time that was added to total value
   312   // for the collection set.
   313   double _predicted_elapsed_time_ms;
   315   // The predicted number of bytes to copy that was added to
   316   // the total value for the collection set.
   317   size_t _predicted_bytes_to_copy;
   319  public:
   320   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   321   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   322              MemRegion mr, bool is_zeroed);
   324   static int LogOfHRGrainBytes;
   325   static int LogOfHRGrainWords;
   326   // The normal type of these should be size_t. However, they used to
   327   // be members of an enum before and they are assumed by the
   328   // compilers to be ints. To avoid going and fixing all their uses,
   329   // I'm declaring them as ints. I'm not anticipating heap region
   330   // sizes to reach anywhere near 2g, so using an int here is safe.
   331   static int GrainBytes;
   332   static int GrainWords;
   333   static int CardsPerRegion;
   335   // It sets up the heap region size (GrainBytes / GrainWords), as
   336   // well as other related fields that are based on the heap region
   337   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   338   // CardsPerRegion). All those fields are considered constant
   339   // throughout the JVM's execution, therefore they should only be set
   340   // up once during initialization time.
   341   static void setup_heap_region_size(uintx min_heap_size);
   343   enum ClaimValues {
   344     InitialClaimValue     = 0,
   345     FinalCountClaimValue  = 1,
   346     NoteEndClaimValue     = 2,
   347     ScrubRemSetClaimValue = 3,
   348     ParVerifyClaimValue   = 4,
   349     RebuildRSClaimValue   = 5
   350   };
   352   // Concurrent refinement requires contiguous heap regions (in which TLABs
   353   // might be allocated) to be zero-filled.  Each region therefore has a
   354   // zero-fill-state.
   355   enum ZeroFillState {
   356     NotZeroFilled,
   357     ZeroFilling,
   358     ZeroFilled,
   359     Allocated
   360   };
   362   // If this region is a member of a HeapRegionSeq, the index in that
   363   // sequence, otherwise -1.
   364   int hrs_index() const { return _hrs_index; }
   365   void set_hrs_index(int index) { _hrs_index = index; }
   367   // The number of bytes marked live in the region in the last marking phase.
   368   size_t marked_bytes()    { return _prev_marked_bytes; }
   369   // The number of bytes counted in the next marking.
   370   size_t next_marked_bytes() { return _next_marked_bytes; }
   371   // The number of bytes live wrt the next marking.
   372   size_t next_live_bytes() {
   373     return (top() - next_top_at_mark_start())
   374       * HeapWordSize
   375       + next_marked_bytes();
   376   }
   378   // A lower bound on the amount of garbage bytes in the region.
   379   size_t garbage_bytes() {
   380     size_t used_at_mark_start_bytes =
   381       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   382     assert(used_at_mark_start_bytes >= marked_bytes(),
   383            "Can't mark more than we have.");
   384     return used_at_mark_start_bytes - marked_bytes();
   385   }
   387   // An upper bound on the number of live bytes in the region.
   388   size_t max_live_bytes() { return used() - garbage_bytes(); }
   390   void add_to_marked_bytes(size_t incr_bytes) {
   391     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   392     guarantee( _next_marked_bytes <= used(), "invariant" );
   393   }
   395   void zero_marked_bytes()      {
   396     _prev_marked_bytes = _next_marked_bytes = 0;
   397   }
   399   bool isHumongous() const { return _humongous_type != NotHumongous; }
   400   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   401   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   402   // For a humongous region, region in which it starts.
   403   HeapRegion* humongous_start_region() const {
   404     return _humongous_start_region;
   405   }
   407   // Causes the current region to represent a humongous object spanning "n"
   408   // regions.
   409   void set_startsHumongous(HeapWord* new_end);
   411   // The regions that continue a humongous sequence should be added using
   412   // this method, in increasing address order.
   413   void set_continuesHumongous(HeapRegion* start);
   415   // If the region has a remembered set, return a pointer to it.
   416   HeapRegionRemSet* rem_set() const {
   417     return _rem_set;
   418   }
   420   // True iff the region is in current collection_set.
   421   bool in_collection_set() const {
   422     return _in_collection_set;
   423   }
   424   void set_in_collection_set(bool b) {
   425     _in_collection_set = b;
   426   }
   427   HeapRegion* next_in_collection_set() {
   428     assert(in_collection_set(), "should only invoke on member of CS.");
   429     assert(_next_in_special_set == NULL ||
   430            _next_in_special_set->in_collection_set(),
   431            "Malformed CS.");
   432     return _next_in_special_set;
   433   }
   434   void set_next_in_collection_set(HeapRegion* r) {
   435     assert(in_collection_set(), "should only invoke on member of CS.");
   436     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   437     _next_in_special_set = r;
   438   }
   440   // True iff it is or has been an allocation region in the current
   441   // collection pause.
   442   bool is_gc_alloc_region() const {
   443     return _is_gc_alloc_region;
   444   }
   445   void set_is_gc_alloc_region(bool b) {
   446     _is_gc_alloc_region = b;
   447   }
   448   HeapRegion* next_gc_alloc_region() {
   449     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   450     assert(_next_in_special_set == NULL ||
   451            _next_in_special_set->is_gc_alloc_region(),
   452            "Malformed CS.");
   453     return _next_in_special_set;
   454   }
   455   void set_next_gc_alloc_region(HeapRegion* r) {
   456     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   457     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   458     _next_in_special_set = r;
   459   }
   461   bool is_on_free_list() {
   462     return _is_on_free_list;
   463   }
   465   void set_on_free_list(bool b) {
   466     _is_on_free_list = b;
   467   }
   469   HeapRegion* next_from_free_list() {
   470     assert(is_on_free_list(),
   471            "Should only invoke on free space.");
   472     assert(_next_in_special_set == NULL ||
   473            _next_in_special_set->is_on_free_list(),
   474            "Malformed Free List.");
   475     return _next_in_special_set;
   476   }
   478   void set_next_on_free_list(HeapRegion* r) {
   479     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
   480     _next_in_special_set = r;
   481   }
   483   bool is_on_unclean_list() {
   484     return _is_on_unclean_list;
   485   }
   487   void set_on_unclean_list(bool b);
   489   HeapRegion* next_from_unclean_list() {
   490     assert(is_on_unclean_list(),
   491            "Should only invoke on unclean space.");
   492     assert(_next_in_special_set == NULL ||
   493            _next_in_special_set->is_on_unclean_list(),
   494            "Malformed unclean List.");
   495     return _next_in_special_set;
   496   }
   498   void set_next_on_unclean_list(HeapRegion* r);
   500   HeapRegion* get_next_young_region() { return _next_young_region; }
   501   void set_next_young_region(HeapRegion* hr) {
   502     _next_young_region = hr;
   503   }
   505   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   506   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   507   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   508   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   510   // Allows logical separation between objects allocated before and after.
   511   void save_marks();
   513   // Reset HR stuff to default values.
   514   void hr_clear(bool par, bool clear_space);
   516   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   518   // Ensure that "this" is zero-filled.
   519   void ensure_zero_filled();
   520   // This one requires that the calling thread holds ZF_mon.
   521   void ensure_zero_filled_locked();
   523   // Get the start of the unmarked area in this region.
   524   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   525   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   527   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   528   // allocated in the current region before the last call to "save_mark".
   529   void oop_before_save_marks_iterate(OopClosure* cl);
   531   // This call determines the "filter kind" argument that will be used for
   532   // the next call to "new_dcto_cl" on this region with the "traditional"
   533   // signature (i.e., the call below.)  The default, in the absence of a
   534   // preceding call to this method, is "NoFilterKind", and a call to this
   535   // method is necessary for each such call, or else it reverts to the
   536   // default.
   537   // (This is really ugly, but all other methods I could think of changed a
   538   // lot of main-line code for G1.)
   539   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   540     _next_fk = nfk;
   541   }
   543   DirtyCardToOopClosure*
   544   new_dcto_closure(OopClosure* cl,
   545                    CardTableModRefBS::PrecisionStyle precision,
   546                    HeapRegionDCTOC::FilterKind fk);
   548 #if WHASSUP
   549   DirtyCardToOopClosure*
   550   new_dcto_closure(OopClosure* cl,
   551                    CardTableModRefBS::PrecisionStyle precision,
   552                    HeapWord* boundary) {
   553     assert(boundary == NULL, "This arg doesn't make sense here.");
   554     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   555     _next_fk = HeapRegionDCTOC::NoFilterKind;
   556     return res;
   557   }
   558 #endif
   560   //
   561   // Note the start or end of marking. This tells the heap region
   562   // that the collector is about to start or has finished (concurrently)
   563   // marking the heap.
   564   //
   566   // Note the start of a marking phase. Record the
   567   // start of the unmarked area of the region here.
   568   void note_start_of_marking(bool during_initial_mark) {
   569     init_top_at_conc_mark_count();
   570     _next_marked_bytes = 0;
   571     if (during_initial_mark && is_young() && !is_survivor())
   572       _next_top_at_mark_start = bottom();
   573     else
   574       _next_top_at_mark_start = top();
   575   }
   577   // Note the end of a marking phase. Install the start of
   578   // the unmarked area that was captured at start of marking.
   579   void note_end_of_marking() {
   580     _prev_top_at_mark_start = _next_top_at_mark_start;
   581     _prev_marked_bytes = _next_marked_bytes;
   582     _next_marked_bytes = 0;
   584     guarantee(_prev_marked_bytes <=
   585               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   586               "invariant");
   587   }
   589   // After an evacuation, we need to update _next_top_at_mark_start
   590   // to be the current top.  Note this is only valid if we have only
   591   // ever evacuated into this region.  If we evacuate, allocate, and
   592   // then evacuate we are in deep doodoo.
   593   void note_end_of_copying() {
   594     assert(top() >= _next_top_at_mark_start, "Increase only");
   595     _next_top_at_mark_start = top();
   596   }
   598   // Returns "false" iff no object in the region was allocated when the
   599   // last mark phase ended.
   600   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   602   // If "is_marked()" is true, then this is the index of the region in
   603   // an array constructed at the end of marking of the regions in a
   604   // "desirability" order.
   605   int sort_index() {
   606     return _sort_index;
   607   }
   608   void set_sort_index(int i) {
   609     _sort_index = i;
   610   }
   612   void init_top_at_conc_mark_count() {
   613     _top_at_conc_mark_count = bottom();
   614   }
   616   void set_top_at_conc_mark_count(HeapWord *cur) {
   617     assert(bottom() <= cur && cur <= end(), "Sanity.");
   618     _top_at_conc_mark_count = cur;
   619   }
   621   HeapWord* top_at_conc_mark_count() {
   622     return _top_at_conc_mark_count;
   623   }
   625   void reset_during_compaction() {
   626     guarantee( isHumongous() && startsHumongous(),
   627                "should only be called for humongous regions");
   629     zero_marked_bytes();
   630     init_top_at_mark_start();
   631   }
   633   // <PREDICTION>
   634   void calc_gc_efficiency(void);
   635   double gc_efficiency() { return _gc_efficiency;}
   636   // </PREDICTION>
   638   bool is_young() const     { return _young_type != NotYoung; }
   639   bool is_survivor() const  { return _young_type == Survivor; }
   641   int  young_index_in_cset() const { return _young_index_in_cset; }
   642   void set_young_index_in_cset(int index) {
   643     assert( (index == -1) || is_young(), "pre-condition" );
   644     _young_index_in_cset = index;
   645   }
   647   int age_in_surv_rate_group() {
   648     assert( _surv_rate_group != NULL, "pre-condition" );
   649     assert( _age_index > -1, "pre-condition" );
   650     return _surv_rate_group->age_in_group(_age_index);
   651   }
   653   void record_surv_words_in_group(size_t words_survived) {
   654     assert( _surv_rate_group != NULL, "pre-condition" );
   655     assert( _age_index > -1, "pre-condition" );
   656     int age_in_group = age_in_surv_rate_group();
   657     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   658   }
   660   int age_in_surv_rate_group_cond() {
   661     if (_surv_rate_group != NULL)
   662       return age_in_surv_rate_group();
   663     else
   664       return -1;
   665   }
   667   SurvRateGroup* surv_rate_group() {
   668     return _surv_rate_group;
   669   }
   671   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   672     assert( surv_rate_group != NULL, "pre-condition" );
   673     assert( _surv_rate_group == NULL, "pre-condition" );
   674     assert( is_young(), "pre-condition" );
   676     _surv_rate_group = surv_rate_group;
   677     _age_index = surv_rate_group->next_age_index();
   678   }
   680   void uninstall_surv_rate_group() {
   681     if (_surv_rate_group != NULL) {
   682       assert( _age_index > -1, "pre-condition" );
   683       assert( is_young(), "pre-condition" );
   685       _surv_rate_group = NULL;
   686       _age_index = -1;
   687     } else {
   688       assert( _age_index == -1, "pre-condition" );
   689     }
   690   }
   692   void set_young() { set_young_type(Young); }
   694   void set_survivor() { set_young_type(Survivor); }
   696   void set_not_young() { set_young_type(NotYoung); }
   698   // Determine if an object has been allocated since the last
   699   // mark performed by the collector. This returns true iff the object
   700   // is within the unmarked area of the region.
   701   bool obj_allocated_since_prev_marking(oop obj) const {
   702     return (HeapWord *) obj >= prev_top_at_mark_start();
   703   }
   704   bool obj_allocated_since_next_marking(oop obj) const {
   705     return (HeapWord *) obj >= next_top_at_mark_start();
   706   }
   708   // For parallel heapRegion traversal.
   709   bool claimHeapRegion(int claimValue);
   710   jint claim_value() { return _claimed; }
   711   // Use this carefully: only when you're sure no one is claiming...
   712   void set_claim_value(int claimValue) { _claimed = claimValue; }
   714   // Returns the "evacuation_failed" property of the region.
   715   bool evacuation_failed() { return _evacuation_failed; }
   717   // Sets the "evacuation_failed" property of the region.
   718   void set_evacuation_failed(bool b) {
   719     _evacuation_failed = b;
   721     if (b) {
   722       init_top_at_conc_mark_count();
   723       _next_marked_bytes = 0;
   724     }
   725   }
   727   // Requires that "mr" be entirely within the region.
   728   // Apply "cl->do_object" to all objects that intersect with "mr".
   729   // If the iteration encounters an unparseable portion of the region,
   730   // or if "cl->abort()" is true after a closure application,
   731   // terminate the iteration and return the address of the start of the
   732   // subregion that isn't done.  (The two can be distinguished by querying
   733   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   734   // completed.
   735   HeapWord*
   736   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   738   // In this version - if filter_young is true and the region
   739   // is a young region then we skip the iteration.
   740   HeapWord*
   741   oops_on_card_seq_iterate_careful(MemRegion mr,
   742                                    FilterOutOfRegionClosure* cl,
   743                                    bool filter_young);
   745   // A version of block start that is guaranteed to find *some* block
   746   // boundary at or before "p", but does not object iteration, and may
   747   // therefore be used safely when the heap is unparseable.
   748   HeapWord* block_start_careful(const void* p) const {
   749     return _offsets.block_start_careful(p);
   750   }
   752   // Requires that "addr" is within the region.  Returns the start of the
   753   // first ("careful") block that starts at or after "addr", or else the
   754   // "end" of the region if there is no such block.
   755   HeapWord* next_block_start_careful(HeapWord* addr);
   757   // Returns the zero-fill-state of the current region.
   758   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
   759   bool zero_fill_is_allocated() { return _zfs == Allocated; }
   760   Thread* zero_filler() { return _zero_filler; }
   762   // Indicate that the contents of the region are unknown, and therefore
   763   // might require zero-filling.
   764   void set_zero_fill_needed() {
   765     set_zero_fill_state_work(NotZeroFilled);
   766   }
   767   void set_zero_fill_in_progress(Thread* t) {
   768     set_zero_fill_state_work(ZeroFilling);
   769     _zero_filler = t;
   770   }
   771   void set_zero_fill_complete();
   772   void set_zero_fill_allocated() {
   773     set_zero_fill_state_work(Allocated);
   774   }
   776   void set_zero_fill_state_work(ZeroFillState zfs);
   778   // This is called when a full collection shrinks the heap.
   779   // We want to set the heap region to a value which says
   780   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
   781   // that role.
   782   void reset_zero_fill() {
   783     set_zero_fill_state_work(NotZeroFilled);
   784     _zero_filler = NULL;
   785   }
   787   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   788   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   789   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   791   void set_recorded_rs_length(size_t rs_length) {
   792     _recorded_rs_length = rs_length;
   793   }
   795   void set_predicted_elapsed_time_ms(double ms) {
   796     _predicted_elapsed_time_ms = ms;
   797   }
   799   void set_predicted_bytes_to_copy(size_t bytes) {
   800     _predicted_bytes_to_copy = bytes;
   801   }
   803 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   804   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   805   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   807   CompactibleSpace* next_compaction_space() const;
   809   virtual void reset_after_compaction();
   811   void print() const;
   812   void print_on(outputStream* st) const;
   814   // use_prev_marking == true  -> use "prev" marking information,
   815   // use_prev_marking == false -> use "next" marking information
   816   // NOTE: Only the "prev" marking information is guaranteed to be
   817   // consistent most of the time, so most calls to this should use
   818   // use_prev_marking == true. Currently, there is only one case where
   819   // this is called with use_prev_marking == false, which is to verify
   820   // the "next" marking information at the end of remark.
   821   void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
   823   // Override; it uses the "prev" marking information
   824   virtual void verify(bool allow_dirty) const;
   826 #ifdef DEBUG
   827   HeapWord* allocate(size_t size);
   828 #endif
   829 };
   831 // HeapRegionClosure is used for iterating over regions.
   832 // Terminates the iteration when the "doHeapRegion" method returns "true".
   833 class HeapRegionClosure : public StackObj {
   834   friend class HeapRegionSeq;
   835   friend class G1CollectedHeap;
   837   bool _complete;
   838   void incomplete() { _complete = false; }
   840  public:
   841   HeapRegionClosure(): _complete(true) {}
   843   // Typically called on each region until it returns true.
   844   virtual bool doHeapRegion(HeapRegion* r) = 0;
   846   // True after iteration if the closure was applied to all heap regions
   847   // and returned "false" in all cases.
   848   bool complete() { return _complete; }
   849 };
   851 // A linked lists of heap regions.  It leaves the "next" field
   852 // unspecified; that's up to subtypes.
   853 class RegionList VALUE_OBJ_CLASS_SPEC {
   854 protected:
   855   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
   856   virtual void set_next(HeapRegion* chr,
   857                         HeapRegion* new_next) = 0;
   859   HeapRegion* _hd;
   860   HeapRegion* _tl;
   861   size_t _sz;
   863   // Protected constructor because this type is only meaningful
   864   // when the _get/_set next functions are defined.
   865   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
   866 public:
   867   void reset() {
   868     _hd = NULL;
   869     _tl = NULL;
   870     _sz = 0;
   871   }
   872   HeapRegion* hd() { return _hd; }
   873   HeapRegion* tl() { return _tl; }
   874   size_t sz() { return _sz; }
   875   size_t length();
   877   bool well_formed() {
   878     return
   879       ((hd() == NULL && tl() == NULL && sz() == 0)
   880        || (hd() != NULL && tl() != NULL && sz() > 0))
   881       && (sz() == length());
   882   }
   883   virtual void insert_before_head(HeapRegion* r);
   884   void prepend_list(RegionList* new_list);
   885   virtual HeapRegion* pop();
   886   void dec_sz() { _sz--; }
   887   // Requires that "r" is an element of the list, and is not the tail.
   888   void delete_after(HeapRegion* r);
   889 };
   891 class EmptyNonHRegionList: public RegionList {
   892 protected:
   893   // Protected constructor because this type is only meaningful
   894   // when the _get/_set next functions are defined.
   895   EmptyNonHRegionList() : RegionList() {}
   897 public:
   898   void insert_before_head(HeapRegion* r) {
   899     //    assert(r->is_empty(), "Better be empty");
   900     assert(!r->isHumongous(), "Better not be humongous.");
   901     RegionList::insert_before_head(r);
   902   }
   903   void prepend_list(EmptyNonHRegionList* new_list) {
   904     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
   905     //     "Better be empty");
   906     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
   907            "Better not be humongous.");
   908     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
   909     //     "Better be empty");
   910     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
   911            "Better not be humongous.");
   912     RegionList::prepend_list(new_list);
   913   }
   914 };
   916 class UncleanRegionList: public EmptyNonHRegionList {
   917 public:
   918   HeapRegion* get_next(HeapRegion* hr) {
   919     return hr->next_from_unclean_list();
   920   }
   921   void set_next(HeapRegion* hr, HeapRegion* new_next) {
   922     hr->set_next_on_unclean_list(new_next);
   923   }
   925   UncleanRegionList() : EmptyNonHRegionList() {}
   927   void insert_before_head(HeapRegion* r) {
   928     assert(!r->is_on_free_list(),
   929            "Better not already be on free list");
   930     assert(!r->is_on_unclean_list(),
   931            "Better not already be on unclean list");
   932     r->set_zero_fill_needed();
   933     r->set_on_unclean_list(true);
   934     EmptyNonHRegionList::insert_before_head(r);
   935   }
   936   void prepend_list(UncleanRegionList* new_list) {
   937     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
   938            "Better not already be on free list");
   939     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
   940            "Better already be marked as on unclean list");
   941     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
   942            "Better not already be on free list");
   943     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
   944            "Better already be marked as on unclean list");
   945     EmptyNonHRegionList::prepend_list(new_list);
   946   }
   947   HeapRegion* pop() {
   948     HeapRegion* res = RegionList::pop();
   949     if (res != NULL) res->set_on_unclean_list(false);
   950     return res;
   951   }
   952 };
   954 // Local Variables: ***
   955 // c-indentation-style: gnu ***
   956 // End: ***
   958 #endif // SERIALGC
   960 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial